WO2015029148A1 - 化学物質の生産システム及び化学物質の生産方法 - Google Patents

化学物質の生産システム及び化学物質の生産方法 Download PDF

Info

Publication number
WO2015029148A1
WO2015029148A1 PCT/JP2013/072937 JP2013072937W WO2015029148A1 WO 2015029148 A1 WO2015029148 A1 WO 2015029148A1 JP 2013072937 W JP2013072937 W JP 2013072937W WO 2015029148 A1 WO2015029148 A1 WO 2015029148A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
chemical substance
reaction system
chemical
production system
Prior art date
Application number
PCT/JP2013/072937
Other languages
English (en)
French (fr)
Inventor
博子 多田
杉田 奈巳
範人 久野
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/072937 priority Critical patent/WO2015029148A1/ja
Priority to JP2015533834A priority patent/JPWO2015029148A1/ja
Priority to US14/914,199 priority patent/US20160215224A1/en
Publication of WO2015029148A1 publication Critical patent/WO2015029148A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/11Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by dialysis
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B3/00Refining fats or fatty oils
    • C11B3/008Refining fats or fatty oils by filtration, e.g. including ultra filtration, dialysis
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/649Biodiesel, i.e. fatty acid alkyl esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/02Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/08Jet fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/10Recycling of a stream within the process or apparatus to reuse elsewhere therein
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/544Extraction for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/54Specific separation steps for separating fractions, components or impurities during preparation or upgrading of a fuel
    • C10L2290/548Membrane- or permeation-treatment for separating fractions, components or impurities during preparation or upgrading of a fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/58Control or regulation of the fuel preparation of upgrading process
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/60Measuring or analysing fractions, components or impurities or process conditions during preparation or upgrading of a fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a chemical substance production system and a chemical substance production method.
  • the present invention relates to a system and method for producing chemical substances as fuel from algae.
  • BDF biofuel derived from microalgae
  • the process of producing BDF (registered trademark) from microalgae is roughly divided into a process of extracting fats and oils (hereinafter referred to as triglycerides) from microalgae and a process of converting the extracted triglycerides into fuel.
  • triglyceride extraction step extraction using various organic solvents and extraction using physical energy such as ultrasonic waves are performed.
  • the fueling process of triglyceride is performed by mixing triglyceride and methanol at high temperature and methylating the triglyceride. In order to produce fuel, it is necessary to simplify these processes and increase the efficiency. In recent years, attempts have been made to implement these processes in one step.
  • Non-Patent Document 1 irradiates algae with microwaves in the presence of methanol and strontium oxide, and the extraction process and the fueling process are performed in one step. It is implemented in.
  • the fuelization efficiency may decrease due to the influence of the contaminants.
  • the fuel yield decreases and unreacted triglycerides remain in the fuel. I think that.
  • the triglyceride remaining in the fuel has a low melting point and fluidity compared to the fuel, so that it is likely to be clogged in the pipe when used in an engine such as a vehicle, causing engine performance deterioration and failure. there is a possibility.
  • an object of the present invention is to efficiently remove impurities generated in the process of extracting chemical substances from raw materials and efficiently convert the chemical substances extracted from raw materials into fuel.
  • a first liquid reaction system that generates a first chemical substance and a second liquid reaction system that generates a second chemical substance And a first film provided between the first liquid reaction system and the second liquid reaction system, wherein the second liquid reaction system is a second liquid from the first liquid reaction system.
  • a chemical substance production system that generates a second chemical substance by causing a chemical reaction with respect to the first chemical substance that has moved to the reaction system via the first film is provided.
  • FIG. 1 It is a figure showing a schematic structure figure of a fuel production system of the present invention. It is a figure which shows sectional drawing of the microwave irradiation part with which the fuel production system of this invention is equipped. It is a figure which shows the block block diagram of the control system with which the fuel production system of this invention is equipped. It is a figure which shows the control flow in the control system of the fuel production system of this invention.
  • the configuration of the fuel production system in this embodiment will be described with reference to FIG.
  • the fuel production system of the present embodiment is suitable for fuel production from algae
  • an example using algae as a raw material will be described as an example.
  • the fuel production system shown in FIG. It is also possible to use plants, wood, wood waste, food, food waste, etc. as raw materials.
  • Examples of the algae as raw materials include Botryococcus genus, Nannochloropsis genus, Neochloris genus, Phaeodactylum genus, Dunaliella genus, Aurantiochytrium genus, Chlorella genus, Pseudochoricystis genus, Fistulifera genus and the like.
  • a first reaction system 1 that is a liquid reaction system that extracts triglycerides from raw materials and a second reaction system that is a liquid reaction system that converts triglycerides into fuel.
  • a reaction system 7 is provided adjacently via the membrane 6.
  • system control is performed based on the control signal of the control device 13. That is, the mechanism of the algae inflow valve 2, the crushing unit 3, the triglyceride concentration meter 5, the microwave irradiation unit 8, the triglyceride / BDF concentration meter 9, the BDF outflow valve 10, and the solvent inflow valve 12, which will be described later, is controlled by the control device 13. In addition, the flow rate and flow rate of the liquid in the first reaction system 1 and the second reaction system 7 are controlled.
  • the control device 13 includes a display 301, an input unit 302 used for system control by a system administrator or the like, and a control unit 303. Furthermore, the control unit 303 includes a microwave irradiation control unit 304 that controls microwave irradiation, a valve control unit 305 that controls opening / closing of each valve, a crushing control unit 306 that controls crushing of raw materials, a triglyceride and BDF
  • the concentration measurement control unit 307 controls the concentration measurement of the liquid
  • the flow rate / flow rate control unit 308 controls the flow rate / flow rate of the liquid in the liquid reaction system.
  • Each control unit included in these control units 303 can be realized by software by a processor interpreting and executing a program stored in a memory that realizes each function.
  • each control unit may be realized by hardware by designing a part or all of them, for example, by an integrated circuit.
  • Information such as programs, files, and databases that realize the functions of each control unit is stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD. It can also be placed.
  • the first reaction system 1 includes an algae inflow valve 2 for supplying algae, a crushing unit 3 that promotes crushing of algae when extracting triglycerides from algae, and for removing algae residues after crushing.
  • a residue removal mechanism 4 and a triglyceride concentration meter 5 for measuring the triglyceride concentration in the first reaction system are provided.
  • a liquid containing methanol for dissolving triglyceride is circulated in the flow path by a circulation pump or the like.
  • the methanol content is desirably 70% or more, but is not necessarily limited thereto.
  • the crushing method used in the crushing unit 3 is not particularly limited, and examples thereof include an ultrasonic irradiation method, a microwave heating method, an infrared heating method, a crushing method using a French press, a homogenizer, and the like.
  • the removal method of the algal residue used in the residue removal mechanism 4 is not particularly limited, for example, the residue may be removed by filtering a solution containing the residue using a filter, or the residue precipitated at the bottom of the reaction system May be removed by discharging from a valve or the like installed at the bottom.
  • the concentration measurement method used in the triglyceride concentration meter 5 is not particularly limited, and examples thereof include a liquid chromatography method, a gas chromatography method, and a gas chromatography mass spectrometry method.
  • the film 6 is provided as a boundary between the first reaction system 1 and the second reaction system 2.
  • the membrane 6 is resistant to methanol as shown below, and preferably has a heat resistant temperature of 60 ° C. or higher, but is not necessarily limited thereto.
  • the material of the membrane include anopore, cellulose acetate, polycarbonate, polyester, glass fiber, nylon, polypropylene, depth polypropylene, polysulfone, polyethersulfone, Teflon (registered trademark), polyvinylidene fluoride, and cellulose.
  • the pore size of the membrane is not particularly limited, but is preferably 1.3 nm or more, for example.
  • membrane 6 separation is carried out according to the size of the substance by dialysis.
  • the molecular weight of the triglyceride to be separated in this example is about 700 to 1000 g / mol. Since the molecular weight cutoff of the membrane 6 used in the present invention is equal to or higher than the molecular weight of triglyceride, the triglyceride permeates from the first reaction system 1 to the second reaction system 7, and the substance having a molecular weight higher than the molecular weight cutoff of the membrane 6 is , It remains in the first reaction system 1 as a contaminant. Thereby, the triglyceride extracted from the algae and the impurities are separated. As dialysis conditions used in this embodiment, diffusion dialysis or pressure dialysis can be used.
  • the second reaction system 7 includes a microwave irradiation unit 8 as a chemical reaction unit for converting triglyceride to BDF, a triglyceride / BDF concentration meter 9 for measuring triglyceride and BDF concentrations in the second reaction system, A BDF outflow valve 10 for recovering the BDF, a hydrophilic film 11 for blocking the BDF and preventing it from returning to the first reaction system, and a solvent inflow valve 12 for supplying the solvent are provided.
  • a liquid containing methanol used in the methyl esterification reaction is circulated by a circulation pump or the like.
  • the methanol content is desirably 70% or more, but is not necessarily limited thereto.
  • the microwave irradiation conditions in the microwave irradiation unit 8 are not particularly limited, it is desirable that the temperature in the vicinity of the microwave irradiation unit 8 is 60 ° C. or higher and the boiling point of methanol is 64.7 ° C. or lower.
  • Examples of the microwave irradiation method include continuous irradiation that always irradiates microwaves and irradiation with pulse waves that repeat ON / OFF for a short time.
  • the microwave irradiation unit 8 includes a catalyst fixing unit 16 in contact with the inner wall of the second reaction system 7, a magnetron 14 in contact with the outer wall, and a shielding unit 15.
  • fixed part 16 is not specifically limited, An alkali catalyst, an acidic catalyst, and a solid catalyst are mentioned as an example.
  • the alkali catalyst include sodium hydroxide and potassium hydroxide
  • examples of the acidic catalyst include sulfuric acid, hydrochloric acid, and boron trifluoride.
  • the solid catalyst examples include metal oxides such as strontium oxide, barium oxide, calcium oxide, and magnesium oxide, metal hydroxides such as strontium hydroxide, barium hydroxide, calcium hydroxide, and magnesium hydroxide, and metals such as zirconia sulfate. Examples thereof include sulfates, ion exchange resins, and zeolites. Since the solid catalyst can prevent the catalyst from flowing into the second reaction system, it is desirable as a catalyst used in the fuel production system of this embodiment.
  • the second reaction system 7 includes a hydrophilic film 11 downstream of the microwave irradiation unit 8, particularly between the microwave irradiation unit 8 and the film 6.
  • the hydrophilic membrane 11 blocks the BDF and does not circulate in the second reaction system 7, thereby preventing the return to the first reaction system 1. Furthermore, due to the effect of the hydrophilic membrane 11, the triglyceride concentration gradient is maintained in the first reaction system 1 and the second reaction system 7, and the triglyceride concentration does not reach equilibrium, so that continuous triglyceride dialysis is possible.
  • the material of the hydrophilic film 11 is preferably one that is resistant to methanol as shown below, but is not necessarily limited thereto. For example, zeolite membrane, anopore, cellulose acetate, glass fiber, nylon, polyethersulfone and the like can be mentioned.
  • the concentration measurement method used in the triglyceride / BDF concentration meter 9 is not particularly limited, and examples thereof include a liquid chromatography method, a gas chromatography method, and a gas chromatography mass spectrometry method.
  • flow meters for measuring the liquid flow rate in the respective reaction systems are provided in the vicinity of the algae inflow valve 2, BDF outflow valve 10, and solvent inflow valve 12. ing.
  • the control device 13 controls the liquid amount and the liquid flow based on the measured flow rate.
  • the direction of liquid flow in the first reaction system and the second reaction system is not particularly limited, but it is desirable that the liquid flow in the reverse direction through the membrane. Since triglyceride and BDF are high in concentration upstream of the liquid flow direction, the reverse of the liquid flow direction through the membrane increases the difference in concentration gradient through the membrane and improves triglyceride dialysis efficiency. Is possible.
  • the algae inflow valve 2 is opened (401), and algae cultured in a facility of another system is supplied to the first reaction system 1 (402).
  • the algal inflow valve 2 is closed (403), and triglyceride is extracted from the algae in the first reaction system 1.
  • the concentration is measured (404), and when the triglyceride concentration Ts dialyzed in the first reaction system 1 to the second reaction system 7 reaches 1.6 to 8.2M (405), the microwave irradiation unit 8 Microwave irradiation is performed (406).
  • the following methyl esterification reaction is induced by irradiating the triglyceride with microwaves in the presence of a catalyst and methanol.
  • Triglyceride + 3 methanol ⁇ 3BDF + glycerin Methyl esterification reaction produces 3 molecules of BDF from 1 molecule of triglyceride.
  • Concentration measurement is performed again (407), and when the BDF concentration Bs in the second reaction system 7 reaches 2.5 to 12.3 M (408), microwave irradiation in the microwave irradiation unit 8 is stopped (409) ).
  • the total amount of triglyceride first triglyceride concentrations Ti in the reaction system 1 is T 0 /a ⁇ 0.01(T 0 is contained in the algae, a is the first in the reaction system 1
  • the BDF outflow valve 10 and the solvent inflow valve 12 are opened (412), thereby collecting the blocked BDF and supplying the solvent from the solvent inflow valve 12 (413).
  • the amount of liquid recovered from the BDF outflow valve 10 is the total amount of the solvent flowing in from the solvent inflow valve 12 and the amount of liquid flowing in from the algae inflow valve 2.
  • the recovered BDF is separated from methanol, unreacted triglyceride and the like through a distillation process, and can be used as fuel.
  • the algae residue held in the algae residue removal mechanism 4 is removed (415), and new algae is supplied from the algae inflow valve 2 (401,402).
  • the fuel production system of the present invention is continuously operated.
  • a fuel production system when producing algae-derived BDF, impurities generated in the extraction process are efficiently removed, and the subsequent fueling process is continuously performed.
  • a fuel production system can be implemented.
  • BDF can be easily recovered by installing a hydrophilic membrane 11 for damming and recovering BDF downstream of the chemical reaction section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Fats And Perfumes (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明の一態様として、第1の化学物質を生成する第1の液体反応系と、第2の化学物質を生成する第2の液体反応系と、第1の液体反応系と第2の液体反応系との間に設けられた第1の膜と、を備え、第2の液体反応系は、第1の液体反応系から第2の液体反応系に第1の膜を介して移動した第一の化学物質について化学反応を起こして第2の化学物質を生成する化学物質生産システムとした。これにより、藻類等を由来とする燃料を生産する際に、抽出工程において生じる夾雑物を効率よく除去する燃料生産システムを提供する。

Description

化学物質の生産システム及び化学物質の生産方法
 本発明は、化学物質の生産システム及び化学物質の生産方法に関する。特に、藻類から燃料となる化学物質を生産するシステム及び方法に関するものである。
 地球温暖化対策や石油枯渇問題対策として、微細藻類由来のバイオ燃料(以下、BDFとする)生産が注目されている。微細藻類からBDF(登録商標)を生産するプロセスは、微細藻類から油脂(以下、トリグリセリドとする)を抽出する工程と、抽出したトリグリセリドを燃料化する工程に大別される。トリグリセリドの抽出工程では、各種有機溶剤を用いた抽出や、超音波などの物理エネルギーを利用した抽出が実施されている。トリグリセリドの燃料化工程は、高温化でトリグリセリドとメタノールを混合し、トリグリセリドをメチルエステル化することで行われる。燃料の生産を行うため、これらの工程の簡略化、高効率化が必要であり、近年これらの工程をワンステップで実施するための試みが行われている。
 トリグリセリドの抽出工程と燃料化工程をワンステップで実施する方法として、非特許文献1では、藻類に対し、メタノールと酸化ストロンチウム存在下でマイクロ波を照射し、抽出工程と、燃料化工程をワンステップで実施している。
Koberg M, Cohen M, Ben-Amotz A, Gedanken A.; Bio-diesel production directly from the microalgae biomass of Nannochloropsis by microwave and ultrasound radiation. Bioresour Technol. 102(5), 4265-4269, 2011
 上述した非特許文献1においては、マイクロ波を使用した抽出工程と燃料化工程のワンステップ化により、トリグリセリドの抽出及び燃料化の効率が向上することが開示されているものの、生産した燃料の純度に関する記載はない。燃料の純度が低い場合、例えば車両等のエンジンに使用した場合、エンジンのフィルタに目詰まりが生じ、エンジン故障の原因になる、などの問題が生じる可能性がある。
 また、藻類残渣等の夾雑物存在下では、夾雑物の影響により燃料化効率が低下する恐れがあり、燃料化効率が低下した場合、燃料収量の減少や、燃料中に未反応のトリグリセリドが残留すると考えられる。燃料中に残留したトリグリセリドは、燃料と比較し融点や流動性が低いため、車両等のエンジンに使用した時パイプ中での目詰まりが生じやすくなると考えられ、エンジン性能低下、故障の原因となる可能性がある。
 以上に鑑み、本発明は、原材料から化学物質を抽出する工程において生じる夾雑物を効率よく除去し、原材料から抽出した化学物質を効率よく燃料化することを目的とする。
 上述した課題の少なくとも一の課題を解決するための本発明の一態様として、第1の化学物質を生成する第1の液体反応系と、第2の化学物質を生成する第2の液体反応系と、第1の液体反応系と第2の液体反応系との間に設けられた第1の膜と、を備え、第2の液体反応系は、第1の液体反応系から第2の液体反応系に第1の膜を介して移動した第一の化学物質について化学反応を起こして第2の化学物質を生成する化学物質生産システムとした。
 本発明により、原材料から化学物質を抽出する工程において生じる夾雑物を効率よく除去し、原材料から抽出した化学物質を効率よく燃料化することが可能となる。上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。
本発明の燃料生産システムの概略構成図を示す図である。 本発明の燃料生産システムに具備されるマイクロ波照射部の断面図を示す図である。 本発明の燃料生産システムに具備される制御系のブロック構成図を示す図である。 本発明の燃料生産システムの制御系における制御フローを示す図である。
 以下、図面を通して本発明の好適な実施形態について、以下の実施例において例示的に詳しく説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その他の相対的な配置等は特に特定的な記載がない限りは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例に過ぎない。
 まず、図1を用いて本実施例における燃料生産システムの構成について説明する。ここで、本実施例の燃料生産システムは藻類からの燃料生産に適しているため藻類を原材料とする実施例を例示して説明するが、図1に示される燃料生産システムは、藻類の他、植物、木材、木材廃棄物、食物、食物廃棄物等を原材料として用いることも可能である。
 なお、原材料となる藻類としては、例えばBotryococcus属、Nannochloropsis 属、Neochloris属、Phaeodactylum属、Dunaliella属、Aurantiochytrium属、Chlorella属、Pseudochoricystis属、Fistulifera 属などが例として挙げられる。
 本実施例に係る燃料生産システムでは、図1に示されるように、原材料からトリグリセリドを抽出する液体反応系である第1の反応系1と、トリグリセリドを燃料化する液体反応系である第2の反応系7と、が膜6を介して隣接して設けられる。
 また、制御装置13の制御信号に基づいてシステム制御が行われる。つまり、制御装置13によって、後述する、藻類流入バルブ2、破砕部3、トリグリセリド濃度測定計5、マイクロ波照射部8、トリグリセリド/BDF濃度測定計9、BDF流出バルブ10、溶媒流入バルブ12の機構や、第1の反応系1、第2の反応系7における液体の流速・流量等が制御される。
 図3に示されるように、制御装置13は、ディスプレイ301、システム管理者等によるシステム制御の際の入力に用いる入力部302、制御部303から構成される。さらに、制御部303は、マイクロ波の照射の制御を行うマイクロ波照射制御部304、各バルブの開放/閉止を制御するバルブ制御部305、原材料の破砕を制御する破砕制御部306、トリグリセリドやBDFの濃度測定を制御する濃度測定制御部307、液体反応系における液体の流速/流量を制御する流速/流量制御部308から構成される。
 これらの制御部303が備える各制御部は、それぞれの機能を実現するメモリに格納されたプログラムをプロセッサが解釈して実行することによりソフトウェアで実現することができる。また、各制御部は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。各制御部の機能を実現するプログラム、ファイル、データベース等の情報は、例えば、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くこともできる。
 第1の反応系1は、藻類を供給するための藻類流入バルブ2と、藻類からトリグリセリドを抽出する際に藻類の破砕を促進する破砕部3と、破砕後の藻類の残渣を除去するための残渣除去機構4と、第1の反応系中のトリグリセリド濃度を測定するためのトリグリセリド濃度測定計5とを備えている。第1の反応系1の流路内部は、トリグリセリドを溶解するためのメタノールを含有する液体が循環ポンプ等により流路内を循環して流れている。メタノールの含有率は70 %以上が望ましいが必ずしもこれに限定されない。
 破砕部3で用いる破砕方法は特に限定されないが、例えば、超音波照射法、マイクロ波加熱法、赤外線加熱法、フレンチプレスやホモジナイザなどによる破砕法などが挙げられる。また、残渣除去機構4で用いる藻類残渣の除去方法は特に限定されないが、例えば、フィルタを用いて残渣を含む溶液をろ過することにより残渣を除去してもよいし、反応系底部に沈殿した残渣を、底部に設置したバルブ等から排出することにより除去してもよい。また、トリグリセリド濃度測定計5において用いる濃度測定法は、特に限定されないが、例えば液体クロマトグラフィ法、ガスクロマトグラフィ法、ガスクロマトグラフィ質量分析法などが挙げられる。
 膜6は、第1の反応系1と、第2の反応系2の境界として設けられる。膜6は、以下に示すようなメタノールに対し耐性があり、耐熱温度が60℃以上のものが望ましいが必ずしもこれに限定されない。その膜の材質としては、例えば、アノポア、酢酸セルロース、ポリカーボネート、ポリエステル、ガラス繊維、ナイロン、ポリプロピレン、デプスポリプロピレン、ポリスルホン、ポリエーテルスルホン、テフロン(登録商標)、ポリフッ化ビニリデン、セルロースが挙げられる。膜の孔径は特に限定されないが、例えば1.3 nm以上であることが望ましい。
 膜6においては、透析により物質のサイズによる分離を実施する。本実施例で分離対象とするトリグリセリドの分子量は、約700~1000 g/molである。本発明で使用する膜6の分画分子量は、トリグリセリドの分子量以上であるため、トリグリセリドは第1の反応系1から第2の反応系7へ浸透し、膜6の分画分子量以上の物質は、夾雑物として第1の反応系1に残留する。これにより、藻類から抽出したトリグリセリドと夾雑物の分離を実施する。本実施例で用いる透析条件としては、拡散透析や圧力透析が使用可能である。
 第2の反応系7は、トリグリセリドをBDFに変換する化学反応部としてマイクロ波照射部8と、第2の反応系中のトリグリセリドとBDF濃度を測定するためのトリグリセリド/BDF濃度測定計9と、BDFを回収するためのBDF流出バルブ10、BDFを堰きとめ第1の反応系に逆戻りするのを防ぐための親水性膜11と、溶媒を供給するための溶媒流入バルブ12を備えている。第2の反応系7の流路内部は、メチルエステル化反応で用いるメタノールを含有する液体が循環ポンプ等により循環して流れている。メタノールの含有率は70 %以上が望ましいが必ずしもこれに限定されない。
 マイクロ波照射部8におけるマイクロ波照射条件は特に限定されないが、マイクロ波照射部8付近の温度が60℃以上、及びメタノールの沸点64.7℃以下であることが望ましい。マイクロ波照射方法は例えば、マイクロ波を常時照射する連続照射、短時間のON/OFFを繰り返すパルス波による照射が挙げられる。
 図2の断面図を用いて、マイクロ波照射部8の構成例について説明する。マイクロ波照射部8は、第2の反応系7の内壁に接する触媒固定部16と、外壁に接するマグネトロン14と、遮蔽部15から構成される。触媒固定部16に使用する触媒は、特に限定されないが、例としてアルカリ触媒、酸性触媒、固体触媒が挙げられる。アルカリ触媒としては、例えば水酸化ナトリウム、水酸化カリウム、酸性触媒としては、例えば硫酸、塩酸、三フッ化ホウ素が挙げられる。固体触媒としては例えば、酸化ストロンチウム、酸化バリウム、酸化カルシウム、酸化マグネシウムなどの金属酸化物、水酸化ストロンチウム、水酸化バリウム、水酸化カルシウム、水酸化マグネシウムなどの金属水酸化物、硫酸ジルコニアなどの金属硫酸化物、イオン交換樹脂、ゼオライトなどが挙げられる。固体触媒は、第2の反応系内への触媒の流出が防止できることから、本実施例の燃料生産システムで使用する触媒として望ましい。
 第2の反応系7は、図1に示すように、マイクロ波照射部8の下流、特にマイクロ波照射部8と膜6との間に親水性膜11を備える。親水性膜11によって、BDFは堰き止められ、第2の反応系7中を循環せず、これにより第1の反応系1への逆戻りを防止する。さらに親水性膜11の効果により、第1の反応系1と第2の反応系7において、トリグリセリド濃度勾配が維持され、トリグリセリドの濃度が平衡に達しないためトリグリセリドの連続的な透析が可能となる。親水性膜11の材質は、以下に示すようなメタノールに耐性があるものが望ましいが、必ずしもこれに限るものではない。例えば、ゼオライト膜、アノポア、酢酸セルロース、ガラス繊維、ナイロン、ポリエーテルスルホンなどが挙げられる。
 なお、トリグリセリド/BDF濃度測定計9において用いる濃度測定法は、特に限定されないが液体クロマトグラフィ法、ガスクロマトグラフィ法、ガスクロマトグラフィ質量分析法などが挙げられる。
 また、図1では詳細は省略されているが、藻類流入バルブ2、BDF流出バルブ10、溶媒流入バルブ12の各バルブ付近には、それぞれの反応系における液体の流量を計測する流量計が設けられている。第1の反応系及び第2の反応系では、制御装置13によって、計測された流量に基づいて液量、液流が制御される。第1の反応系と第2の反応系内の液流れ方向は、特に限定されないが、膜を介して逆方向に流路内を循環して流れているのが望ましい。トリグリセリド及びBDFは液流れ方向の上流側において高濃度であるため、膜を介して液流れ方向を逆方向にすることで、膜を介した濃度勾配差が大きくなりトリグリセリドの透析効率を向上することが可能となる。
 以下、図4を用いて、制御装置13の制御に基づく、第1の反応系1、第2の反応系7における動作フローについて説明する。まず、藻類流入バルブ2を開放し(401)、別系統の施設で培養した藻類を第1の反応系1に供給する(402)。藻類流入バルブ2を閉止し(403)、第1の反応系1内で藻類からトリグリセリドを抽出する。その後、濃度測定を行い(404)、第1の反応系1から第2の反応系7中に透析されたトリグリセリド濃度Tsが1.6~8.2Mに達した時(405)、マイクロ波照射部8からマイクロ波を照射する(406)。触媒とメタノール存在下でトリグリセリドにマイクロ波を照射することで、下記のメチルエステル化反応が引起される。
      トリグリセリド+3メタノール→3BDF+グリセリン
 メチルエステル化反応により、1分子のトリグリセリドから3分子のBDFが生成する。再び濃度測定を実施し(407)、第2の反応系7中のBDF濃度Bsが2.5~12.3Mに達した時点で(408)、マイクロ波照射部8でのマイクロ波照射を停止する(409)。
 再び濃度測定を行い(410)、第1の反応系1中のトリグリセリド濃度TiがT0/a×0.01(T0は藻中に含まれる全トリグリセリド量、aは第1の反応系1中のメタノール量)に達した時(411)、BDF流出バルブ10及び溶媒流入バルブ12を開放する(412)ことで、堰き止められたBDFを回収するとともに、溶媒流入バルブ12から溶媒を供給する(413)。この時、BDF流出バルブ10から回収する液量は、溶媒流入バルブ12から流入する溶媒量と藻類流入バルブ2から流入する液量の合計量となる。
 回収したBDFは、蒸留工程を経ることで、メタノールや未反応のトリグリセリドなどと分離され、燃料として使用可能となる。BDF流出バルブ10及び溶媒流入バルブ12を閉止後(414)、前記藻類残渣除去機構4に保持した藻類残渣を除去し(415)、藻類流入バルブ2から新たな藻類を供給する(401,402)ことで、本発明の燃料生産システムを連続的に稼働する。
 以上のように、本実施例における燃料生産システムを適用することで、藻類由来のBDFを生産する際に、抽出工程において生じる夾雑物を効率よく除去し、且つその後の燃料化工程を連続的に実施する燃料生産システムが可能となる。
 さらに、上記システムにおいて、残渣除去機構4を夾雑物除去のための膜の上流に搭載することで、夾雑物除去のための膜の目詰まりを防止することが可能となる。
 さらに、BDFを堰きとめて回収するための親水性膜11を化学反応部の下流に設置することで、BDFを容易に回収することが可能となる。
1…第1の反応系
2…藻類流入バルブ 
3…破砕部
4…藻類残渣除去機構
5…トリグリセリド濃度測定計
6…膜
7…第2の反応系 
8…マイクロ波照射部
9…トリグリセリド/BDF濃度測定計 
10…BDF流出バルブ
11…親水性膜
12…溶媒流入バルブ 
13…制御装置
14…マグネトロン
15…遮蔽部
16…触媒固定部

Claims (11)

  1.  第1の化学物質を生成する第1の液体反応系と、
     第2の化学物質を生成する第2の液体反応系と、
     前記第1の液体反応系と前記第2の液体反応系との間に設けられた第1の膜と、を備え、
     前記第2の液体反応系は、前記第1の液体反応系から前記第2の液体反応系に前記第1の膜を介して移動した前記第一の化学物質について化学反応を起こして第2の化学物質を生成する、
     ことを特徴とする化学物質生産システム。
  2.  請求項1に記載の化学物質生産システムであって、
     前記第1の液体反応系は、原材料から前記第1の化学物質を抽出する、ことを特徴とする化学物質生産システム。
  3.  請求項2に記載の化学物質生産システムであって、
     前記第1の膜は、
     前記原材料と、前記第1の化学物質の抽出後の前記原材料の残渣と、を前記第1の液体反応系に残し、前記第1の化学物質を前記第2の液体反応系に透過する、ことを特徴とする化学物質生産システム。
  4.  請求項2に記載の化学物質生産システムであって、
     前記第1の液体反応系は、前記第1の化学物質の抽出後の前記原材料の残渣を除去する残渣除去部を備える、ことを特徴とする化学物質生産システム。
  5.  請求項2に記載の化学物質生産システムであって、
     前記第1の液体反応系は、前記原材料である藻類のから前記第1の化学物質を抽出する、ことを特徴とする化学物質生産システム。
  6.  請求項1に記載の化学物質生産システムであって、
     前記第2の液体反応系は、
     前記第1の化学物質を前記第2の化学物質に変換する化学反応部と、
     前記第2の液体反応系内の前記第1、第2の化学物質の濃度の少なくとも何れかを測定する濃度測定部と、
     前記濃度測定部の測定した濃度値に基づいて前記化学反応部の反応制御を行う制御部と、を備える、ことを特徴とする化学物質生産システム。
  7.  請求項1に記載の化学物質生産システムであって、
     前記第1の液体反応系は、液体が流れる第1の液体流路によって構成され、
     前記第2の液体反応系は、液体が流れる第2の液体流路によって構成され、
     前記第1の膜は、前記第1の液体流路を流れる液体中の前記第一の化学物質を、前記第2の液体流路を流れる液体中に透過する、ことを特徴とする化学物質生産システム。
  8.  請求項7記載の化学物質生産システムであって、
     前記第2の液体流路は、前記第2の化学物質を透過しない第2の膜を備え、前記第2の液体流路を流れる液体が前記第2の膜を通過する際に前記第2の膜の上流側に前記第2の物質を留める、ことを特徴とする化学物質生産システム。
  9.  請求項8記載の化学物質生産システムであって、
     前記第2の液体反応系は、
     前記第1の化学物質を前記第2の化学物質に変換する化学反応部を備え、
     前記第2の膜は、
     前記化学反応部と、前記第一の膜と、の間に設けられる、
     ことを特徴とする化学物質生産システム。
  10.  請求項7に記載の化学物質生産システムであって、
     前記第1の液体流路と、前記第2の液体流路と、は流路中で液体が循環する液体循環流路によって構成される、ことを特徴とする化学物質生産システム。
  11.  原材料を第一の反応系に供給し、
     第1の液体反応系で前記原材料から第一の化学物質を生成し、
     前記第一の反応系と膜を介して接続する第二の反応系において、前記第1の液体反応系から前記第2の液体反応系に前記第1の膜を介して移動した前記第一の化学物質について化学反応を起こして第2の化学物質を生成する、
     ことを特徴とする化学物質生産方法。
PCT/JP2013/072937 2013-08-28 2013-08-28 化学物質の生産システム及び化学物質の生産方法 WO2015029148A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/072937 WO2015029148A1 (ja) 2013-08-28 2013-08-28 化学物質の生産システム及び化学物質の生産方法
JP2015533834A JPWO2015029148A1 (ja) 2013-08-28 2013-08-28 化学物質の生産システム及び化学物質の生産方法
US14/914,199 US20160215224A1 (en) 2013-08-28 2013-08-28 Chemical Substance Production System and Chemical Substance Production Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072937 WO2015029148A1 (ja) 2013-08-28 2013-08-28 化学物質の生産システム及び化学物質の生産方法

Publications (1)

Publication Number Publication Date
WO2015029148A1 true WO2015029148A1 (ja) 2015-03-05

Family

ID=52585767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072937 WO2015029148A1 (ja) 2013-08-28 2013-08-28 化学物質の生産システム及び化学物質の生産方法

Country Status (3)

Country Link
US (1) US20160215224A1 (ja)
JP (1) JPWO2015029148A1 (ja)
WO (1) WO2015029148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222746A (ja) * 2015-05-26 2016-12-28 佐々木 洋 バイオディーゼル燃料抽出装置および抽出方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019104902A1 (de) * 2019-02-26 2020-08-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Passiv selbstregelnder Membranreaktor und Verfahren zur Durchführung von Gleichgewichtsreaktionen

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227821A (ja) * 1990-05-25 1992-08-17 Forschungszentrum Juelich Gmbh 水溶性液体からアンモニュームを分離する方法と装置
JPH08509906A (ja) * 1993-03-02 1996-10-22 エスアールアイ インターナショナル 反応速度及び発熱を制御するための多孔性手段を有する発熱方法
JP2001508830A (ja) * 1997-10-01 2001-07-03 モービル プロセス テクノロジー,カンパニー 直交流型膜濾過を利用してポリエステルを製造する方法
JP2008173596A (ja) * 2007-01-21 2008-07-31 National Institute Of Advanced Industrial & Technology 超臨界二酸化炭素反応方法及び装置
JP2009065966A (ja) * 2007-08-22 2009-04-02 Toray Ind Inc 連続発酵による化学品の製造方法
JP2012153838A (ja) * 2011-01-27 2012-08-16 Yoshishige Katori 含水性バイオマスの急速熱分解ガス化合成システム
JP2012525247A (ja) * 2009-04-30 2012-10-22 ロワラ 水中の生体異物を除去するための浄化方法および装置
JP2013504339A (ja) * 2009-09-15 2013-02-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー バイオマスの区画化併行複発酵

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869118A (en) * 1996-11-13 1999-02-09 Abbott Laboratories Gellan gum to improve physical stability of liquid nutritional products
MX2008002633A (es) * 2005-08-25 2008-09-26 A2Be Carbon Capture Llc Metodo, aparato y sistema para produccion de biodiesel a partir de algas.
JP2007277374A (ja) * 2006-04-05 2007-10-25 Oglio Evandro Luiz Dall マイクロ波照射によって誘発される、植物油または動物油脂の、アルコールによるエステル交換/エステル化反応によるバイオディーゼル生産法
WO2008023728A1 (fr) * 2006-08-25 2008-02-28 Biomass Japan Inc. Procédé de production d'un ester d'acide gras à partir d'une huile végétale, et carburant diesel comprenant l'ester d'acide gras
JP5358351B2 (ja) * 2009-08-26 2013-12-04 公益財団法人かがわ産業支援財団 バイオディーゼル燃料の製造装置
EP2555633B1 (en) * 2010-04-06 2014-06-11 Heliae Development LLC Selective extraction of proteins from freshwater or saltwater algae
WO2012002483A1 (ja) * 2010-06-30 2012-01-05 マイクロ波環境化学株式会社 油状物質の製造方法、及び油状物質の製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04227821A (ja) * 1990-05-25 1992-08-17 Forschungszentrum Juelich Gmbh 水溶性液体からアンモニュームを分離する方法と装置
JPH08509906A (ja) * 1993-03-02 1996-10-22 エスアールアイ インターナショナル 反応速度及び発熱を制御するための多孔性手段を有する発熱方法
JP2001508830A (ja) * 1997-10-01 2001-07-03 モービル プロセス テクノロジー,カンパニー 直交流型膜濾過を利用してポリエステルを製造する方法
JP2008173596A (ja) * 2007-01-21 2008-07-31 National Institute Of Advanced Industrial & Technology 超臨界二酸化炭素反応方法及び装置
JP2009065966A (ja) * 2007-08-22 2009-04-02 Toray Ind Inc 連続発酵による化学品の製造方法
JP2012525247A (ja) * 2009-04-30 2012-10-22 ロワラ 水中の生体異物を除去するための浄化方法および装置
JP2013504339A (ja) * 2009-09-15 2013-02-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー バイオマスの区画化併行複発酵
JP2012153838A (ja) * 2011-01-27 2012-08-16 Yoshishige Katori 含水性バイオマスの急速熱分解ガス化合成システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016222746A (ja) * 2015-05-26 2016-12-28 佐々木 洋 バイオディーゼル燃料抽出装置および抽出方法

Also Published As

Publication number Publication date
US20160215224A1 (en) 2016-07-28
JPWO2015029148A1 (ja) 2017-03-02

Similar Documents

Publication Publication Date Title
Kim et al. Modular chemical process intensification: a review
Tapia-Quirós et al. Recovery of polyphenols from agri-food by-products: The olive oil and winery industries cases
Zentou et al. Overview of alternative ethanol removal techniques for enhancing bioethanol recovery from fermentation broth
ES2864588T3 (es) Proceso para producir hidrocarburos líquidos
Mathanker et al. A review of hydrothermal liquefaction of biomass for biofuels production with a special focus on the effect of process parameters, Co-solvents, and extraction solvents
Bagnato et al. Recent catalytic advances in hydrotreatment processes of pyrolysis bio-oil
Coz et al. Physico-chemical alternatives in lignocellulosic materials in relation to the kind of component for fermenting purposes
RU2011143973A (ru) Способ обработки попутно добываемой воды
Loulergue et al. Air-gap membrane distillation for the separation of bioethanol from algal-based fermentation broth
Yeh et al. Development of a millimetrically scaled biodiesel transesterification device that relies on droplet-based co-axial fluidics
WO2015029148A1 (ja) 化学物質の生産システム及び化学物質の生産方法
CN103910455B (zh) 一种废乳化切削液的处理工艺
CN106660904B (zh) 用于从发酵培养基中萃取乙醇的系统和方法
WO2015006618A1 (en) Ethanol fermentation methods and systems
CN101845031B (zh) 一种糠醇生产过程中催化剂回收及糠醇澄清方法
CN208632254U (zh) 一种脱盐设备
CN204079679U (zh) 集成式多层污水处理槽
Szaja et al. Challenges of Hydrodynamic Cavitation of Organic Wastes
Singh et al. Process Intensification of Propionic Acid Extraction and its Recovery by Distillation in Microchannel
Steele et al. Method of increasing anhydrosugars, pyroligneous fractions and esterified bio-oil
Xie et al. Hydrothermal liquefaction phase behavior of microalgae & model compounds in fused silica capillary reactor
CN203095754U (zh) 一种乳化液处理装置
Xie et al. Separation of Methyl Glycosides and Glycerol from Aqueous Fraction of Methyl Bio-oils Using Nanofiltration
CN109607838A (zh) 一种二甲戊灵废水三效蒸发脱盐装置
CN205323279U (zh) 一种循环超声波提取设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533834

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14914199

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892204

Country of ref document: EP

Kind code of ref document: A1