WO2015030061A1 - 鉄道車両の横圧低減方法 - Google Patents

鉄道車両の横圧低減方法 Download PDF

Info

Publication number
WO2015030061A1
WO2015030061A1 PCT/JP2014/072450 JP2014072450W WO2015030061A1 WO 2015030061 A1 WO2015030061 A1 WO 2015030061A1 JP 2014072450 W JP2014072450 W JP 2014072450W WO 2015030061 A1 WO2015030061 A1 WO 2015030061A1
Authority
WO
WIPO (PCT)
Prior art keywords
lateral pressure
actuator
vehicle
state quantity
thrust
Prior art date
Application number
PCT/JP2014/072450
Other languages
English (en)
French (fr)
Inventor
将明 水野
後藤 修
智 亀甲
拓自 中居
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP14839442.2A priority Critical patent/EP3040251B1/en
Priority to CN201480048069.XA priority patent/CN105492291B/zh
Priority to ES14839442T priority patent/ES2706741T3/es
Priority to JP2015534264A priority patent/JP6292237B2/ja
Publication of WO2015030061A1 publication Critical patent/WO2015030061A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/38Arrangements or devices for adjusting or allowing self- adjustment of wheel axles or bogies when rounding curves, e.g. sliding axles, swinging axles
    • B61F5/44Adjustment controlled by movements of vehicle body

Definitions

  • the present invention relates to a method for reducing a lateral load (lateral pressure) acting on a wheel of a railway vehicle during traveling in order to improve safety.
  • a high lateral pressure is instantaneously generated due to a trajectory error such as a trajectory error (longitudinal unevenness on the rail side surface) (see FIG. 10B).
  • a trajectory error longitudinal unevenness on the rail side surface
  • the lateral pressure generated instantaneously due to a trajectory error is referred to as a fluctuating lateral pressure.
  • Patent Documents 1 and 2 disclose a method in which an actuator is installed between a vehicle body and a carriage and the actuator is operated according to a curve radius when traveling in a curved section.
  • Patent Document 1 generates a thrust force that gives a turning operation force according to a curve radius in an actuator.
  • the method disclosed in Patent Document 2 generates a thrust force on the actuator that reduces the lateral pressure measured directly.
  • Patent Document 3 track data such as track error is stored in advance, and the lateral pressure generated in eight wheels arranged in one vehicle is provided by including a vehicle state information storage device. A method for estimating and controlling the thrust generated in the actuator is disclosed.
  • Patent Document 3 does not mention in detail a specific method for estimating the lateral pressure from the trajectory information such as trajectory error and a method for determining the thrust generated in the actuator.
  • Patent Document 3 since the method disclosed in Patent Document 3 is feedforward control for estimating lateral pressure generated based on track information stored in a vehicle and travel position information of the vehicle, track information is stored in advance. There is a need. However, if an error occurs in the measurement of travel position information (distance distance) due to idling or sliding during braking of the vehicle, or if the stored track information is inappropriate, incorrect control is performed. May be made.
  • Patent Documents 1 and 2 are used for detecting the approach of the curve and compensating for the change of the friction coefficient in order to use the lateral pressure as an input value, and are caused by a trajectory error.
  • the suppression of the fluctuating lateral pressure is not considered.
  • Japanese Patent Laid-Open No. 2004-133867 does not mention in detail a specific method for estimating a lateral pressure from trajectory information such as a trajectory error or a method for determining a thrust generated in an actuator.
  • the present invention is based on a value estimated from a state quantity measured using a sensor installed in a vehicle without referring to trajectory information stored in advance in a recording device or the like. It aims at suppressing suitably.
  • the inventor installs a sensor on the railway vehicle, and controls the thrust of the actuator according to the state quantity that correlates with the track error calculated using the output value of this sensor, thereby reducing the lateral pressure generated during traveling Thought to do.
  • an actuator capable of controlling thrust by inputting a signal from the outside is installed between the body of the railway vehicle and the carriage.
  • a sensor for measuring a state quantity having a correlation with the track error is installed on at least one of the vehicle body, the carriage, and the wheel shaft.
  • the state quantity measured using the sensor is converted into parameters (u_st1, u_st2,%) Having a strong correlation with the orbital curvature, and the actuator thrust for steady lateral pressure suppression is determined from the parameters.
  • u_st1, u_st2, ... are parameters for steady side pressure control input
  • F1 is an output for suppressing steady side pressure to the actuator
  • G1 is a transfer function of steady side pressure
  • F1 G1 (u_st1, u_st2, ...) Become.
  • the output F1 for suppressing the steady lateral pressure to the actuator does not naturally occur when traveling in a straight section.
  • the state quantity measured using the sensor is converted into parameters (u_fluc1, u_fluc2,%) Having a strong correlation with orbital deviation, and the actuator thrust for fluctuation component suppression is determined from the parameters.
  • u_fl1, u_fl2, ... are the parameters for variable lateral pressure control input
  • F2 is the output for suppressing the variable lateral pressure to the actuator
  • G2 is the transfer function of the variable lateral pressure
  • F2 G2 (u_fl1, u_fl2, ...) Become.
  • the lateral pressure generated on the wheel during traveling is affected by the vertical force acting on the wheel and the friction coefficient between the wheel and the rail. Therefore, it is desirable to acquire these values and add them to the state quantity for control input to the actuator.
  • the lateral pressure generated while the railway vehicle is traveling is divided into steady and fluctuating lateral pressure, and the state quantities that have a strong correlation with each lateral pressure are measured, and the actuator thrust is determined according to the state quantities. Control.
  • the trajectory curvature in a curved section is almost constant while traveling in a certain curved section, although it is affected by the trajectory error, so the steady lateral pressure during traveling in a curved section is almost constant.
  • the value is constant.
  • the steady-state lateral pressure control input parameters u_st1, u_st2,... are selected as state quantities that are substantially constant while traveling in a certain curve section, and the steady-state lateral pressure suppression output F1 to the actuator is also substantially constant. Value.
  • the value of the trajectory error changes depending on the vehicle travel position while traveling in a certain curved section
  • the value of the fluctuating lateral pressure also changes according to the value of the trajectory error, corresponding to the change of the trajectory error value.
  • the output F2 for suppressing the fluctuation lateral pressure to the actuator also changes.
  • the fluctuation width of the fluctuation lateral pressure becomes small. That is, by reducing the lateral pressure at a location where a lateral pressure higher than the average value of the lateral pressure during traveling in one curved section is reduced, and increasing the lateral pressure at a location where a low lateral pressure is generated, The fluctuation range of lateral pressure is suppressed. However, the average value of the lateral pressure is almost unchanged.
  • the carriage will turn excessively in the direction facing the inside of the curved section. Accordingly, there is a possibility that the leading wheel shaft that is in flange contact between the wheel and the rail on the outer gauge side is in flange contact between the wheel and the rail on the inner gauge side and derails to the inner gauge side.
  • the transfer function G1 and the transfer function G2 are set so that the output F2 is relatively larger than the output F1
  • the fluctuation lateral pressure is suppressed, that is, the fluctuation width of the lateral pressure is suppressed.
  • the amount of suppression of the steady side pressure is small, a high steady side pressure is maintained.
  • the transfer function G1 and the transfer function G2 are set so that the output F1 is generated larger than the output F2. It is desirable to place importance on suppression of steady lateral pressure.
  • the transfer function G1 and the transfer function G2 are set so that the output F2 is larger than the output F1. It is desirable to place importance on the suppression of fluctuating lateral pressure.
  • one factor that determines the maximum traveling speed of a certain curve section is the value of the maximum lateral pressure generated during the curve traveling. Therefore, in order to improve the maximum traveling speed in the curved section, it is necessary to keep the maximum lateral pressure low.
  • the maximum thrust of the actuator is limited, and it is preferable to reduce the generated thrust of the actuator from other factors besides the maximum thrust.
  • the average value per unit time of thrust generated by the actuator is small.
  • the operation time is preferably short from the viewpoint of extending the life. This means that the average value per unit time of the thrust generated by the actuator is reduced.
  • compressed air is supplied from a compressor mounted on a railway vehicle.
  • the compressor mounted on the railway vehicle is often selected as small as possible from the viewpoint of reducing the weight of the vehicle and the installation space of the underfloor equipment. Therefore, since the constraint condition of the compressor capacity is often severe, it is preferable to reduce the consumption of compressed air, and it is preferable that the average value per unit time of the thrust generated by the actuator is small.
  • the output F1 is set to a value lower than the limit capability of the actuator, leaving a surplus force in the thrust of the actuator, and appropriately generating a thrust close to the limit at a point where a high fluctuation lateral pressure is generated.
  • the reason for installing the actuator is to apply a moment to the wheel shaft via the carriage.
  • a side support is installed between the bolster and the bogie frame among the components of the bogie, and it turns between the bolster and the bogie frame. Therefore, when the actuator is installed on the vehicle body side, it is installed on the vehicle body or the swing pillow. When the actuator is installed on the cart side, it is installed on the cart frame.
  • Factors that have a strong influence on the lateral pressure generated on the head shaft of a railway carriage are vertical force acting on each wheel, friction coefficient between the wheel and rail, left and right creep rate and front and rear creep rate generated on the wheel shaft, and The combined force of Kant and centrifugal force can be mentioned.
  • the vertical force acting on each wheel varies greatly depending on the passenger's boarding rate.
  • This value can be estimated from a burden load value of a secondary spring installed between the vehicle body and the carriage or a primary spring installed between the carriage and the wheel shaft.
  • the burden load of the secondary spring can be converted from the internal pressure of the air spring.
  • the burden load of the primary spring can be converted by measuring the displacement between the wheel shaft and the carriage frame.
  • the coefficient of friction between the wheel and the rail can be estimated from the ratio of the longitudinal load generated in a connecting member such as a link that connects the carriage and the wheel shaft in the front-rear direction, and the vertical force ratio in the vertical direction. .
  • the front and rear creep rates can be obtained by the following formula 1
  • the left and right creep rates can be obtained by the following formula 2.
  • Equations 1 and 2 The state quantities that can be measured while the vehicle is running at the front and rear, left and right creep rates shown in Equations 1 and 2 are: wheel shaft lateral displacement, wheel shaft left and right speed, wheel shaft yawing angle, wheel shaft yawing angular velocity, and vehicle travel speed. is there. Of these, the left-right speed of the wheel shaft can be converted from the left-right acceleration of the wheel shaft.
  • the wheel shaft left-right displacement, the wheel shaft left-right speed, the wheel shaft left-right acceleration, the wheel shaft yawing angle The yaw angular velocity of the wheel shaft can be replaced by a corresponding state quantity on the cart side.
  • the component force due to the cant and the resultant force due to the centrifugal force generated while traveling in the curve section can be converted from the roll angle of the vehicle and its time differential amount, or the height of the air spring as the secondary spring.
  • the lateral displacement, speed, acceleration, yawing angle, and yawing angular velocity of the vehicle body are larger in weight and moment of inertia than the same state quantity generated in the bogie and wheel axle, and the left and right dampers, yaw dampers, etc. Because of this, vibration insulation between the cart and the car body is high. Therefore, the amount of fluctuation of the lateral displacement, speed, acceleration, yawing angle, and yawing angular speed that are generated in the vehicle body due to a trajectory error is smaller than the same amount of fluctuation that occurs on the carriage and the wheel shaft. Therefore, it is considered effective to use the state quantity on the vehicle body side for estimating the steady lateral pressure.
  • the steady-state component of the lateral pressure can be suitably removed, and the fluctuating lateral pressure can be estimated. Is possible.
  • the present invention has been made through the course from the above idea of the inventor to the solution of the problem, and has the following main features.
  • actuators on railway vehicles In the case of a vehicle equipped with a bolsterless bogie, this actuator is installed between the vehicle body and the bogie frame.
  • a bolster-equipped trolley equipped with a direct mount trolley it is installed between the vehicle body and the trolley frame or between the bolster and the trolley frame.
  • a vehicle equipped with an indirect mount type carriage it is installed between the vehicle body and the bolster.
  • a sensor for measuring the state quantity of at least one of the vehicle body, the carriage, and the wheel shaft during traveling is installed in the railway vehicle.
  • the state quantity to be measured during running is one of the following factors that have a strong influence on the lateral pressure.
  • ⁇ Internal pressure of the air spring used as the secondary spring
  • Vertical displacement of the coil spring used as the primary spring
  • Longitudinal load acting on coupling members such as links that link the wheel shaft and the carriage frame in the longitudinal direction ⁇ Yaw angle, yawing angular velocity, yawing angular acceleration, lateral displacement, lateral velocity, lateral acceleration, vehicle running speed, roll angle, roll angular velocity, air spring height
  • the measured state quantity is converted in real time to a steady side pressure control input parameter having a strong correlation with the steady side pressure, and an output command to the actuator is calculated based on a preset steady side pressure transfer function.
  • thrust is generated in the actuator installed between the carriage and the vehicle body based on the value estimated from the state quantity measured by the sensor installed in the vehicle. Therefore, it is possible to effectively suppress the lateral pressure generated while the railway vehicle is traveling without referring to the track information stored in the recording device or the like in advance.
  • the steady lateral pressure and the fluctuating lateral pressure that are generated while the railway vehicle is traveling can be effectively suppressed, so that the maximum lateral pressure that is generated during traveling can be effectively reduced, and the traveling safety of the vehicle can be reduced.
  • FIG. 4 is a diagram showing a traveling simulation result of an additional torque generated by an actuator while the railway vehicle travels in a curved section, where (a) shows condition 1 and (b) shows condition 2;
  • FIG. 6 is a diagram showing a traveling simulation result of an additional torque generated by an actuator while the railway vehicle is traveling in a curved section, where (a) shows condition 3, (b) shows condition 4, and (c) shows condition 5.
  • FIG. 6 is a diagram showing a maximum value of additional torque generated by an actuator under conditions 3 to 5;
  • FIG. 6 is a diagram showing an average value and a maximum value of lateral pressure in conditions 1 to 5 that occur when a railway vehicle travels in a circular curve section.
  • FIG. 6 is a diagram showing additional torque per unit time under conditions 3 to 5 when the railway vehicle is traveling in a circular curve section.
  • FIG. 5 is a diagram showing changes in lateral pressure generated during traveling in a curved section, where (a) is a steady lateral pressure, (b) is a varying lateral pressure, and (c) is an actual lateral pressure obtained by adding a varying lateral pressure to a steady lateral pressure. It is a waveform diagram.
  • the present invention estimates a steady lateral pressure and a fluctuating lateral pressure based on a state quantity measured by a sensor installed in a vehicle for the purpose of suppressing a lateral pressure generated during traveling, and determines a vehicle body according to the estimated value. -Realized by generating thrust in the actuators installed between the carriages.
  • the vehicle model used for the running simulation was a general two-axis bogie, and the track was set to track conditions including a curve section with a curve radius of 600 m.
  • a trajectory error equivalent to a general conventional line was randomly created, and a trajectory error was given depending on conditions.
  • the actuator was installed between the car body and the carriage. In this simulation, the actuator thrust was replaced with additional torque between the vehicle body and the carriage. Further, the yaw angular velocity of the vehicle body, the yawing angular velocity of the front and rear carriages, and the vehicle speed were used as state quantities for estimating the steady lateral pressure and the fluctuating lateral pressure.
  • the additional torque to be applied between the vehicle body and the bogie is determined by multiplying the value of the state quantity by the appropriate transfer function of steady lateral pressure and fluctuating lateral pressure, and added between the vehicle body and the bogie. A block diagram for determining this additional torque is shown in FIG.
  • the driving simulation was performed under the following five conditions.
  • Conditions 3 to 5 for issuing a thrust command value that gives additional torque by the actuator are assumed to use actuators with the same capacity, and the transfer function G1 is set so that the maximum value of the generated additional torque is almost equal. , G2 was set.
  • condition 4 in which the transfer function G2 multiplied by the state quantity for estimating the fluctuating lateral pressure is larger than 0 (FIG. 6B), the average value of the lateral pressure is equivalent to that in condition 2, but due to trajectory error.
  • the lateral pressure at the time when a large fluctuating lateral pressure is generated can be reduced (see FIGS. 4B and 3B).
  • the maximum additional torque generated in the actuator is almost the same as shown in FIG.
  • the average value of the lateral pressure is condition 3 ⁇ condition 5 ⁇ condition 4 as shown in FIG.
  • the difference is 5% or less, and can be regarded as almost equivalent.
  • the additional torque per unit time satisfies the condition 4 ⁇ condition 5 ⁇ condition 3 as shown in FIG.
  • conditions 3 to 5 can be regarded as having the same maximum lateral pressure, so from the viewpoint of improving the maximum traveling speed in the curved section, any control condition of conditions 3 to 5 can be used. It can be seen that the same performance can be obtained.
  • the condition 3 that can suppress the average lateral pressure to the lowest is preferable (see FIG. 8).
  • the condition under which the generated thrust of the actuator can be set large is, for example, when there is a margin in the capacity of the compressor mounted on the vehicle side when applying a pneumatic actuator. Or it is a case where it can be used in the environment where high heat dissipation is expected when applying an electric actuator.
  • the actuator Depending on the condition of the additional torque, as in Condition 5, the actuator generates a substantially constant thrust during traveling in the curved section, while at the point where large fluctuating lateral pressure is generated, the actuator thrust is further increased to the maximum thrust. It is possible to perform control such as increasing within the range.
  • the railway vehicle is a biaxial bogie, but an actuator is installed between the bogie and the vehicle body, so that the bogie with a bogie between the vehicle body and the wheel shaft can be used regardless of the number of axes. The same can be applied.
  • the yaw angular velocity of the vehicle body, the yawing angular velocity of the front and rear carriages, and the vehicle speed are used as state quantities for estimating the steady lateral pressure and the fluctuating lateral pressure.
  • the yaw angle of the wheel shaft / cart / vehicle body and the yawing angular velocity of the wheel shaft may be used instead.
  • acceleration, roll angle, roll angular velocity, and air spring height may be used.
  • traveling simulation is performed when traveling in a curved section, it is possible to suppress a fluctuating lateral pressure that is instantaneously generated due to a trajectory error during traveling in a straight section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

 例えばボルスタレス台車を搭載した車両の車体と台車枠間にアクチュエータを設置する。車体・台車・輪軸の少なくとも何れか一つにセンサーを設置する。センサーを用いて走行中に取得した状態量に基づき、定常横圧と相関を有する一つ又は複数のパラメータを演算して、当該演算値に所定の伝達関数を適用してアクチュエータへの推力指令値を決定する。同時に、変動横圧と相関を有する一つ又は複数のパラメータを演算して、当該演算値に所定の伝達関数を適用してアクチュエータへの推力指令値を決定する。その後、これら2つの推力指令値を合成してアクチュエータに発生させる推力を決定する。 走行中に発生する最大横圧を効果的に低減できるので、走行最高速度の向上が可能となる。

Description

鉄道車両の横圧低減方法
 本発明は、安全性を向上させるため、走行中に鉄道車両の車輪に作用する横方向の荷重(横圧)を低減する方法に関するものである。
 曲線区間を走行中、鉄道車両の車輪には横圧が発生する(図10(c)参照)。この横圧が大きくなるほど車両が脱線する危険性が増大するため、横圧はできるだけ小さくすることが望ましい。
 この横圧と曲線区間の軌道曲率の間には正の相関があり、曲線区間の曲線半径が小さいほど大きな横圧が定常的に発生する。この定常的に発生する横圧(図10(a)参照)を、以下、定常横圧という。
 一方、通り狂い(レール側面における長さ方向の凹凸)などの軌道狂いにより瞬間的に高い横圧が発生する(図10(b)参照)。以下、通り狂いなどの軌道狂いにより瞬間的に発生する横圧を、変動横圧という。
 従って、曲線区間走行中における安全性を向上させるためには、定常横圧の低減だけでなく、変動横圧の変動幅を小さくすることが必要となる。なお、変動横圧は曲線区間だけでなく直線区間でも発生する。
 前記横圧を低減する方法として、車体と台車間にアクチュエータを設置し、曲線区間の走行時、曲線半径に応じてアクチュエータを動作させる方法が、特許文献1,2で開示されている。
 特許文献1で開示された方法は、曲線半径に応じた旋回作動力を与えるような推力をアクチュエータに発生させるものである。また、特許文献2で開示された方法は、直接測定した横圧を減少させるような推力をアクチュエータに発生させるものである。
 しかしながら、特許文献1,2で開示された方法で、入力値として横圧を使用する目的は、曲線区間への進入検知と摩擦係数変化に対する補償であり、通り狂いなどの軌道狂いにより発生する変動横圧の抑制については考慮されていない。
 また、特許文献3には、軌道狂いなどの軌道データを予め保持しておき、また、車両の状態情報記憶装置を備えることにより、1車両に配置される8枚の車輪に発生する横圧を推定してアクチュエータに発生させる推力を制御する方法が開示されている。
 しかしながら、特許文献3には、軌道狂いなどの軌道情報から横圧を推定する具体的な方法や、アクチュエータに発生させる推力の決定方法について、詳細な言及がなされていない。
 また、特許文献3で開示された方法は、車両に保存した軌道情報、及び車両の走行位置情報に基づいて発生する横圧を推定するフィードフォワード制御であるため、予め軌道情報を記憶させておく必要がある。しかしながら、当該車両の制動時の空転・滑走などにより、走行位置情報(距離程)の計測に誤差が生じた場合、或いは、保存された軌道情報が不適切なものであった場合、誤った制御がなされる可能性がある。
特開2002-087262号公報 特開2004-161115号公報 特開2012-166733号公報
 本発明が解決しようとする問題点は、特許文献1,2で開示された方法は、入力値として横圧を使用する目的が曲線進入の検知と摩擦係数変化に対する補償であり、軌道狂いにより発生する変動横圧の抑制については考慮されていないという点である。また、特許文献3には、軌道狂いなどの軌道情報から横圧を推定する具体的な方法や、アクチュエータに発生させる推力の決定方法について詳細な言及がなされていないという点である。
 本発明は、予め記録装置などに保存した軌道情報を参照することなく、車両に設置したセンサーを用いて測定した状態量から推定した値を基に、走行中、軌道狂いにより発生する変動横圧をも好適に抑制することを目的とするものである。
 まず、本発明の着想から課題解決に至るまでの経過について説明する。
 発明者は、鉄道車両にセンサーを設置し、このセンサーの出力値を用いて算出した軌道狂いと相関を有する状態量に応じてアクチュエータの推力を制御することで、走行時に発生する横圧を低減することを考えた。
 すなわち、本発明では、外部から信号を入力することにより推力の制御が可能なアクチュエータを鉄道車両の車体と台車間に設置する。また、車体・台車・輪軸の少なくとも何れか一つに、軌道狂いと相関を有する状態量を測定するセンサーを設置する。
 そして、前記センサーを用いて測定した状態量から、軌道曲率と相関の強いパラメータ(u_st1,u_st2,…)に換算し、そのパラメータから定常横圧抑制用のアクチュエータ推力を決定する。u_st1,u_st2,…を定常横圧制御入力用パラメータ、F1をアクチュエータへの定常横圧抑制用の出力、G1を定常横圧の伝達関数とした場合、F1=G1(u_st1,u_st2,…)となる。このアクチュエータへの定常横圧抑制用の出力F1は、直線区間の走行時は、当然に発生しない。
 一方、前記センサーを用いて測定した状態量から、軌道狂いと相関の強いパラメータ(u_fluc1,u_fluc2,…)に換算し、そのパラメータから変動成分抑圧用のアクチュエータ推力を決定する。u_fl1,u_fl2,…を変動横圧制御入力用パラメータ、F2をアクチュエータへの変動横圧抑制用の出力、G2を変動横圧の伝達関数とした場合、F2=G2(u_fl1,u_fl2,…)となる。
 従って、鉄道車両が走行する時のアクチュエータへの横圧抑制用の出力の合計Fは、
 F=F1+F2=G1(u_st1,u_st2,…)+G2(u_fl1,u_fl2,…)
と表すことができる(図1参照)。
 ここで、走行中、車輪に発生する横圧は、車輪に作用する上下方向の垂直力と、車輪とレール間の摩擦係数の影響を受ける。従って、これらの値を取得してアクチュエータへの制御入力用の状態量に加えることが望ましい。
 このように、鉄道車両が走行中に発生する横圧を定常横圧と変動横圧に分けて捉え、各々の横圧と相関の強い状態量を測定し、その状態量に応じてアクチュエータ推力を制御する。このようにすることで、走行中の軌道狂いに関する情報や車両走行位置に関する情報がなくても、軌道狂いに起因すると考えられる変動横圧をも好適に抑制することができる。
 ところで、一般的に、曲線区間における軌道曲率は、ある一つの曲線区間を走行中は軌道狂いの微小な影響を受けるもののほぼ一定であるので、ある一つの曲線区間を走行中の定常横圧の値は一定である。
 従って、定常横圧制御入力用パラメータu_st1,u_st2,…は、ある一つの曲線区間を走行中はほぼ一定となる状態量が選択され、アクチュエータへの定常横圧抑制用の出力F1もほぼ一定の値となる。
 一方、ある一つの曲線区間を走行中において、車両走行位置により軌道狂いの値は変化するため、変動横圧の値も軌道狂いの値に応じて変化し、軌道狂いの値の変化に対応してアクチュエータへの変動横圧抑制用の出力F2も変化する。
 従って、曲線区間の走行中において、ほぼ一定となるアクチュエータへの定常横圧抑制用の出力F1のみをアクチュエータの推力として発生させる場合は、横圧の低減量はほぼ一定となり、変動横圧の変動幅の大きさにほぼ変化はない。
 一方、アクチュエータへの変動横圧抑制用の出力F2のみをアクチュエータの推力として発生させる場合は、変動横圧の変動幅が小さくなる。すなわち、一つの曲線区間を走行中の横圧の平均値より高い横圧が発生している箇所では横圧を低下し、低い横圧が発生している箇所では横圧を増加させることで、横圧の変動幅を抑制する。但し、横圧の平均値はほぼ変化しない。
 従って、アクチュエータへの定常横圧抑制用の出力F1と、変動横圧抑制用の出力F2を共にアクチュエータの推力として発生させる場合、前記出力F1の推力は常時発生し、変動横圧制御入力用パラメータu_fl1,u_fl2,…に応じて前記出力F2が変化することになる。
 一般に、軌道曲率が比較的大きい(曲線半径の小さい)曲線区間の場合は、定常横圧が大きく、定常横圧と比較して変動横圧は小さい。一方、軌道曲率が比較的小さい(曲線半径の大きい)曲線区間の場合は、定常横圧は小さくなるが、定常横圧に対して変動横圧が大きくなることが知られている。ここで、アクチュエータの最大推力には限界があるため、最大推力で飽和しないように、アクチュエータへの定常横圧抑制用の出力F1と、変動横圧抑制用の出力F2の値の割合を調整することが必要になる。
 前記出力F1が前記出力F2に対して相対的に大きくなるように定常横圧の伝達関数G1と変動横圧の伝達関数G2を設定した場合、常に一定量の横圧低減効果が期待される。一方、変動横圧の抑制量が小さくなるため、横圧の変動幅は変化しない。
 また、前記出力F1によるアクチュエータの推力が過剰な場合、台車が曲線区間の内側を向く方向に過剰に旋回する。従って、通常、外軌側の車輪とレール間でフランジ接触する先頭輪軸が内軌側の車輪とレール間でフランジ接触し、内軌側に脱線する可能性が発生する。
 一方、前記出力F2が前記出力F1に対して相対的に大きくなるように前記伝達関数G1と前記伝達関数G2を設定した場合、変動横圧が抑制、つまり、横圧の変動幅が抑制される。但し、定常横圧の抑制量は少ないので、高い定常横圧が維持されることになる。
 従って、軌道曲率が比較的大きい(曲線半径が比較的小さい)曲線区間の場合は、前記出力F2に対して前記出力F1が大きく発生するように、前記伝達関数G1と前記伝達関数G2を設定し、定常横圧の抑制を重視することが望ましい。
 一方、軌道曲率が比較的小さい(曲線半径が比較的大きい)曲線区間の場合は、前記出力F1に対して前記出力F2が大きく発生するように、前記伝達関数G1と前記伝達関数G2を設定し、変動横圧の抑制を重視することが望ましい。
 ところで、ある曲線区間の走行最高速度を決定する一つの要因が、曲線走行中に発生する最大横圧の値である。従って、曲線区間における走行最高速度を向上させるためには、最大横圧を低く抑えることが必要となる。
 この最大横圧を可能な限り低く抑えるに際し、例えば車輪やレールの摩耗の抑制を重視する場合は、一つの曲線区間の走行中に発生する横圧の平均値を抑制することが効果的であると考えられる。従って、曲線区間の走行中の平均横圧を可能な限り抑制するように、つまり、前記出力F1の値を大きくするように制御することが望ましい。
 しかしながら、アクチュエータの最大推力には限りがあり、また、最大推力以外の他の要因からもアクチュエータの発生推力は小さくすることが好ましい。
 一般的な省エネルギーの観点からすると、例えばある一つの曲線区間を鉄道車両が走行する際には、アクチュエータにより発生させる推力の単位時間当たりの平均値は小さいことが好ましい。また、アクチュエータ自体が摺動部分を有するため、長寿命化の観点からは動作時間は短いことが好ましい。これは、アクチュエータにより発生させる推力の単位時間当たりの平均値を小さくすることを意味する。
 特に、動力源に圧縮空気を使用する空圧アクチュエータを採用する場合、鉄道車両に搭載するコンプレッサーから圧縮空気の供給を受けることになる。この場合、鉄道車両に搭載するコンプレッサーは、車両の軽量化や床下機器の設置スペースの制約の点から、できるだけ小型のものが選択される場合が多い。従って、コンプレッサーの能力の制約条件が厳しい場合が多いため、圧縮空気の消費量を小さくすることが好ましく、アクチュエータにより発生させる推力の単位時間当たりの平均値は小さいことが好ましい。
 一方、電動式アクチュエータを採用する場合、アクチュエータの動作時に電流が流れることにより熱が発生するため、冷却が課題となる場合が多い。冷却に関しては、アクチュエータ自体の放熱性能も重要であるが、使用環境によっても大きく作用されることになる。従って、この点からもアクチュエータにより発生させる推力の単位時間当たりの平均値は小さいことが好ましい。
 つまり、ある曲線区間の走行最高速度向上の観点からは、最大横圧を抑制することが重要となるが、一方でアクチュエータの能力には限界がある。特にアクチュエータにより発生させる推力の最大値や単位時間当たりの発生推力に上限が設定される場合は、アクチュエータを常に限界に近い一定の推力で動作させ続けることが好ましいとはいえない。従って、前記出力F1をアクチュエータの限界能力よりは低い値としてアクチュエータの推力に余力を残しておき、高い変動横圧が発生する地点においてアクチュエータに限界に近い推力を適宜発生させることが好ましい。
 ところで、アクチュエータを設置する理由は、台車を介して輪軸にモーメントを付与することが目的である。
 ボルスタ付台車において、ダイレクトマウント式の場合は、台車の構成部品のうち、ボルスタと台車枠の間に側受が設置されており、ボルスタと台車枠の間で旋回する。従って、アクチュエータを車体側に設置する場合は車体または揺れ枕に設置する。また、アクチュエータを台車側に設置する場合は台車枠に設置する。
 一方、インダイレクトマウント式の場合は、車体と揺れ枕の間に側受が設置され、その間で旋回する。従って、アクチュエータを車体側に設置する場合は車体に設置する。また、アクチュエータを台車側に設置する場合は揺れ枕あるいは台車枠に設置する。
 鉄道台車の先頭軸に発生する横圧に強い影響を及ぼす因子として、各車輪に作用する上下方向の垂直力、車輪とレール間の摩擦係数、輪軸に発生する左右クリープ率と前後クリープ率、およびカントによる分力と遠心力の合力が挙げられる。
 このうち、各車輪に作用する上下方向の垂直力は、乗客の乗車率により大きく変化する。この値は、車体と台車間に設置される2次ばね、あるいは台車と輪軸間に設置される1次ばねの負担荷重値から推定することが可能である。
 前記2次ばねの負担荷重は、2次ばねに空気ばねを使用する車両の場合、空気ばねの内圧から換算することが可能である。一方、前記1次ばねの負担荷重は、金属ばねを主として用いた場合では、輪軸と台車枠間の変位を測定することで換算することが可能である。
 次に、車輪とレール間の摩擦係数は、台車と輪軸間を前後方向に結合するリンクなどの連結部材に発生する前後方向荷重と、上下方向の垂直力の比率から推定することが可能である。
 また、輪軸に発生する左右クリープ率と前後クリープ率のうち、前後クリープ率は、下記数式1で、左右クリープ率は下記数式2で求めることができる。
Figure JPOXMLDOC01-appb-M000001

Figure JPOXMLDOC01-appb-M000002
 前記数式1,2に示す前後、左右のクリープ率において、車両走行中に測定可能な状態量は、輪軸の左右変位、輪軸の左右速度、輪軸のヨーイング角、輪軸のヨーイング角速度、車両走行速度である。このうち、輪軸の左右速度は、輪軸の左右加速度から換算することが可能である。
 ここで、輪軸と台車枠間のばね定数が十分に大きく、輪軸と台車枠間はほぼ剛結合であるとみなす場合、輪軸の左右変位、輪軸の左右速度、輪軸の左右加速度、輪軸のヨーイング角、輪軸のヨーイング角速度は、台車側の各々相当する状態量で代替することが可能である。
 また、カントによる分力および曲線区間を走行中に発生する遠心力による合力は、車両のロール角及びその時間微分量、あるいは2次ばねである空気ばね高さから換算することが可能である。
 以上より、定常横圧制御入力用パラメータu_st1,u_st2,…、変動横圧制御入力用パラメータu_fl1,u_fl2,…を換算する際に使用する状態量としては、以下のものが想定される。
・2次ばねとして使用される空気ばねの内圧
・1次ばねとして使用されるコイルばねの上下変位
・輪軸と台車枠間を前後方向に結合するリンクなどの結合部材に作用する前後方向荷重
・輪軸・台車・車体における各々のヨーイング角、ヨーイング角速度、ヨーイング角加速度、あるいは左右方向変位、左右方向速度、左右方向加速度
・車両の走行速度
・ロール角、ロール角速度
・2次ばねとして使用される空気ばねの高さ
 ここで、車体の左右変位・速度・加速度・ヨーイング角・ヨーイング角速度は、台車と輪軸に発生する同じ状態量と比較して、重量および慣性モーメントが大きく、かつ、左右方向のダンパー、ヨーダンパー等により台車-車体間の振動絶縁性が高い。従って、軌道狂いにより車体に発生する左右変位・速度・加速度・ヨーイング角・ヨーイング角速度の変動量は、台車や輪軸に発生する同じ変動量と比較して小さくなる。従って、定常横圧の推定には、車体側の状態量を用いることが有効と考えられる。
 また、変動横圧の推定には、台車側の状態量と車体側の状態量の差分値を用いることで、横圧の定常成分を好適に除くことができ、変動横圧を推定することが可能である。
 本発明は、発明者の上記着想から課題解決に至る経過を経てなされたものであり、以下の構成を最も主要な特徴とするものである。
1)鉄道車両にアクチュエータを設置する。
 このアクチュエータは、ボルスタレス台車を搭載した車両の場合は、車体と台車枠間に設置する。一方、ボルスタ付台車のうちダイレクトマウント式台車を搭載した車両の場合は、車体と台車枠間或いはボルスタと台車枠間に設置する。また、インダイレクトマウント式台車を搭載した車両の場合は、車体とボルスタ間に設置する。
2)鉄道車両に、走行中における車体・台車・輪軸の少なくとも何れか一つの状態量を測定するためのセンサーを設置する。
 走行中に測定する状態量は、横圧に強い影響を及ぼす因子である以下の何れかとする。
・2次ばねとして採用される空気ばねの内圧
・1次ばねとして使用されるコイルばねの上下変位
・輪軸と台車枠の間を前後方向に結合するリンクなどの結合部材に作用する前後方向荷重
・輪軸・台車・車体の各々のヨーイング角
・ヨーイング角速度
・ヨーイング角加速度
・左右方向変位
・左右方向速度
・左右方向加速度
・車両の走行速度
・ロール角
・ロール角速度
・空気ばねの高さ
3)測定した上記状態量から定常横圧と強い相関をもつ定常横圧制御入力用パラメータにリアルタイムで換算し、予め設定した定常横圧用伝達関数に基づいてアクチュエータへの出力指令を演算する。
4)測定した上記状態量から軌道狂いによる変動横圧と強い相関をもつ変動横圧制御入力用パラメータにリアルタイムで換算し、予め設定した変動横圧用伝達関数に基づいてアクチュエータへの出力指令を演算する。
5)前記3)4)で演算した出力指令値を合成し、車体と台車間に設置したアクチュエータに指令を与える。
 上記本発明では、車両に設置したセンサーにより測定した状態量から推定した値を基に、台車-車体間に設置したアクチュエータに推力を発生させる。従って、予め記録装置などに保存した軌道情報を参照することなく、鉄道車両が走行中に発生する横圧を効果的に抑制することができる。
 本発明では、鉄道車両が走行中に発生する定常横圧と変動横圧を効果的に抑制できるので、走行中に発生する最大横圧を効果的に低減することができ、車両の走行安全性を向上させることができる。従って、例えば曲線区間の走行可能速度の向上が可能となる。
本発明の鉄道車両の横圧低減方法の制御イメージを示した図である。 本発明の鉄道車両の横圧低減方法の制御ブロック線図の一例を示した図である。 鉄道車両が曲線区間の走行中における先頭軸の外軌側横圧の走行シミュレーション結果を示した図で、(a)は条件1、(b)は条件2を示す。 鉄道車両が曲線区間の走行中における先頭軸の外軌側横圧の走行シミュレーション結果を示した図で、(a)は条件3、(b)は条件4、(c)は条件5を示す。 鉄道車両が曲線区間の走行中に、アクチュエータにより発生させる付加トルクの走行シミュレーション結果を示した図で、(a)は条件1、(b)は条件2を示す。 鉄道車両が曲線区間の走行中に、アクチュエータにより発生させる付加トルクの走行シミュレーション結果を示した図で、(a)は条件3、(b)は条件4、(c)は条件5を示す。 条件3~条件5におけるアクチュエータにより発生させる付加トルクの最大値を示した図である。 鉄道車両が円曲線区間を走行中に発生する条件1~条件5における横圧の平均値と最大値を示した図である。 鉄道車両が円曲線区間を走行中の条件3~条件5における単位時間当たりの付加トルクを示した図である。 曲線区間走行時に発生する横圧の変化を示した図で、(a)は定常横圧、(b)は変動横圧、(c)は定常横圧に変動横圧を加算した実際の横圧波形図である。
 本発明は、走行中に発生する横圧を抑制するという目的を、車両に設置したセンサーにより測定した状態量を基に、定常横圧と変動横圧を推定し、その推定値に応じて車体-台車間に設置したアクチュエータに推力を発生させることで実現した。
 以下、鉄道車両の走行シミュレーションにより、本発明の鉄道車両の横圧低減方法の効果を確認した結果について説明する。
 走行シミュレーションに使用した車両モデルは一般的な2軸ボギー車とし、軌道は曲線半径が600mの曲線区間を含む軌道条件とした。また、一般的な在来線相当の軌道狂いをランダムに作成し、条件によっては軌道狂いを与えた。
 アクチュエータは車体-台車間に設置したものとした。なお、本シミュレーションでは、アクチュエータの推力を、車体-台車間への付加トルクで代替した。また、定常横圧、変動横圧を推定するための状態量として、車体のヨーイング角速度、前台車と後台車のヨーイング角速度、および車両速度を使用した。その状態量の値に適切な定常横圧と変動横圧の伝達関数を乗じて、車体-台車間に付加する付加トルクを決定し、車体と台車の間に付加した。この付加トルクを決定するためのブロック線図を図2に示す。
 走行シミュレーションは以下の5つの条件で行った。
(条件1)
 軌道狂い:なし
 定常横圧を推定する状態量に乗ずる伝達関数:G1=0
 変動横圧を推定する状態量に乗ずる伝達関数:G2=0
(条件2)
 軌道狂い:あり
 定常横圧を推定する状態量に乗ずる伝達関数:G1=0
 変動横圧を推定する状態量に乗ずる伝達関数:G2=0
(条件3)
 軌道狂い:あり
 定常横圧を推定する状態量に乗ずる伝達関数:G1>0
 変動横圧を推定する状態量に乗ずる伝達関数:G2=0
(条件4)
 軌道狂い:あり
 定常横圧を推定する状態量に乗ずる伝達関数:G1=0
 変動横圧を推定する状態量に乗ずる伝達関数:G2>0
(条件5)
 軌道狂い:あり
 定常横圧を推定する状態量に乗ずる伝達関数:G1>0
 変動横圧を推定する状態量に乗ずる伝達関数:G2>0
 アクチュエータによる付加トルクを与える推力指令値を出す条件3~5は、同一の能力を持つアクチュエータを使用するものと想定し、発生する付加トルクの最大値がほぼ同等の値となるように伝達関数G1,G2を設定した。
 走行シミュレーションの結果を図3~図9に示す。
 アクチュエータによる付加トルクを与える推力指令値を出さない条件1(図5(a))と条件2(図5(b))を比較すると、軌道狂いを入力した条件2の場合は、図3(b)に示すように、図3(a)に示す定常横圧に加えて変動横圧が発生していることが分かる。
 一方、定常横圧を推定する状態量に乗ずる伝達関数G1を0より大きくした条件3の場合(図6(a))は、条件2に比べて横圧がほぼ一律に低下していることが分かる(図4(a)と図3(b)図参照)。
 また、変動横圧を推定する状態量に乗ずる伝達関数G2を0より大きくした条件4の場合(図6(b))は、横圧の平均値は条件2と同等であるものの、軌道狂いにより大きな変動横圧が発生している時刻の横圧を低減できている(図4(b)と図3(b)参照)。
 これらに対して、定常横圧と変動横圧を推定する状態量に乗ずる伝達関数G1,G2を共に0より大きくした条件5の場合(図6(c))は、条件2と比較して横圧がほぼ一律に低下し、かつ変動横圧も抑制できている(図4(c)と図3(b)参照)。
 すなわち、条件3~条件5の場合、アクチュエータに発生させる最大付加トルクは、図7に示すように、ほぼ同一である。一方、横圧の平均値は、図8に示すように、条件3<条件5<条件4である。横圧の最大値は、若干の相違があるものの、その相違は5%以下であり、ほぼ同等とみなすことができる。また、単位時間当たりの付加トルクは、図9に示すように、条件4<条件5<条件3となっている。
 従って、条件3~条件5は横圧の最大値がほぼ同等であるとみなすことができるので、曲線区間の走行最高速度向上の観点からは、条件3~条件5のうちのどの制御条件においても同等のパフォーマンスが得られることが分かる。
 ここで、アクチュエータの発生推力を大きく設定できる条件下であれば、車輪やレールの摩耗の抑制を重視して、一つの曲線を通過する際に発生する横圧の平均値を抑制することが効果的であると考えられる。この場合は、平均横圧を最も低く抑えることができる条件3が好ましい(図8参照)。なお、アクチュエータの発生推力を大きく設定できる条件とは、例えば空圧アクチュエータを適用する際に、車両側に搭載されるコンプレッサーの能力に余裕がある場合である。あるいは、電動アクチュエータを適用する際に高い放熱性が期待される環境下で使用できる場合などである。
 逆に、条件の都合上、単位時間当たりのアクチュエータの付加トルク、つまりアクチュエータの発生推力を可能な限り抑制したい場合には、変動横圧の抑制にのみ主眼を置いた条件4が望ましい(図9参照)。
 また、付加トルクの条件次第では、条件5のように、曲線区間の走行中にほぼ一定の推力をアクチュエータにより発生させ、一方で大きな変動横圧が発生する地点では、更にアクチュエータの推力を最大推力の範囲内で増大させるといった制御が可能となる。
 本発明は上記した実施例に限らないことは勿論であり、各請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。
 例えば上記走行シミュレーションでは、鉄道車両の形態を2軸ボギー車としているが、台車と車体の間にアクチュエータを設置するため、軸数に拘わらず、車体と輪軸の間に台車を有するボギー車であっても同様に適用することができる。
 また、上記走行シミュレーションでは、定常横圧、変動横圧を推定するための状態量として、車体のヨーイング角速度、前台車と後台車のヨーイング角速度、および車両速度を使用している。しかしながら、定常横圧、変動横圧を推定できるものであれば、前記に替えて輪軸・台車・車体のヨーイング角や輪軸のヨーイング角速度を使用してもよい。また、空気ばねの内圧、コイルばねの上下変位、輪軸と台車枠の間を前後方向に結合するリンクに作用する前後方向荷重、あるいは輪軸・台車・車体の左右方向変位、左右方向速度、左右方向加速度、およびロール角、ロール角速度、および空気ばねの高さの何れかを使用してもよい。
 また、上記走行シミュレーションは曲線区間を走行する時のものであるが、直線区間の走行時に、軌道狂いにより瞬間的に発生する変動横圧を抑制することもできる。

Claims (7)

  1.  ボルスタレス台車を搭載した車両の場合は、車体と台車枠間に、
     ボルスタ付台車のうち、ダイレクトマウント式台車を搭載した車両の場合は車体と台車枠間或いはボルスタと台車枠間に、インダイレクトマウント式台車を搭載した車両の場合は車体とボルスタ間に、アクチュエータを設置するとともに、
     車体・台車・輪軸の少なくとも何れか一つにセンサーを設置し、
     前記センサーを用いて走行中に取得した状態量に基づき、定常横圧と相関を有する一つ又は複数のパラメータを演算して、当該演算値に所定の伝達関数を適用してアクチュエータへの推力指令値を決定するのと同時に、変動横圧と相関を有する一つ又は複数のパラメータを演算して、当該演算値に所定の伝達関数を適用してアクチュエータへの推力指令値を決定した後、
     これら2つの推力指令値を合成してアクチュエータに発生させる推力を決定することを特徴とする鉄道車両の横圧低減方法。
  2.  前記走行中に取得する状態量は、2次ばねとして使用される空気ばねの内圧、1次ばねとして使用されるコイルばねの上下変位、輪軸と台車枠の間を前後方向に結合する連結部材に作用する前後方向荷重、輪軸・台車・車体の各々のヨーイング角、ヨーイング角速度、ヨーイング角加速度、あるいは左右方向変位、左右方向速度、左右方向加速度、車両の走行速度、および、ロール角、ロール角速度、および空気ばね高さの何れかであることを特徴とする請求の範囲第1項に記載の鉄道車両の横圧低減方法。
  3.  前記アクチュエータに発生させる推力は、前記走行中に取得した状態量より推定した軌道曲率に応じて、定常横圧パラメータに対する伝達関数は軌道曲率が小さくなるほど推力指令値を小さく、変動横圧パラメータに対する伝達関数は軌道曲率が大きくなるほど推力指令値を大きくすることを特徴とする請求の範囲第1項又は2項に記載の鉄道車両の横圧低減方法。
  4.  前記変動横圧パラメータの演算に際しては、車体において測定した状態量と、台車において測定した状態量の差分を取る過程を含むことを特徴とする請求の範囲第1項又は第2項に記載の鉄道車両の横圧低減方法。
  5.  前記変動横圧パラメータの演算に際しては、車体において測定した状態量と、台車において測定した状態量の差分を取る過程を含むことを特徴とする請求の範囲第3項に記載の鉄道車両の横圧低減方法。
  6.  前記車体及び台車において測定した状態量は、左右方向及びヨーイング方向の状態量であることを特徴とする請求の範囲第4項に記載の鉄道車両の横圧低減方法。
  7.  前記車体及び台車において測定した状態量は、左右方向及びヨーイング方向の状態量であることを特徴とする請求の範囲第5項に記載の鉄道車両の横圧低減方法。
PCT/JP2014/072450 2013-08-28 2014-08-27 鉄道車両の横圧低減方法 WO2015030061A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14839442.2A EP3040251B1 (en) 2013-08-28 2014-08-27 Method of decreasing lateral pressure in railroad vehicle
CN201480048069.XA CN105492291B (zh) 2013-08-28 2014-08-27 铁道车辆的横压降低方法
ES14839442T ES2706741T3 (es) 2013-08-28 2014-08-27 Método para reducir la presión lateral en un vehículo ferroviario
JP2015534264A JP6292237B2 (ja) 2013-08-28 2014-08-27 鉄道車両の横圧低減方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013177050 2013-08-28
JP2013-177050 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015030061A1 true WO2015030061A1 (ja) 2015-03-05

Family

ID=52586611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072450 WO2015030061A1 (ja) 2013-08-28 2014-08-27 鉄道車両の横圧低減方法

Country Status (6)

Country Link
EP (1) EP3040251B1 (ja)
JP (2) JP6292237B2 (ja)
CN (1) CN105492291B (ja)
ES (1) ES2706741T3 (ja)
TW (1) TWI558593B (ja)
WO (1) WO2015030061A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144543A (ja) * 2017-03-02 2018-09-20 公益財団法人鉄道総合技術研究所 鉄道車両用操舵機構
CN114896828A (zh) * 2022-07-14 2022-08-12 合肥磐石智能科技股份有限公司 基于大弯曲度固定轨道的行车电子差速算法及演示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566832B (zh) * 2018-07-03 2023-07-04 日本制铁株式会社 检查系统、检查方法以及存储介质
JP7088315B2 (ja) * 2018-12-10 2022-06-21 日本製鉄株式会社 検査システム、検査方法、およびプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226576A (ja) * 1996-02-28 1997-09-02 Hitachi Ltd 鉄道車両用台車の車輪軸操舵装置
JP2002087262A (ja) 2000-09-18 2002-03-27 National Traffic Safety & Environment Laboratory 台車枠旋回装置付鉄道車両
JP2004161115A (ja) 2002-11-12 2004-06-10 National Traffic Safety & Environment Laboratory 台車枠旋回装置付鉄道車両
JP2007186126A (ja) * 2006-01-13 2007-07-26 Sumitomo Metal Ind Ltd 鉄道車両における操舵用アクチュエータの制御方法
JP2012166733A (ja) 2011-02-16 2012-09-06 Railway Technical Research Institute 鉄道車両走行時の横圧を低減させるアクチュエータの動作信号生成方法及びその装置
EP2517943A1 (en) * 2009-12-24 2012-10-31 Korea Railroad Research Institute Active steering control device and method for railroad vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617754A (en) * 1979-07-20 1981-02-19 Hitachi Ltd Vehicle vibration controller
FR2622164A1 (fr) * 1987-10-26 1989-04-28 Alsthom Bogie pour vehicule sur rail, a essieux a roues independantes et a orientation asservie
FR2624081A1 (fr) * 1987-12-03 1989-06-09 Alsthom Vehicule a essieux orientables
DE4114860C1 (en) * 1991-05-07 1992-06-17 Bochumer Eisenhuette Heintzmann Gmbh & Co Kg, 4630 Bochum, De Railed vehicle drive using digital track guidance - uses opto-electric triangulation sensor pair comprising transmitter and receiver using laser measuring beams
JPH10230848A (ja) * 1997-02-19 1998-09-02 Hitachi Ltd 鉄道車両用台車
JPH11268647A (ja) * 1998-03-23 1999-10-05 Tokico Ltd 鉄道車両用振動制御装置
JP4917313B2 (ja) * 2006-01-16 2012-04-18 株式会社日立製作所 信号保安装置及び在線検知方法
JP2010519117A (ja) * 2007-02-22 2010-06-03 セントラル クイーンズランド ユニヴァーシティ 鉄道用操舵台車
AT505488A2 (de) * 2007-06-19 2009-01-15 Siemens Transportation Systems Verfahren zur minimierung von laufflächenschäden und profilverschleiss von rädern eines schienenfahrzeugs
JP5364323B2 (ja) * 2008-09-12 2013-12-11 カヤバ工業株式会社 シリンダ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09226576A (ja) * 1996-02-28 1997-09-02 Hitachi Ltd 鉄道車両用台車の車輪軸操舵装置
JP2002087262A (ja) 2000-09-18 2002-03-27 National Traffic Safety & Environment Laboratory 台車枠旋回装置付鉄道車両
JP2004161115A (ja) 2002-11-12 2004-06-10 National Traffic Safety & Environment Laboratory 台車枠旋回装置付鉄道車両
JP2007186126A (ja) * 2006-01-13 2007-07-26 Sumitomo Metal Ind Ltd 鉄道車両における操舵用アクチュエータの制御方法
EP2517943A1 (en) * 2009-12-24 2012-10-31 Korea Railroad Research Institute Active steering control device and method for railroad vehicle
JP2012166733A (ja) 2011-02-16 2012-09-06 Railway Technical Research Institute 鉄道車両走行時の横圧を低減させるアクチュエータの動作信号生成方法及びその装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3040251A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018144543A (ja) * 2017-03-02 2018-09-20 公益財団法人鉄道総合技術研究所 鉄道車両用操舵機構
CN114896828A (zh) * 2022-07-14 2022-08-12 合肥磐石智能科技股份有限公司 基于大弯曲度固定轨道的行车电子差速算法及演示装置

Also Published As

Publication number Publication date
CN105492291A (zh) 2016-04-13
EP3040251B1 (en) 2018-10-17
JP6436214B2 (ja) 2018-12-12
CN105492291B (zh) 2018-05-18
TWI558593B (zh) 2016-11-21
JPWO2015030061A1 (ja) 2017-03-02
TW201522139A (zh) 2015-06-16
JP6292237B2 (ja) 2018-03-14
JP2018012501A (ja) 2018-01-25
EP3040251A4 (en) 2017-05-17
EP3040251A1 (en) 2016-07-06
ES2706741T3 (es) 2019-04-01

Similar Documents

Publication Publication Date Title
JP6436214B2 (ja) 鉄道車両の横圧低減方法
JP4897118B1 (ja) ブレーキ圧演算装置、ブレーキ制御システム、及びプログラム
JP4763432B2 (ja) 鉄道車両の摩擦制御装置
Pearson et al. Control system studies of an active anti-roll bar tilt system for railway vehicles
WO2017145794A1 (ja) サスペンション制御装置
CN111580391B (zh) 基于模型预测的动车组牵引力矩控制方法
JP4271605B2 (ja) 鉄道車両制御方法
KR102016742B1 (ko) 철도차량용 능동 조향 제어 장치 및 방법
JP2008049996A (ja) 車両の運動制御装置
JP7228705B2 (ja) 車両運動制御装置
JP6673073B2 (ja) 鉄道車両用ヨーダンパ装置
JP2007210358A (ja) 鉄道車両用ブレーキ制御システム
JP6193483B2 (ja) 鉄道車両用台車
JP4026138B2 (ja) 鉄道車両の制御システム
Savitski et al. Enhancement of energy efficiency vehicle safety and ride comfort for all-wheel drive full electric vehicles
Bouchama et al. Observer-based freight train control to reduce coupler strain and low adhesion issues
Turabımana et al. Modeling and Simulation of Anti-Skid Control System of Railway Vehicle in Curved Track
KR20130080527A (ko) 철도차량용 윤축 조향 시스템
JP7095970B2 (ja) 車両制御装置
JP4693534B2 (ja) 付随車ブレーキ受量器
JP2011234510A (ja) 車両制御装置
JP2023067478A (ja) 鉄道車両制振装置及び鉄道車両制振方法
JP2022191964A (ja) 車両運動制御装置、車両運動制御システムおよび車両
Shi et al. Study on the characteristics of traction forces difference asymmetric steering bogies
Sebesan et al. Studies concerning the guidance in curves of bogies with elastic driven wheelsets

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480048069.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839442

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014839442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839442

Country of ref document: EP