WO2015029959A1 - 堀削泥水用添加剤 - Google Patents

堀削泥水用添加剤 Download PDF

Info

Publication number
WO2015029959A1
WO2015029959A1 PCT/JP2014/072210 JP2014072210W WO2015029959A1 WO 2015029959 A1 WO2015029959 A1 WO 2015029959A1 JP 2014072210 W JP2014072210 W JP 2014072210W WO 2015029959 A1 WO2015029959 A1 WO 2015029959A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose
cellulose fiber
fiber
additive
drilling mud
Prior art date
Application number
PCT/JP2014/072210
Other languages
English (en)
French (fr)
Inventor
洋介 後居
峯雄 佐飛
和人 神野
広司 野田
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN201480046915.4A priority Critical patent/CN105492568B/zh
Priority to CA2921219A priority patent/CA2921219C/en
Priority to US14/912,557 priority patent/US9803128B2/en
Priority to JP2015534206A priority patent/JP6452160B2/ja
Priority to RU2016105771A priority patent/RU2016105771A/ru
Publication of WO2015029959A1 publication Critical patent/WO2015029959A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/08Fiber-containing well treatment fluids

Definitions

  • the present invention relates to a novel additive for drilling mud used for excavation of oil, natural gas, civil engineering, mines and the like. More specifically, the heat resistance and mechanical shear resistance are high, the viscosity does not deteriorate even under high temperature and high shear conditions, and the pseudo plastic fluidity is high. Further, the present invention relates to an additive for drilling mud water that is naturally derived and has high biodegradability and low environmental impact.
  • Drilling mud adjuster is used in drilling raw oil, natural gas, civil engineering, mines, etc.
  • the drilling mud conditioner gives the mud with appropriate lubricity at the point where the drilling blade contacts the ground to reduce the load on the excavator, and also allows the drilling mud to be transported easily by the pump. It is required to provide high fluidity. Moreover, since fluidity
  • synthetic polymers such as acrylamide, natural polysaccharides such as xanthan gum and carboxymethylcellulose, and derivatives thereof are used as additives to drilling mud. (For example, Patent Documents 1 and 2).
  • the present inventors have high heat resistance and mechanical shear resistance, viscosity does not deteriorate even under high temperature and high shear conditions, and because of high pseudoplastic fluidity, high fluidity can be obtained at the time of unloading, Furthermore, since it is naturally derived, it has been intensively studied to obtain an additive for drilling mud that is highly biodegradable and has a low environmental impact. In the course of the research, attention was focused on cellulose fibers having a number average fiber diameter of 2 to 500 nm, a fiber aspect ratio of 50 or more, and a cellulose I-type crystal structure. And it discovered that the additive for excavation mud containing this cellulose fiber solved a predetermined subject, and reached
  • the first gist of the present invention is an additive for drilling mud containing a cellulose fiber having a number average fiber diameter of 2 to 500 nm, a fiber aspect ratio of 50 or more, and a cellulose I-type crystal structure.
  • the cellulose fiber preferably has a hydroxyl group on the surface of the cellulose fiber chemically modified.
  • the cellulose fiber is one in which the hydroxyl group at the C6 position of each glucose unit in the molecule is selectively oxidized and modified to become one of an aldehyde group, a ketone group and a carboxyl group, and the carboxyl group content is 1.2 to A range of 2.5 mmol / g is preferred.
  • the cellulose fiber preferably has a total content of aldehyde groups and ketone groups of 0.3 mmol / g or less as measured by the semicarbazide method.
  • the cellulose fiber is oxidized with a co-oxidant in the presence of an N-oxyl compound, and the aldehyde group and the ketone group generated by the oxidation reaction are reduced with a reducing agent.
  • restoration by the said reducing agent is what is based on sodium borohydride.
  • the second gist of the present invention is an additive for drilling mud that uses the additive for drilling mud.
  • the additive for drilling mud according to the present invention has high heat resistance and mechanical shear resistance by containing a predetermined cellulose fiber, and does not deteriorate in viscosity under high temperature and high shear conditions. Because of its high performance, it has the effect of providing high fluidity during unloading. This is because the cellulose fibers have a predetermined number average fiber diameter and aspect ratio, and further, the cellulose molecules are bundled by several tens and have a strong crystal structure inside. In addition, since the cellulose fiber is a naturally derived substance, the biodegradability is high and the environmental load is small.
  • the additive for drilling mud of the present invention contains cellulose fibers having a number average fiber diameter of 2 to 500 nm, an aspect ratio of fibers of 50 or more, and a cellulose I-type crystal structure.
  • the number average fiber diameter of the cellulose fibers is 2 to 500 nm, but is preferably 2 to 150 nm, more preferably 2 to 100 nm, and particularly preferably 3 to 80 nm from the viewpoint of dispersion stability. If the number average fiber diameter is too small, it will essentially dissolve in the dispersion medium, and if the number average fiber diameter is too large, the cellulose fibers will settle and express functionality by blending the cellulose fibers. Can not do.
  • the maximum fiber diameter of the cellulose fiber is preferably 1000 nm or less, particularly preferably 500 nm or less. When the maximum fiber diameter of the cellulose fiber is too large, the cellulose fiber is settled, and the tendency of the functional expression of the cellulose fiber to decrease is observed.
  • the number average fiber diameter and the maximum fiber diameter of the cellulose fibers can be measured, for example, as follows. That is, an aqueous dispersion of fine cellulose having a solid content of 0.05 to 0.1% by weight was prepared, and the dispersion was cast on a carbon film-coated grid that had been subjected to a hydrophilization treatment. (TEM) observation sample. In addition, when the fiber of a big fiber diameter is included, you may observe the scanning electron microscope (SEM) image of the surface cast on glass. Then, observation with an electron microscope image is performed at a magnification of 5000 times, 10000 times, or 50000 times depending on the size of the constituent fibers.
  • SEM scanning electron microscope
  • the aspect ratio of the cellulose fiber is 50 or more, preferably 100 or more, more preferably 200 or more. If the aspect ratio is less than 50, there is a possibility that sufficient pseudoplastic fluidity as an additive for drilling mud water cannot be obtained.
  • the aspect ratio of the cellulose fiber can be measured, for example, by the following method, that is, a TEM image (2% uranyl acetate negatively stained after the cellulose fiber is cast on a hydrophilic-treated carbon film-coated grid ( (Magnification: 10,000 times), the number average fiber diameter and fiber length of the cellulose fibers were observed. That is, the number average fiber diameter and fiber length were calculated according to the methods described above, and the aspect ratio was calculated according to the following formula (1) using these values.
  • the cellulose fiber is a fiber obtained by refining a naturally derived cellulose solid material having an I-type crystal structure. That is, in the process of biosynthesis of natural cellulose, nanofibers called microfibrils are first formed almost without exception, and these form a multi-bundle to form a higher order solid structure.
  • the cellulose fiber can be produced by a known method, specifically as follows. For example, it can be obtained by suspending natural cellulose in water and treating it with a high-pressure homogenizer or a grinder to make it fine. Natural cellulose is not particularly limited as long as it is cellulose derived from plants, animals, or microorganisms. Kraft pulp or dissolving pulp derived from conifers or hardwoods, cotton linter, lignocellulose with low cellulose purity, wood flour, plant cellulose, bacterial cellulose Etc.
  • bacterial cellulose produced by bacteria can be used as the cellulose fiber.
  • the bacterium include the genus Acetobacter, and more specifically, Acetobactertiaceti, Acetobacterspsubsp., Acetobacter xylinum, and the like. Can be mentioned.
  • Acetobactertiaceti Acetobacterspsubsp.
  • Acetobacter xylinum and the like.
  • cellulose is produced from the bacteria. Since the obtained product contains bacteria and cellulose fibers (bacterial cellulose) produced from the bacteria and connected to the bacteria, the product is removed from the medium, washed with water, or treated with alkali. By removing the bacteria, water-containing bacterial cellulose that does not contain bacteria can be obtained.
  • the cellulose fiber preferably has a hydroxyl group on the surface of the cellulose fiber chemically modified.
  • the chemically modified cellulose include oxidized cellulose, carboxymethyl cellulose, polyvalent carboxymethyl cellulose, long chain carboxycellulose, primary amino cellulose, cationized cellulose, secondary amino cellulose, methyl cellulose, and long chain alkyl cellulose. It is done. Of these, oxidized cellulose is preferred because of excellent hydroxyl group selectivity on the fiber surface and mild reaction conditions.
  • oxidized cellulose is preferred because of excellent hydroxyl group selectivity on the fiber surface and mild reaction conditions.
  • the chemically modified cellulose fibers that are dispersed in water in a salt state a strong network structure is formed by cross-linking by forming a salt with a polyvalent ion. An improvement in water stopping performance when used as an additive can also be expected.
  • Oxidized cellulose uses natural cellulose as a raw material, an N-oxyl compound as an oxidation catalyst in water, an oxidation reaction step of oxidizing the natural cellulose by reacting with a co-oxidant to obtain reactant fibers, removing impurities. It can also be obtained by a production method including a purification step of obtaining a reactant fiber impregnated with water and a dispersion step of dispersing the reactant fiber impregnated with water in a solvent.
  • the hydroxyl group at the C6 position of each glucose unit in the cellulose molecule is selectively oxidized and modified to be one of an aldehyde group, a ketone group, and a carboxyl group.
  • the carboxyl group content is preferably in the range of 1.2 to 2.5 mmol / g, more preferably in the range of 1.5 to 2.0 mmol / g. If the amount of the carboxyl group is too small, the cellulose fibers may be precipitated or aggregated. If the amount of the carboxyl group is too large, the water solubility may be too strong.
  • the amount of carboxyl groups of the cellulose fiber for example, 60 ml of a 0.5 to 1% by weight slurry is prepared from a cellulose sample obtained by accurately weighing the dry weight, and the pH is adjusted to about 2.5 with a 0.1 M aqueous hydrochloric acid solution. Then, 0.05M sodium hydroxide aqueous solution is dripped and electrical conductivity measurement is performed. The measurement is continued until the pH is about 11.
  • the amount of carboxyl groups can be determined from the amount of sodium hydroxide consumed in the neutralization step of the weak acid with a gentle change in electrical conductivity (V) according to the following formula (2).
  • adjustment of a carboxyl group amount can be performed by controlling the addition amount and reaction time of the co-oxidant used at the oxidation process of a cellulose fiber so that it may mention later.
  • the cellulose fiber is preferably reduced with a reducing agent after the oxidative modification. As a result, part or all of the aldehyde group and the ketone group are reduced to return to the hydroxyl group. Note that the carboxyl group is not reduced. Then, by the reduction, the total content of aldehyde groups and ketone groups as measured by the semicarbazide method of the cellulose fiber is preferably 0.3 mmol / g or less, particularly preferably 0 to 0.1 mmol / g. Range, most preferably substantially 0 mmol / g. As a result, the dispersion stability is higher than that obtained by simply oxidative modification, and the dispersion stability is excellent over a long period of time regardless of the temperature.
  • the cellulose fiber is oxidized using a co-oxidant in the presence of an N-oxyl compound such as 2,2,6,6-tetramethylpiperidine (TEMPO), and an aldehyde group generated by the oxidation reaction.
  • N-oxyl compound such as 2,2,6,6-tetramethylpiperidine (TEMPO)
  • TEMPO 2,2,6,6-tetramethylpiperidine
  • the ketone group is reduced with a reducing agent because the cellulose fiber excellent in storage stability can be easily obtained.
  • NaBH 4 sodium borohydride
  • the amount of carbonyl groups (total content of aldehyde groups and ketone groups) can be determined.
  • Semicarbazide reacts with an aldehyde group or a ketone group to form a Schiff base (imine), but does not react with a carboxyl group. Therefore, it is considered that only the aldehyde group and the ketone group can be quantified by the above measurement.
  • the cellulose fiber it is preferable that only the hydroxyl group at the C6 position of each glucose unit in the cellulose molecule on the fiber surface is selectively oxidized and modified to become one of an aldehyde group, a ketone group, and a carboxyl group. Whether or not only the hydroxyl group at the C6 position of the glucose unit on the surface of the cellulose fiber is selectively oxidized can be confirmed by, for example, a 13 C-NMR chart.
  • a 62 ppm peak corresponding to the C6 position of the primary hydroxyl group of the glucose unit which can be confirmed by a 13 C-NMR chart of cellulose before oxidation, disappears after the oxidation reaction, and instead a peak derived from a carboxyl group or the like (178 ppm)
  • the peak of is a peak derived from a carboxyl group). In this way, it can be confirmed that only the C6 hydroxyl group of the glucose unit is oxidized to a carboxyl group or the like.
  • the detection of the aldehyde group in the cellulose fiber can be performed by, for example, a Faring reagent. That is, for example, after adding a Fering reagent (a mixed solution of sodium potassium tartrate and sodium hydroxide and an aqueous solution of copper sulfate pentahydrate) to a dried sample, the supernatant is obtained when heated at 80 ° C. for 1 hour. When blue and cellulose fiber parts are amber, it can be determined that aldehyde groups have not been detected, and when the supernatant is yellow and cellulose fiber parts are red, it can be determined that aldehyde groups have been detected. .
  • a Fering reagent a mixed solution of sodium potassium tartrate and sodium hydroxide and an aqueous solution of copper sulfate pentahydrate
  • the cellulose fibers are preferably produced by (1) an oxidation reaction step, (2) a reduction step, (3) a purification step, (4) a dispersion step (a refinement treatment step) and the like. It is preferable to manufacture by a process.
  • Oxidation reaction step After dispersing natural cellulose and N-oxyl compound in water (dispersion medium), a co-oxidant is added to start the reaction. During the reaction, a 0.5 M aqueous sodium hydroxide solution is added dropwise to maintain the pH at 10 to 11, and the reaction is regarded as complete when no change in pH is observed.
  • the co-oxidant is not a substance that directly oxidizes a cellulose hydroxyl group but a substance that oxidizes an N-oxyl compound used as an oxidation catalyst.
  • the above natural cellulose means purified cellulose isolated from cellulose biosynthetic systems such as plants, animals, and bacteria-producing gels. More specifically, softwood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, non-wood pulp such as straw pulp and bagasse pulp, bacterial cellulose (BC), cellulose isolated from sea squirt, seaweed Cellulose isolated from can be mentioned. These may be used alone or in combination of two or more. Among these, soft wood pulp, hardwood pulp, cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as straw pulp and bagasse pulp are preferable.
  • the natural cellulose is preferably subjected to a treatment for increasing the surface area such as beating, because the reaction efficiency can be increased and the productivity can be increased.
  • a treatment for increasing the surface area such as beating
  • the reaction efficiency can be increased and the productivity can be increased.
  • the natural cellulose that has been stored after being isolated and purified and not dried (never dry) is used, the microfibril bundles are likely to swell. This is preferable because the number average fiber diameter after the crystallization treatment can be reduced.
  • the dispersion medium of natural cellulose in the above reaction is water, and the concentration of natural cellulose in the reaction aqueous solution is arbitrary as long as the reagent (natural cellulose) can be sufficiently diffused. Usually, it is about 5% or less based on the weight of the reaction aqueous solution, but the reaction concentration can be increased by using a device having a strong mechanical stirring force.
  • examples of the N-oxyl compound include compounds having a nitroxy radical generally used as an oxidation catalyst.
  • the N-oxyl compound is preferably a water-soluble compound, more preferably a piperidine nitroxyoxy radical, particularly 2,2,6,6-tetramethylpiperidinooxy radical (TEMPO) or 4-acetamido-TEMPO. preferable.
  • the N-oxyl compound is added in a catalytic amount, preferably 0.1 to 4 mmol / l, more preferably 0.2 to 2 mmol / l.
  • co-oxidant examples include hypohalous acid or a salt thereof, halous acid or a salt thereof, perhalogen acid or a salt thereof, hydrogen peroxide, a perorganic acid, and the like. These may be used alone or in combination of two or more. Of these, alkali metal hypohalites such as sodium hypochlorite and sodium hypobromite are preferable. And when using the said sodium hypochlorite, it is preferable to advance reaction in presence of alkali metal bromides, such as sodium bromide, from the point of reaction rate. The addition amount of the alkali metal bromide is about 1 to 40 times mol, preferably about 10 to 20 times mol for the N-oxyl compound.
  • the pH of the aqueous reaction solution is preferably maintained in the range of about 8-11.
  • the temperature of the aqueous solution is arbitrary at about 4 to 40 ° C., but the reaction can be performed at room temperature (25 ° C.), and the temperature is not particularly required to be controlled.
  • the degree of oxidation is controlled by the amount of co-oxidant added and the reaction time. Usually, the reaction time is about 5-120 minutes and is completed within 240 minutes at the most.
  • the cellulose fiber further undergoes a reduction reaction after the oxidation reaction.
  • fine oxidized cellulose after the oxidation reaction is dispersed in purified water, the pH of the aqueous dispersion is adjusted to about 10, and the reduction reaction is performed with various reducing agents.
  • a general reducing agent can be used, and preferred examples include LiBH 4 , NaBH 3 CN, NaBH 4 and the like. Of these, NaBH 4 is preferable from the viewpoint of cost and availability.
  • the amount of the reducing agent is preferably in the range of 0.1 to 4% by weight, particularly preferably in the range of 1 to 3% by weight, based on fine oxidized cellulose.
  • the reaction is usually carried out at room temperature or slightly higher than room temperature, usually for 10 minutes to 10 hours, preferably 30 minutes to 2 hours.
  • the pH of the reaction mixture is adjusted to about 2 with various acids, and solid-liquid separation is performed with a centrifuge while sprinkling purified water to obtain cake-like fine oxidized cellulose. Solid-liquid separation is performed until the electric conductivity of the filtrate is 5 mS / m or less.
  • Purification step Next, purification is performed for the purpose of removing unreacted co-oxidant (such as hypochlorous acid) and various by-products. At this stage, the reactant fibers are usually not dispersed evenly to the nanofiber unit. Therefore, by repeating the usual purification method, that is, washing with water and filtration, the reactant fibers are highly purified (99% by weight or more). Use water dispersion.
  • any apparatus can be used as long as it can achieve the above-described object, such as a method using centrifugal dehydration (for example, a continuous decanter).
  • the aqueous dispersion of reactant fibers thus obtained is in the range of approximately 10 wt% to 50 wt% as the solid content (cellulose) concentration in the squeezed state. Considering the subsequent dispersion step, if the solid content concentration is higher than 50% by weight, it is not preferable because extremely high energy is required for dispersion.
  • the reaction fiber (water dispersion) impregnated with water obtained in the purification step is dispersed in a dispersion medium and subjected to a dispersion treatment. With the treatment, the viscosity increases, and a dispersion of finely pulverized cellulose fibers can be obtained. Thereafter, the cellulose fibers may be dried as necessary. Examples of the method for drying the cellulose fiber dispersion include spray drying, freeze drying, and vacuum drying when the dispersion medium is water. When the dispersion medium is a mixed solution of water and an organic solvent, a drying method using a drum dryer, a spray drying method using a spray dryer, or the like is used. The cellulose fiber dispersion may be used in the state of dispersion without drying.
  • Dispersers used in the above dispersion step include homomixers under high speed rotation, high pressure homogenizers, ultra high pressure homogenizers, ultrasonic dispersion processors, beaters, disc type refiners, conical type refiners, double disc type refiners, grinders, etc.
  • Use of a powerful and beating-capable device is preferable in that a more efficient and advanced downsizing is possible, and a water-containing lubricant composition can be obtained economically advantageously.
  • the disperser include a screw mixer, paddle mixer, disper mixer, turbine mixer, disper, propeller mixer, kneader, blender, homogenizer, ultrasonic homogenizer, colloid mill, pebble mill, and bead mill grinder. It can be used. Further, two or more types of dispersers may be used in combination.
  • the crude oil recovery composition using the crude oil recovery additive of the present invention is an aqueous solution in which the cellulose fibers and other additives are dispersed in water.
  • the content of the cellulose fiber in the excavation mud composition of the present invention is not particularly limited, but is preferably 0.01% by mass to 10.0% by mass, and more preferably 0.1% by mass to 2% by mass. If content of a cellulose fiber is 0.01 mass% or more and 10.0 mass% or less, the composition for excavation mud water expresses favorable pseudoplastic fluidity.
  • bendnite In addition to the cellulose fibers, bendnite, clay, dispersants, preservatives, pH adjusters, and the like can be added to the composition for excavating mud according to the present invention.
  • Examples of the dispersant include poly (meth) acrylate, humic acid derivative, lignin sulfonate, hexametaphosphate, and tripolyphosphate.
  • Examples of the preservative include, as inorganic compounds, bleached powder, sodium hypochlorite, calcium hypochlorite, organic compounds, halogen derivatives, dihydric alcohol derivatives, aliphatic, sulfone derivatives, cyan derivatives, thiocarbamides
  • Examples of derivatives and aromatics include diamine derivatives, imidazole derivatives, and isothiazole derivatives.
  • Examples of the pH adjuster include sodium hydroxide, sodium carbonate, sodium bicarbonate and the like.
  • % means mass basis unless otherwise specified.
  • “Manufacture of cellulose fibers] [Production of Cellulose Fiber A1 (for Examples)] 50 g of softwood bleached kraft pulp (NBKP) was dispersed in 4950 g of water to prepare a dispersion having a pulp concentration of 1% by mass. This dispersion was treated 30 times with a serendipeater MKCA6-3 (manufactured by Masuko Sangyo Co., Ltd.) to obtain cellulose fiber A1.
  • Cellulose fiber A4 was produced according to the production of cellulose fiber A2, except that the amount of sodium hypochlorite aqueous solution added was 12.0 mmol / g with respect to 1.0 g of the pulp.
  • Softwood pulp was oxidized in the same manner as in the production of cellulose fiber A2, and then solid-liquid separated with a centrifuge, and pure water was added to adjust the solid content concentration to 4%. Thereafter, the pH of the slurry was adjusted to 10 with a 24% NaOH aqueous solution. The slurry was reduced to 30 ° C.
  • TEM transmission electron microscope
  • the number average fiber diameter was determined according to the method described above. And fiber length were calculated. Furthermore, the aspect ratio was calculated according to the following formula (1) using these values.
  • the cellulose fibers A1 to A7 for Examples all have a number average fiber diameter in the range of 2 to 500 nm and have a cellulose I type crystal structure. Furthermore, regarding the cellulose fibers A2 to A7, the carboxyl group content was in the range of 1.2 to 2.5 mmol / g. On the other hand, as for the cellulose fiber A'1 for comparative examples, the number average fiber diameter exceeded the upper limit, and the amount of carboxyl groups was less than the lower limit. Cellulose fiber A′2 had a number average fiber diameter that was too small to be measured (1 nm or less), and the carboxyl group content exceeded the upper limit.
  • Measurement solutions 2 to 9 A measurement solution was prepared in the same manner as the measurement solution 1 except that the cellulose fiber A1 was changed to cellulose fibers A2 to A7, A′1, and A′2.
  • Measurement solution 10 Pure water and bentonite were added to commercially available polyacrylamide (Telcoat DP, manufactured by Ternite), and the mixture was stirred at 3,000 rpm for 60 minutes using a homomixer MARKII2.5 type (manufactured by PRIMIX). 1,000 g of a measuring solution having a bentonite concentration of 2% was prepared.
  • thixotropy index (TI) 250 g of the obtained measurement liquid was allowed to stand at 25 ° C. for 1 day, and then the viscosity was measured using a B-type viscometer (manufactured by BROOKFIELD, rotor No. 4, 6 rpm, 3 minutes, 25 ° C.). Subsequently, the viscosity was measured under the same conditions except that the rotation speed was changed to 60 rpm. TI was calculated from the following viscosity (4) from the obtained viscosity.
  • TI was evaluated according to the following criteria. ⁇ : 6 or more ⁇ : 4 or more and less than 6 ⁇ : 3 or more and less than 4 ⁇ : less than 3 [Evaluation of viscosity degradation due to high temperature and mechanical shearing] 500 g of the obtained measurement liquid was allowed to stand at 25 ° C. for 1 day, and then the viscosity was measured using a B-type viscometer (manufactured by BROOKFIELD, rotor No. 4, 6 rpm, 3 minutes, 25 ° C.).
  • Viscosity degradation was evaluated according to the following criteria. ⁇ : 85% or more ⁇ : 70% or more and less than 85% ⁇ : 55% or more and less than 70% ⁇ : less than 55% [Measurement of water stop performance] Using a filtration tester according to API standards, the amount of filtrate was measured when a pressure of 0.3 MPa was applied for 30 minutes at room temperature. That is, it can be said that the smaller the drainage amount, the better the water stop performance.
  • the cellulose fibers A1 to A7 which are the products of the present invention are compared with the cellulose fibers A′1 having a low fiber aspect ratio. It can be seen that the viscosity at a predetermined concentration is high and the TI value is high (Comparative Example 1). It can also be seen that the cellulose fiber A′2 having no I-type crystal structure has a high viscosity at a predetermined concentration, a high TI value, and excellent viscosity deterioration (Comparative Example 2).
  • the product of the present invention is superior to A′1 and A′2 in water-stopping property, fluidity at the time of carrying out, and durability under high temperature and high shear conditions.
  • the product of the present invention is superior in terms of viscosity deterioration compared to polyacrylamid (Comparative Example 3) and xanthanum (Comparative Example 4) which have been conventionally used as additives for drilling mud. It was found to be excellent in durability under high temperature and high shear conditions when used in a composition for drilling mud.
  • the additive for drilling mud of the present invention can be used for excavation of oil, natural gas, civil engineering, mines and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

耐熱性、耐機械的せん断性が高く、高温、高せん断条件下でも粘性が劣化せず、また、擬塑性流動性が高いため、搬出時においては高い流動性が得られ、さらに、天然由来であるために生分解性が高く、環境への負荷も小さい石油、天然ガス、土木、鉱山などの掘削に用いる堀削泥水用添加剤を提供すること。 数平均繊維径が2~500nmであり、繊維のアスペクト比が50以上であると共に、セルロースI型結晶構造を有するセルロース繊維を含有する堀削泥水用添加剤。

Description

堀削泥水用添加剤
本発明は、石油、天然ガス、土木、鉱山などの掘削に用いる新規な堀削泥水用添加剤に関するものである。より詳しくは、耐熱性、耐機械的せん断性が高く、高温、高せん断条件下でも粘性が劣化せず、また、擬塑性流動性が高いため、搬出時においては高い流動性が得られ、さらに、天然由来であるために生分解性が高く、環境への負荷も小さい堀削泥水用添加剤に関する。
 原石油、天然ガス、土木、鉱山などの掘削において、掘削泥水調整剤が用いられている。掘削泥水調整剤には、掘削機の負荷を低減するために掘削刃が地盤と接触する点において、泥水に適度な潤滑性を与えること、また掘削屑をポンプによって容易に搬出するために泥水に高い流動性を与えることが要求されている。また、搬出の際に泥水中の水分が地層に浸透すると流動性が著しく損なわれるため、泥水に適度な保水性を付与することも求められる。そのような目的のため、掘削泥水への添加剤として、アクリルアミドなどの合成高分子や、キサンタンガム、カルボキシメチルセルロースなどの天然多糖類およびその誘導体などが用いられている。(たとえば特許文献1及び2など)。
再公表WO00/59964号公報 特開2000-282021号公報
 従来の掘削泥水調整剤では、保水性を高めるために粘度を高くすると流動性が低下するといった問題や、地中での高温や掘削刃の機械的せん断によって粘性が劣化し、十分な性能が得られないなどの問題があった。しかも、掘削泥水は地上で掘屑を分離した後に再利用される場合が多いため、粘性の劣化は大きな問題となり得る。また、アクリルアミドのような合成系の高分子では地中に残存した場合に環境負荷が大きいといった問題もあった。
 本発明者らは、耐熱性、耐機械的せん断性が高く、高温、高せん断条件下でも粘性が劣化せず、また、擬塑性流動性が高いため、搬出時において高い流動性が得られ、さらに、天然由来であるために生分解性が高く、環境への負荷も小さい堀削泥水用添加剤を得るため鋭意研究を重ねた。その研究の過程で、数平均繊維径が2~500nmであり、繊維のアスペクト比が50以上であると共に、セルロースI型結晶構造を有するセルロース繊維に着目した。そしてこのセルロース繊維を含有する堀削泥水用添加剤が、所定の課題を解決することを見出し、本発明に到達した。
すなわち、本発明は、数平均繊維径が2~500nmで、繊維のアスペクト比が50以上、及びセルロースI型結晶構造を有するセルロース繊維を含有する堀削泥水用添加剤を第一の要旨とする。
前記セルロース繊維は、セルロース繊維表面の水酸基が化学修飾されていることが好ましい。
前記セルロース繊維は、分子中の各グルコースユニットのC6位の水酸基が選択的に酸化変性されてアルデヒド基,ケトン基およびカルボキシル基のいずれかとなったものであり、カルボキシル基の含量が1.2~2.5mmol/gの範囲である事が好ましい。
更に、前記セルロース繊維はアルデヒド基とケトン基の合計含量が、セミカルバジド法による測定において0.3mmol/g以下であることが好ましい。
また、前記セルロース繊維が、N-オキシル化合物の存在下、共酸化剤を用いて酸化されたものであり、上記酸化反応により生じたアルデヒド基およびケトン基が、還元剤により還元されていることが好ましい。
また、前記還元剤による還元が、水素化ホウ素ナトリウムによるものであることが好ましい。
本発明の第2の要旨は、前記堀削泥水用添加剤を使用する堀削泥水用添加剤である。
本発明の堀削泥水用添加剤は、所定のセルロース繊維を含有することにより、耐熱性、耐機械的せん断性が高く、高温、高せん断条件下でも粘性が劣化せず、また、擬塑性流動性が高いため、搬出時において高い流動性が得られるという効果を奏する。これは、セルロース繊維が、所定の数平均繊維径とアスペクト比を有し、さらに、セルロース分子が数10本束となって内部に強固な結晶構造を有することに由来する。また、セルロース繊維は天然由来の物質である為、生分解性が高く、環境への負荷も小さいという効果を奏する。
 つぎに、本発明の実施の形態を詳しく説明する。
 本発明の堀削泥水用添加剤は数平均繊維径が2~500nm、繊維のアスペクト比が50以上、及びセルロースI型結晶構造を有するセルロース繊維を含有する。
前記セルロース繊維の数平均繊維径は2~500nmであるが、分散安定性の点から好ましくは2~150nmであり、より好ましくは2~100nmであり、特に好ましくは3~80nmである。上記数平均繊維径が小さすぎると、本質的に分散媒体に溶解してしまい、上記数平均繊維径が大きすぎると、セルロース繊維が沈降してしまい、セルロース繊維を配合することによる機能性を発現することができなくなる。
 前記セルロース繊維の最大繊維径は、1000nm以下であることが好ましく、特に好ましくは500nm以下である。前記セルロース繊維の最大繊維径が大きすぎると、セルロース繊維が沈降してしまい、セルロース繊維の機能性の発現が低下する傾向がみられる。
 前記セルロース繊維の数平均繊維径および最大繊維径は、例えば、つぎのようにして測定することができる。すなわち、固形分率で0.05~0.1重量%の微細セルロースの水分散体を調製し、その分散体を、親水化処理済みのカーボン膜被覆グリッド上にキャストして、透過型電子顕微鏡(TEM)の観察用試料とする。なお、大きな繊維径の繊維を含む場合には、ガラス上へキャストした表面の走査型電子顕微鏡(SEM)像を観察してもよい。そして、構成する繊維の大きさに応じて5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。その際に、得られた画像内に縦横任意の画像幅の軸を想定し、その軸に対し、20本以上の繊維が交差するよう、試料および観察条件(倍率等)を調節する。そして、この条件を満たす観察画像を得た後、この画像に対し、1枚の画像当たり縦横2本ずつの無作為な軸を引き、軸に交錯する繊維の繊維径を目視で読み取っていく。このようにして、最低3枚の重複しない表面部分の画像を、電子顕微鏡で撮影し、各々2つの軸に交錯する繊維の繊維径の値を読み取る(し
たがって、最低20本×2×3=120本の繊維径の情報が得られる)。このようにして得られた繊維径のデータにより、最大繊維径および数平均繊維径を算出する。
 前記セルロース繊維のアスペクト比は50以上であるが、好ましくは100以上、より好ましくは200以上である。アスペクト比が50未満であると堀削泥水用添加剤として十分な擬塑性流動性が得られないおそれがある。
 前記セルロース繊維のアスペクト比は、例えば以下の方法で測定することが出来る、すなわち、セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2%ウラニルアセテートでネガティブ染色したTEM像(倍率:10000倍)から、セルロース繊維の数平均繊維径、および繊維長を観察した。すなわち、各先に述べた方法に従い、数平均繊維径、および繊維長を算出し、これらの値を用いてアスペクト比を下記の式(1)に従い算出した。
Figure JPOXMLDOC01-appb-M000001
前記セルロース繊維は、I型結晶構造を有する天然由来のセルロース固体原料を微細化した繊維である。すなわち、天然セルロースの生合成の過程においては、ほぼ例外なくミクロフィブリルと呼ばれるナノファイバーがまず形成され、これらが多束化して高次な固体構造を構成する。ここで、上記セルロース繊維を構成するセルロースがI型結晶構造を有することは、例えば、広角X線回折像測定により得られる回折プロファイルにおいて、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークをもつことから同定することができる。
 前記セルロース繊維は公知の方法で製造することが可能であり、具体的には以下の通りである。たとえば、天然セルロースを水に懸濁させ、これを高圧ホモジナイザー、またはグラインダーなどで処理して微細化することにより得られる。
天然セルロースとしては、植物または動物、微生物由来のセルロースであれば特に限定はなく、針葉樹または広葉樹由来のクラフトパルプや溶解パルプ、コットンリンター、セルロース純度の低いリグノセルロース、木粉、草木セルロース、バクテリアセルロースなどが挙げられる。
 また、前記セルロース繊維は、バクテリアによって産生されるバクテリアセルロースを使用することができる。前記バクテリアとしては、アセトバクター(Acetobacter)属等が挙げられ、より具体的には、アセトバクターアセチ(Acetobacter aceti)、アセトバクターサブスピーシーズ(Acetobacter subsp.)、アセトバクターキシリナ(Acetobacter xylinum)等が挙げられる。これらのバクテリアを培養することにより、バクテリアからセルロースが産生される。得られた産生物は、バクテリアとこのバクテリアから産生されて該バクテリアに連なっているセルロース繊維(バクテリアセルロース)とを含むものであるため、この産生物を培地から取り出し、それを水洗、又はアルカリ処理などしてバクテリアを除去することにより、バクテリアを含まない含水バクテリアセルロースを得ることができる。
 前記セルロース繊維は、セルロース繊維表面の水酸基が化学修飾されていることが好ましい。具体的には、化学修飾されたセルロースとしては、酸化セルロース、カルボキシメチルセルロース、多価カルボキシメチルセルロース、長鎖カルボキシセルロース、一級アミノセルロース、カチオン化セルロース、二級アミノセルロース、メチルセルロース、長鎖アルキルセルロースが挙げられる。これらの内、繊維表面の水酸基の選択性に優れており、反応条件も穏やかであることから、酸化セルロースが好ましい。前記化学修飾されたセルロース繊維の中で、塩の状態で水中に分散されているものについては、多価イオンとの塩とすることで架橋による強固なネットワーク構造が形成されるため、掘削泥水用添加剤として用いた場合の止水性能の向上も期待できる。
 酸化セルロースは、天然セルロースを原料とし、水中においてN - オキシル化合物を酸化触媒とし、共酸化剤を作用させることにより該天然セルロースを酸化して反応物繊維を得る酸化反応工程、不純物を除去して水を含浸させた反応物繊維を得る精製工程、および水を含浸させた反応物繊維を溶媒に分散させる分散工程を含む製造方法により得ることもできる。
 前記セルロース繊維は、セルロース分子中の各グルコースユニットのC6位の水酸基が選択的に酸化変性されてアルデヒド基,ケトン基およびカルボキシル基のいずれかとなっていることが好ましい。カルボキシル基の含量(カルボキシル基量)は1.2~2.5mmol/gの範囲が好ましく、より好ましくは1.5~2.0mmol/gの範囲である。上記カルボキシル基量が小さすぎると、セルロース繊維の沈降や凝集を生じる場合があり、上記カルボキシル基量が大きすぎると、水溶性が強くなり過ぎるおそれがある。
 前記セルロース繊維のカルボキシル基量の測定は、例えば、乾燥重量を精秤したセルロース試料から0.5~1重量%スラリーを60ml調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液を滴下して、電気伝導度測定を行う。測定はpHが約11になるまで続ける。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記の式(2)に従いカルボキシル基量を求めることができる。
Figure JPOXMLDOC01-appb-M000002
なお、カルボキシル基量の調整は、後述するように、セルロース繊維の酸化工程で用いる共酸化剤の添加量や反応時間を制御することにより行うことができる。
 前記セルロース繊維は、上記酸化変性後、還元剤により還元させることが好ましい。これにより、アルデヒド基およびケトン基の一部ないし全部が還元され、水酸基に戻る。なお、カルボキシル基は還元されない。そして、上記還元により、前記セルロース繊維の、セミカルバジド法による測定でのアルデヒド基とケトン基の合計含量を、0.3mmol/g以下とすることが好ましく、特に好ましくは0~0.1mmol/gの範囲、最も好ましくは実質的に0mmol/gである。これにより、単に酸化変性させたものよりも、分散安定性が増し、特に気温等に左右されず長期にわたり分散安定性に優れるようになる
。   
 前記セルロース繊維が、2,2,6,6-テトラメチルピペリジン(TEMPO)等のN-オキシル化合物の存在下、共酸化剤を用いて酸化されたものであり、上記酸化反応により生じたアルデヒド基およびケトン基が、還元剤により還元されたものであると、保存安定性に優れた前記セルロース繊維を容易に得ることができるようになるため好ましい。
また、上記還元剤による還元が、水素化ホウ素ナトリウム(NaBH4)によるものであると、取り扱いが簡便であり、経済的な観点からもより好ましい。
 セミカルバジド法による、アルデヒド基とケトン基との合計含量の測定は、例えば、つぎのようにして行われる。すなわち、乾燥させた試料に、リン酸緩衝液によりpH=5に調整したセミカルバジド塩酸塩3g/l水溶液を正確に50ml加え、密栓し、二日間振とうする。つぎに、この溶液10mlを正確に100mlビーカーに採取し、5N硫酸を25ml、0.05Nヨウ素酸カリウム水溶液5mlを加え、10分間撹拌する。その後、5%ヨウ化カリウム水溶液10mlを加えて、直ちに自動滴定装置を用いて、0.1Nチオ硫酸ナトリウム溶液にて滴定し、その滴定量等から、下記の式(3)に従い、試料中のカルボニル基量(アルデヒド基とケトン基との合計含量)を求めることができる。なお、セミカルバジドは、アルデヒド基やケトン基と反応しシッフ塩基(イミン)を形成するが、カルボキシル基とは反応しないことから、上記測定により、アルデヒド基とケトン基のみを定量できると考えられる。
Figure JPOXMLDOC01-appb-M000003
 前記セルロース繊維は、繊維表面上のセルロース分子中の各グルコースユニットのC6位の水酸基のみが選択的に酸化変性されてアルデヒド基,ケトン基およびカルボキシル基のいずれかとなっていることが好ましい。このセルロース繊維表面上のグルコースユニットのC6位の水酸基のみが選択的に酸化されているかどうかは、例えば、13C-NMRチャートにより確認することができる。すなわち、酸化前のセルロースの13C-NMRチャートで確認できるグルコース単位の1級水酸基のC6位に相当する62ppmのピークが、酸化反応後は消失し、代わりにカルボキシル基等に由来するピーク(178ppmのピークはカルボキシル基に由来するピーク)が現れる。このようにして、グルコース単位のC6位水酸基のみがカルボキシル基等に酸化されていることを確認することができる。
 また、前記セルロース繊維におけるアルデヒド基の検出は、例えば、フェーリング試薬により行うこともできる。すなわち、例えば、乾燥させた試料に、フェーリング試薬(酒石酸ナトリウムカリウムと水酸化ナトリウムとの混合溶液と、硫酸銅五水和物水溶液)を加えた後、80℃で1時間加熱したとき、上澄みが青色、セルロース繊維部分が紺色を呈するものは、アルデヒド基は検出されなかったと判断することができ、上澄みが黄色、セルロース繊維部分が赤色を呈するものは、アルデヒド基は検出されたと判断することができる。
 前記セルロース繊維は、(1)酸化反応工程、(2)還元工程、(3)精製工程、(4)分散工程(微細化処理工程)等により製造することが好ましく、具体的には以下の各工程により製造することが好ましい。
(1)酸化反応工程
天然セルロースとN-オキシル化合物とを水(分散媒体)に分散させた後、共酸化剤を添加して、反応を開始する。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10~11に保ち、pHに変化が見られなくなった時点で反応終了と見なす。ここで、共酸化剤とは、直接的にセルロース水酸基を酸化する物質ではなく、酸化触媒として用いられるN-オキシル化合物を酸化する物質のことである。
 上記天然セルロースは、植物,動物,バクテリア産生ゲル等のセルロースの生合成系から単離した精製セルロースを意味する。より具体的には、針葉樹系パルプ、広葉樹系パルプ、コットンリンター,コットンリント等の綿系パルプ、麦わらパルプ,バガスパルプ等の非木材系パルプ、バクテリアセルロース(BC)、ホヤから単離されるセルロース、海草から単離されるセルロース等をあげることができる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、針葉樹系パルプ、広葉樹系パルプ、コットンリンター、コットンリント等の綿系パルプ、麦わらパルプ,バガスパルプ等の非木材系パルプが好ましい。上記天然セルロースは、叩解等の表面積を高める処理を施すと、反応効率を高めることができ、生産性を高めることができるため好ましい。また、上記天然セルロースとして、単離、精製の後、乾燥させない(ネバードライ)で保存していたものを使用すると、ミクロフィブリルの集束体が膨潤しやすい状態であるため、反応効率を高め、微細化処理後の数平均繊維径を小さくすることができるため好ましい。
 上記反応における天然セルロースの分散媒体は水であり、反応水溶液中の天然セルロース濃度は、試薬(天然セルロース)の充分な拡散が可能な濃度であれば任意である。通常は、反応水溶液の重量に対して約5%以下であるが、機械的撹拌力の強い装置を使用することにより反応濃度を上げることができる。
 また、上記N-オキシル化合物としては、例えば、一般に酸化触媒として用いられるニトロキシラジカルを有する化合物があげられる。上記N-オキシル化合物は、水溶性の化合物が好ましく、なかでもピペリジンニトロキシオキシラジカルが好ましく、特に2,2,6,6-テトラメチルピペリジノオキシラジカル(TEMPO)または4-アセトアミド-TEMPOが好ましい。上記N-オキシル化合物の添加は、触媒量で充分であり、好ましくは0.1~4mmol/l、さらに好ましくは0.2~2mmol/lの範囲で反応水溶液に添加する。
 上記共酸化剤としては、例えば、次亜ハロゲン酸またはその塩、亜ハロゲン酸またはその塩、過ハロゲン酸またはその塩、過酸化水素、過有機酸等があげられる。これらは単独でもしくは二種以上併せて用いられる。なかでも、次亜塩素酸ナトリウム、次亜臭素酸ナトリウム等のアルカリ金属次亜ハロゲン酸塩が好ましい。そして、上記次亜塩素酸ナトリウムを使用する場合は、反応速度の点から、臭化ナトリウム等の臭化アルカリ金属の存在下で反応を進めることが好ましい。上記臭化アルカリ金属の添加量は、上記N-オキシル化合物に対して約1~40倍モル量、好ましくは約10~20倍モル量である。
 上記反応水溶液のpHは約8~11の範囲で維持されることが好ましい。水溶液の温度は約4~40℃において任意であるが、反応は室温(25℃)で行うことが可能であり、特に温度の制御は必要としない。所望のカルボキシル基量等を得るためには、共酸化剤の添加量と反応時間により、酸化の程度を制御する。通常、反応時間は約5~120分、長くとも240分以内に完了する。
(2)還元工程
上記セルロース繊維は、上記酸化反応後に、さらに還元反応を行うことが好ましい。具体的には、酸化反応後の微細酸化セルロースを精製水に分散し、水分散体のpHを約10に調整し、各種還元剤により還元反応を行う。本発明に使用する還元剤としては、一般的なものを使用することが可能であるが、好ましくは、LiBH4、NaBH3CN、NaBH4等があげられる。なかでも、コストや利用可能性の点から、NaBH4が好ましい。還元剤の量は、微細酸化セルロースを基準として、0.1~4重量%の範囲が好ましく、特に好ましくは1~3重量%の範囲である。反応は、室温または室温より若干高い温度で、通常、10分~10時間、好ましくは30分~2時間行う。上記の反応終了後、各種の酸により反応混合物のpHを約2に調整し、精製水をふりかけながら遠心分離機で固液分離を行い、ケーキ状の微細酸化セルロースを得る。固液分離は濾液の電気伝導度が5mS/m以下となるまで行う。
(3)精製工程
つぎに、未反応の共酸化剤(次亜塩素酸等)や、各種副生成物等を除く目的で精製を行う。反応物繊維は通常、この段階ではナノファイバー単位までばらばらに分散しているわけではないため、通常の精製法、すなわち水洗とろ過を繰り返すことで高純度(99重量%以上)の反応物繊維と水の分散体とする。上記精製工程における精製方法は、遠心脱水を利用する方法(例えば、連続式デカンダー)のように、上述した目的を達成できる装置であればどのような装置を利用しても差し支えない。このようにして得られる反応物繊維の水分散体は、絞った状態で固形分(セルロース)濃度としておよそ10重量%~50重量%の範囲にある。この後の分散工程を考慮すると、50重量%よりも高い固形分濃度とすると、分散に極めて高いエネルギーが必要となることから好ましくない。
(4)分散工程(微細化処理工程)
上記精製工程にて得られる水を含浸した反応物繊維(水分散体)を、分散媒体中に分散させ分散処理を行う。処理に伴って粘度が上昇し、微細化処理されたセルロース繊維の分散体を得ることができる。その後、必要に応じて上記セルロース繊維を乾燥してもよく、上記セルロース繊維の分散体の乾燥法としては、例えば、分散媒体が水である場合は、スプレードライ、凍結乾燥法、真空乾燥法等が用いられ、分散媒体が水と有機溶媒の混合溶液である場合は、ドラムドライヤーによる乾燥法、スプレードライヤーによる噴霧乾燥法等が用いられる。なお、上記セルロース繊維の分散体を乾燥することなく、分散体の状態で用いても差し支えない。
 上記分散工程で使用する分散機としては、高速回転下でのホモミキサー、高圧ホモジナイザー、超高圧ホモジナイザー、超音波分散処理機、ビーター、ディスク型レファイナー、コニカル型レファイナー、ダブルディスク型レファイナー、グラインダー等の強力で叩解能力のある装置を使用することにより、より効率的かつ高度なダウンサイジングが可能となり、経済的に有利に含水潤滑剤組成物を得ることができる点で好ましい。なお、上記分散機としては、例えば、スクリュー型ミキサー、パドルミキサー、ディスパー型ミキサー、タービン型ミキサー、ディスパー、プロペラミキサー、ニーダー、ブレンダー、ホモジナイザー、超音波ホモジナイザー、コロイドミル、ペブルミル、ビーズミル粉砕機等を用いても差し支えない。また、2種類以上の分散機を組み合わせて用いても差し支えない。
 本発明の原油回収用添加剤を使用する原油回収用組成物は、前記セルロース繊維及びその他添加剤を水に分散した水溶液である。
 本発明の堀削泥水用組成物における前記セルロース繊維の含有量は特に限定されないが0.01質量%以上10.0質量%以下が好ましく、0.1質量%以上2質量%以下がより好ましい。セルロース繊維の含有量が0.01質量%以上10.0質量%以下であれば、堀削泥水用組成物が良好な擬塑性流動性を発現する。
 本発明の堀削泥水用組成物は前記セルロース繊維のほかに、ベンドナイト、粘土、分散剤、防腐剤、pH調整剤等を添加することが出来る。
 前記分散剤としては、例えば、ポリ(メタ)アクリル酸塩、フミン酸誘導体、リグニンスルホン酸塩、ヘキサメタリン酸塩、トリポリリン酸塩等を挙げることができる。
前記防腐剤としては、例えば、無機化合物として、さらし粉、次亜塩素酸ナトリウム、次亜塩素酸カルシウム、有機化合物として、ハロゲン誘導体、二価アルコール誘導体、脂肪族として、スルホン誘導体、シアン誘導体、チオカルバミド誘導体、芳香族として、ジアミン誘導体、イミダゾール誘導体、イソチアゾール誘導体等を挙げることができる。
前記pH調整剤としては、例えば、水酸化ナトリウム、炭酸ソーダ、重炭酸ソーダなどが挙げられる。
つぎに、実施例について比較例とあわせて説明する。ただし、本発明はこれらの実施例に限定されるものではない。なお、例中、「%」とあるのは、特に限定のない限り質量基準を意味する。
〔セルロース繊維の製造〕
〔セルロース繊維A1(実施例用)の製造〕
針葉樹漂白クラフトパルプ(NBKP)50gを水4950gに分散させ、パルプ濃度1質量%の分散液を調整した。この分散液をセレンディピターMKCA6-3(増幸産業(株)製)で30回処理し、セルロース繊維A1を得た。
〔セルロース繊維A2(実施例用)の製造〕
針葉樹パルプ2gに、水150ml、臭化ナトリウム0.25g、TEMPO0.025gを加え、充分撹拌して分散させた後、13重量%次亜塩素酸ナトリウム水溶液(共酸化剤)を、上記パルプ1.0gに対して次亜塩素酸ナトリウム量が5.2mmol/gとなるように加え、反応を開始した。反応の進行に伴いpHが低下するため、pHを10~11に保持するように0.5N水酸化ナトリウム水溶液を滴下しながら、pHの変化が見られなくなるまで反応させた(反応時間:120分)。反応終了後、0.1N塩酸を添加して中和した後、ろ過と水洗を繰り返して精製し、繊維表面が酸化されたセルロース繊維を得た。つぎに、上記セルロース繊維に純水を加えて1%に希釈し、高圧ホモジナイザー(三和エンジニアリング製、H11)を用いて圧力100MPaで1回処理することにより、セルロース繊維A2を製造した。
〔セルロース繊維A3(実施例用)の製造〕
次亜塩素酸ナトリウム水溶液の添加量を、上記パルプ1.0gに対して6.5mmol/gとした以外は、セルロース繊維A2の製造に準じて、セルロース繊維A3を製造した。
〔セルロース繊維A4(実施例用)の製造〕
次亜塩素酸ナトリウム水溶液の添加量を、上記パルプ1.0gに対して12.0mmol/gとした以外は、セルロース繊維A2の製造に準じて、セルロース繊維A4を製造した。
〔セルロース繊維A5(実施例用)の製造〕
セルロース繊維A2の製造と同様の手法で針葉樹パルプを酸化した後、遠心分離機で固液分離し、純水を加えて固形分濃度4%に調整した。その後、24%NaOH水溶液にてスラリーのpHを10に調整した。スラリーの温度を30℃として水素化ホウ素ナトリウムをセルロース繊維に対して0.2mmol/g加え、2時間反応させることで還元処理した。反応後、0.1N塩酸を添加して中和した後、ろ過と水洗を繰り返して精製し、セルロース繊維を得た。つぎに、上記セルロース繊維に純水を加えて1%に希釈し、高圧ホモジナイザー(三和エンジニアリング製、H11)を用いて圧力100MPaで1回処理することにより、セルロース繊維A5を製造した。
〔セルロース繊維A6(実施例用)の製造〕
セルロース繊維A3の製造と同様の手法で針葉樹パルプを酸化した後、セルロース繊維A4の製造と同様の手法で還元、精製した。つぎに、上記セルロース繊維に純水を加えて1%に希釈し、高圧ホモジナイザー(三和エンジニアリング製、H11)を用いて圧力100MPaで1回処理することにより、セルロース繊維A6を製造した。
〔セルロース繊維A7(実施例用)の製造〕
セルロース繊維A4の製造と同様の手法で針葉樹パルプを酸化した後、セルロース繊維A4の製造と同様の手法で還元、精製した。つぎに、上記セルロース繊維に純水を加えて1%に希釈し、高圧ホモジナイザー(三和エンジニアリング製、H11)を用いて圧力100MPaで1回処理することにより、セルロース繊維A7を製造した。
〔セルロース繊維A´1(比較例用)の製造〕
針葉樹漂白クラフトパルプ(NBKP)50gを水4950gに分散させ、パルプ濃度1質量%の分散液を調整した。この分散液をセレンディピターMKCA6-3(増幸産業(株)製)で10回処理し、セルロース繊維A´1を得た。
〔セルロース繊維A´2(比較例用)の製造〕
原料の針葉樹パルプに替えて再生セルロースを使用するとともに、次亜塩素酸ナトリウム水溶液の添加量を、再生セルロース1.0gに対して27.0mmol/gとした以外は、セルロース繊維A2の製造に準じて、セルロース繊維A´2を製造した。
上記のようにして得られた各セルロース繊維について、下記の基準に従って、各特性の評価を行った。その結果を、上記表1に併せて示した。
Figure JPOXMLDOC01-appb-T000004
〔結晶構造〕
X線回折装置(リガク社製、RINT‐Ultima3)を用いて、各セルロース繊維の回折プロファイルを測定し、2シータ=14~17°付近と、2シータ=22~23°付近の2つの位置に典型的なピークが見られる場合は結晶構造(I型結晶構造)が「あり」と評価し、ピークが見られない場合は「なし」と評価した。
〔数平均繊維径、アスペクト比の測定〕
セルロース繊維の数平均繊維径、および繊維長を、透過型電子顕微鏡(TEM)(日本電子社製、JEM-1400)を用いて観察した。すなわち、各セルロース繊維を親水化処理済みのカーボン膜被覆グリッド上にキャストした後、2%ウラニルアセテートでネガティブ染色したTEM像(倍率:10000倍)から、先に述べた方法に従い、数平均繊維径、および繊維長を算出した。
さらに、これらの値を用いてアスペクト比を下の式(1)に従い算出した。
Figure JPOXMLDOC01-appb-M000005
〔カルボキシル基量の測定〕
セルロース繊維0.25gを水に分散させたセルロース水分散体60mlを調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液を滴下して、電気伝導度測定を行った。測定はpHが11になるまで続けた。電気伝導度の変化が緩やかな弱酸の中和段階において、消費された水酸化ナトリウム量(V)から、下の式(2)に従いカルボキシル基量を求めた。
Figure JPOXMLDOC01-appb-M000006
〔カルボニル基量の測定(セミカルバジド法)〕
セルロース繊維を約0.2g精秤し、これに、リン酸緩衝液によりpH=5に調整したセミカルバジド塩酸塩3g/l水溶液を正確に50ml加え、密栓し、二日間振とうした。つぎに、この溶液10mlを正確に100mlビーカーに採取し、5N硫酸25ml、0.05Nヨウ素酸カリウム水溶液5mlを加え、10分間撹拌した。その後、5%ヨウ化カリウム水溶液10mlを加え、直ちに自動滴定装置を用いて、0.1Nチオ硫酸ナトリウム溶液にて滴定し、その滴定量等から、下記の式(3)に従い、試料中のカルボニル基量(アルデヒド基とケトン基との合計含量)を求めた。
Figure JPOXMLDOC01-appb-M000007
〔アルデヒド基の検出〕
セルロース繊維を0.4g精秤し、日本薬局方に従って調製したフェーリング試薬(酒石酸ナトリウムカリウムと水酸化ナトリウムとの混合溶液5mlと、硫酸銅五水和物水溶液5ml)を加えた後、80℃で1時間加熱した。そして、上澄みが青色、セルロース繊維部分が紺色を呈するものはアルデヒド基が検出されなかったと判断し、「なし」と評価した。また、上澄みが黄色、セルロース繊維部分が赤色を呈するものは、アルデヒド基が検出されたと判断し、「あり」と評価した。
前記表1の結果から、実施例用のセルロース繊維A1~A7は、いずれも数平均繊維径が2~500nmの範囲内で、セルロースI型結晶構造を有していた。さらに、セルロース繊維A2~A7については、カルボキシル基の含量が1.2~2.5mmol/gの範囲内であった。これに対して、比較例用のセルロース繊維A´1は、数平均繊維径が上限を超え、カルボキシル基量は下限未満であった。セルロース繊維A´2は、数平均繊維径が小さすぎて測定不可(1nm以下)であり、カルボキシル基量は上限を超えていた。また、セルロース繊維A2~A7に関し、セルロース繊維表面上のグルコースユニットのC6位の水酸基のみが選択的にカルボキシル基等に酸化されているかどうかについて、13C‐NMRチャートで確認した結果、酸化前のセルロースの13C‐NMRチャートで確認できるグルコース単位の1級水酸基のC6位に相当する62ppmのピークが、酸化反応後は消失し、代わりに178ppmにカルボキシル基に由来するピークが現れていた。このことから、セルロース繊維A2~A7は、いずれもグルコース単位のC6位水酸基のみがアルデヒド基等に酸化されていることが確認された。
〔前記セルロース繊維及びその他比較品の測定液の調整〕
 以下の手順により前記セルロース繊維及びその他比較品の測定液を調整した。
〔測定液1〕
 上記で得られたセルロース繊維A1に、純水、およびベントナイト(スーパークレイ、ホージュン製)を添加し、ホモミクサーMARKII2.5型(PRIMIX製)を用いて3,000rpmで60分間撹拌し、セルロース繊維濃度0.1%、ベントナイト濃度2%の測定液を1,000g調製した。
〔測定液2~9〕
 前記セルロース繊維A1をセルロース繊維A2~7、A´1、A´2に変更した以外は測定液1と同様の方法で測定液を調製した。
〔測定液10〕
 市販のポリアクリルアミド(テルコートDP、テルナイト製)に、純水、およびベントナイトを添加し、ホモミクサーMARKII2.5型(PRIMIX製)を用いて3,000rpmで60分間撹拌し、ポリアクリルアミド濃度0.1%、ベントナイト濃度2%の測定液を1,000g調製した。
〔測定液11〕
 市販のキサンタンガム(K-OB、大日本住友製薬製)に、純水、およびベントナイトを添加し、ホモミクサーMARKII2.5型(PRIMIX製)を用いて3,000rpmで60分間撹拌し、キサンタンガム濃度0.1%、ベントナイト濃度2%の測定液を1,000g調製した。
〔測定液の評価〕
得られた測定液を用いて以下の評価方法でTIの測定、粘性劣化、止水性能の評価をおこなった。評価結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000008
[チクソトロピーインデックス(TI)の測定]
得られた測定液のうち250gを25℃で1日静置した後、B型粘度計(BROOKFIELD製、ローターNo.4、6rpm、3分、25℃)を用いて粘度を測定した。続いて回転数を60rpmに変更した以外は同条件で粘度を測定した。
得られた粘度から下記の式(4)よりTIを算出した。
Figure JPOXMLDOC01-appb-M000009
以下の基準によりTIの評価を行った。
◎:6以上
○:4以上6未満
△:3以上4未満
×:3未満
[高温、機械的せん断による粘性劣化の評価]
得られた測定液のうち500gを25℃で1日静置した後、B型粘度計(BROOKFIELD製、ローターNo.4、6rpm、3分、25℃)を用いて粘度を測定した。その後、ウォーターバスを用いて60℃に加温し、測定液の温度を60℃に保持したままホモミクサーMARKII2.5型(PRIMIX製)を用いて12,000rpmで60分間撹拌した。その後、処理液をさらに25℃で1日静置した後、B型粘度計(BROOKFIELD製、ローターNo.4、6rpm、3分、25℃)を用いて粘度を測定した。
せん断処理前後での粘度から下記の式(5)より粘度保持率(%)を算出し、粘性劣化の度合いを評価した。
Figure JPOXMLDOC01-appb-M000010
以下の基準により粘性劣化の評価を行った。
◎:85%以上
○:70%以上85%未満
△:55%以上70%未満
×:55%未満
〔止水性能の測定〕
API規格によるろ過試験器を用いて、室温下30分間、0.3MPaの加圧を行ったときの濾水量を測定した。即ち、濾水量が少ないほど止水性能が良好であるといえる。
◎:15ml以下
○:15ml超20ml以下
△:20ml超25ml以下
×:25ml超
 表2より、本発明品であるセルロース繊維A1からA7は、繊維のアスペクト比が低いセルロース繊維A’1に対し、所定濃度での粘度が高く、TI値が高いことが分かる(比較例1)。また、I型結晶構造を有さないセルロース繊維A’2に対しては所定濃度での粘度が高く、TI値が高く、粘性劣化に優れていることが分かる(比較例2)。したがって、本発明品はA’1及びA’2に対し、止水性、搬出時おける流動性、及び高温、高せん断条件下での耐久性に優れていることが明らかとなった。一方、従来から堀削泥水用添加剤として使用されてきたホ゜リアクリルアミト゛(比較例3)、キサンタンカ゛ム(比較例4)に対し本発明品は、粘性劣化において優れていることから分かる。堀削泥水用組成物に使用した場合に高温、高せん断条件下での耐久性に優れていることが判明した。
本発明の堀削泥水用添加剤は石油、天然ガス、土木、鉱山などの掘削に用いることが出来る。
 
 
 
 
 
 
 
 
 
 
 
 

Claims (7)

  1. 数平均繊維径が2~500nm、繊維のアスペクト比が50以上、及びセルロースI型結晶構造を有するセルロース繊維を含有することを特徴とする堀削泥水用添加剤。
  2. 前記セルロース繊維において、セルロース繊維表面の水酸基が化学修飾されていることを特徴とする請求項1に記載の堀削泥水用添加剤。
  3. 前記セルロース繊維において、分子中の各グルコースユニットのC6位の水酸基が選択的に酸化変性されてアルデヒド基,ケトン基およびカルボキシル基のいずれかとなったものであり、カルボキシル基の含量が1.2~2.5mmol/gの範囲であることを特徴とする請求項2記載の堀削泥水用添加剤。
  4. 前記セルロース繊維におけるアルデヒド基とケトン基の合計含量が、セミカルバジド法による測定において0.3mmol/g以下であることを特徴とする請求項3記載の堀削泥水用添加剤。
  5. 前記セルロース繊維が、N-オキシル化合物の存在下、共酸化剤を用いて酸化されたものであり、上記酸化反応により生じたアルデヒド基およびケトン基が、還元剤により還元されていることを特徴とする請求項3または4記載の堀削泥水用添加剤。
  6. 前記還元剤による還元が、水素化ホウ素ナトリウムによるものである請求項5記載の堀削泥水用添加剤。
  7. 請求項1ないし6のいずれか1項に記載の堀削泥水用添加剤を含有することを特徴とする堀削泥水用組成物。
     
PCT/JP2014/072210 2013-08-30 2014-08-26 堀削泥水用添加剤 WO2015029959A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480046915.4A CN105492568B (zh) 2013-08-30 2014-08-26 钻井泥浆添加剂
CA2921219A CA2921219C (en) 2013-08-30 2014-08-26 Additive for drilling mud comprising i-type crystal structure cellulose fibers with specified number average fiber diameters and aspect ratios
US14/912,557 US9803128B2 (en) 2013-08-30 2014-08-26 Additive for drilling mud
JP2015534206A JP6452160B2 (ja) 2013-08-30 2014-08-26 堀削泥水用添加剤
RU2016105771A RU2016105771A (ru) 2013-08-30 2014-08-26 Присадка к буровому шламу

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180727 2013-08-30
JP2013-180727 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015029959A1 true WO2015029959A1 (ja) 2015-03-05

Family

ID=52586516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072210 WO2015029959A1 (ja) 2013-08-30 2014-08-26 堀削泥水用添加剤

Country Status (6)

Country Link
US (1) US9803128B2 (ja)
JP (1) JP6452160B2 (ja)
CN (1) CN105492568B (ja)
CA (1) CA2921219C (ja)
RU (1) RU2016105771A (ja)
WO (1) WO2015029959A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188343A (ja) * 2015-03-30 2016-11-04 日本製紙株式会社 セルロースナノファイバー及びその製造方法
JP2017088693A (ja) * 2015-11-06 2017-05-25 王子ホールディングス株式会社 地下層処理用組成物、地下層処理用流体、地下層処理用流体の製造方法及び地下層の処理方法
US11535682B2 (en) 2017-01-16 2022-12-27 Yokogawa Electric Corporation Sulfate ester modified cellulose nanofibers and method for producing cellulose nanofibers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015029960A1 (ja) * 2013-08-30 2015-03-05 第一工業製薬株式会社 原油回収用添加剤
WO2016152491A1 (ja) 2015-03-26 2016-09-29 花王株式会社 粘性水系組成物
CN105601820B (zh) * 2015-12-31 2018-07-17 四川大学 甲基纤维素的亲水改性方法
CN110591666A (zh) * 2019-09-28 2019-12-20 重庆威能钻井助剂有限公司 一种稀释剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251301A (ja) * 1997-03-07 1998-09-22 Nippon Paper Ind Co Ltd セルロース誘導体とその製法
US20120316089A1 (en) * 2011-04-15 2012-12-13 Halliburton Energy Services, Inc. Methods to Characterize Fracture Plugging Efficiency for Drilling Fluids
WO2014088072A1 (ja) * 2012-12-07 2014-06-12 日本製紙株式会社 カルボキシメチル化セルロースの繊維

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000282021A (ja) 1999-03-31 2000-10-10 Nippon Paper Industries Co Ltd 掘削用泥水安定液
WO2000059964A1 (fr) 1999-04-01 2000-10-12 Showa Denko K.K. Regulateur pour forage de boues
JP4874572B2 (ja) * 2000-02-29 2012-02-15 三洋化成工業株式会社 原油増産用添加剤
DE10343047B4 (de) * 2003-09-16 2008-08-07 Zfb Project-Management Gmbh Antioxidationsmittel für organisches Material und Verfahren zur Behandlung desselben
US7521493B2 (en) * 2005-01-10 2009-04-21 E. I. Du Pont De Nemours And Company Slurries containing microfiber and micropowder, and methods for using and making same
CN101240035B (zh) * 2008-03-14 2010-05-12 山东一滕化工有限公司 特高取代纤维素羧甲基钠及其制备方法和应用
FI20100022A (fi) * 2010-01-25 2011-07-26 Upm Kymmene Corp Aine ja koostumus öljykenttäsovelluksiin
US9133384B2 (en) * 2012-01-31 2015-09-15 Halliburton Energy Services, Inc. Cellulose nanowhiskers in well services

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10251301A (ja) * 1997-03-07 1998-09-22 Nippon Paper Ind Co Ltd セルロース誘導体とその製法
US20120316089A1 (en) * 2011-04-15 2012-12-13 Halliburton Energy Services, Inc. Methods to Characterize Fracture Plugging Efficiency for Drilling Fluids
WO2014088072A1 (ja) * 2012-12-07 2014-06-12 日本製紙株式会社 カルボキシメチル化セルロースの繊維

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188343A (ja) * 2015-03-30 2016-11-04 日本製紙株式会社 セルロースナノファイバー及びその製造方法
JP2017088693A (ja) * 2015-11-06 2017-05-25 王子ホールディングス株式会社 地下層処理用組成物、地下層処理用流体、地下層処理用流体の製造方法及び地下層の処理方法
US11535682B2 (en) 2017-01-16 2022-12-27 Yokogawa Electric Corporation Sulfate ester modified cellulose nanofibers and method for producing cellulose nanofibers

Also Published As

Publication number Publication date
CA2921219A1 (en) 2015-03-05
US9803128B2 (en) 2017-10-31
CA2921219C (en) 2021-09-07
US20160200958A1 (en) 2016-07-14
CN105492568A (zh) 2016-04-13
JP6452160B2 (ja) 2019-01-16
CN105492568B (zh) 2018-11-06
JPWO2015029959A1 (ja) 2017-03-02
RU2016105771A (ru) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6452161B2 (ja) 原油回収用添加剤
JP6452160B2 (ja) 堀削泥水用添加剤
JP5944564B1 (ja) ゲル状組成物の製法およびそれにより得られたゲル状組成物
JP5872097B1 (ja) セルロースエステル水性分散体
US11198740B2 (en) Metal-containing oxidized cellulose nanofiber dispersion and method of producing the same
JP5733761B2 (ja) 樹脂組成物およびそれを含有する皮膜形成剤、並びに皮膜
JP6723632B2 (ja) 配管摩擦抵抗低減剤及び輸送媒体
WO2011074301A1 (ja) セルロースの酸化方法及びセルロースナノファイバーの製造方法
JP6559489B2 (ja) 易剥離性接着剤組成物
JP5972671B2 (ja) 含水潤滑剤組成物およびその製造方法
JP6111632B2 (ja) セルロース系増粘剤
JP2017020074A (ja) 金属表面処理剤及び金属表面処理方法
JP5744775B2 (ja) 研磨剤組成物
JPWO2017082395A1 (ja) 化学変性パルプ分散液の脱水方法
JP2014193580A (ja) 積層体
JP5766636B2 (ja) 釉薬組成物
JP2017025283A (ja) セルロースエステル水性分散体
JP7162433B2 (ja) セルロースナノファイバー及びポリビニルアルコール系重合体を含む組成物の製造方法
JP2021134263A (ja) 疎水化アニオン変性セルロースナノファイバー分散体及びその製造方法ならびに疎水化アニオン変性セルロースの乾燥固形物及びその製造方法
JP2022102007A (ja) セルロースナノファイバー組成物及びその製造方法
JP2018090454A (ja) 無機材料含有組成物、及び、鋳込成形品の製造方法。
JP2014070204A (ja) 変性セルロースおよび変性セルロースナノファイバーの製造方法
JP2023043459A (ja) カルボキシメチル化セルロースナノファイバーおよびその製造方法
JP2016079259A (ja) 堀削泥水用添加剤
JP2016191002A (ja) セルロースナノファイバー分散液

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046915.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2921219

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14912557

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015534206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016105771

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14840784

Country of ref document: EP

Kind code of ref document: A1