WO2015028741A1 - Matériau zéolithique à base de zéolithe mésoporeuse - Google Patents

Matériau zéolithique à base de zéolithe mésoporeuse Download PDF

Info

Publication number
WO2015028741A1
WO2015028741A1 PCT/FR2014/052055 FR2014052055W WO2015028741A1 WO 2015028741 A1 WO2015028741 A1 WO 2015028741A1 FR 2014052055 W FR2014052055 W FR 2014052055W WO 2015028741 A1 WO2015028741 A1 WO 2015028741A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
mesoporous
equal
agglomerates
μηη
Prior art date
Application number
PCT/FR2014/052055
Other languages
English (en)
Inventor
Ludivine Bouvier
Cécile LUTZ
Serge Nicolas
Original Assignee
Ceca S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceca S.A. filed Critical Ceca S.A.
Priority to JP2016537358A priority Critical patent/JP6215475B2/ja
Priority to KR1020167008676A priority patent/KR101866671B1/ko
Priority to CN201480048245.XA priority patent/CN105658578B/zh
Priority to US14/914,220 priority patent/US10118152B2/en
Priority to EP14790187.0A priority patent/EP3041792A1/fr
Publication of WO2015028741A1 publication Critical patent/WO2015028741A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3028Granulating, agglomerating or aggregating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/24Type Y
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density

Definitions

  • the present invention relates to zeolite materials in the form of agglomerates comprising at least one mesoporous zeolite, and the process for preparing said agglomerated zeolite materials.
  • the mesoporous zeolites have a great utility in many industrial fields, both as catalysts, catalyst supports but also as adsorbents, insofar as their large porosity expressed in terms of ratio [surface / volume] allows the molecules with which they are brought into contact to easily access the core of the particles and to react on a large surface, thereby enhancing the catalytic and / or adsorbent properties of these materials.
  • mesoporous materials are now well known at the laboratory scale, both in terms of their structure and porous distribution, their modes of synthesis, and their possible applications as catalysts and / or as adsorbents. .
  • mesoporous inorganic solids have led to the development of mesoporous zeolites, also called zeolites with hierarchized porosity (or "ZPH"). They can be obtained by various methods, such as for example that described in the article by Feng-Shou Xiao et al. (Hierarchically Structured Porous Materials, (2012), 435-455, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 978-3-527-32788-1).
  • post-treatments from zeolitic crystals in powder form, initially synthesized.
  • These post-treatments are for example steam treatments, followed by acidic and / or basic treatments which lead to dealumination, followed by additional treatments to eliminate extra-network species.
  • patent US8486369 and patent applications US20130183229, US20130183231 are examples which illustrate such processes for the preparation of zeolite with a mesoporous structure, in particular of type Y, by various successive treatments with steam and then with acids and in the presence surfactant.
  • WO2012 / 084276 discloses a method for preparing a mesoporous Y zeolite by various basic post-treatments but at the expense of microporosity. These treatments also lead, as claimed, to an increase in the Si / Al ratio by dealumination. The thus treated zeolite Y powder is then shaped for use in a hydroconversion catalysis process.
  • agglomerated forms of these powders which are more commonly called zeolite agglomerates and which may be in the form of grains, yarns, extrudates or other agglomerates, said forms being obtainable by extrusion, pelletizing, atomization or other agglomeration techniques well known to those skilled in the art.
  • zeolite agglomerates which may be in the form of grains, yarns, extrudates or other agglomerates, said forms being obtainable by extrusion, pelletizing, atomization or other agglomeration techniques well known to those skilled in the art.
  • agglomerates are generally made of zeolite crystals (s) and a binder, usually inert vis-à-vis the application for which the zeolite is intended, said binder being intended to ensure cohesion crystals of zeolite (s) between them and to confer sufficient mechanical strength and necessary for the industrial application envisaged.
  • the present invention thus aims to provide a zeolite material in the form of agglomerate comprising at least one mesoporous zeolite.
  • the present invention proposes a zeolite material in the form of an agglomerate comprising at least one mesoporous FAU zeolite, with an Si / Al atomic ratio strictly greater than 1, 4 and which has improved crystallinity properties compared to the materials of the invention. prior art.
  • Yet another object is to provide a method for preparing a zeolite material in the form of an agglomerate comprising at least one mesoporous zeolite having an Si / Al atomic ratio strictly greater than 1, 4, said method being easily industrializable, and improved in terms of cost and duration, compared to the production processes of agglomerates known from the prior art, while avoiding degradation of the properties of the mesoporous zeolite (s) present (s) in said material.
  • one of the objectives of the present invention is to provide an agglomerated zeolite material maintaining within it the properties of purity, crystallinity and porous distribution of the mesoporous zeolite (s) starting and presenting by Moreover, good mechanical strength and optimized crystallinity, and thus allow an easy and efficient industrial use, for example in the fields of catalysis (catalysts or catalyst support), or in separation processes, adsorption or ion exchange, dynamic or static.
  • agglomerated zeolite material which comprises at least one mesoporous zeolite, of which the initial properties of microporosity are maintained, that is to say that the mesoporous zeolite used for producing said agglomerated material retains the integrity of its microporosity within said material.
  • the agglomerated material has a high level of crystallinity and is provided with a density and sufficient mechanical properties for use in adsorption processes or ion exchange dynamic or static.
  • the proportions indicated are weight proportions, counted for the solid components in calcined equivalents, on the basis of calcination carried out at 950 ° C for 1 hour.
  • the present invention relates to an agglomerated zeolite material comprising at least one mesoporous zeolite of Si / Al atomic ratio strictly greater than 1, 4 and less than or equal to 6, and optionally one or more non-mesoporous zeolites, said material having at least the following characteristics:
  • a bed crush resistance measured according to the ASTM 7084-04 standard of between 0.5 MPa and 6 MPa, preferably between 0.75 MPa and 4 MPa, for a material of average volume diameter (D50), or a length (larger dimension when the material is not spherical), less than 1 mm, inclusive
  • a grain crush strength measured according to ASTM D 4179 (201 1) and ASTM D 6175 (2013), between 0.5 daN and 30 daN, preferably between 1 daN and 20 daN, for a material of medium volume diameter (D50), or a length (larger dimension when the material is not spherical), greater than or equal to 1 mm, inclusive.
  • the material of the present invention also has a bulk density of between 0.4 g. cm “3 and 1 " cm “3 , inclusive.
  • the agglomerates comprise at least one mesoporous zeolite of the Faujasite type (FAU), with an Si / Al atomic ratio strictly greater than 1, 4 and less than or equal to 6, preferably between 1, 5 and 5, more preferably between 1, 5 and 3 inclusive, said mesoporous zeolite being advantageously selected from mesoporous Y type zeolites.
  • FAU Faujasite type
  • Said mesoporous zeolite is in the form of crystals whose number average diameter, measured by electron microscopy at scanning (SEM), is less than 20 ⁇ , preferably between 0.1 ⁇ and 20 ⁇ , preferably between 0.1 and 10 ⁇ , preferably between 0.5 ⁇ and ⁇ ⁇ ⁇ , more preferably preferred between 0.5 ⁇ and 5 ⁇ , terminals included.
  • the term "mesoporous zeolite” a zeolite having a mesoporous outer surface, defined by the t-plot method described below, of between 40 m 2 . g "1 and 400 m 2, g " 1 , preferably between 60 m 2 .
  • a "non-mesoporous zeolite” is a zeolite optionally having a mesoporous outer surface, defined by the t-plot method described below, strictly less than 40 m 2 . g "1 .
  • the mesopores of the zeolite adsorbent according to the invention are easily identifiable by observation by means of a transmission electron microscope (TEM or "TEM” in English), as described for example in US7785563.
  • TEM transmission electron microscope
  • the process according to the invention uses a zeolite adsorbent comprising mesoporous crystals of zeolite Faujasite (FAU), of Si / Al atomic ratio strictly greater than 1, 4 and less than or equal to 6, preferably between 1.5 and 5, more preferably between 1.5 and 3 inclusive, said mesoporous zeolite being advantageously selected from Y-type mesoporous zeolites.
  • FAU zeolite Faujasite
  • mesoporous is meant zeolite crystals (microporous) which have, together with the microporosity, internal cavities of nanometric size (mesoporosity), easily identifiable by observation by means of a transmission electron microscope (TEM or "TEM” in English), as described for example in US7785563.
  • TEM transmission electron microscope
  • the adsorbents of the process according to the invention contain an amount greater than or equal to 30%, preferably greater than or equal to 40%, more preferably greater than or equal to 70%, more preferably still greater than or equal to 80%. and advantageously greater than or equal to 90% by number of mesoporous zeolite crystals and not solid crystals, with respect to all the crystals.
  • This statistical analysis is advantageously carried out by analysis of at least 50 MET images.
  • the crystals of the mesoporous zeolite (s) included in the zeolite material of the invention, alone or mixed with other crystals of non-mesoporous zeolites, are agglomerated with a binder.
  • the binder content is as low as possible, in order to optimize the zeolite content (s) of the zeolite material.
  • the binder included in the zeolitic agglomerated material of the present invention comprises, and preferably consists of, a clay or a mixture of clays and / or sols of silica or alumina which are then dried or gelled for the harden.
  • These clays are preferably chosen from kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sepiolites, montmorillonites, bentonites, illites and metakaolins, as well as mixtures of two or more of them in all proportions.
  • binder is understood to mean an agglomeration binder which makes it possible to ensure the cohesion of the zeolite crystals (s) in the agglomerated zeolite material of the invention.
  • This binder is further distinguished from zeolite crystals in that it does not exhibit a zeolite crystalline structure after calcination, for which reason the binder is often described as inert, and more precisely inert to the adsorption and / or ion exchange.
  • the binder present in the agglomerated zeolite material of the invention consists solely of one or more clays, and preferably of a single clay.
  • the zeolitic agglomerated material according to the present invention may also comprise one or more other components, in an amount of between 0 and 5%, preferably between 0 and 1%, more preferably between 0 and 0.5%, limits included. , the percentages being expressed by weight relative to the total weight of the zeolitic agglomerated material.
  • This or these other component (s) is (are) generally the residues of the additives, and other synthesis aids of said zeolitic agglomerated material, and in particular those which will be described later in the present description.
  • Such other components include the ashes of additives after calcination, silica, and others. It should be understood that these other components are generally present in the form of residues or traces and are not used to provide any binding or cohesive character to agglomerated zeolite materials comprising at least one mesoporous zeolite of the invention.
  • the agglomerated zeolite material of the present invention may be in various forms such as those well known to those skilled in the art, specialist agglomeration of powders, crystals, including zeolite crystals, and for example and in a nonlimiting manner, the zeolitic agglomerated material of the invention may be in the form of beads, yarns, extrudates or the like.
  • the microporous volume decreases sharply when the mesoporous outer surface increases.
  • the mesoporosity is created during the synthesis of the crystals (direct synthesis) and it is observed that the microporous volume of the adsorbents remains substantially constant, and this even when the mesoporous outer surface increases .
  • zeolitic adsorbents according to the invention have, in contrast to mesoporous zeolite adsorbents of the prior art, both a high mesoporous outer surface and a high microporous volume.
  • the present invention also relates to a method for preparing the agglomerated zeolite material described above comprising at least the steps of mixing at least one mesoporous zeolite, optionally with one or more additives, with at least one a binder, in the proportions indicated above, and shaped agglomerated material, according to any method known to those skilled in the art, for example by extrusion, pelletizing, atomization or other agglomeration techniques well known to those skilled in the art .
  • the method of the invention comprises at least the steps of:
  • a binder comprising at least 80% of clay or a mixture of clays and / or sols of silica or alumina which are then dried or gelled to harden, the clay (s) being optionally zeolonizable (s), and with up to 5% of additives, and optionally one (or more) non-mesoporous zeolite (s), and with the amount of water that allows the shaping of the agglomerated material;
  • step b) calcination of the agglomerates of step b) under an oxidizing and / or inert gas scavenging, with in particular gases such as oxygen, nitrogen, air, dry air and / or decarbonated air, depleted air; oxygen, optionally dry and / or decarbonated, at a temperature above 150 ° C, typically between 180 ° C and 800 ° C, preferably between 200 ° C and 650 ° C, for a few hours, for example from 2 to 6 hours ; d) optionally zeolizing the binder by contacting the agglomerates obtained in step c) with an alkaline basic solution;
  • gases such as oxygen, nitrogen, air, dry air and / or decarbonated air, depleted air
  • oxygen, optionally dry and / or decarbonated at a temperature above 150 ° C, typically between 180 ° C and 800 ° C, preferably between 200 ° C and 650 ° C, for a few hours, for example from 2 to 6
  • step e) optionally cationic exchange (s) of the agglomerates of step c) or of step d) by placing in contact with a solution of at least one alkali or alkaline earth metal salt;
  • step g) obtaining the agglomerated zeolite material by activating the agglomerates obtained in step f) under the conditions described in step c).
  • step e) it would not be outside the scope of the invention if the at least one mesoporous zeolite used in step a) of agglomeration had previously undergone one or cation exchange (s) (s). In this case, step e) therefore becomes unnecessary.
  • the powder (zeolite crystals) thus obtained is agglomerated such that, after drying and / or after calcination and / or after ion exchange, by means of an inert binder in the sense of adsorption.
  • step a) agglomeration of crystals of a zeolite prepared in the presence of a sacrificial template which is intended to be carried out is carried out. to be removed according to methods known to those skilled in the art, for example by calcination, in order to create a mesoporosity in the zeolite and thus obtain a mesoporous zeolite.
  • the sacrificial template used may be of any type known to those skilled in the art and in particular those described in the application WO2007 / 043731.
  • the sacrificial template is advantageously chosen from organosilanes and more preferably from [3- (trimethoxysilyl) propyl] octadecyldimethylammonium chloride, [3- (trimethoxysilyl) propyl] hexadecyl dimethylammonium chloride, [3- (trimethoxysilyl) propyl] dodecyldimethylammonium chloride, [3- (trimethoxysilyl) propyl] octylammonium chloride, N- [3- (trimethoxysilyl) propyl] aniline, 3- [2- (2-aminoethylamino)] ethylamino] propyltrimethoxysilane, N- [3- (trimethoxysily
  • sacrificial templates having a higher molar mass and for example PPDAs (Polymer Poly-DiallyldimethylAmmonium), PVB (PolyVinyl Butyral) and other oligomeric compounds known in the art for increasing the diameter of the mesopores.
  • PPDAs Polymer Poly-DiallyldimethylAmmonium
  • PVB PolyVinyl Butyral
  • the additional step of removing the sacrificial template can be performed at any time during the process for preparing the agglomerated zeolite material of the invention.
  • the elimination of said sacrificial template can thus advantageously be carried out by calcination of the zeolite crystals before the agglomeration step a), or also concomitantly with step c).
  • the dried crystals are then subjected to calcination, a step necessary to release both the microporosity (elimination of water) and the mesoporosity (elimination of the structuring agent).
  • the calcination allows the elimination of the sacrificial template.
  • This calcination step may be carried out according to any calcination method known to those skilled in the art and, for example, and in a nonlimiting manner, the calcination of zeolite crystals comprising the sacrificial jig may be carried out under an oxidizing and / or inert gas scavenging.
  • gases such as oxygen, nitrogen, air, dry air and / or decarbonated air, oxygen-depleted air, optionally dry and / or decarbonated, at a temperature or temperatures above 150 ° C. typically between 180 ° C and 800 ° C, preferably between 200 ° C and 650 ° C, for a few hours, for example between 2 and 6 hours.
  • gases such as oxygen, nitrogen, air, dry air and / or decarbonated air, oxygen-depleted air, optionally dry and / or decarbonated
  • the size of the mesoporous zeolite crystals used in step a) and the mesoporous zeolite crystals in the agglomerates is measured by scanning electron microscope (SEM) observation. This observation SEM also makes it possible to confirm the presence of non-zeolite phase comprising for example residual binder (not converted during the zeolitization step) or any other amorphous phase in the agglomerates.
  • SEM scanning electron microscope
  • Agglomeration and shaping (step a) can be carried out according to all the techniques known to those skilled in the art, such as extrusion, compaction, agglomeration on granulator plate, granulator drum, atomization and others. .
  • the proportions of agglomeration binder and zeolites used are between 5 parts and 70 parts by weight of binder for 95 parts to 30 parts by weight of zeolite.
  • the agglomerates from step a), whether in the form of beads, extrudates or the like, generally have a volume diameter by number, or a length (larger dimension when they are not spherical), less than or equal to 7 mm, preferably between 0.05 mm and 7 mm, more preferably between 0.2 mm and 5 mm and more preferably between 0.2 mm and 2.5 mm.
  • one or more additives may also be added.
  • the additives are preferably organic, for example lignin, starch, carboxymethylcellulose, surfactant molecules (cationic, anionic, nonionic or amphoteric), intended to facilitate the handling of the dough zeolite (s) / clay (s) by modifying the rheology and / or stickiness or to give the final agglomerates satisfactory properties, especially macroporosity.
  • the additives are introduced in a proportion of 0 to 5%, preferably of 0.1% to 2%.
  • the additives may also be a source of liquid and / or solid silica, preferably representing from 1% to 5% of the total mass of said solids.
  • the possible source of silica may be of any type known to those skilled in the art, specialist in the synthesis of zeolites, for example colloidal silica, diatoms, perlite, fly ash ash in the language English), sand, or any other form of solid silica.
  • the nature of the gases, the ramps of temperature rise and the successive temperature levels, as well as their respective durations, will be adapted according to the nature of the sacrificial template to be eliminated and depending on the nature of the binder used in the agglomeration step a).
  • the zeolitization of the agglomeration binder is carried out according to any method now well known to those skilled in the art and may for example be carried out by immersion of the product of step c) in a basic solution alkaline, generally aqueous, for example an aqueous solution of sodium hydroxide and / or potassium hydroxide.
  • a basic solution alkaline generally aqueous, for example an aqueous solution of sodium hydroxide and / or potassium hydroxide.
  • agglomerated zeolite materials according to the present invention possess both the characteristics of the mesoporous zeolites, but also in particular the mechanical properties of conventional zeolite agglomerates known from the prior art, that is to say without mesoporous zeolite.
  • the agglomerated zeolite materials of the invention show that it is possible to maintain the crystallinity and the mesoporosity of the zeolite within a zeolitic agglomerated material, to obtain a non-degraded and resistant agglomerated zeolite material. mechanically.
  • the process for preparing zeolite agglomerated zeolite (s) mesoporous (s) according to the invention is a method of implementation easy, fast and economical and therefore easily industrialized with a minimum of steps.
  • the loss on ignition is determined in an oxidizing atmosphere, by calcination of the sample in air at a temperature of 950 ° C ⁇ 25 ° C, as described in the standard NF EN 196-2 (April 2006). The standard deviation of measurement is less than 0.1%.
  • the purity of the zeolite phases in the agglomerates is evaluated by X-ray diffraction analysis, known to those skilled in the art under the acronym DRX. This identification is carried out on a DRX device of the brand Bruker.
  • each zeolite structure has a diffraction spectrum (or diffractogram) unique defined by the positioning of the diffraction peaks and their relative intensities.
  • the interpretation of the diffraction spectrum (or diffractogram) obtained is carried out under EVA with identification of the phases using the ICCD database PDF-2 release 201 1.
  • the amount of zeolite fractions X is measured by XRD analysis. This analysis is carried out on a device of the Bruker brand, then the quantity of the zeolite fractions X is evaluated using the software TOPAS Bruker society.
  • each of the zeolite structures has a single diffractogram (or diffraction spectrum) defined by the positioning of the diffraction peaks and by their relative intensities.
  • the interpretation of the diffraction spectrum (or diffractogram) obtained is carried out with the EVA software with identification of the phases using the ICDD PDF-2 base, release 201 1, which makes it possible to highlight a phase perfectly crystalline.
  • the amount of zeolite fractions, by weight, is measured by XRD analysis, this method is also used to measure the amount of zeolite fractions FAU. This analysis is performed on a Bruker device, then the amount by weight of the zeolite fractions, is evaluated using the TOPAS software from Bruker.
  • the measurement of the microporous volume is estimated by conventional methods such as measurements of Dubinin-Raduskevitch volumes (adsorption of liquid nitrogen at 77 K).
  • the Dubinin-Raduskevitch volume is determined from the measurement of the nitrogen gas adsorption isotherm at its liquefaction temperature. Prior to adsorption, the zeolite adsorbent is degassed between 300 ° C. and 450 ° C. for a period of between 9 hours and 16 hours under vacuum (P ⁇ 6.7 ⁇ 10 -4 Pa). adsorption is then carried out on an ASAP 2020 Micromeritics-type apparatus, taking at least 35 measuring points at relative pressures of ⁇ / ⁇ 0 ratio of between 0.002 and 1.
  • microporous volume is determined according to Dubinin and Rohskevitch from isotherm obtained by applying the ISO 15901 -3 (2007) standard
  • the microporous volume evaluated according to the Dubinin and Rohskevitch equation is expressed in cm 3 of liquid adsorbate per gram of zeolite The measurement uncertainty is ⁇ 0.003 cm 3 g -1 .
  • Figures 1 and 2 show TEM images obtained at a magnification of x 245000 and x 175000, respectively, of a reference adsorbent ( Figure 1) and the adsorbent according to the invention ( Figure 2).
  • the snapshot of Figure 2 allows us to visualize (see for example the box in Figure 2) the presence of mesopores and estimate their diameters.
  • the estimation of the number average diameter of the mesoporous zeolite crystals used in step a) and the zeolite crystals contained in the agglomerates is carried out as indicated previously by observation under a scanning electron microscope (SEM).
  • a set of images is carried out at a magnification of at least 5000.
  • the diameter of at least 200 crystals is then measured using a dedicated software, for example the Smile View software from the LoGraMi editor.
  • the accuracy is of the order of 3%.
  • the crush resistance of a bed of zeolite adsorbents as described in the present invention is characterized according to the Shell method series SMS1471 -74 (Shell Method Series SMS1471 -74 "Determination of Bulk Crushing Strength of Catalysts. Compression-Sieve Method ”) associated with the" BCS Tester "device marketed by Vinci Technologies.
  • This method initially intended for the characterization of catalysts of size between 3 mm and 6 mm, is based on the use of a 425 ⁇ sieve which will allow in particular to separate the fines created during the crash.
  • the use of a 425 ⁇ sieve remains suitable for particles with a diameter greater than 1.6 mm but must be adapted according to the particle size of the agglomerates that are to be characterized.
  • the mechanical crushing strengths in grains are determined with a device "Grain Crushing Strength” marketed by Vinci Technologies, according to ASTM D 4179 and D 6175 standards.
  • the agglomerated zeolite material of the invention was evaluated with respect to the Si / Al atomic ratio by elemental chemical analysis of said agglomerated zeolite material, and more precisely by chemical analysis by X-ray fluorescence as described in the NF EN ISO standard. 12677 (201 1) on a wavelength dispersive spectrometer (WDXRF), for example Tiger S8 from Bruker.
  • WDXRF wavelength dispersive spectrometer
  • a growth gel is prepared by adding 1446 g of colloidal silica (Ludox AM-30 containing 30% by weight of SiO 2 ) at 25 ° C in an aluminate solution containing 184 g of sodium hydroxide (NaOH), 138 g of alumina trihydrate (Al 2 O 3 , 3H 2 O, containing 65.2 % by weight Al 2 O 3 ) and 800 g water at 25 ° C in 25 minutes with a stirring speed of 300 rpm "1 .
  • colloidal silica Lidox AM-30 containing 30% by weight of SiO 2
  • NaOH sodium hydroxide
  • Al 2 O 3 , 3H 2 O containing 65.2 % by weight Al 2 O 3
  • 800 g water at 25 ° C in 25 minutes with a stirring speed of 300 rpm "1 .
  • the stoichiometry of growth gel is: 2.5 Na 2 0 / AI 2 0 3 / Si0 8.0 2/1 17H 2 0.
  • the homogenization of the gel growth is carried out with stirring at 300 tr.min -1 for 25 minutes at 25 ° C.
  • nucleating gel (2% by weight) of composition 12 Na 2 0 / AI 2 0 3 / 10 Si0 2/180 H 2 0 prepared by mixing a sodium silicate and sodium aluminate under stirring for 1 hour under stirring at 40 ° C. After 5 minutes of homogenization tr.min 300 "1 , the stirring speed is reduced to 100 r "1 and continued for 30 minutes.
  • the stirring speed is lowered to 50 rpm " and the set point of the jacket of the reactor is set at 80.degree. C. so that the reaction medium rises to 75.degree. C. in 80 minutes.
  • the reaction medium is cooled by circulating cold water in the jacket to stop the crystallization.
  • the solids are recovered on sintered and then washed with deionized water to neutral pH.
  • the drying is carried out in an oven at 90 ° C for 8 hours, the loss on ignition of the dried product is 23% by weight.
  • the calcination of the dried product necessary to release both the microporosity (water) and the mesoporosity by eliminating the structuring agent is carried out with the following temperature profile: 30 minutes of temperature rise at 200 ° C., then 1 bearing time at 200 ° C, then 3 hours of temperature rise at 550 ° C, and finally 1.5 hours of bearing at 550 ° C.
  • a commercial zeolite the CBV100 marketed by Zeolyst International, a non-mesoporous atom having an Si / Al atomic ratio of 2.6, is used.
  • the size distribution of the mesopores is calculated by the Density Functional Theory (DFT) method with the cylindrical Pores model.
  • DFT Density Functional Theory
  • the percentage of crystallinity is calculated using TOPAS software using ICDD PDF-2, release 201 1.
  • a homogeneous mixture consisting of 1600 g of anhydrous crystals of mesoporous zeolite Y obtained in Example 1, 350 g of anhydrous kaolin, 130 g of colloidal silica sold under the trade name of Klebosol® 30 is prepared. (Containing 30% by weight of Si0 2 and 0.5% of Na 2 0) as well as the amount of water which allows the extrusion of the mixture. The fire loss of the pulp before extrusion is 44%.
  • Extruded shapes 1.6 mm in diameter are formed.
  • the extrudates are dried overnight in a ventilated oven at 80 ° C. They are then calcined for 2 hours at 550 ° C. under a nitrogen sweep and then 2 h at 550 ° C. under a decarbonated dry air sweep.
  • the mechanical crushing strength on the extrudates of mesoporous zeolite Y is 2.7 daN. Their apparent density is 0.63 g. cm "3 .
  • Example 2 The operations of Example 2 are repeated identically by substituting the mesoporous Y zeolite with the non-mesoporous Y zeolite of reference (CBV 100).
  • CBV 100 non-mesoporous Y zeolite of reference
  • the mechanical crush strength of non-mesoporous Y zeolite extrudates of reference is 1.7 daN.
  • Their apparent density is 0.60 gcm- 3 .
  • agglomerated zeolite material according to the invention comprising a mesoporous Y zeolite exhibits mechanical characteristics as well as an apparent density comparable to those of an agglomerated zeolite material comprising a non-mesoporous zeolite.
  • the present invention makes it possible to have agglomerated zeolite materials combining both the properties of the mesoporous zeolites, the properties related to the microporosity and the mechanical properties of the zeolite agglomerates known hitherto. It is thus possible to envisage without problem using the agglomerated zeolite materials of the invention in all fields of industrial applications such as catalysis, separation, adsorption, and others.
  • the agglomerates according to the invention have microporous volumes equivalent to those measured on agglomerates based on non-mesoporous zeolites of the prior art and mesoporous outer surfaces substantially greater than those measured on these same agglomerates based on non-zeolites. mesoporous of the prior art.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

La présente invention concerne des matériaux zéolithiques sous forme d'agglomérés comprenant au moins une zéolithe mésoporeuse Faujasite de rapport Si/Al strictement supérieur à 1,4 et présentant à la fois les caractéristiques des zéolithes mésoporeuses, les propriétés liées à la microporosité,et les propriétés mécaniques des agglomérés zéolithiques sans zéolithe mésoporeuse. L'invention concerne également le procédé de préparation desdits matériaux zéolithiques sous forme d'agglomérés.

Description

MATÉRIAU ZÉOLITHIQUE À BASE DE ZÉOLITHE MÉSOPOREUSE
[0001] La présente invention concerne des matériaux zéolithiques sous forme d'agglomérés comprenant au moins une zéolithe mésoporeuse, ainsi que le procédé de préparation desdits matériaux zéolithiques agglomérés.
[0002] Les zéolithes mésoporeuses présentent une grande utilité dans de nombreux domaines industriels, à la fois comme catalyseurs, supports de catalyseurs mais aussi comme adsorbants, dans la mesure où leur porosité importante exprimée en termes de rapport [surface/volume] permet aux molécules avec lesquelles elles sont mises en contact d'accéder facilement au cœur des particules et de réagir sur une surface importante, exaltant ainsi les propriétés catalytiques et/ou adsorbantes de ces matériaux.
[0003] La synthèse de solides mésoporeux inorganiques par effet structurant de tensioactif, a été décrite pour la première fois dans le brevet US3556725.
[0004] La société Mobil, au cours des années '90, a entrepris de nombreux travaux relatifs aux solides inorganiques mésoporeux, notamment relatifs à des composés (alumino)siliciques, et plus particulièrement le composé MCM 41 (pour Mobil Composition Of Matter 41 ) dont on trouve décrit un procédé de synthèse dans Nature, (1992), vol. 359, pp.710-712, et qui ont fait l'objet de nombreux brevets et articles scientifiques ultérieurs.
[0005] De tels matériaux mésoporeux sont maintenant bien connus à l'échelle du laboratoire, tant au niveau de leur structure et de leur distribution poreuse, de leurs modes de synthèse, que de leurs applications possibles en tant que catalyseurs et/ou comme adsorbants.
[0006] Ces matériaux inorganiques mésoporeux présentent comme inconvénient majeur d'être instables thermiquement en présence d'eau ce qui limite grandement les applications industrielles.
[0007] La recherche de solides inorganiques mésoporeux a conduit au développement de zéolithes mésoporeuses, également dénommées Zéolithes à Porosité Hiérarchisée (ou encore « ZPH »). Elles peuvent être obtenues par divers procédés, comme par exemple celui décrit dans l'article de Feng-Shou Xiao et al. (Hierarchically Structured Porous Materials, (2012), 435-455, Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany 978-3-527-32788-1 ).
[0008] Une des voies envisagées est celle des post-traitements à partir de cristaux zéolithiques, sous forme de poudre, initialement synthétisés. Ces post-traitements sont par exemple des traitements à la vapeur d'eau, suivis de traitements acides et/ou basiques qui conduisent à une désalumination, puis suivis de traitements complémentaires pour éliminer les espèces extra-réseaux.
[0009] Le brevet US8486369 et les demandes de brevets US20130183229, US20130183231 sont des exemples qui illustrent de tels procédés de préparation de zéolithe à structure mésoporeuse, en particulier de type Y, par divers traitements successifs à la vapeur puis avec des acides et en présence de surfactant.
[0010] Le brevet WO2012/084276 décrit un procédé de préparation d'une zéolithe Y mésoporeuse par divers post-traitements basiques mais au détriment de la microporosité. Ces traitements conduisent par ailleurs comme revendiqué à une augmentation du rapport Si/AI par désalumination. La poudre de zéolithe Y ainsi traitée est ensuite mise en forme pour une utilisation dans un procédé de catalyse d'hydroconversion.
[0011] De tels procédés tendent à créer des volumes poreux importants mais en contrepartie dégradent fortement la cristallinité de la poudre de zéolithe initiale qui chute presque de moitié. Il est par ailleurs nécessaire de recourir à des traitements complémentaires de cautérisation pour stabiliser la charpente zéolithique, éliminer les atomes d'aluminium extra-réseaux et pouvoir ainsi réaliser des traitements thermiques ultérieurs.
[0012] De tels procédés sont donc très lourds à mettre en œuvre du fait de la succession de nombreuses étapes, peu économiques et donc difficilement industrialisables. En outre, la multitude d'étapes tend à fragiliser la structure zéolithique et par conséquent réduire les propriétés intrinsèques de ces zéolithes.
[0013] C'est pourquoi on privilégie aujourd'hui les synthèses de zéolithes mésoporeuses, par voie directe, et sans post-traitement connu de l'art antérieur. Diverses publications montrent la faisabilité de synthèse au laboratoire de zéolithes mésoporeuses, et à titre d'exemples, on note en particulier les demandes WO2007043731 et EP2592049, où la synthèse de zéolithes mésoporeuses est réalisée à base de surfactant, et notamment celui de type TPOAC (chlorure de [3-(triméthoxysilyl)propyl]octadécyl- diméthylammonium).
[0014] D'autres publications encore illustrent de tels travaux, comme par exemple ceux de R. Ryoo (Nature Materials, (2006), vol. 5, p. 718-723) qui décrivent une synthèse de LTA avec mésopores, ou encore ceux de W. Schwieger (Angew. Chem. Int. Ed., 51, (2012), 1962-1965) qui décrivent la synthèse de FAU (X) mésoporeuse en utilisant le TPHAC (chlorure de [3-(triméthoxysilyl)propyl]hexadécyldiméthylammonium), en tant qu'agent structurant. [0015] Cependant, il n'existe aujourd'hui aucune description concernant la préparation d'agglomérés à base de zéolithes FAU mésoporeuses de type Y (ou zéolithe Y à Porosité Hiérarchisée, ou encore « YPH »), agglomérés dans lesquels les propriétés spécifiques de ces zéolithes mésoporeuses, en particulier leur microporosité, sont conservées. De ce fait, il reste qu'aujourd'hui aucune application industrielle, notamment dans le domaine de la séparation des liquides et/ou des gaz, de l'échange ionique ou dans le domaine de la catalyse, ne met en œuvre de tels agglomérés zéolithiques à forte microporosité comprenant au moins une zéolithe FAU mésoporeuse de type Y (dite « YPH »).
[0016] Il doit être rappelé que l'industrie, et notamment dans les domaines d'application évoqués ci-dessus, utilise dans la plupart des cas des agglomérés zéolithiques. En effet, les zéolithes synthétiques sont le plus souvent obtenues à l'issue d'un processus de nucléation et de cristallisation de gels de silico-aluminates dont la taille des cristallites produites est de l'ordre du micromètre à quelques micromètres : on parle alors de cristaux de zéolithe sous forme de poudre.
[0017] Ces poudres sont d'un emploi industriel malaisé car elles sont difficiles à manipuler en raison de leur mauvaise coulabilité, elles génèrent des pertes de charge importantes et une mauvaise répartition des flux dans les lits, notamment dans les procédés dynamiques qui impliquent des fluides en écoulement.
[0018] Aussi préfère-t-on les formes agglomérées de ces poudres, que l'on appelle plus couramment agglomérés zéolithiques et qui peuvent être sous forme de grains, de filés, d'extrudés ou autres agglomérats, ces dites formes pouvant être obtenues par extrusion, pastillage, atomisation ou autres techniques d'agglomération bien connues de l'homme du métier. Ces agglomérats ne présentent pas les inconvénients inhérents aux matières pulvérulentes.
[0019] Ces agglomérés sont en général constitués de cristaux de zéolithe(s) et d'un liant, le plus souvent inerte vis-à-vis de l'application à laquelle est destinée la zéolithe, ledit liant étant destiné à assurer la cohésion des cristaux de zéolithe(s) entre eux et à leur conférer la résistance mécanique suffisante et nécessaire pour l'application industrielle envisagée.
[0020] La présente invention a ainsi pour objectif de proposer un matériau zéolithique sous forme d'aggloméré comprenant au moins une zéolithe mésoporeuse. Comme autre objectif, la présente invention propose un matériau zéolithique sous forme d'aggloméré comprenant au moins une zéolithe FAU mésoporeuse, de rapport atomique Si/AI strictement supérieur à 1 ,4 et qui présente des propriétés de cristallinité améliorées par rapport aux matériaux de l'art antérieur. [0021] Un autre objectif encore consiste en la fourniture d'un procédé de préparation d'un matériau zéolithique sous forme d'aggloméré comprenant au moins une zéolithe mésoporeuse de rapport atomique Si/AI strictement supérieur à 1 ,4, ledit procédé étant facilement industrialisable, et amélioré en termes de coût et de durée, par rapport aux procédés de fabrication des agglomérés connus de l'art antérieur, tout en évitant une dégradation des propriétés de la ou des zéolithe(s) mésoporeuse(s) présente(s) dans ledit matériau.
[0022] Plus particulièrement, un des objectifs de la présente invention consiste à proposer un matériau zéolithique aggloméré maintenant en son sein les propriétés de pureté, cristallinité et distribution poreuse de la ou des zéolithe(s) mésoporeuse(s) de départ et présentant par ailleurs une bonne résistance mécanique et une cristallinité optimisée, et à permettre ainsi une utilisation industrielle aisée et efficace, par exemples dans les domaines de la catalyse (catalyseurs ou support de catalyseurs), ou encore dans les procédés de séparation, d'adsorption ou d'échange ionique, dynamiques ou statiques.
[0023] D'autres objectifs encore apparaîtront à la lumière de la description de la présente invention qui suit.
[0024] La Demanderesse a découvert qu'il est possible de pallier en totalité ou au moins en partie les inconvénients cités dans l'art antérieur et de fabriquer de manière économique et optimisée un matériau zéolithique aggloméré qui comprend au moins une zéolithe mésoporeuse, dont les propriétés initiales de microporosité sont maintenues, c'est-à-dire que la zéolithe mésoporeuse utilisée pour la réalisation dudit matériau aggloméré conserve l'intégrité de sa microporosité au sein dudit matériau.
[0025] Le matériau aggloméré présente un haut niveau de cristallinité et est doté d'une densité et de propriétés mécaniques suffisantes pour une utilisation en procédés d'adsorption ou d'échange ionique en dynamique ou statique.
[0026] Sauf indication contraire dans la présente description, les proportions indiquées sont des proportions pondérales, comptées pour les constituants solides en équivalents calcinés, sur la base de calcination réalisée à 950°C pendant 1 heure.
[0027] La présente invention concerne un matériau zéolithique aggloméré comprenant au moins une zéolithe mésoporeuse de rapport atomique Si/AI strictement supérieur à 1 ,4 et inférieur ou égal à 6, et éventuellement une ou plusieurs zéolithes non mésoporeuses, ledit matériau présentant au moins les caractéristiques suivantes :
• une teneur totale en zéolithe(s) d'au moins 30%, de préférence d'au moins 40%, de préférence encore d'au moins 70%, en poids par rapport au poids total de l'aggloméré, • une teneur en zéolithe(s) mésoporeuse(s) supérieure ou égale à 30%, de préférence supérieure ou égale à 40%, de préférence encore supérieure ou égale à 70%, plus préférentiellement encore supérieure ou égale à 80%, et avantageusement supérieure ou égale à 90%,
• une teneur en liant exprimée en pourcentages anhydres, après calcination réalisée à 950°C pendant 1 heure, inférieure ou égale à 70%, de préférence inférieure ou égale à 60%, et avantageusement inférieure ou égale à 30%,
• un diamètre volumique moyen (D50), ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), inférieur(e) ou égal(e) à 7 mm, de préférence compris entre 0,05 mm et 7 mm, de manière encore préférée compris entre 0,2 mm à 5 mm et plus préférentiellement entre 0,2 mm et 2,5 mm, bornes incluses, et
• - soit une résistance à l'écrasement en lit (REL) mesurée selon la norme ASTM 7084- 04 comprise entre 0,5 MPa et 6 MPa, de préférence entre 0,75 MPa et 4 MPa, pour un matériau de diamètre volumique moyen (D50), ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), inférieur(e) à 1 mm, bornes incluses,
- soit une résistance à l'écrasement en grain, mesurée selon les normes ASTM D 4179 (201 1 ) et ASTM D 6175 (2013), comprise entre 0,5 daN et 30 daN, de préférence comprise entre 1 daN et 20 daN, pour un matériau de diamètre volumique moyen (D50), ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), supérieur(e) ou égal(e) à 1 mm, bornes incluses.
[0028] Selon un mode de réalisation préféré, le matériau de la présente invention présente en outre une masse volumique apparente comprise entre 0,4 g. cm"3 et 1 g. cm"3, bornes incluses.
[0029] Dans la présente invention, les agglomérés comprennent au moins une zéolithe mésoporeuse de type Faujasite (FAU), de rapport atomique Si/AI strictement supérieur à 1 ,4 et inférieur ou égal à 6, de préférence compris entre 1 ,5 et 5, de préférence encore compris entre 1 ,5 et 3 bornes incluses, ladite zéolithe mésoporeuse étant avantageusement choisie parmi les zéolithes mésoporeuses de type Y. Ladite zéolithe mésoporeuse se présente sous forme de cristaux dont le diamètre moyen en nombre, mesuré au microscope électronique à balayage (MEB), est inférieur à 20 μηι, de préférence compris entre 0,1 μηη et 20 μηι, de préférence compris entre 0,1 et 10 μηι, de préférence compris entre 0,5 μηη et Ι Ο μηη, de manière plus préférée compris entre 0,5 μηη et 5 μηι, bornes incluses. [0030] Dans la présente invention, on entend par « zéolithe mésoporeuse », une zéolithe présentant une surface externe mésoporeuse, définie par la méthode du t-plot décrite plus loin, comprise entre 40 m2. g"1 et 400 m2. g"1, de préférence entre 60 m2. g"1 et 200 m2. g"1, bornes incluses. Par extension, au sens de la présente invention, une « zéolithe non mésoporeuse » est une zéolithe présentant éventuellement une surface externe mésoporeuse, définie par la méthode du t-plot décrite plus loin, strictement inférieure à 40 m2. g"1.
[0031] Les mésopores de l'adsorbant zéolithique selon l'invention sont facilement identifiables par observation au moyen d'un microscope électronique à transmission (MET ou « TEM » en langue anglaise), comme décrit par exemple dans US7785563.
[0032] Selon un mode de réalisation préféré, le procédé selon l'invention utilise un adsorbant zéolithique comprenant des cristaux mésoporeux de zéolithe Faujasite (FAU), de rapport atomique Si/AI strictement supérieur à 1 ,4 et inférieur ou égal à 6, de préférence compris entre 1 ,5 et 5, de préférence encore compris entre 1 ,5 et 3 bornes incluses, ladite zéolithe mésoporeuse étant avantageusement choisie parmi les zéolithes mésoporeuses de type Y. Par « mésoporeux », on entend des cristaux zéolithiques (microporeux) qui présentent, conjointement à la microporosité, des cavités internes de taille nanométrique (mésoporosité), facilement identifiables par observation au moyen d'un microscope électronique à transmission (MET ou « TEM » en langue anglaise), comme décrit par exemple dans US7785563.
[0033] Comme indiqué dans US7785563, l'observation par microscopie électronique à transmission (MET) permet de vérifier si les particules zéolithiques sont des cristaux de zéolithe pleins (i.e. non mésoporeux) ou des agrégats de cristaux de zéolithes pleins ou des cristaux mésoporeux. De manière préférée, les adsorbants du procédé selon l'invention contiennent une quantité supérieure ou égale à 30%, de préférence supérieure ou égale à 40%, de préférence encore supérieure ou égale à 70%, plus préférentiellement encore supérieure ou égale à 80%, et avantageusement supérieure ou égale à 90%, en nombre des cristaux zéolithiques mésoporeux et non des cristaux pleins, par rapport à l'ensemble des cristaux. Cette analyse statistique est effectuée avantageusement par analyse d'au moins 50 clichés MET.
[0034] Les cristaux de la (ou des) zéolithe(s) mésoporeuse(s) comprise(s) dans le matériau zéolithique de l'invention, seuls ou en mélange avec d'autres cristaux de zéolithes non mésoporeuses, sont agglomérés avec un liant. Selon un aspect préféré de l'invention, la teneur en liant est la plus faible possible, afin d'optimiser la teneur en zéolithe(s) du matériau zéolithique. [0035] Le liant compris dans le matériau aggloméré zéolithique de la présente invention comprend, et de préférence consiste en, une argile ou un mélange d'argiles et/ou des sols de silice ou d'alumine qui sont ensuite séchés ou gélifiés pour les durcir. Ces argiles sont de préférence choisies parmi les kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sépiolites, montmorillonites, bentonites, illites et métakaolins, ainsi que les mélanges de deux ou plusieurs d'entre elles en toutes proportions.
[0036] Dans la présente invention, on entend par « liant », un liant d'agglomération qui permet d'assurer la cohésion des cristaux de zéolithe(s) dans le matériau zéolithique aggloméré de l'invention. Ce liant se distingue en outre des cristaux de zéolithe(s) en ce qu'il ne présente pas de structure cristalline zéolithique après calcination, raison pour laquelle le liant est souvent qualifié d'inerte, et plus précisément inerte vis-à-vis de l'adsorption et/ou de l'échange ionique.
[0037] Selon un aspect particulièrement préféré, le liant présent dans le matériau zéolithique aggloméré de l'invention est uniquement constitué d'une ou plusieurs argiles, et de préférence d'une seule argile.
[0038] Le matériau aggloméré zéolithique selon la présente invention peut également comprendre un ou plusieurs autres composants, en quantité comprise entre 0 et 5%, de préférence entre 0 et 1 %, de préférence encore entre 0 et 0,5%, bornes incluses, les pourcentages étant exprimés en poids par rapport au poids total du matériau aggloméré zéolithique. Ce ou ces autre(s) composant(s) est(sont) généralement les résidus des additifs, et autres auxiliaires de synthèse dudit matériau aggloméré zéolithique, et en particulier ceux qui seront décrits plus loin dans la présente description.
[0039] Des exemples de tels autres composants comprennent notamment les cendres des additifs après calcination, de la silice, et autres. Il doit être compris que ces autres composants sont généralement présents à l'état de résidus ou de traces et ne sont pas utilisés pour apporter un quelconque caractère liant ou cohésif aux matériaux zéolithiques agglomérés comprenant au moins une zéolithe mésoporeuse de l'invention.
[0040] Le matériau zéolithique aggloméré de la présente invention peut se présenter sous diverses formes telles que celles bien connues de l'homme du métier, spécialiste de l'agglomération de poudres, de cristaux, notamment de cristaux de zéolithes, et par exemple et de manière non limitative, le matériau aggloméré zéolithique de l'invention peut se présenter sous forme de billes, de filés, d'extrudés ou autres.
[0041] Par ailleurs, on observe que dans le cas de zéolithes où la mésoporosité est obtenue par post-traitement (comme par exemple dans US2012/0258852) le volume microporeux décroît fortement lorsque la surface externe mésoporeuse augmente. En revanche, dans le cas des zéolithes de la présente l'invention, la mésoporosité est créée lors de la synthèse des cristaux (synthèse directe) et on observe que le volume microporeux des adsorbants reste sensiblement constant, et ceci même lorsque la surface externe mésoporeuse augmente. Ceci montre que les adsorbants zéolithiques selon l'invention présentent, au contraire des adsorbants zéolithiques mésoporeux de l'art antérieur, à la fois une surface externe mésoporeuse élevée et un volume microporeux élevé.
[0042] Selon un autre aspect, la présente invention a également pour objet un procédé de préparation du matériau zéolithique aggloméré décrit précédemment comprenant au moins les étapes de mélange d'au moins une zéolithe mésoporeuse, éventuellement avec un ou plusieurs additifs, avec au moins un liant, dans les proportions indiquées précédemment, et mise en forme du matériau aggloméré, selon toute méthode connue de l'homme du métier, par exemple par extrusion, pastillage, atomisation ou autres techniques d'agglomération bien connues de l'homme du métier.
[0043] Selon un mode de réalisation préféré, le procédé de l'invention comprend au moins les étapes de :
a) agglomération de cristaux d'au moins une zéolithe mésoporeuse de rapport atomique Si/AI strictement supérieur à 1 ,4 et inférieur ou égal à 6, de diamètre moyen en nombre compris entre 0,1 μηη et 20 μηι, de préférence entre 0,1 μηη et 20 μηι, de préférence entre 0,1 μηη et 10 μηι, de manière plus préférée entre 0,5 μηη et 10 μηη et plus préférentiellement encore entre 0,5 μηη et 5 μηη et de surface externe mésoporeuse, définie par la méthode du t-plot décrite plus loin, comprise entre 40 m2. g"1 et 400 m2. g"1, de préférence entre 60 m2. g"1 et 200 m2. g"1, bornes incluses, avec un liant comprenant au moins 80% d'argile ou d'un mélange d'argiles et/ou des sols de silice ou d'alumine qui sont ensuite séchés ou gélifiés pour les durcir, la (les) argile(s) étant éventuellement zéolithisable(s), et avec jusqu'à 5% d'additifs, et éventuellement une (ou plusieurs) zéolithe(s) non mésoporeuse(s), ainsi qu'avec la quantité d'eau qui permet la mise en forme du matériau aggloméré ;
b) séchage des agglomérats à une température comprise entre 50°C et 150°C ;
c) calcination des agglomérats de l'étape b) sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l'oxygène, l'azote, l'air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une température supérieure à 150°C, typiquement comprise entre 180°C et 800°C, préférentiellement entre 200°C et 650°C, pendant quelques heures, par exemple de 2 à 6 heures ; d) éventuellement zéolithisation du liant par mise en contact des agglomérats obtenus à l'étape c) avec une solution basique alcaline ;
e) éventuellement échange(s) cationique(s) des agglomérats de l'étape c) ou de l'étape d) par mise en contact avec une solution d'au moins un sel de métal alcalin ou alcalino- terreux ;
f) lavage et séchage des agglomérats obtenus aux étapes d) ou e) dans les conditions décrites à l'étape b), et
g) obtention du matériau zéolithique aggloméré par activation des agglomérats obtenus à l'étape f) dans les conditions décrites à l'étape c).
[0044] On ne sortirait pas du cadre de l'invention si la au moins une zéolithe mésoporeuse utilisée à l'étape a) d'agglomération avait subi au préalable un ou des échange(s) cationique(s). Dans ce cas, l'étape e) devient par conséquent non nécessaire.
[0045] Selon un mode préféré de l'invention, la poudre (cristaux de zéolithe) ainsi obtenue est agglomérée telle que, après séchage et/ou après calcination et/ou après échange ionique, au moyen d'un liant inerte au sens de l'adsorption.
[0046] Selon un mode de réalisation tout à fait préféré du procédé de la présente invention, on procède, à l'étape a), à l'agglomération de cristaux d'une zéolithe préparée en présence d'un gabarit sacrificiel qui est destiné à être éliminé selon les méthodes connues de l'homme du métier, par exemple par calcination, dans le but de créer une mésoporosité dans la zéolithe et ainsi obtenir une zéolithe mésoporeuse.
[0047] Le gabarit sacrificiel utilisé peut être de tous types connus de l'homme du métier et notamment ceux décrits dans la demande WO2007/043731 . Selon un mode de réalisation préféré, le gabarit sacrificiel est avantageusement choisi parmi les organosilanes et plus préférentiellement parmi le chlorure de [3-(triméthoxysilyl)propyl]- octadecyldiméthylammonium, le chlorure de [3-(triméthoxysilyl)propyl]hexadécyldiméthyl- ammonium, le chlorure de [3-(triméthoxysilyl)propyl]dodécyldiméthylammonium, le chlorure de [3-(triméthoxysilyl)propyl]octylammonium, la N-[3-(triméthoxysilyl)propyl]- aniline, le 3-[2-(2-aminoéthylamino)éthylamino]propyltriméthoxysilane, la N-[3-(triméthoxy- silyl)propyl]-N'-(4-vinylbenzyl)éthylènediamine, le triéthoxy-3-(2-imidazolin-1 -yl)propyl- silane, la 1 -[3-(triméthoxysilyl)propyl]urée, la N-[3-(triméthoxysilyl)propyl]éthylènediamine, le [3-(diéthylamino)propyl]triméthoxysilane, le (3-glycidyloxypropyl)triméthoxysilane, le méthacrylate de 3-(triméthoxysilyl)propyle, le [2-(cyclohexényl)éthyl]triéthoxysilane, le dodécyltriéthoxysilane, l'hexadécyltriméthoxysilane, le (3-aminopropyl)triméthoxysilane, le (3-mercaptopropyl)triméthoxysilane, le (3-chloropropyl)triméthoxysilane, ainsi que les mélanges de deux ou plusieurs d'entre eux en toutes proportions. [0048] Parmi les gabarits sacrificiels listés ci-dessus, on préfère tout particulièrement le chlorure de [3-(triméthoxysilyl)propyl]octadecyldiméthylammonium, ou TPOAC.
[0049] On peut également utiliser des gabarits sacrificiels de masse molaire plus élevée et par exemple les PPDA (Polymer Poly-DiallyldimethylAmmonium), PVB (PolyVinyl Butyral) et autres composés oligomères connus dans le domaine pour augmenter le diamètre des mésopores.
[0050] L'étape supplémentaire d'élimination du gabarit sacrificiel peut être effectuée à tout moment au cours du procédé de préparation du matériau zéolithique aggloméré de l'invention. L'élimination dudit gabarit sacrificiel peut ainsi avantageusement être effectuée par calcination des cristaux de zéolithe avant l'étape d'agglomération a), ou encore de manière concomitante avec l'étape c).
[0051] On ne sortirait pas du cadre de l'invention si la(ou les) zéolithe(s) avant agglomération avaient subi un ou plusieurs échange(s) successifs avec des sels de métaux alcalins ou alcalino-terreux.
[0052] Les cristaux séchés sont ensuite soumis à calcination, étape nécessaire pour libérer à la fois la microporosité (élimination de l'eau) et la mésoporosité (élimination de l'agent structurant). En outre, la calcination permet l'élimination du gabarit sacrificiel. Cette étape de calcination peut être effectuée selon toute méthode de calcination connue de l'homme du métier et par exemple, et de manière non limitative, la calcination des cristaux de zéolithe comprenant le gabarit sacrificiel peut être effectuée sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l'oxygène, l'azote, l'air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une ou des températures supérieures à 150°C, typiquement comprises entre 180°C et 800°C, préférentiellement entre 200°C et 650°C, pendant quelques heures, par exemple entre 2 et 6 heures. La nature des gaz, les rampes de montée en température et les paliers successifs de températures, leurs durées seront adaptées en fonction de la nature du gabarit sacrificiel.
[0053] La taille des cristaux de zéolithes mésoporeuses utilisées à l'étape a) et des cristaux de zéolithes mésoporeuses dans les agglomérats est mesurée par observation au microscope électronique à balayage (MEB). Cette observation MEB permet également de confirmer la présence de phase non zéolithique comprenant par exemple du liant résiduel (non converti lors de l'étape de zéolithisation) ou toute autre phase amorphe dans les agglomérats. Dans la description de la présente invention, on emploie l'appellation « diamètre moyen en nombre » ou bien « taille » pour les cristaux de zéolithe. La méthode de mesure de ces grandeurs est explicitée plus loin dans la description. [0054] L'agglomération et la mise en forme (étape a) peuvent être réalisées selon toutes les techniques connues de l'homme de l'art, telles qu'extrusion, compactage, agglomération sur assiette granulatrice, tambour granulateur, atomisation et autres. Les proportions de liant d'agglomération et de zéolithes mises en œuvre sont comprises entre 5 parties et 70 parties en poids de liant pour 95 parties à 30 parties en poids de zéolithe. Les agglomérats issus de l'étape a), qu'ils soient sous forme de billes, d'extrudés ou autres, ont en général un diamètre volumique en nombre, ou une longueur (plus grande dimension lorsqu'ils ne sont pas sphériques), inférieur ou égal à 7 mm, de préférence compris entre 0,05 mm et 7 mm, de manière encore préférée compris entre 0,2 mm et 5 mm et plus préférentiellement entre 0,2 mm et 2,5 mm.
[0055] Lors de l'étape a), outre le ou les cristaux de zéolithe(s) et le liant, un ou plusieurs additifs peuvent également être ajoutés. Les additifs sont préférentiellement organiques, par exemple de la lignine, de l'amidon, de la carboxyméthylcellulose, des molécules tensio-actives (cationiques, anioniques, non ioniques ou amphotères), destinées à faciliter la manipulation de la pâte zéolithe(s)/argile(s) par modification de la rhéologie et/ou du pouvoir collant ou à conférer aux agglomérés finaux des propriétés satisfaisantes, notamment de macroporosité. On peut citer de manière préférentielle mais non exhaustive les méthyl-celluloses et leurs dérivés, les lignosulfonates, les acides polycarboxyliques et les acides de copolymères carboxyliques, leurs dérivés aminés et leurs sels, notamment les sels alcalins et les sels d'ammonium. Les additifs sont introduits à raison de 0 à 5%, de préférence de 0,1 % à 2%.
[0056] Les additifs peuvent aussi être une source de silice liquide et/ou solide, de préférence représentant de 1 % à 5% de la masse totale desdits solides. La source éventuelle de silice peut être de tout type connu de l'homme du métier, spécialiste de la synthèse de zéolithes, par exemple de la silice colloïdale, des diatomées, de la perlite, des cendres de calcination (« fly ash » en langue anglaise), du sable, ou toute autre forme de silice solide.
[0057] Lors de l'étape de calcination c), la nature des gaz, les rampes de montée en température et les paliers successifs de températures, ainsi que leurs durées respectives, seront adaptés en fonction de la nature du gabarit sacrificiel à éliminer et en fonction de la nature du liant mis en œuvre à l'étape d'agglomération a).
[0058] Lors de l'étape optionnelle d), la zéolithisation du liant d'agglomération est pratiquée selon toute méthode maintenant bien connue de l'homme du métier et peut par exemple être réalisée par immersion du produit de l'étape c) dans une solution basique alcaline, en général aqueuse, par exemple une solution aqueuse d'hydroxyde de sodium et/ou d'hydroxyde de potassium.
[0059] Les matériaux zéolithiques agglomérés selon la présente invention possèdent à la fois les caractéristiques des zéolithes mésoporeuses, mais aussi notamment les propriétés mécaniques des agglomérés zéolithiques conventionnels connus de l'art antérieur, c'est-à-dire sans zéolithe mésoporeuse.
[0060] Plus particulièrement, les matériaux zéolithiques agglomérés de l'invention montrent qu'il est possible de maintenir la cristallinité et la mésoporosité de la zéolithe au sein d'un matériau aggloméré zéolithique, d'obtenir un matériau zéolithique aggloméré non dégradé et résistant mécaniquement. En outre le procédé de préparation des matériaux agglomérés zéolithiques à zéolithe(s) mésoporeuse(s) selon l'invention, est un procédé de mise en œuvre aisée, rapide et économique et donc facilement industrialisable avec un minimum d'étapes.
[0061] Les exemples suivants permettent d'illustrer l'objet de l'invention, et sont fournis à titre indicatif seulement, sans toutefois être destinés en aucune façon à limiter les divers modes de réalisation de la présente invention.
[0062] Dans les exemples qui suivent, les propriétés physiques des agglomérés sont évaluées par les méthodes connues de l'homme du métier, dont les principales d'entre elles sont rappelées ci-dessous.
Perte au feu des échantillons (adsorbants zéolithiques) :
[0063] La perte au feu est déterminée en atmosphère oxydante, par calcination de l'échantillon à l'air à une température de 950°C ± 25°C, comme décrit dans la norme NF EN 196-2 (avril 2006). L'écart-type de mesure est inférieur à 0,1 %.
Mesure de la pureté :
[0064] La pureté des phases zéolithiques dans les agglomérats est évaluée par analyse de diffraction aux rayons X, connue de l'homme du métier sous l'acronyme DRX. Cette identification est réalisée sur un appareil DRX de la marque Bruker.
[0065] Cette analyse permet d'identifier les phases cristallines présentes dans le solide analysé car chacune des structures zéolithiques possède un spectre de diffraction (ou diffractogramme) unique défini par le positionnement des pics de diffraction et par leurs intensités relatives.
[0066] Les matériaux zéolithiques agglomérés sont broyés puis étalés et lissés sur un porte échantillon par simple compression mécanique. [0067] Les conditions d'acquisition du spectre de diffraction (ou diffractogramme) réalisé sur l'appareil D5000 Bruker sont les suivantes :
• tube Cu utilisé à 40 kV - 30 mA ;
• taille des fentes (divergentes, de diffusion et d'analyse) = 0,6 mm ;
• filtre : Ni ;
• dispositif d'échantillon tournant : 15 tr.min"1 ;
• plage de mesure : 3° < 2Θ < 50° ;
• pas : 0,02° ;
• temps de comptage par pas : 2 secondes.
[0068] L'interprétation du spectre de diffraction (ou diffractogramme) obtenu s'effectue sous EVA avec identification des phases à l'aide de la base ICCD PDF-2 release 201 1.
[0069] La quantité des fractions zéolithiques X est mesurée par analyse par DRX. Cette analyse est réalisée sur un appareil de la marque Bruker, puis la quantité des fractions zéolithiques X est évaluée au moyen du logiciel TOPAS de la société Bruker.
Analyse qualitative et quantitative par diffraction des rayons X
[0070] Cette analyse permet d'identifier les phases cristallines présentes dans le solide analysé car chacune des structures zéolithiques possède un diffractogramme (ou spectre de diffraction) unique défini par le positionnement des pics de diffraction et par leurs intensités relatives.
[0071] Les matériaux zéolithiques agglomérés sont broyés puis étalés et lissés sur un porte échantillon par simple compression mécanique. Les conditions d'acquisition du diffractogramme réalisé sur l'appareil D5000 Brucker sont les suivantes :
• tube Cu utilisé à 40 kV - 30 mA ;
• taille des fentes (divergentes, de diffusion et d'analyse) = 0,6 mm ;
• filtre : Ni ;
• dispositif d'échantillon tournant : 15 tr.min"1 ;
• plage de mesure : 3° < 2Θ < 50° ;
• pas : 0,02° ;
• temps de comptage par pas : 2 secondes.
[0072] L'interprétation du spectre de diffraction (ou diffractogramme) obtenu s'effectue avec le logiciel EVA avec identification des phases à l'aide de la base ICDD PDF-2, release 201 1 , qui permet de mettre en évidence une phase parfaitement cristalline.
[0073] La quantité des fractions zéolithiques, en poids, est mesurée par analyse par DRX, cette méthode est également utilisée pour mesurer la quantité des fractions zéolithiques FAU. Cette analyse est réalisée sur un appareil de la marque Bruker, puis la quantité en poids des fractions zéolithiques, est évaluée au moyen du logiciel TOPAS de la société Bruker.
Mesure du volume microporeux :
[0074] La mesure du volume microporeux est estimée par des méthodes classiques telles que les mesures des volumes de Dubinin-Raduskevitch (adsorption d'azote liquide à 77 K).
[0075] Le volume de Dubinin-Raduskevitch est déterminé à partir de la mesure de l'isotherme d'adsorption de gaz d'azote à sa température de liquéfaction. Préalablement à l'adsorption, l'adsorbant zéolithique est dégazé entre 300°C et 450°C pendant une durée comprise entre 9 heures et 16 heures, sous vide (P < 6,7.10"4 Pa). La mesure des isothermes d'adsorption est ensuite effectuée sur un appareil de type ASAP 2020 de Micromeritics, en prenant au moins 35 points de mesure à des pressions relatives de rapport Ρ/Ρ0 compris entre 0,002 et 1 . Le volume microporeux est déterminé selon Dubinin et Raduskevitch à partir de l'isotherme obtenu, en appliquant la norme ISO 15901 -3 (2007). Le volume microporeux évalué selon l'équation de Dubinin et Raduskevitch s'exprime en cm3 d'adsorbat liquide par gramme de zéolithe. L'incertitude de mesure est de ± 0,003 cm3. g"1.
Mesure de la surface externe mésoporeuse (m2.g~1) par la méthode dite du t-plot :
[0076] La méthode de calcul dite du t-plot exploite les données de l'isotherme d'adsorption Q ads = f (Ρ/Ρ0) et permet de calculer la surface microporeuse. On peut en déduire la surface externe en faisant la différence avec la surface BET qui calcule la surface poreuse totale en m2. g"1 (S BET = Surface microporeuse + Surface externe mésoporeuse).
[0077] Pour calculer la surface microporeuse par la méthode t-plot, on trace la courbe Q ads (cm3. g"1) en fonction de t = épaisseur de la couche dépendant de la pression partielle Ρ/Ρ0 qui se formerait sur un solide non poreux de référence (t fonction de log (Ρ/Ρ0) : équation de Harkins et Jura appliquée : [13,99/(0,034-log(P/P0))A0,5]. Dans l'intervalle t compris entre 0,35 nm et 0,5 nm, on peut tracer une droite qui définit une ordonnée à l'origine Q adsorbée qui permet de calculer la surface microporeuse. Si le solide n'est pas microporeux la droite passe par 0.
Observation de la structure mésoporeuse par Microscopie Électronique à Transmission
[0078] Après broyage des adsorbants au mortier, la poudre obtenue est dispersée dans l'éthanol pendant 1 minute sous ultrasons. On dépose une goutte de la solution sur une grille de microscopie. On laisse sécher l'échantillon à l'ambiante. [0079] L'observation se fait avec un microscope électronique à transmission (CM 200 de FEI) sous une tension de 120 kV. Les Figures 1 et 2 montrent des clichés MET obtenus avec un grossissement de x 245000 et x 175000, respectivement, d'un adsorbant de référence (Figure 1 ) et de l'adsorbant selon l'invention (Figure 2). Le cliché de la Figure 2 permet de visualiser (cf. par exemple l'encadré sur la Figure 2) la présence des mésopores et d'estimer leurs diamètres.
Granulométrie des cristaux :
[0080] L'estimation du diamètre moyen en nombre des cristaux de zéolithe mésoporeuse utilisée à l'étape a) et des cristaux des zéolithes contenues dans les agglomérés est réalisée comme indiqué précédemment par observation au microscope électronique à balayage (MEB).
[0081] Afin d'estimer la taille des cristaux de zéolithe sur les échantillons, on effectue un ensemble de clichés à un grossissement d'au moins 5000. On mesure ensuite le diamètre d'au moins 200 cristaux à l'aide d'un logiciel dédié, par exemple le logiciel Smile View de l'éditeur LoGraMi. La précision est de l'ordre de 3%.
Résistance à l'écrasement en lit :
[0082] La résistance à l'écrasement d'un lit d'adsorbants zéolithiques tels que décrits dans la présente invention est caractérisée selon la méthode Shell série SMS1471 -74 (Shell Method Séries SMS1471 -74 « Détermination of Bulk Crushing Strength of Catalysts. Compression-Sieve Method »), associée à l'appareil « BCS Tester » commercialisé par la société Vinci Technologies. Cette méthode, initialement destinée à la caractérisation de catalyseurs de taille comprise entre 3 mm et 6 mm, est basée sur l'utilisation d'un tamis de 425 μηη qui va permettre notamment de séparer les fines créées lors de l'écrasement. L'utilisation d'un tamis de 425 μηη reste adaptée pour des particules de diamètre supérieur à 1 ,6 mm mais doit être adapté selon la granulométrie des agglomérés que l'on cherche à caractériser.
Résistance à l'écrasement en grains :
[0083] Les résistances mécaniques à l'écrasement en grains sont déterminées avec un appareil « Grain Crushing strength » commercialisé par Vinci Technologies, selon les normes ASTM D 4179 et D 6175.
Mesure du rapport atomique Si/AI :
[0084] Le matériau zéolithique aggloméré de l'invention a été évalué quant au rapport atomique Si/AI par analyse chimique élémentaire dudit matériau zéolithique aggloméré, et plus précisément par analyse chimique par fluorescence de rayons X telle que décrite dans la norme NF EN ISO 12677 (201 1 ) sur un spectromètre dispersif en longueur d'onde (WDXRF), par exemple Tiger S8 de la société Bruker. Le spectre de fluorescence X présente l'avantage de dépendre très peu de la combinaison chimique de l'élément, ce qui offre une détermination précise, à la fois quantitative et qualitative.
[0085] On obtient de manière classique après étalonnage pour chaque oxyde, entre autres pour Si02 et Al203, une incertitude de mesure inférieure à 0,4% en poids. L'incertitude de mesure du rapport atomique Si/AI est de ± 5%.
Exemple 1 :
Synthèse de YPH avec ajout de gel de nucléation et gel de croissance avec ratio TPOAC/AI2O3 = 0,04
a) Préparation du gel de croissance dans réacteur agité avec vis d'Archimède à 300 tr.min"1.
[0086] Dans un réacteur en inox de 3 litres muni d'une double enveloppe chauffante, d'une sonde de température et d'un agitateur, on prépare un gel de croissance en ajoutant 1446 g de silice colloïdale (Ludox AM-30 contenant 30 % en poids de Si02) à 25°C dans une solution d'aluminate contenant 184 g d'hydroxyde de sodium (NaOH), 138 g d'alumine trihydratée (Al203, 3H20, contenant 65,2% en poids d'AI203) et 800 g eau à 25°C en 25 minutes avec une vitesse d'agitation de 300 tr.min"1.
[0087] La stœchiométrie du gel de croissance est la suivante : 2,5 Na20 / Al203 / 8,0 Si02 / 1 17 H20. L'homogénéisation du gel de croissance est réalisée sous agitation à 300 tr.min"1, pendant 25 minutes, à 25°C.
b) Ajout du gel de nucléation
[0088] On ajoute au gel de croissance, à 25°C sous agitation à 300 tr.min"1, 61 ,2 g de gel de nucléation (soit 2 % en poids) de composition 12 Na20/ Al203 / 10 Si02 / 180 H20 préparé par mélange d'un silicate de sodium et d'un aluminate de sodium sous agitation pendant 1 heure sous agitation à 40°C. Après 5 minutes d'homogénéisation à 300 tr.min"1, la vitesse d'agitation est diminuée à 100 tr.min"1 et poursuivie pendant 30 minutes.
c) Introduction dans le milieu réactionnel de l'agent structurant
[0089] On introduit dans le milieu réactionnel 27,3 g de solution de TPOAC à 60% dans le méthanol (MeOH) avec une vitesse d'agitation de 300 tr.min"1 (ratio molaire TPOAC/AI203 = 0,04). On opère à 25°C une étape de maturation pendant 1 heure à 300 tr.min"1 avant de démarrer la cristallisation.
d) Cristallisation
[0090] On abaisse la vitesse d'agitation à 50 tr.min"1 et on fixe la consigne de la double enveloppe du réacteur à 80°C afin que le milieu réactionnel monte en température à 75°C en 80 minutes. Après 22 heures de palier à 75°C, on refroidit le milieu réactionnel en faisant circuler de l'eau froide dans la double enveloppe pour stopper la cristallisation. e) Filtration / lavage
[0091] Les solides sont récupérés sur fritté puis lavés avec de l'eau permutée jusqu'à pH neutre.
f) Séchage / Calcination
[0092] Afin de caractériser le produit, le séchage est réalisé en étuve à 90°C pendant 8 heures, la perte au feu du produit séché est de 23% en poids.
[0093] La calcination du produit séché nécessaire pour libérer à la fois la microporosité (eau) et la mésoporosité en éliminant l'agent structurant est effectuée avec le profil de température suivant : 30 minutes de montée en température à 200°C, puis 1 heure de palier à 200°C, puis 3 heures de montée en température à 550°C, et enfin 1 ,5 heures de palier à 550°C.
[0094] On obtient ainsi une zéolithe Y mésoporeuse pure (identification par spectre de Diffraction des Rayons X), de rapport Si/AI déterminé par fluorescence X égal à 2,6 et de volume microporeux égal à 0,330 cm3. g"1.
[0095] À titre de comparaison pour la préparation d'un matériau zéolithique aggloméré, on utilise une zéolithe commerciale, la CBV100 commercialisée par la société Zeolyst International, non mésoporeuse de rapport atomique Si/AI égal à 2,6.
[0096] Les caractéristiques de la zéolithe Y mésoporeuse (YPH) préparée dans cet exemple 1 et les caractéristiques de la zéolithe de référence indiquée ci-dessus sont regroupées dans le Tableau 1 suivant :
-- Tableau 1 --
Figure imgf000018_0001
[0097] La distribution de la taille des mésopores est calculée par la méthode Density Functional Theory (DFT) avec le modèle Pores cylindriques. Le pourcentage de cristallinité est calculé au moyen du logiciel TOPAS utilisant la base ICDD PDF-2, release 201 1 .
Exemple 2 : Préparation d'agglomérés de zéolithe YPH (selon l'invention)
[0098] Dans ce qui suit une masse exprimée en équivalent anhydre signifie une masse de produit diminuée de sa perte au feu.
[0099] On prépare un mélange homogène constitué de 1600 g équivalent anhydre de cristaux de zéolithe Y mésoporeuse obtenue à l'exemple 1 , de 350 g équivalent anhydre de kaolin, de 130 g de silice colloïdale vendue sous la dénomination commerciale de Klebosol® 30 (contenant 30% en poids de Si02 et 0,5% de Na20) ainsi que de la quantité d'eau qui permet l'extrusion du mélange. La perte au feu de la pâte avant extrusion est de 44%.
[0100] On forme des extrudés de 1 ,6 mm de diamètre. Les extrudés sont séchés une nuit en étuve ventilée à 80°C. Ils sont ensuite calcinés pendant 2 h à 550°C sous balayage à l'azote, puis 2 h à 550°C sous balayage à l'air sec décarbonaté.
[0101] La résistance mécanique à l'écrasement sur grain des extrudés de zéolithe Y mésoporeuse est de 2,7 daN. Leur masse volumique apparente est de 0,63 g. cm"3.
Exemple 3 : Préparation d'agglomérés de zéolithe Y non mésoporeuse
(exemple comparatif)
[0102] Les opérations de l'exemple 2 sont répétées à l'identique en substituant la zéolithe Y mésoporeuse par la zéolithe Y non mésoporeuse de référence (CBV 100). La résistance mécanique à l'écrasement sur grain des extrudés de zéolithe Y non mésoporeuse de référence est de 1 ,7 daN. Leur masse volumique apparente est de 0,60 g.cm"3.
[0103] On observe ainsi que le matériau zéolithique aggloméré selon l'invention comprenant une zéolithe Y mésoporeuse présente des caractéristiques mécaniques ainsi qu'une densité apparente comparables à celles d'un matériau zéolithique aggloméré comportant une zéolithe non mésoporeuse.
[0104] Il est ainsi tout à fait remarquable que la présente invention permet de disposer de matériaux zéolithiques agglomérés combinant à la fois les propriétés des zéolithes mésoporeuses, les propriétés liées à la microporosité et les propriétés mécaniques des agglomérés zéolithiques connus jusqu'à présent. Il est ainsi possible d'envisager sans problème l'utilisation des matériaux zéolithiques agglomérés de l'invention dans tous les domaines d'applications industrielles tels que la catalyse, la séparation, l'adsorption, et autres.
Exemple 4 : Comparaison des agglomérés des exemples 2 et 3
[0105] Les résultats de l'analyse comparative sont présentés dans le Tableau 2 suivant :
-- Tableau 2 --
Figure imgf000020_0001
[0106] Les agglomérés selon l'invention présentent des volumes microporeux équivalents à ceux mesurés sur des agglomérés à base de zéolithes non mésoporeuses de l'art antérieur et des surfaces externes mésoporeuses nettement supérieures à celles mesurées sur ces mêmes agglomérés à base de zéolithes non mésoporeuses de l'art antérieur.

Claims

REVENDICATIONS
1. Matériau zéolithique aggloméré comprenant au moins une zéolithe mésoporeuse de rapport atomique Si/AI strictement supérieur à 1 ,4 et inférieur ou égal à 6, et éventuellement une ou plusieurs zéolithes non mésoporeuses, ledit matériau présentant au moins les caractéristiques suivantes :
• une teneur totale en zéolithe(s) d'au moins 30%, de préférence d'au moins 40%, de préférence encore d'au moins 70%, en poids par rapport au poids total de l'aggloméré,
• une teneur en zéolithe(s) mésoporeuse(s) supérieure ou égale à 30%, de préférence supérieure ou égale à 40%, de préférence encore supérieure ou égale à 70%, plus préférentiellement encore supérieure ou égale à 80%, et avantageusement supérieure ou égale à 90%,
• une teneur en liant, après calcination réalisée à 950°C pendant 1 heure, inférieure ou égale à 70%, de préférence inférieure ou égale à 60%, et avantageusement inférieure ou égale à 30%,
• un diamètre volumique moyen (D50), ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), inférieur(e) ou égal(e) à 7 mm, de préférence compris entre 0,05 mm et 7 mm, de manière encore préférée compris entre 0,2 mm à 5 mm et plus préférentiellement entre 0,2 mm et 2,5 mm, bornes incluses, et
• - soit une résistance à l'écrasement en lit (REL) mesurée selon la norme ASTM 7084- 04 comprise entre 0,5 MPa et 6 MPa, de préférence entre 0,75 MPa et 4 MPa, pour un matériau de diamètre volumique moyen (D50), ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), inférieur(e) à 1 mm, bornes incluses,
- soit une résistance à l'écrasement en grain, mesurée selon les normes ASTM D 4179 (201 1 ) et ASTM D 6175 (2013), comprise entre 0,5 daN et 30 daN, de préférence comprise entre 1 daN et 20 daN, pour un matériau de diamètre volumique moyen (D50), ou une longueur (plus grande dimension lorsque le matériau n'est pas sphérique), supérieur(e) ou égal(e) à 1 mm, bornes incluses.
2. Matériau selon la revendication 1 , présentant en outre une masse volumique apparente comprise entre 0,4 g. cm"3 et 1 g. cm"3, bornes incluses.
3. Matériau selon la revendication 1 ou la revendication 2, dans lequel ladite zéolithe mésoporeuse présente un rapport atomique Si/AI compris entre 1 ,5 et 5, de préférence encore compris entre 1 ,5 et 3 bornes incluses, ladite zéolithe mésoporeuse étant avantageusement choisie parmi les zéolithes FAU mésoporeuses de type Y.
4. Matériau selon l'une quelconque des revendications 1 à 3, dans lequel les cristaux de la (ou des) zéolithe(s), sont agglomérés avec un liant comprenant une argile ou un mélange d'argiles choisies parmi les kaolins, kaolinites, nacrites, dickites, halloysites, attapulgites, sépiolites, montmorillonites, bentonites, illites et métakaolins, ainsi que les mélanges de deux ou plusieurs d'entre elles en toutes proportions, et/ou des sols de silice ou d'alumine.
5. Matériau selon l'une quelconque des revendications 1 à 4, possédant à la fois les caractéristiques des zéolithes mésoporeuses, mais aussi les propriétés mécaniques des agglomérés zéolithiques conventionnels où la zéolithe est non-mésoporeuse.
6. Procédé de préparation d'un matériau selon l'une quelconque des revendications 1 à 5, comprenant au moins les étapes de :
a) agglomération de cristaux d'au moins une zéolithe mésoporeuse de rapport atomique Si/AI strictement supérieur à 1 ,4 et inférieur ou égal à 6, de diamètre moyen en nombre compris entre 0,1 μηη et 20 μηι, de préférence entre 0,1 μηη et 20 μηι, de préférence entre 0,1 μηη et 10 μηι, de manière plus préférée entre 0,5 μηη et 10 μηη et plus préférentiellement encore entre 0,5 μηη et 5 μηη et de surface externe mésoporeuse comprise entre 40 m2. g"1 et 400 m2. g"1, de préférence entre 60 m2. g"1 et 200 m2. g"1, bornes incluses, avec un liant comprenant au moins 80% d'argile ou d'un mélange d'argiles et/ou des sols de silice ou d'alumine qui sont ensuite séchés ou gélifiés pour les durcir, la (les) argile(s) étant éventuellement zéolithisable(s), et avec jusqu'à 5% d'additifs, et éventuellement une (ou plusieurs) zéolithe(s) non mésoporeuse(s), ainsi qu'avec la quantité d'eau qui permet la mise en forme du matériau aggloméré ;
b) séchage des agglomérats à une température comprise entre 50°C et 150°C ;
c) calcination des agglomérats de l'étape b) sous balayage gazeux oxydant et/ou inerte, avec notamment des gaz tels que l'oxygène, l'azote, l'air, un air sec et/ou décarbonaté, un air appauvri en oxygène, éventuellement sec et/ou décarbonaté, à une température supérieure à 150°C, typiquement comprise entre 180°C et 800°C, préférentiellement entre 200°C et 650°C, pendant quelques heures, par exemple de 2 à 6 heures ; d) éventuellement zéolithisation du liant par mise en contact des agglomérats obtenus à l'étape c) avec une solution basique alcaline ;
e) éventuellement échange(s) cationique(s) des agglomérats de l'étape c) ou de l'étape d) par mise en contact avec une solution d'au moins un sel de métal alcalin ou alcalino- terreux ;
f) lavage et séchage des agglomérats obtenus aux étapes d) ou e) dans les conditions décrites à l'étape b), et
g) obtention du matériau zéolithique aggloméré par activation des agglomérats obtenus à l'étape f) dans les conditions décrites à l'étape c).
7. Procédé selon la revendication 6, dans lequel on procède, à l'étape a), à l'agglomération de cristaux d'une zéolithe préparée en présence d'un gabarit sacrificiel.
8. Procédé selon la revendication 7, dans lequel le gabarit sacrificiel est choisi parmi les composés de type organosilanes, les oligomères, et autres.
9. Procédé selon la revendication 8, dans lequel l'élimination dudit gabarit sacrificiel est effectuée par calcination des cristaux de zéolithe avant l'étape d'agglomération a), ou encore de manière concomitante avec l'étape c).
PCT/FR2014/052055 2013-09-02 2014-08-06 Matériau zéolithique à base de zéolithe mésoporeuse WO2015028741A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016537358A JP6215475B2 (ja) 2013-09-02 2014-08-06 メソ細孔性ゼオライトに基づくゼオライト材料
KR1020167008676A KR101866671B1 (ko) 2013-09-02 2014-08-06 메조포러스 제올라이트로부터 제조되는 제올라이트 물질
CN201480048245.XA CN105658578B (zh) 2013-09-02 2014-08-06 基于中孔沸石的沸石材料
US14/914,220 US10118152B2 (en) 2013-09-02 2014-08-06 Zeolite material based on mesoporous zeolite
EP14790187.0A EP3041792A1 (fr) 2013-09-02 2014-08-06 Matériau zéolithique à base de zéolithe mésoporeuse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1358358 2013-09-02
FR1358358A FR3010072B1 (fr) 2013-09-02 2013-09-02 Materiau zeolithique a base de zeolithe mesoporeuse

Publications (1)

Publication Number Publication Date
WO2015028741A1 true WO2015028741A1 (fr) 2015-03-05

Family

ID=50137730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/052055 WO2015028741A1 (fr) 2013-09-02 2014-08-06 Matériau zéolithique à base de zéolithe mésoporeuse

Country Status (8)

Country Link
US (1) US10118152B2 (fr)
EP (1) EP3041792A1 (fr)
JP (1) JP6215475B2 (fr)
KR (1) KR101866671B1 (fr)
CN (1) CN105658578B (fr)
FR (1) FR3010072B1 (fr)
TW (1) TWI532679B (fr)
WO (1) WO2015028741A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116510A1 (fr) 2015-12-29 2017-07-06 Uop Llc Adsorbants zéolitiques sans liant et procédés de production d'adsorbants zéolitiques sans liant
CN108483473A (zh) * 2018-06-11 2018-09-04 国家能源投资集团有限责任公司 介孔-大孔复合孔结构硅铝氧化物材料及其制备方法
US11033879B2 (en) 2015-12-29 2021-06-15 Uop Llc Binderless zeolitic adsorbents
WO2022008846A1 (fr) 2020-07-10 2022-01-13 Arkema France Purification de liquides aromatiques

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3010071B1 (fr) * 2013-09-02 2015-08-21 Ceca Sa Zeolithes a porosite hierarchisee
CN106809856A (zh) * 2015-12-01 2017-06-09 中国石油天然气股份有限公司 一种重油催化裂化催化剂及其制备方法
CN106215561B (zh) * 2016-08-31 2018-04-20 苏州贝捷环保设备有限公司 一种燃煤烟气处理方法
FR3090412B1 (fr) * 2018-12-21 2022-07-15 Arkema France Matériau aggloméré zéolithique, procédé de préparation et utilisation pour la séparation non-cryogénique de gaz

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556725A (en) 1969-02-26 1971-01-19 Sylvania Electric Prod Process for producing low-bulk density silica
WO2007043731A1 (fr) 2005-10-14 2007-04-19 Korea Advanced Institute Of Science And Technology Procede de preparation d'un tamis moleculaire cristallin microporeux comprenant des structures mesoporeuses
WO2008152319A2 (fr) * 2007-06-04 2008-12-18 Ceca S.A. Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse
WO2012084276A2 (fr) 2010-12-23 2012-06-28 Total Raffinage Marketing Procédé pour la préparation d'un catalyseur d'hydroconversion industriel, catalyseur ainsi obtenu et son utilisation dans un procédé d'hydroconversion
US20120258852A1 (en) 2011-04-08 2012-10-11 Rive Technology, Inc. Mesoporous framework-modified zeolites
EP2592049A2 (fr) 2010-07-05 2013-05-15 Kaist Zéolite ou matériau analogue à celle-ci comprenant des mésopores disposés régulièrement ou irrégulièrement et leur procédé de préparation
US8486369B2 (en) 2009-01-19 2013-07-16 Rive Technology, Inc. Introduction of mesoporosity in low Si/Al zeolites
US20130183231A1 (en) 2012-01-13 2013-07-18 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
US20130183229A1 (en) 2012-01-13 2013-07-18 Rive Technology, Inc. Introduction of mesoporosity into inorganic materials in the presence of a non-ionic surfactant
CN103214003A (zh) * 2013-04-09 2013-07-24 华南理工大学 一种介孔y型沸石分子筛及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5654061A (en) 1995-01-17 1997-08-05 E. I. Du Pont De Nemours And Company Sulfide scavenging packaging materials
IT1279046B1 (it) 1995-07-17 1997-12-04 Sirap Gema Spa Vaschetta in materiale plastico per alimenti suscettibili di rilasciare liquidi
US6709687B2 (en) 2000-05-02 2004-03-23 Curwood, Inc. Anti-transfer film and package
US20020106466A1 (en) 2000-08-18 2002-08-08 Karlheinz Hausmann Active amine scavenging film for fresh fish packaging
JP2005143402A (ja) 2003-11-17 2005-06-09 Kazunori Seike 抗菌のための生鮮食品ケース。
FR2925366B1 (fr) * 2007-12-20 2011-05-27 Ceca Sa Adsorbants zeolitiques agglomeres, leur procede de preparation et leurs utilisations
US8778171B2 (en) * 2011-07-27 2014-07-15 Exxonmobil Research And Engineering Company Hydrocracking catalysts containing stabilized aggregates of small crystallites of zeolite Y associated hydrocarbon conversion processes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3556725A (en) 1969-02-26 1971-01-19 Sylvania Electric Prod Process for producing low-bulk density silica
WO2007043731A1 (fr) 2005-10-14 2007-04-19 Korea Advanced Institute Of Science And Technology Procede de preparation d'un tamis moleculaire cristallin microporeux comprenant des structures mesoporeuses
US7785563B2 (en) 2005-10-14 2010-08-31 Korea Advanced Institute Of Science And Technology Method of the preparation of microporous crystalline molecular sieve possessing mesoporous frameworks
WO2008152319A2 (fr) * 2007-06-04 2008-12-18 Ceca S.A. Agglomeres spheriques a base de zeolite(s), leur procede d'obtention et leur utilisation dans les procedes d'adsorption ou en catalyse
US8486369B2 (en) 2009-01-19 2013-07-16 Rive Technology, Inc. Introduction of mesoporosity in low Si/Al zeolites
EP2592049A2 (fr) 2010-07-05 2013-05-15 Kaist Zéolite ou matériau analogue à celle-ci comprenant des mésopores disposés régulièrement ou irrégulièrement et leur procédé de préparation
WO2012084276A2 (fr) 2010-12-23 2012-06-28 Total Raffinage Marketing Procédé pour la préparation d'un catalyseur d'hydroconversion industriel, catalyseur ainsi obtenu et son utilisation dans un procédé d'hydroconversion
US20120258852A1 (en) 2011-04-08 2012-10-11 Rive Technology, Inc. Mesoporous framework-modified zeolites
US20130183231A1 (en) 2012-01-13 2013-07-18 Rive Technology, Inc. Introduction of mesoporosity into zeolite materials with sequential acid, surfactant, and base treatment
US20130183229A1 (en) 2012-01-13 2013-07-18 Rive Technology, Inc. Introduction of mesoporosity into inorganic materials in the presence of a non-ionic surfactant
CN103214003A (zh) * 2013-04-09 2013-07-24 华南理工大学 一种介孔y型沸石分子筛及其制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Determination of Bulk Crushing Strength of Catalysts. Compression-Sieve Method", SHELL METHOD SERIES SMS1471-74
BAOYU LIU ET AL: "Synthesis and structural properties of hierarchically structured aluminosilicates with zeolite Y (FAU) frameworks", RSC ADVANCES, vol. 3, no. 35, 14 June 2013 (2013-06-14), pages 15075, XP055116925, ISSN: 2046-2069, DOI: 10.1039/c3ra41862f *
DANNY VERBOEKEND ET AL: "Hierarchical Y and USY Zeolites Designed by Post-Synthetic Strategies", ADVANCED FUNCTIONAL MATERIALS, vol. 22, no. 5, 7 March 2012 (2012-03-07), pages 916 - 928, XP055116922, ISSN: 1616-301X, DOI: 10.1002/adfm.201102411 *
FENG-SHOU XIAO ET AL.: "Hierarchically Structured Porous Materials", 2012, WILEY-VCH VERLAG GMBH & CO. KGAA: WEINHEIM, pages: 435 - 455
NATURE, vol. 359, 1992, pages 10 - 712
NINA-LUISA MICHELS ET AL: "Hierarchically Structured Zeolite Bodies: Assembling Micro-, Meso-, and Macroporosity Levels in Complex Materials with Enhanced Properties", ADVANCED FUNCTIONAL MATERIALS, WILEY - V C H VERLAG GMBH & CO. KGAA, DE, vol. 22, no. 12, 20 June 2012 (2012-06-20), pages 2509 - 2518, XP001576540, ISSN: 1616-301X, [retrieved on 20120321], DOI: 10.1002/ADFM.201103120 *
R. RYOO, NATURE MATERIALS, vol. 5, 2006, pages 718 - 723
W. SCHWIEGER, ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 1962 - 1965

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017116510A1 (fr) 2015-12-29 2017-07-06 Uop Llc Adsorbants zéolitiques sans liant et procédés de production d'adsorbants zéolitiques sans liant
EP3397593A4 (fr) * 2015-12-29 2019-08-28 Uop Llc Adsorbants zéolitiques sans liant et procédés de production d'adsorbants zéolitiques sans liant
US10981143B2 (en) 2015-12-29 2021-04-20 Uop Llc Binderless zeolitic adsorbents
US11033879B2 (en) 2015-12-29 2021-06-15 Uop Llc Binderless zeolitic adsorbents
JP7457769B2 (ja) 2015-12-29 2024-03-28 ユーオーピー エルエルシー バインダーレスゼオライト吸着剤およびバインダーレスゼオライト吸着剤の製造方法
CN108483473A (zh) * 2018-06-11 2018-09-04 国家能源投资集团有限责任公司 介孔-大孔复合孔结构硅铝氧化物材料及其制备方法
WO2022008846A1 (fr) 2020-07-10 2022-01-13 Arkema France Purification de liquides aromatiques
FR3112289A1 (fr) 2020-07-10 2022-01-14 Arkema France Purification de liquides aromatiques

Also Published As

Publication number Publication date
KR20160051844A (ko) 2016-05-11
CN105658578A (zh) 2016-06-08
US20160207024A1 (en) 2016-07-21
KR101866671B1 (ko) 2018-06-11
EP3041792A1 (fr) 2016-07-13
TWI532679B (zh) 2016-05-11
FR3010072B1 (fr) 2015-08-21
CN105658578B (zh) 2018-04-13
FR3010072A1 (fr) 2015-03-06
TW201515999A (zh) 2015-05-01
US10118152B2 (en) 2018-11-06
JP2016534014A (ja) 2016-11-04
JP6215475B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
CA2918929C (fr) Materiau zeolithique a base de zeolithe mesoporeuse
EP3218102B1 (fr) Adsorbant zéolithique à base de zéolithe mésoporeuse
WO2015028741A1 (fr) Matériau zéolithique à base de zéolithe mésoporeuse
EP3191401B1 (fr) Agrégats de nanocristaux de zéolithes
EP3043902A1 (fr) Adsorbants zéolithiques de haute surface externe, leur procédé de préparation et leurs utilisations
EP3177381B1 (fr) Adsorbants zéolithiques à faible taux de liant et à haute surface externe, leur procédé de préparation et leurs utilisations
EP3218100B1 (fr) Adsorbants zéolithiques à base de zéolithe x à faible taux de liant et à faible surface externe, leur procédé de préparation et leurs utilisations
WO2016075281A1 (fr) Adsorbants zéolithiques à base de zéolithe lsx de surface externe controlee, leur procédé de préparation et leurs utilisations
EP3177584B1 (fr) Procédé de séparation du méta-xylène utilisant un adsorbant zéolithique à haute surface externe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14790187

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014790187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014790187

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14914220

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016537358

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167008676

Country of ref document: KR

Kind code of ref document: A