WO2015027675A1 - 通信设备、基带单元和通信方法 - Google Patents

通信设备、基带单元和通信方法 Download PDF

Info

Publication number
WO2015027675A1
WO2015027675A1 PCT/CN2014/070226 CN2014070226W WO2015027675A1 WO 2015027675 A1 WO2015027675 A1 WO 2015027675A1 CN 2014070226 W CN2014070226 W CN 2014070226W WO 2015027675 A1 WO2015027675 A1 WO 2015027675A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
phase
baseband
signal
antenna
Prior art date
Application number
PCT/CN2014/070226
Other languages
English (en)
French (fr)
Inventor
黄晖
张鹏程
方冬梅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020167007377A priority Critical patent/KR101722946B1/ko
Priority to EP14839494.3A priority patent/EP3029900B1/en
Priority to JP2015533444A priority patent/JP5981658B2/ja
Publication of WO2015027675A1 publication Critical patent/WO2015027675A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0682Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using phase diversity (e.g. phase sweeping)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0808Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching comparing all antennas before reception
    • H04B7/0811Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching comparing all antennas before reception during preamble or gap period
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication device, a baseband unit, and a communication method. Background of the invention
  • a base station having a dual-column cross-polarized antenna typically includes a baseband unit and a medium radio unit.
  • the medium RF unit can be connected to the dual-column cross-polarized antenna via a cable (Cable).
  • the baseband unit can generate a baseband signal and then send it to the middle radio frequency unit, which can convert the baseband signal into a radio frequency signal and then send it to the user equipment (User Equipment, UE) through the dual-column cross-polarized antenna.
  • the middle radio frequency unit can convert the baseband signal into a radio frequency signal and then send it to the user equipment (User Equipment, UE) through the dual-column cross-polarized antenna.
  • Embodiments of the present invention provide a communication device, a baseband unit, and a communication method to solve the problem that the phase of each transmitted signal cannot be accurately controlled.
  • a communication device including: a baseband unit, a medium radio frequency unit, and a dual-column cross-polarized antenna; the baseband unit and the middle radio frequency unit are connected by an optical fiber, and the central radio frequency unit and the The dual-column cross-polarized antennas are connected by a feeder cable, the middle radio frequency unit includes four transmitting channels, and the dual-column cross-polarized antenna is composed of a first set of co-polarized antennas and a second set of co-polarized antennas.
  • the communication device operates in a mode of m logical ports, where m is a positive integer;
  • the baseband unit is configured to: determine a compensation coefficient corresponding to each of the four transmission channels; and determine a feeder compensation phase according to the received uplink detection signal of the user equipment UE, where the feeder compensation phase is the first a difference between a phase difference between a feeder cable corresponding to the same-polarized antenna and a phase difference of the feeder cable corresponding to the second group of the same-polarized antenna; generating 4 channels according to the m-channel signal corresponding to the m logical ports a baseband signal; correcting the four baseband signals according to the compensation coefficients respectively corresponding to the four transmission channels and the feeder compensation phase; and transmitting the corrected four baseband signals to the middle radio frequency unit;
  • the medium radio frequency unit is configured to: send the corrected four baseband signals to the UE by using the four transmit channels and the dual-column cross-polarized antenna.
  • the baseband unit is configured to determine, according to the received uplink detection signal of the user equipment UE, that the cable compensation phase comprises: the baseband unit, configured to: Determining, by the uplink detection signal of the received UE, a channel response between the UE and the baseband unit; determining, according to a channel response between the UE and the baseband unit, that the UE crosses the dual column
  • the channel between the polarized antennas is a direct LOS path; the feeder compensation phase is determined according to a channel response between the UE and the baseband unit.
  • the baseband unit is configured to determine, according to a channel response between the UE and the baseband unit, the UE and the The channel between the dual-column cross-polarized antennas is an LOS path
  • the method includes: the baseband unit, configured to: determine a full-band airspace correlation matrix according to a channel response between the UE and the baseband unit; The full-band spatial correlation matrix determines that the channel between the UE and the dual-column cross-polarized antenna is an LOS path.
  • the first group of co-polarized antennas is composed of a first antenna and a third antenna
  • the second group is co-polarized
  • the antenna is composed of a second antenna and a fourth antenna
  • a channel between the UE and the baseband unit is composed of a first channel, a second channel, a third channel, and a fourth channel, where the first antenna and the first channel are
  • the second antenna corresponds to the second channel
  • the third antenna corresponds to the third channel
  • the fourth antenna corresponds to the fourth channel
  • the baseband unit is configured to determine, according to the full-band spatial correlation matrix, that the channel between the UE and the dual-column cross-polarized antenna is an LOS path, where the baseband unit is configured to: Determining, between the UE and the The channel between the two columns of cross-polarized antennas is the LOS path.
  • the baseband unit is configured to determine, according to a channel response between the UE and the baseband unit, the cable compensation phase
  • the baseband unit is configured to: determine, according to the full-band spatial correlation matrix, a difference between a first phase and a second phase, where the first phase is the first channel and the third channel a phase difference between the second channel and the fourth channel; filtering a difference between the first phase and the second phase to obtain The feeder cable compensates for the phase.
  • r 30 (p) r 3l (p) where the element ⁇ p) in the RO) indicates between the UE and the baseband unit when the base station unit receives the uplink sounding signal of the UE for the pth time Correlation between the ith channel and the jth channel, p is a positive integer;
  • the baseband unit is configured to: the correlation between the first channel and the third channel is greater than a preset threshold, and a correlation between the second channel and the fourth channel is greater than the threshold
  • the channel between the UE and the dual-column cross-polarized antenna is determined to be an LOS path, including:
  • the baseband unit is configured to: determine, when the following inequalities are satisfied, that the channel between the UE and the dual-column cross-polarized antenna is LOS when receiving the uplink sounding signal of the UE at the pth time Trail: Bu 02 0)
  • Thre represents the threshold
  • the baseband unit is configured to determine a difference between the first phase and the second phase according to the full-band spatial correlation matrix
  • the baseband unit is configured to: determine, according to the following equation, a difference ⁇ between the first phase and the second phase when the uplink detection signal of the UE is received at the pth time,
  • HP phase(r 20 (p)) - phase(r 31 (p))
  • ??1 ⁇ 2we(r 2 ((??)) represents the first phase
  • ;?/1 ⁇ 2we(r 31 (;?)) represents the second phase
  • the baseband unit is used for the first Filtering the difference between a phase and the second phase to obtain the feeder compensation phase
  • the baseband unit is configured to:
  • m is 2;
  • the baseband unit is configured to generate four baseband signal packets according to the m path signals corresponding to the m logical ports, and the baseband unit is configured to: generate four baseband signals according to the following equation,
  • k denotes the subcarrier index
  • Xl (k) , x 2 (and x 3 ( :) denotes 4 baseband signals on the kth subcarrier
  • (k) and (k) denote The signal corresponding to the two logical ports on the kth subcarrier
  • d represents the number of cyclic delay points
  • N ffl represents the number of FFT points of the system fast Fourier transform
  • k is a positive integer
  • x Q (and x 2 correspond to The first set of co-polarized antennas
  • x 3 ( :) respectively correspond to the second set of co-polarized antennas.
  • m is 4;
  • the baseband unit is configured to generate four baseband signals according to the m-channel signals corresponding to the m logical ports, where the baseband unit is configured to: generate a first baseband signal according to a signal corresponding to the first logical port. Generating a second baseband signal based on a signal corresponding to the third logical port, generating a third baseband signal based on the signal corresponding to the second logical port, and generating a fourth path based on the signal corresponding to the fourth logical port Baseband signal.
  • the baseband unit is configured to generate a first baseband signal according to a signal corresponding to the first logical port, according to the third The signal corresponding to the logical port generates a second baseband signal, generates a third baseband signal according to the signal corresponding to the second logical port, and generates a fourth baseband signal according to the signal corresponding to the fourth logical port, including:
  • the baseband unit is configured to:
  • k represents the subcarrier index
  • Xl (k) , x 2 ( and x 3 ( :) represent the 4 baseband signals on the kth subcarrier, Sl (k) , ( ⁇ ) and Representing a signal corresponding to four logical ports on the kth subcarrier, k being a positive integer
  • the communications device is a base station.
  • a baseband unit including a processor and a memory
  • the memory and the processor are connected by a data bus; wherein the memory is configured to store executable instructions;
  • the processor executes executable instructions stored in the memory, and is configured to: determine a compensation coefficient corresponding to each of the four transmitting channels of the central radio unit; and determine a feeding compensation phase according to the received uplink detecting signal of the user equipment UE
  • the dual-column cross-polarized antenna of the base station to which the baseband unit belongs is composed of a first set of co-polarized antennas and a second set of co-polarized antennas, and the feeder cable compensation phase is the first set of co-polarization a difference between a phase difference between the feeder cables corresponding to the antenna and a phase difference of the feeder cables corresponding to the second group of the same-polarized antennas; and four baseband signals are generated according to the m-channel signals corresponding to the one of the m logical ports, wherein m is a positive integer; correcting the four baseband signals according to the compensation coefficients corresponding to the four transmission channels and the feeder compensation phase, so as to pass the four transmission channels and the dual-column cross-polarized antenna Transmitting
  • the determining, by the processor, the cable compensation phase according to the uplink detection signal of the received UE includes:
  • the processor is configured to: determine, according to the received uplink detection signal of the UE, a channel response between the UE and the baseband unit; determine, according to a channel response between the UE and the baseband unit, The channel between the UE and the dual-column cross-polarized antenna is a direct LOS path; and the feeder compensation phase is determined according to a channel response between the UE and the baseband unit.
  • the processor is configured to determine, according to a channel response between the UE and the baseband unit, the UE and the dual The channel between the column cross-polarized antennas is an LOS path: the processor is configured to: determine a full-band spatial correlation matrix according to a channel response between the UE and the baseband unit; according to the full-band spatial correlation matrix And determining, by the eNB, that the channel between the UE and the dual-column cross-polarized antenna is an LOS path.
  • the first group of co-polarized antennas is composed of a first antenna and a third antenna
  • the second group is co-polarized
  • the antenna is composed of a second antenna and a fourth antenna
  • the channel between the UE and the baseband unit is composed of a first channel, a second channel, a third channel, and a fourth channel, where the first antenna corresponds to a first channel, and the second antenna Corresponding to the second channel, the third antenna corresponds to the third channel, and the fourth antenna corresponds to the fourth channel;
  • the processor is configured to: Determining the UE and the double-column intersection pole if a correlation between the third channel is greater than a preset threshold, and a correlation between the second channel and the fourth channel is greater than the threshold The channel between the antennas is the LOS path.
  • the processor is configured to determine, according to a channel response between the UE and the baseband unit, the cable compensation phase includes :
  • the processor is configured to: determine, according to the full-band spatial correlation matrix, a difference between a first phase and a second phase, where the first phase is a phase between the first channel and the third channel Poor, the second phase is a phase difference between the second channel and the fourth channel; filtering a difference between the first phase and the second phase to obtain the feed cable Compensate the phase.
  • the element ⁇ ;?) indicates the i-th channel and the j-th channel between the UE and the baseband unit when the base station unit receives the uplink sounding signal of the UE for the pth time.
  • p is a positive integer
  • the processor is configured to: the correlation between the first channel and the third channel is greater than a preset threshold, and the correlation between the second channel and the fourth channel is greater than the threshold
  • determining that the channel between the UE and the dual-column cross-polarized antenna is an LOS path includes:
  • the processor is configured to: determine, when the following inequalities are satisfied, that the channel between the UE and the dual-column cross-polarized antenna is the LOS path when the uplink detection signal of the UE is received in the pth time: ⁇ 02 0)
  • Thre represents the threshold
  • the processor And determining, by using the full-band spatial correlation matrix, a difference between the first phase and the second phase, where: the processor is configured to: determine, according to the following equation, an uplink detection that is received by the UE at the pth time The difference ⁇ between the first phase and the second phase of the signal,
  • HP phase(r 20 (p)) - phase(r 31 (p))
  • the processor is configured to filter a difference between the first phase and the second phase to obtain the cable compensation phase, including:
  • the processor is configured to: when p is greater than 1, obtain a cable compensation phase A (J7) when the uplink detection signal of the UE is received at the pth time according to the following equation:
  • ⁇ ( ⁇ ) (1 - ⁇ ) * ⁇ ( ⁇ - 1) + ⁇ * ⁇ ( ⁇ )
  • ⁇ -1) represents the feeder cable when the uplink detection signal of the UE is received (pl) times Compensation phase, ⁇ represents the filter coefficient;
  • the feeder compensation phase A(l) when the uplink detection signal of the UE is received for the first time is obtained according to the following equation:
  • m is 2;
  • the processor is configured to generate four baseband signals according to the m-channel signals corresponding to the m logical ports, including: the processor is configured to:
  • k denotes a subcarrier index
  • x Q C ⁇ ) Xl (k), x 2 C and x 3 :) represent 4 baseband signals on the kth subcarrier
  • (k) and (k) denote Signals corresponding to two logical ports on k subcarriers
  • d represents the number of cyclic delay points
  • N ffl represents the number of FFT points of the system fast Fourier transform
  • k is a positive integer
  • X Q ( :) and x 2 (k) respectively correspond to the first set of co-polarized antennas
  • X, (k) and x 3 (k) respectively correspond to the second set of co-polarized antennas.
  • m is 4;
  • the processor is configured to generate four baseband signals according to the m-channel signals corresponding to the m logical ports, where the processor is configured to: generate a first baseband signal according to a signal corresponding to the first logical port, according to The signal corresponding to the third logical port generates a second baseband signal, generates a third baseband signal according to the signal corresponding to the second logical port, and generates a fourth baseband signal according to the signal corresponding to the fourth logical port.
  • the processor is configured to generate a first baseband signal according to a signal corresponding to the first logical port, according to the third The signal corresponding to the logical port generates a second baseband signal, generates a third baseband signal according to the signal corresponding to the second logical port, and generates a fourth baseband signal according to the signal corresponding to the fourth logical port, including:
  • the processor is configured to: generate the 4-way baseband signal according to the following equation,
  • k denotes a subcarrier index
  • x Q :: Xl (k) , x :) and x 3 :) represent 4 baseband signals on the kth subcarrier
  • Sl (k) , ⁇ C ⁇ And ⁇ C ⁇ ) represent signals corresponding to 4 logical ports on the kth subcarrier, respectively, k being a positive integer
  • X Q (and X 2 correspond to the first set of co-polarized antennas, i ( k) and X 3 (k) correspond to the second set of co-polarized antennas, respectively.
  • a communication method including: determining a compensation coefficient corresponding to each of the four transmission channels; determining a feeder compensation phase according to the received uplink detection signal of the user equipment UE, where the double-column crossing pole of the base station
  • the antenna is composed of a first set of co-polarized antennas and a second set of co-polarized antennas, wherein the compensated phase is the phase difference of the feeders corresponding to the first set of co-polarized antennas and the second set of co-polarized antennas a difference between the phase differences of the feeder cables; generating 4 baseband signals according to the m-channel signals corresponding to the m logical ports, wherein m is a positive integer; respectively, corresponding compensation coefficients and the feeds according to the 4 transmission channels
  • the cable compensates the phase, and corrects the four baseband signals to transmit the corrected four baseband signals to the UE through the four transmit channels and the dual-column cross-polarized antenna.
  • the receiving, according to the received uplink detection signal of the UE, Determining the feeder compensation phase comprising: determining a channel response between the UE and the base station according to the received uplink detection signal of the UE; determining, according to a channel response between the UE and the base station, The channel between the UE and the dual-column cross-polarized antenna is a direct LOS path; and the feeder compensation phase is determined according to a channel response between the UE and the base station.
  • the determining, according to a channel response between the UE and the base station, determining the UE and the dual-column cross pole The channel between the antennas is an LOS path, including: determining a full-band spatial correlation matrix according to a channel response between the UE and the base station; determining, according to the full-band spatial correlation matrix, the UE and the dual The channel between the column cross-polarized antennas is the LOS path.
  • the first group of co-polarized antennas is composed of a first antenna and a third antenna
  • the second group is co-polarized
  • the antenna is composed of a second antenna and a fourth antenna
  • a channel between the UE and the base station is composed of a first channel, a second channel, a third channel, and a fourth channel, where the first antenna corresponds to the first channel
  • the second antenna corresponds to the second channel
  • the third antenna corresponds to the third channel
  • the fourth antenna corresponds to the fourth channel
  • Determining, according to the full-band spatial correlation matrix, that the channel between the UE and the dual-column cross-polarized antenna is an LOS path including: correlation between the first channel and the third channel If the correlation is greater than a preset threshold, and the correlation between the second channel and the fourth channel is greater than the threshold, determining that the channel between the UE and the dual-column cross-polarized antenna is LOS trail.
  • the determining, by the channel response between the UE and the base station, the compensation phase of the feeder including: Deriving a full-band spatial correlation matrix, determining a difference between the first phase and the second phase, the first phase being a phase difference between the first channel and the third channel, the second phase being a phase difference between the second channel and the fourth channel; filtering a difference between the first phase and the second phase to obtain the feeder compensation phase.
  • the element ⁇ ;?) in the RO) indicates that when the uplink detection signal of the UE is received at the pth time Correlation between the i-th channel and the j-th channel between the UE and the baseband unit, p is a positive integer; the correlation between the first channel and the third channel is greater than a pre- And determining, by the threshold, that the channel between the UE and the dual-column cross-polarized antenna is an LOS path, where a correlation between the second channel and the fourth channel is greater than the threshold,
  • the method includes: determining, by using the following inequalities, that the channel between the UE and the dual-column cross-polarized antenna is the LOS path when the uplink detection signal of the UE is received in the pth time: 020) ⁇ ( ⁇ 22 ( ⁇ ) > Thre,
  • Thre represents the threshold
  • the determining, by using the full-band spatial correlation matrix, the difference between the first phase and the second phase includes: Determining a difference ⁇ between the first phase and the second phase when the uplink sounding signal of the UE is received at the pth time according to the following equation,
  • HP phase(r 20 (p)) - phase(r 31 (p))
  • ??1 ⁇ 2we(r 2 ((??)) represents the first phase
  • ;?/1 ⁇ 2we(r 31 (;?)) represents the second phase
  • the pair of the first phase and the The difference between the second phases is filtered to obtain the feeder compensation phase, including: when p is greater than 1, the cable is obtained when the uplink detection signal of the UE is received in the pth time according to the following equation Compensation phase A (J7) :
  • ⁇ ( ⁇ ) (1 - ⁇ ) * ⁇ ( ⁇ - 1) + ⁇ * ⁇ ( ⁇ )
  • ⁇ -1) represents the (p-1)th time when the uplink sounding signal of the UE is received
  • the feeder compensates for the phase, and ⁇ represents the filter coefficient
  • m is 2;
  • Generating 4 baseband signals according to the m channel signals corresponding to the m logical ports including: generating 4 baseband signals according to the following equation,
  • k denotes the subcarrier index
  • Xl (k) , x 2 (and x 3 ( :) denotes 4 baseband signals on the kth subcarrier
  • (k) and (k) denote The signal corresponding to the two logical ports on the kth subcarrier
  • d represents the number of cyclic delay points
  • N ffl represents the number of FFT points of the system fast Fourier transform
  • k is a positive integer
  • x Q (and x 2 (k) respectively correspond In the first set of co-polarized antennas
  • X, (k) and x 3 (k) respectively correspond to the second set of co-polarized antennas.
  • m is 4; according to the m corresponding to the m logical ports
  • the road signal generates four baseband signals, and includes: generating a first baseband signal according to a signal corresponding to the first logical port, and generating a second baseband signal according to the signal corresponding to the third logical port, according to the second logic
  • the signal corresponding to the port generates a third baseband signal, and generates a fourth baseband signal according to the signal corresponding to the fourth logical port.
  • the generating, according to the signal corresponding to the first logical port, the first baseband signal, corresponding to the third logical port The signal generates a second baseband signal, generates a third baseband signal according to the signal corresponding to the second logical port, and generates a fourth baseband signal according to the signal corresponding to the fourth logical port, including:
  • k denotes the subcarrier index
  • x Q ⁇ ), Xl (k), x 2 C and x 3 represent the 4 baseband signals on the kth subcarrier
  • ( ⁇ ), Sl (k) , ⁇ ⁇ And ⁇ ) indicate signals corresponding to 4 logical ports on the kth subcarrier
  • k is a positive integer
  • the fourth aspect provides a baseband unit, including: a determining unit, configured to determine a compensation coefficient corresponding to each of the four transmitting channels; the determining unit is further configured to determine, according to the received uplink detection signal of the user equipment UE, a feeder compensation phase, wherein the dual-column cross-polarized antenna of the base station to which the baseband unit belongs is composed of a first set of co-polarized antennas and a second set of co-polarized antennas, and the compensation phase of the feeder is the first group a difference between a phase difference of the feeder cable corresponding to the polarized antenna and a phase difference of the feeder cable corresponding to the second group of the same-polarized antenna; a generating unit configured to generate four basebands according to the m-channel signal corresponding to the one of the m logical ports a signal, where m is a positive integer; a correction unit, for Correcting the corresponding compensation coefficients of the four transmitting channels and the feeder compensation phase, and correcting the four baseband signals to pass to
  • the inter-channel is a direct LOS path; the feeder compensation phase is determined according to a channel response between the UE and the baseband unit.
  • the determining unit is configured to determine, according to a channel response between the UE and the baseband unit, the UE and the The channel between the dual-column cross-polarized antennas is an LOS path, and the determining unit is configured to: determine a full-band spatial correlation matrix according to a channel response between the UE and the baseband unit; according to the full-band airspace The correlation matrix determines that the channel between the UE and the dual-column cross-polarized antenna is an LOS path.
  • the first group of co-polarized antennas is composed of a first antenna and a third antenna
  • the second group is co-polarized
  • the antenna is composed of a second antenna and a fourth antenna
  • a channel between the UE and the baseband unit is composed of a first channel, a second channel, a third channel, and a fourth channel, where the first antenna and the first channel are
  • the second antenna corresponds to the second channel
  • the third antenna corresponds to the third channel
  • the fourth antenna corresponds to the fourth channel
  • the determining unit Determining, by the determining unit, that the channel between the UE and the dual-column cross-polarized antenna is an LOS path according to the full-band spatial correlation matrix: the determining unit is configured to: Determining the UE and the dual column if the correlation between the third channel is greater than a preset threshold, and the correlation between the second channel and the fourth channel is greater than the threshold The channel between the cross-polarized antennas is the LOS path.
  • the determining unit is configured to determine, according to a channel response between the UE and the baseband unit, the cable compensation phase
  • the determining unit is configured to: determine, according to the full-band spatial correlation matrix, a difference between a first phase and a second phase, where the first phase is the first channel and the third channel a phase difference between the second phase and the fourth channel; filtering a difference between the first phase and the second phase to obtain a The feeder cable compensates for the phase.
  • the element ⁇ p) in the RO) indicates an ith channel and a jth channel between the UE and the baseband unit when the base station unit receives the uplink sounding signal of the UE for the pth time.
  • the correlation between, p is a positive integer;
  • the determining unit is configured to: the correlation between the first channel and the third channel is greater than a preset threshold, and a correlation between the second channel and the fourth channel is greater than the threshold
  • the channel between the UE and the dual-column cross-polarized antenna is determined to be an LOS path, including:
  • the determining unit is specifically configured to: determine, when the following inequalities are satisfied, that the channel between the UE and the dual-column cross-polarized antenna is LOS when the uplink sounding signal of the UE is received in the pth time Trail:
  • Thre represents the threshold
  • the determining unit is configured to determine a difference between the first phase and the second phase according to the full-band spatial correlation matrix And the determining unit is configured to: determine, according to the following equation, a difference ⁇ between the first phase and the second phase when the uplink detecting signal of the UE is received in the pth time,
  • A(p) phase(r 20 ( ⁇ )) - phase(r l ( ⁇ ))
  • the determining unit is configured to use the first phase and the second phase The difference between the two is filtered to obtain the compensation phase of the feeder, including:
  • the determining unit is configured to:
  • ⁇ ( ⁇ ) (1- ⁇ )* ⁇ ( ⁇ - 1) + ⁇ * ⁇ ( ⁇ )
  • A(J7-1) represents the uplink sounding signal received by the UE at (p-1)th time
  • the feeder cable compensates the phase, and ⁇ represents the filter coefficient
  • m is 2;
  • the generating unit is configured to generate four baseband signals according to the m road signals corresponding to the m logical ports, where the generating unit is configured to: generate four baseband signals according to the following equation,
  • k denotes the subcarrier index
  • Xl (k) , x 2 (and x 3 ( :) denotes 4 baseband signals on the kth subcarrier
  • (k) and (k) denote Signals corresponding to two logical ports on the kth subcarrier
  • d represents the number of cyclic delay points
  • N ffl represents the number of FFT points of the system fast Fourier transform
  • k is a positive integer
  • x Q ( :) and x 2 (k) Corresponding to the first set of co-polarized antennas, ! (k) and x 3 (k) respectively correspond to the second set of co-polarized antennas.
  • m is 4;
  • the generating unit is configured to generate four baseband signals according to the m-channel signals corresponding to the m logical ports, where the generating unit is configured to: generate a first baseband signal according to a signal corresponding to the first logical port, Generating a second baseband signal based on a signal corresponding to the third logical port, generating a third baseband signal based on the signal corresponding to the second logical port, and generating a fourth baseband based on the signal corresponding to the fourth logical port signal.
  • the generating unit is configured to generate a first baseband signal according to a signal corresponding to the first logical port, according to the third The signal corresponding to the logical port generates a second baseband signal, generates a third baseband signal according to the signal corresponding to the second logical port, and generates a fourth baseband signal according to the signal corresponding to the fourth logical port, including:
  • the generating unit is configured to: generate the 4-way baseband signal according to the following equation,
  • k represents the subcarrier index
  • x Q ( ⁇ ), Xl (k), x 2 (and x 3 ( :) represent the 4 baseband signals on the kth subcarrier, Sl (k) , ( ⁇ ) and It represents the k-th subcarrier ports respectively corresponding to four logical signals
  • k is a positive integer
  • x Q (and x 2 (respectively corresponding to the first set of co-polarization antennas, (k) and X 3 (k ) corresponding to the second set of co-polarized antennas, respectively.
  • the cable compensation phase is determined according to the uplink detection signal of the UE, and the four baseband signals are corrected according to the compensation coefficients of the four transmission channels and the cable compensation phase, so that the signals of the respective channels can be accurately controlled.
  • FIG. 1 is a schematic flow chart of a communication method in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a scenario in which an embodiment of the present invention may be applied.
  • FIG. 3 is a schematic diagram of logical port mapping in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic diagram of logical port mapping in accordance with another embodiment of the present invention.
  • Figure 5 is a schematic block diagram of a baseband unit in accordance with one embodiment of the present invention.
  • FIG. 6 is a schematic block diagram of a baseband unit in accordance with another embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a communication device in accordance with an embodiment of the present invention. Mode for carrying out the invention
  • FIG. 1 is a schematic flow chart of a communication method in accordance with one embodiment of the present invention.
  • the method of Figure 1 is performed by a baseband unit within a base station.
  • a baseband unit in a base station such as a distributed base station, a macro base station, or a small base station.
  • the cable compensation phase is a phase difference of the feeder cable corresponding to the first group of the same polarization antenna and the second group The difference between the phase differences of the feeder cables corresponding to the same polarization antenna.
  • the base station may include a baseband unit, a medium radio unit, and a dual column cross-polarized antenna.
  • the baseband unit and the middle radio frequency unit can be connected by an optical fiber, and the middle radio frequency unit and the double-column cross-polarized antenna can be connected by a feeding cable, the middle radio frequency unit can include four transmitting channels, and the double-column cross-polarized antenna can be A set of co-polarized antennas and a second set of co-polarized antennas, the base station can operate in a mode of m logical ports, where m is a positive integer.
  • a radio remote unit RRU
  • the dual-column cross-polarized antenna may include four columns of polarized antennas, that is, a first column of positive 45-degree polarized antennas, a first column of negative 45-degree polarized antennas, and a second column of positive 45-degree polarized antennas. And the second column is a negative 45 degree polarized antenna. Therefore, the first set of co-polarized antennas may comprise a first column of positive 45 degree polarized antennas and a second set of positive 45 degree polarized antennas, and the second set of co-polarized antennas may comprise a first column of negative 45 degree polarized antennas and The second column has a negative 45 degree polarized antenna.
  • first group of co-polarized antennas may also be referred to as a first pair of co-polarized antennas
  • the second group of co-polarized antennas may also be referred to as a second pair of co-polarized antennas.
  • the middle radio frequency unit can be provided with four antenna interfaces, and each antenna interface is connected to one of the double-column cross-polarization antennas through one feeder cable. Therefore, each column of antennas corresponds to one feeder cable.
  • the cable phase difference between the first set of co-polarized antennas may be the phase difference between the feeder cables corresponding to the two columns of the first set of co-polarized antennas, for example, between the first set of co-polarized antennas
  • the feeder phase difference may be a phase difference between a feeder cable connected to the first column of positive 45 degree polarized antennas and a feeder cable connected to the second column of positive 45 degree polarized antennas.
  • the cable phase difference between the second set of co-polarized antennas may be the phase difference between the feeder cables corresponding to the two columns of the second set of co-polarized antennas, for example, between the second set of co-polarized antennas
  • the cable phase difference can be connected to the first column
  • the feeder compensation phase is the difference between the feeder phase difference between the first set of co-polarized antennas and the feeder cable phase difference between the second set of co-polarized antennas, so the feeder compensation phase can be used to compensate the two groups.
  • the difference between the phase differences of the feeders corresponding to the polarized antennas is different between the feeder cables and the feeder cables of the dual-column cross-polarized antennas, which may cause a phase difference between the feeders.
  • the phase difference of the feeder cables corresponding to the groups of the same-polarized antennas is inconsistent.
  • the baseband unit only corrects the transmission signal by using the compensation coefficient of the transmission channel, that is, only the transmission channel inside the middle RF unit is corrected, and the phase difference between the feeder cables is not considered.
  • such a phase difference causes the phase of the transmitted signal to be not accurately controlled, reducing the downstream throughput.
  • the difference between the phase differences of the feeder cables corresponding to the groups of co-polarized antennas is fully considered when transmitting signals.
  • the baseband unit may determine the feeder compensation phase according to the uplink detection signal of the UE. Then, according to the compensation coefficients of the four transmitting channels and the compensation phase of the feeding cable, the generated four baseband signals can be corrected, so that the phase of each signal can be accurately controlled, and the downlink throughput of the system can be improved.
  • the cable compensation phase is determined according to the uplink detection signal of the UE, and the four baseband signals are corrected according to the compensation coefficients of the four transmission channels and the cable compensation phase, so that the signals of the respective channels can be accurately controlled. Phase.
  • the phase of each transmission signal can be accurately controlled, the downlink throughput can be improved.
  • embodiments of the present invention can be applied not only to a system of a dual-column cross-polarized antenna, but also to a system of multiple sets of dual-column cross-polarized antennas.
  • a system of a dual-column cross-polarized antenna but also to a system of multiple sets of dual-column cross-polarized antennas.
  • 8-column cross-polarized antenna it can be seen as two sets of dual-column cross-polarized antennas.
  • the process from step 110 to step 140 can be performed.
  • the compensation coefficients of the four transmission channels may be determined according to an existing correction scheme.
  • the BBU can transmit a correction reference signal in each transmission path, and send the correction reference signal to the BBU after passing through the transmission channel, the correction coupling circuit, and the correction receiving channel.
  • the BBU can calculate the amplitude and/or phase difference between the signal returned by each transmit channel and the transmit corrected reference signal as the compensation factor for each transmit channel.
  • the compensation factor of the transmit channel can be used to correct the amplitude and / or phase of the transmit channel.
  • the compensation coefficients of the respective receiving channels can also be calculated.
  • the BBU can transmit a corrected reference signal on the corrected transmitting channel, and after the corrected reference signal passes through the corrected transmitting channel, the corrected coupling circuit, and the receiving channel, Return to the BBU.
  • the BBU can calculate the signal and receive correction returned by each receiving channel.
  • the amplitude and/or phase difference between the reference signals is used as the compensation factor for each receive channel.
  • the compensation coefficients of the receive channel can be used to correct the signals received by the base station from the UE.
  • the uplink sounding signal of the UE may be obtained by using the compensation coefficient of the receiving channel after the base station receives the uplink sounding signal sent by the UE.
  • the compensation factor of the receive channel can be used to correct the amplitude and/or phase of the receive channel.
  • a channel response between the UE and the base station may be determined according to the received uplink detection signal of the UE.
  • the channel between the UE and the dual-column cross-polarized antenna is determined to be a Line of Sight (LOS) path according to a channel response between the UE and the base station.
  • a feeder compensation phase may be determined based on a channel response between the UE and the base station.
  • the channel between the UE and the dual-column cross-polarized antenna may refer to a channel between the transmitting antenna of the UE and the dual-column cross-polarized antenna of the base station.
  • the channel between the UE and the base station refers to the channel between the transmitting antenna of the UE and the baseband unit of the base station. Therefore, the channel between the UE and the base station may be composed of a channel between the transmitting antenna of the UE and the dual-column cross-polarized antenna of the base station, a feeder cable, and a receiving channel inside the central radio unit.
  • a dual-column cross-polarized antenna there may be four channels between the transmitting antenna of the UE and the baseband unit of the base station. Accordingly, there may be four channels between the transmitting antenna of the UE and the dual-column cross-polarized antenna.
  • Each channel between the transmitting antenna of the UE and the baseband unit of the base station may be between a channel between the transmitting antenna of the UE and the column of polarized antennas, the column polarized antenna, the antenna interface of the column polarized antenna and the base station
  • the feeder cable and the receiving channel inside the base station are composed. Therefore, there is a one-to-one correspondence between the channel between the UE and the dual-column cross-polarized antenna and the channel between the UE and the baseband unit.
  • the channel response between the UE and the base station determined according to the uplink sounding signal of the UE may refer to the channel response between the UE and the baseband unit.
  • a channel response between the UE and the base station obtained according to the uplink sounding signal of the UE may refer to a channel response between the UE's transmit antenna and the BBU.
  • the LOS path refers to the path where there is no obstacle obstruction between the two communicating parties.
  • the phase difference between the two channels between the same-polarized antenna and the UE is the same as the other group.
  • the phase difference between the two channels between the polarized antenna and the UE is the same.
  • the base station processing unit of the transmitting antenna and the base station of the UE may be determined according to the received uplink detecting signal of the UE.
  • the channel response between the two, the process can refer to the existing process, and will not be described again.
  • the cable compensation can be determined according to the channel response between the UE and the base station, that is, the channel response between the UE and the baseband unit.
  • a full-band spatial correlation matrix may be determined according to a channel response between the UE and the base station.
  • the channel between the UE and the dual-column cross-polarized antenna can then be determined as the LOS path according to the full-band spatial correlation matrix.
  • the full-band airspace correlation matrix can be determined by the response result of each channel between the UE and the base station.
  • Each element in the full-band spatial correlation matrix may represent a correlation between the two channels of the UE and the base station. Therefore, whether the channel between the UE and the dual-column cross-polarized antenna is the LOS path can be determined according to the full-band spatial correlation matrix.
  • the first set of co-polarized antennas may be composed of a first antenna and a third antenna
  • the second set of co-polarized antennas may be composed of a second antenna and a fourth antenna.
  • the channel between the UE and the base station is composed of a first channel, a second channel, a third channel, and a fourth channel, where the first antenna corresponds to the first channel, the second antenna corresponds to the second channel, and the third antenna and the third channel Corresponding to the channel, the fourth antenna corresponds to the fourth channel.
  • the channel is the LOS path.
  • the first antenna may refer to the first column of the positive 45 degree antenna
  • the second antenna may refer to the first column of the negative 45 degree antenna
  • the third antenna may refer to the second column of the positive 45 degree antenna
  • the fourth antenna may refer to the above
  • the second column has a negative 45 degree antenna.
  • the channel between the UE and the base station is in one-to-one correspondence with the dual-column cross-polarized antenna. Therefore, the channel between the UE and the base station may include four channels, which is referred to as a first channel and a second channel in the embodiment of the present invention. , the third channel and the fourth channel.
  • the channel response between a set of co-polarized antennas and the transmitting antenna of the UE is the same in the entire frequency band, and only differs by one phase, so The correlation between the two channels between the co-polarized antenna and the transmitting antenna of the UE is relatively large. If, in the case of the non-LOS path, the channel response between a set of co-polarized antennas and the transmit antenna of the UE is different on each subcarrier, then two channels between the co-polarized antenna and the transmit antenna of the UE The correlation is relatively small.
  • each element can represent the correlation between the two channels of the UE and the base station. Since the responses of the respective receiving channels are the same, and the difference between the phase differences of the feeder cables corresponding to the two sets of co-polarized antennas is caused by a fixed phase difference between the channels on the full frequency band, the amplitude value of the channel correlation is not affected. Therefore, the amplitude of the correlation of the channel corresponding to the first group of co-polarized antennas in the channel between the UE and the base station and the correlation of the channel corresponding to the channel of the second group of the same-polarized antenna can be utilized according to the full-band spatial correlation matrix. To judge the LOS path.
  • the magnitude of the correlation between the first channel and the third channel and the magnitude of the correlation between the second channel and the fourth channel can be utilized to determine the LOS path.
  • the correlation between the first channel and the third channel can be determined. Whether it is greater than a certain threshold, and determines whether the correlation between the second channel and the fourth channel is also greater than the threshold. If both correlations are greater than the threshold, it may be stated that the channel between the UE and the dual-column cross-polarized antenna is the LOS path.
  • the above threshold may be preset, and the value may be in the range of 0 to 1, for example, the threshold may be set to 0.8 or 0.9.
  • the first phase and the second phase may be determined according to the full-band spatial correlation matrix.
  • the difference between the phases, the first phase is the phase difference between the first channel and the third channel, and the second phase is the phase difference between the second channel and the fourth channel.
  • the difference between the first phase and the second phase can be filtered to obtain a feeder compensation phase.
  • the phase difference between the two channels between the first set of the same-polarized antenna and the UE is the second group
  • the phase difference between the two channels between the co-polarized antenna and the UE is the same.
  • the phase difference between the channel between the first antenna and the UE and the channel between the third antenna and the UE is A
  • the channel between the second antenna and the UE and the fourth antenna and the UE
  • the phase difference between the two channels is B
  • a and B are the same.
  • the phase difference between the first channel and the third channel, and the phase difference between the second channel and the fourth channel can be determined, and the first phase and the second phase are calculated.
  • the above difference can be filtered to obtain the final feeder compensation phase.
  • the cable compensation phase can be calculated once each time the uplink detecting signal of the UE is received. Therefore, the uplink sounding signal of the received UE can be understood as the uplink sounding signal of the currently received UE, and the cable compensation phase can be understood as the current cable compensation phase. If it is determined that the channel between the UE and the dual-column cross-polarized antenna is not the LOS path according to the currently received detection signal of the UE, the cable compensation phase obtained when the uplink detection signal of the UE is received last time may be used as the current The feeder compensation phase, that is, the feeder compensation phase remains unchanged. It should be noted that if it is determined that the channel between the UE and the dual-column cross-polarized antenna is not the LOS path according to the uplink detection signal received by the UE for the first time, the feeder compensation phase may be defaulted to 0.
  • the following is an example of how to determine the feeder compensation phase by taking the uplink detection signal of the UE received at the pth time as an example.
  • the element ⁇ p) in RO) represents the correlation between the i-th channel and the j-th channel between the UE and the baseband unit when the uplink sounding signal of the UE is received for the pth time, p is a positive integer .
  • the channel between the UE and the dual-column cross-polarized antenna is the LOS path when the uplink probe signal of the UE is received at the p-th time:
  • Thre represents the threshold.
  • the threshold can be preset.
  • 73 ⁇ 4re can be set to 0.8 or 0.9.
  • the difference ⁇ between the first phase and the second phase when the uplink detection signal of the UE is received at the pth time may be determined according to the equation (3),
  • A(p) phase(r 20 (pj) ⁇ phase(r 3l (pj) ( 3 )
  • the difference between the first phase and the second phase when the uplink sounding signal of the UE is received at the pth time may be filtered according to the equation (4), to obtain the UE received at the pth time.
  • ⁇ ( ⁇ ) (1 - ⁇ ) * - 1) + ⁇ * ⁇ ( ⁇ ) (4)
  • ⁇ -1) represents the feeder compensation when the (p-1)th uplink detection signal of the UE is received Phase
  • represents the filter coefficient, usually 0 ⁇ ⁇ ⁇ 1.
  • the cable compensation phase A(l) when the uplink detection signal of the UE is received for the first time can be obtained according to the equation (5).
  • the symbol " ⁇ " in the equation may represent an estimated value.
  • each time the uplink detection signal of the UE is received the calculation process of the feeder cable compensation phase can be performed, and the obtained cable phase compensation is used as the basis for the phase correction of the current baseband signal, thereby Online correction of the baseband signal can be achieved, which can reduce errors.
  • the UE and the dual column are received when the uplink detection signal of the UE is received in the pth time.
  • the channel between the cross-polarized antennas is not the LOS path.
  • Ao Ao - 1).
  • the feed when the uplink sounding signal of the UE is received last time may be utilized.
  • the cable compensation phase performs phase correction of the current baseband signal.
  • p 1
  • the feeder compensation phase may be defaulted to 0.
  • the base station can perform a mapping operation between the logical port and the physical antenna. That is, four baseband signals can be generated based on signals one-to-one corresponding to m logical ports.
  • m may be 2, that is, the base station may work in a mode of 2 logical ports.
  • Four baseband signals can be generated according to equation (6).
  • k denotes a subcarrier index
  • x Q ⁇ ), Xl (k), and x 3 represent 4 baseband signals on the kth subcarrier, and (k) and (k) represent respectively on the kth subcarrier
  • d represents the number of cyclic delay points
  • N ffl represents the number of FFT points of the system fast Fourier transform
  • k is a positive integer.
  • x Q (and x 2 (corresponding to the first set of co-polarized antennas, respectively: :) and x 3 ( :) respectively correspond to the second set of co-polarized antennas.
  • the signals of the two logical ports are complementary, so that the sum of the signal energy of the two logical ports received by the UE will be a fixed constant, thereby avoiding channel frequency domain fluctuation, improving downlink throughput, and capable of Increase the diversity gain.
  • m may be 4.
  • the first baseband signal can be generated based on the signal corresponding to the first logical port
  • the second baseband signal is generated based on the signal corresponding to the third logical port
  • the third baseband is generated based on the signal corresponding to the second logical port.
  • the signal generates a fourth baseband signal based on the signal corresponding to the fourth logical port.
  • the signal of the first port can be mapped to the first One transmit channel
  • the signal of the third port is mapped to the second transmit channel
  • the signal of the second port is mapped to the third transmit channel
  • the signal of the fourth port is mapped to the fourth transmit channel.
  • the weight phase difference between the first two logical ports is the same as the weight phase difference between the last two logical ports. In this way, the MIMO channel response between the base station and the UE is better matched with the closed-loop MIMO codebook, so that the downlink throughput can be improved.
  • step 130 m may be 4.
  • Four baseband signals can be generated according to equation (7).
  • k represents the subcarrier index
  • Xl (k) , x 2 ( and x 3 ( :) represent the 4 baseband signals on the kth subcarrier, Sl (k) , ( ⁇ ) and Representing a signal corresponding to four logical ports on the kth subcarrier
  • k is a positive integer
  • x Q (and x 2 correspond to the first set of co-polarized antennas
  • Xl (k) and x 3 respectively corresponding respectively In the second group of co-polarized antennas.
  • the four baseband signals may be respectively multiplied by the compensation coefficients of the corresponding transmit channels, and one of the baseband signals may be multiplied by the feeder to compensate the phase. Thereby a corrected signal is obtained.
  • one corrected baseband signal may be sent to the UE through each of the transmit channels and the corresponding one of the columns of polarized antennas.
  • the first corrected baseband signal may be sent to the UE through the first transmit channel and the first column of the positive 45 degree polarized antenna; and the second transmit channel and the first negative half-degree polarized antenna are transmitted to the UE through the second transmit channel Send the second corrected baseband signal; and so on.
  • FIG. 2 is a schematic diagram of a scenario in which an embodiment of the present invention may be applied.
  • base station 210 can be a distributed base station, and base station 210 and UE 220 can communicate.
  • the base station 210 can include a BBU 21 KR U 212 and a dual column cross-polarized antenna 213.
  • RU 212 Between 212 can be connected by fiber, RU 212 has 4 antenna interfaces (not shown in Figure 2), each day The line interface and the double-column cross-polarized antenna 213 can be connected by four feeder cables, respectively.
  • the R U 212 may include a transmit channel 0 to a transmit channel 3, a receive channel 0 to a receive channel 3, a correction transmit channel, a correction receive channel, and a correction coupling circuit.
  • the dual column cross-polarized antenna 213 may include a first column of positive 45 degree polarized antennas, a first column of negative 45 degree polarized antennas, a second column of positive 45 degree polarized antennas, and a second column of negative 45 degree polarized antennas.
  • the BBU 211 calculates the compensation coefficients of the respective transmission channels and the respective reception channels in the R U 212. Specifically, the BBU 211 can transmit the correction reference signal to the transmission channels 0 to 3, respectively, and the correction reference signal is returned to the BBU 211 by correcting the coupling circuit and correcting the channel. The BBU 211 calculates the amplitude difference between each of the feedback signals and the corrected reference signal, and uses the calculated amplitude difference as the compensation coefficient of the corresponding transmission channel.
  • the BBU 211 can send a correction reference signal to the correction transmission channel, and the correction reference signal is returned to the BBU 211 after passing through the correction coupling circuit and the reception channels 0 to 3.
  • the BBU 211 calculates the amplitude difference between the respective feedback signals and the received correction reference signal, and uses the calculated amplitude difference as the compensation coefficient of the corresponding receiving channel.
  • Step 2 The BBU 211 calculates the feeder compensation phase.
  • the RRU 212 and the first column of the positive 45 degree polarized antenna, the first column of the negative 45 degree polarized antenna, and the second column of the positive 45 degree polarization may be respectively represented by 6 °, e, 6 ⁇ , and 6 3 , respectively.
  • the channel response between the dual-column cross-polarized antenna 213 and the transmit antenna of the UE 220 on the kth subcarrier may be represented by :), h ⁇ k), (and / 3 ⁇ 4 3 respectively.
  • k is a positive integer.
  • BBU 211 Each time the uplink detection signal of the UE 220 is received, the feeder compensation phase will be calculated. The following is an example of the uplink detection signal of the UE 220 received by the BBU 211, p is a positive integer.
  • the BBU 211 calculates the channel response between the transmit antenna of the UE 220 and the BBU 211.
  • Each channel between the transmit antenna of the UE 220 and the BBU 211 is comprised of a channel between the UE 220 and a list of polarized antennas, a feed cable between the array of polarized antennas and the RU 212, and a corresponding receive channel.
  • the 0th channel between the transmit antenna of the UE 220 and the BBU 211 may be the channel between the UE 220 and the first column of positive 45 degree polarized antennas, the first column of positive 45 degree polarized antennas and The feeder cable between the RU 212 and the receiving channel 0 are composed.
  • the BBU 211 may determine the channel response p ( ⁇ ) of the ith channel between the transmit antenna of the UE 220 and the BBU 211 on the kth subcarrier according to the uplink probe signal received at the pth time. For the BBU 211, when receiving the uplink sounding signal, first use the compensation coefficient of the receiving channel calculated in step 1 to compensate the uplink sounding signal, and then use the compensated uplink sounding signal to determine the UE 220 on the kth subcarrier. Transmitting antenna and BBU
  • each channel between the transmit antenna of the UE 220 and the BBU 211 can be composed of a channel between the receive channel, the feeder cable, and the dual-column cross-polarized antenna and the UE, the transmit antenna between the UE 220 and the BBU 211
  • the channel response of the i-th channel and the response characteristics of the i-th receiving channel, the response characteristics of the i-th feeder, and the i-th channel response between the transmitting antenna of the UE 220 and the dual-column cross-polarized antenna 213 The relationship between the characteristics can be expressed by equation (8).
  • i 0, 1, 2 or 3.
  • is a response characteristic of the i-th receiving channel obtained after the correction by the compensation coefficient of the i-th receiving channel. Based on the description of step 1, after the respective receiving channels are corrected by using the compensation coefficients of the respective receiving channels, the response characteristics of the respective receiving channels are the same.
  • the BBU 211 can calculate the full-band spatial correlation matrix R according to (9) according to the channel response of each channel between the transmitting antenna of the UE 220 and the BBU 211.
  • the BBU 211 can determine whether the above two inequalities (1) and (2) are true.
  • the BBU 211 determines that the channel between the UE 220 and the dual-column cross-polarized antenna of the base station 210 is the L0S path.
  • the phase difference between the two channels between the first set of co-polarized antennas and the UE is between the second set of co-polarized antennas and the UE
  • the two channels have the same phase difference, That is, the equation (10) is satisfied.
  • the BBU 211 can calculate the difference ⁇ ( ) between the first phase and the second phase when the uplink detection signal of the UE 220 is received at the pth time according to the equation (11), and the first phase can be The phase difference between the 0th channel between the transmit antenna of the UE 220 and the BBU 211 and the second channel between the transmit antenna of the UE 220 and the BBU 211, and the second phase may be the UE 220.
  • Step 3 The BBU 211 generates four baseband signals according to signals corresponding to the logical ports one by one.
  • the BBU 211 performs a mapping operation between the logical port and the transmission channel.
  • the BBU 211 can map two logical ports to four transmit channels.
  • BBU211 encoded signals may be MIMO-one correspondence with the logical port, and according to the equation (6) based on a signal obtained by coding MIMO ( ⁇ ), and generating a baseband signal 4 x Q ( ⁇ ), Xl (k), 2 ( ⁇ ), and ( ⁇ :).
  • the signals of the two ports are complementary, so that the sum of the signal energy of the two ports received by the UE will be a fixed constant, thereby avoiding channel frequency domain fluctuation and improving downlink throughput.
  • the BBU 211 can map four logical ports onto four transmit channels.
  • the BBU 211 can perform MIMO encoding on the signals one-to-one corresponding to the logical ports, and then can obtain signals ( ), s. ik), s 2 (k) according to the MIMO encoding according to the equation (7). Generate 4 baseband signals XQ( ), x x ⁇ k), x 2 ⁇ k) and X 3 (k).
  • logical port 0 is mapped to transmit channel 0
  • logical port 2 is mapped to transmit channel 1
  • logical port 1 is mapped to transmit channel 2
  • logical port 3 is mapped to transmit channel 3.
  • Table 1 is a closed-loop codebook defined by the 3rd Generation Partnership Project (3GPP) protocol (36.211).
  • the 4-port closed-loop codebook has a total of 16 codewords, of which the first 12 codewords have one common feature. As shown in Table 1, the common features are: the weight phase difference between port 0 and port 1 and the weight phase difference between port 2 and port 3.
  • mapping scheme described above makes the channel response between the base station and the UE consistent with the characteristics of the closed-loop MIMO codebook, so that the channel response between the base station and the UE is better matched with the closed-loop MIMO codebook, and the closed-loop MIMO can be improved. performance.
  • Step 4 The BBU 211 performs the compensation signals of the transmission channel obtained in the first step and the compensation phase of the cable obtained in the second step, and performs the four baseband signals X Q ( ⁇ ), Xl (k), X 2 ) and X 3 C:). Correction.
  • the BBU 211 multiplies X Q ( ), Xl (k), X 2 ( ), and X 3 (:) by the complement of the corresponding transmit channel.
  • Compensation coefficient e.g., the transmit channel compensation coefficient 0 is multiplied by x Q ( ⁇ ), the compensation coefficient is multiplied by the transmit channel 1 x x ⁇ k), and so on, respectively, to obtain a signal x [ ⁇ k), and x; (:).
  • the BBU 211 can then signal (for the compensation of the feeder phase, ie (multiply by ⁇ to get xl ⁇ k).
  • the 4 baseband signals are corrected.
  • Step 5 The BBU 211 sends the corrected four baseband signals to the UE 220 through the corresponding transmit channels and the polarized antennas.
  • the BBU 211 may send a signal ⁇ (k) to the UE 220 through the transmit channel 0 and the first column of the positive 45-degree polarized antenna, and send a signal to the UE 220 through the transmit channel 1 and the first column of the negative 45-degree polarized antenna. Transmitting a signal to the UE 220 through the transmit channel 2 and the second column of positive 45 degree polarized antennas (transmitting a signal X (i, through the transmit channel 3 and the second column of negative 45 degree polarized antennas) to the UE 220.
  • the base station determines the feeder compensation phase according to the uplink detection signal of the UE, and corrects the four baseband signals according to the compensation coefficients of the four transmission channels and the feeder compensation phase, thereby accurately controlling the transmission signals of the respective channels.
  • the phase is the phase.
  • FIG. 5 is a schematic block diagram of a baseband unit in accordance with one embodiment of the present invention.
  • the baseband unit 500 of FIG. 5 includes a determining unit 510, a generating unit 520, and a correcting unit 530.
  • the determining unit 510 determines the compensation coefficients corresponding to the four transmitting channels respectively.
  • the determining unit 510 further determines a feeder compensation phase according to the received uplink detection signal of the UE, where the dual-column cross-polarized antenna of the base station to which the baseband unit 500 belongs is composed of the first group of co-polarized antennas and the second group of the same polarization
  • the antenna composition and the feeder compensation phase are the difference between the phase difference of the feeder corresponding to the first group of the same-polarized antenna and the phase difference of the feeder corresponding to the second group of the same-polarized antenna.
  • the generating unit 520 generates four baseband signals according to the m-channel signals one-to-one corresponding to the m logical ports, where m is a positive integer.
  • the correcting unit 530 corrects the four baseband signals according to the compensation coefficients and the cable compensation phases respectively corresponding to the four transmitting channels, so as to send the corrected four basebands to the UE through the four transmitting channels and the dual-column cross-polarized antennas. signal.
  • the cable compensation phase is determined according to the uplink detection signal of the UE, and the four baseband signals are corrected according to the compensation coefficients of the four transmission channels and the cable compensation phase, so that the signals of the respective channels can be accurately controlled. Phase.
  • the determining unit 510 may be configured according to the uplink detection signal of the received UE.
  • the channel response between the UE and the baseband unit 500 is determined.
  • the determining unit 510 can determine, according to the channel response between the UE and the baseband unit 500, that the channel between the UE and the dual-column cross-polarized antenna is an LOS path.
  • the determining unit 510 determines the feeder compensation phase based on the channel response between the UE and the baseband unit 500.
  • the determining unit 510 may determine a full-band spatial correlation matrix according to a channel response between the UE and the baseband unit 500.
  • the determining unit 510 can determine, according to the full-band spatial correlation matrix, that the channel between the UE and the dual-column cross-polarized antenna is the LOS path.
  • the first set of co-polarized antennas is composed of a first antenna and a third antenna
  • the second set of co-polarized antennas is composed of a second antenna and a fourth antenna, between the UE and the baseband unit.
  • the channel is composed of a first channel, a second channel, a third channel and a fourth channel, the first antenna corresponds to the first channel, the second antenna corresponds to the second channel, the third antenna corresponds to the third channel, and the fourth antenna Corresponding to the fourth channel.
  • the determining unit 510 may determine that the UE and the dual-column cross-polarization if the correlation between the first channel and the third channel is greater than a preset threshold, and the correlation between the second channel and the fourth channel is greater than a threshold.
  • the channel between the antennas is the LOS path.
  • the determining unit 510 may determine, according to the full-band spatial correlation matrix, a difference between the first phase and the second phase, where the first phase is a phase between the first channel and the third channel. Poor, the second phase is the phase difference between the second channel and the fourth channel.
  • the determining unit 510 can filter the difference between the first phase and the second phase to obtain a feeder compensation phase.
  • the baseband unit 500 when the baseband unit 500 receives the uplink sounding signal of the UE at the pth time,
  • the element ⁇ ;?) indicates the correlation between the i-th channel and the j-th channel between the UE and the baseband unit 500 when the baseband unit 500 receives the uplink sounding signal of the UE for the pth time, p Is a positive integer.
  • the determining unit 510 may determine that the channel between the UE and the dual-column cross-polarized antenna is the LOS path when the uplink probe signal of the UE is received at the pth time, in the case where the following inequality (1) and inequality (2) are satisfied.
  • the determining unit 510 may determine, according to the equation (3), a difference ⁇ between the first phase and the second phase when the uplink probe signal of the UE is received at the pth time.
  • the determining unit 510 may filter the difference between the first phase and the second phase when receiving the uplink sounding signal of the UE in the pth time according to the equation (4), to obtain the p-th reception.
  • the feeder is compensated for phase A (J7) when the uplink sounding signal to the UE.
  • the determining unit 510 can obtain the cable compensation phase ⁇ (1) when the uplink sounding signal of the UE is received for the first time according to the equation (5).
  • n may be 2.
  • the generating unit 520 can generate four baseband signals according to equation (6).
  • m may be 4.
  • the generating unit 520 can generate a first baseband signal based on a signal corresponding to the first logical port, generate a second baseband signal based on a signal corresponding to the third logical port, and generate a second signal based on the signal corresponding to the second logical port.
  • the 3 baseband signals are generated, and the 4th baseband signal is generated according to the signal corresponding to the 4th logical port.
  • m may be 4.
  • the generating unit 520 can generate four baseband signals according to equation (7).
  • the baseband unit 500 may correspond to the baseband unit that performs the communication method of FIG. 1, so that the corresponding flow of the communication method of FIG. 1 can be implemented.
  • the communication method of Fig. 1 and the embodiment of the baseband unit 500 can be combined with each other and referred to each other.
  • the baseband unit 600 of FIG. 6 includes a memory 610 and a processor 620.
  • the memory 610 and the processor 620 are connected by a data bus 630;
  • Memory 610 stores executable instructions.
  • the processor 620 executes executable instructions stored in the memory 610, and is configured to: determine a compensation coefficient corresponding to each of the four transmission channels of the central radio frequency unit; and determine a feeder compensation phase according to the received uplink detection signal of the UE, the baseband unit 600
  • the dual-column cross-polarized antenna of the associated base station is composed of a first set of co-polarized antennas and a second set of co-polarized antennas
  • the compensation phase of the feeder is the phase difference of the feeders corresponding to the first set of co-polarized antennas and the second group The difference between the phase differences of the feeder cables corresponding to the same polarization antenna; generating 4 baseband signals according to the m-channel signals one-to-one corresponding to the m logical ports, where m is a positive integer; respectively, corresponding compensation coefficients according to the four transmission channels
  • the feeder compensates the phase, and corrects the four baseband signals to transmit the corrected four baseband signals to the UE through the four transmit channels and the dual-col
  • the cable compensation phase is determined according to the uplink detection signal of the UE, and the four baseband signals are corrected according to the compensation coefficients of the four transmission channels and the cable compensation phase, so that the signals of the respective channels can be accurately controlled. Phase.
  • the processor 620 may determine a channel response between the UE and the baseband unit 600 according to the received uplink detection signal of the UE.
  • the processor 620 can be between the UE and the baseband unit 600.
  • the channel response determines that the channel between the UE and the dual-column cross-polarized antenna is the LOS path.
  • the processor 620 can determine the feeder compensation phase based on the channel response between the UE and the baseband unit 600.
  • the processor 620 may determine a full-band spatial correlation matrix according to a channel response between the UE and the baseband unit 600.
  • the processor 620 determines, according to the full-band spatial correlation matrix, that the channel between the UE and the dual-column cross-polarized antenna is the LOS path.
  • the first set of co-polarized antennas is composed of a first antenna and a third antenna
  • the second set of co-polarized antennas is composed of a second antenna and a fourth antenna, between the UE and the baseband unit.
  • the channel is composed of a first channel, a second channel, a third channel and a fourth channel, the first antenna corresponds to the first channel, the second antenna corresponds to the second channel, the third antenna corresponds to the third channel, and the fourth antenna Corresponding to the fourth channel.
  • the processor 620 may determine that the UE and the dual-column cross-polarization if the correlation between the first channel and the third channel is greater than a preset threshold, and the correlation between the second channel and the fourth channel is greater than a threshold.
  • the channel between the antennas is the LOS path.
  • the processor 620 may determine, according to the full-band spatial correlation matrix, a difference between the first phase and the second phase, where the first phase is a phase between the first channel and the third channel. Poor, the second phase is the phase difference between the second channel and the fourth channel.
  • the processor 620 can filter the difference between the first phase and the second phase to obtain a feeder compensation phase.
  • the correlation between the i-th channel and the j-th channel between the baseband units 600, p is a positive integer.
  • the processor 620 can determine that the channel between the UE and the dual-column cross-polarized antenna is the LOS path when the uplink probe signal of the UE is received at the pth time, if both of the following inequality (1) and inequality (2) are satisfied.
  • the processor 620 may determine, according to the equation (3), a difference ⁇ between the first phase and the second phase when the uplink detection signal of the UE is received at the pth time.
  • the processor 620 may filter the difference between the first phase and the second phase when receiving the uplink sounding signal of the UE in the pth time according to the equation (4), to obtain the p-th reception.
  • the feeder is compensated for phase A (J7) when the uplink sounding signal to the UE.
  • the processor 620 can obtain the uplink sounding signal received by the UE at the pth time according to the equation (5).
  • the feeder cable compensates for phase ⁇ ( ⁇ ).
  • n may be 2.
  • the processor 620 can generate four baseband signals according to equation (6).
  • n may be 4.
  • the processor 620 can generate a first baseband signal according to a signal corresponding to the first logical port, according to
  • the signals corresponding to the three logical ports generate a second baseband signal, generate a third baseband signal according to the signal corresponding to the second logical port, and generate a fourth baseband signal according to the signal corresponding to the fourth logical port.
  • m may be 4.
  • the processor 620 can generate four baseband signals according to equation (7).
  • the baseband unit 600 may correspond to the baseband unit that performs the communication method of FIG. 1, so that the corresponding flow of the communication method of FIG. 1 can be implemented.
  • the communication method of Fig. 1 and the embodiment of the baseband unit 600 can be combined with each other and referred to each other.
  • the communication device 700 of FIG. 7 includes a baseband unit 710, a medium radio frequency unit 720, and a dual column cross-polarized antenna 730.
  • the baseband unit 710 is connected to the middle radio frequency unit 720 by an optical fiber, and the middle radio frequency unit 720 and the dual-column cross-polarized antenna 730 are connected by a feeder cable, and the middle radio frequency unit includes four transmissions. aisle.
  • the dual column cross-polarized antenna 730 is comprised of a first set of co-polarized antennas and a second set of co-polarized antennas, and the communication device 700 operates in a mode of m logical ports, where m is a positive integer.
  • the baseband unit 710 is configured to: determine a compensation coefficient corresponding to each of the four transmitting channels;
  • the difference between the four baseband signals is generated according to the m-channel signals corresponding to the m logical ports; the four baseband signals are corrected according to the compensation coefficients and the feeder compensation phases respectively corresponding to the four transmission channels;
  • the radio frequency unit 720 transmits the corrected four baseband signals.
  • the medium radio frequency unit 720 transmits the corrected signal to the UE through the four transmission channels and the dual column cross-polarized antenna 730.
  • the cable compensation phase is determined according to the uplink detection signal of the UE, and the four baseband signals are corrected according to the compensation coefficients of the four transmission channels and the cable compensation phase, so that the signals of the respective channels can be accurately controlled. Phase.
  • the communication device 700 may be a base station, for example, may be a distributed base station, a macro.
  • a base station such as a base station or a small base station.
  • a baseband unit BBU
  • RRU RRU
  • dual-column cross-polarized antenna For a distributed base station having a dual-column cross-polarized antenna, a baseband unit (BBU), an RRU, and a dual-column cross-polarized antenna may be included.
  • the BBU and the RRU can be connected by fiber.
  • R U can include 4 receive channels and 4 transmit channels.
  • the baseband unit 710 may determine a channel response between the UE and the baseband unit 710 according to the received uplink detection signal of the UE.
  • the baseband unit 710 can determine that the channel between the UE and the dual-column cross-polarized antenna is the LOS path according to the channel response between the UE and the baseband unit 710.
  • the baseband unit 710 can determine the feeder compensation phase based on the channel response between the UE and the baseband unit 710.
  • the baseband unit 710 may determine a full-band spatial correlation matrix according to a channel response between the UE and the baseband unit 710.
  • the baseband unit 710 determines that the channel between the UE and the dual-column cross-polarized antenna is the LOS path according to the full-band spatial correlation matrix.
  • the first set of co-polarized antennas is composed of a first antenna and a third antenna
  • the second set of co-polarized antennas is composed of a second antenna and a fourth antenna, between the UE and the baseband unit.
  • the channel is composed of a first channel, a second channel, a third channel and a fourth channel, the first antenna corresponds to the first channel, the second antenna corresponds to the second channel, the third antenna corresponds to the third channel, and the fourth antenna Corresponding to the fourth channel.
  • the baseband unit 710 may determine that the UE and the dual-column cross polarization if the correlation between the first channel and the third channel is greater than a preset threshold, and the correlation between the second channel and the fourth channel is greater than a threshold.
  • the channel between the antennas is the LOS path.
  • the baseband unit 710 may determine, according to the full-band spatial correlation matrix, a difference between the first phase and the second phase, where the first phase is a phase between the first channel and the third channel. Poor, the second phase is the phase difference between the second channel and the fourth channel.
  • the baseband unit 710 can filter the difference between the first phase and the second phase to obtain a feeder compensation phase.
  • the base station unit 710 when the base station unit 710 receives the uplink sounding signal of the UE at the pth time,
  • the element ⁇ ;?) in the RO) indicates that the base station unit receives the uplink sounding signal of the UE at the pth time.
  • p is a positive integer.
  • the baseband unit 710 can be determined at the pth in the case where the following inequality (1) and inequality (2) are satisfied.
  • the channel between the UE and the dual-column cross-polarized antenna is the LOS path when the uplink sounding signal of the UE is received.
  • the baseband unit 710 may determine, according to the equation (3), a difference ⁇ between the first phase and the second phase when the uplink probe signal of the UE is received at the pth time.
  • the baseband unit 710 may filter the difference between the first phase and the second phase when receiving the uplink sounding signal of the UE in the pth time according to the equation (4), to obtain the p-th reception.
  • the feeder is compensated for phase A (J7) when the uplink sounding signal to the UE.
  • the baseband unit 710 can obtain the feeder compensation phase A(l) when the uplink detection signal of the UE is received for the first time according to the equation (5).
  • n may be 2.
  • the baseband unit 710 can generate four baseband signals according to equation (6).
  • n may be 4.
  • the baseband unit 710 can generate a first baseband signal based on a signal corresponding to the first logical port, generate a second baseband signal based on a signal corresponding to the third logical port, and generate a second signal according to the signal corresponding to the second logical port.
  • the 3 baseband signals are generated, and the 4th baseband signal is generated according to the signal corresponding to the 4th logical port.
  • m may be 4.
  • the baseband unit 710 can generate four baseband signals according to equation (7).
  • the baseband unit 710 in the communication device 700 may correspond to the baseband unit performing the communication method of FIG. 1, may also correspond to the baseband unit 500 in FIG. 5, or may correspond to the baseband unit 600 in FIG. Thereby, the corresponding flow of the communication method of FIG. 1 can be realized.
  • the communication method of Fig. 1 and the embodiment of the communication device 700 can be combined with each other and referred to each other.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • Meta or components may be combined or integrated into another system, or some features may be omitted or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a Read-Only Memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Dc Digital Transmission (AREA)

Abstract

本发明实施例提供通信设备、基带单元和通信方法。该设备包括:基带单元,中射频单元以及双列交叉极化天线;基带单元用于:确定 4个发射通道分别对应的补偿系数;根据接收到的 UE的上行探测信号,确定馈缆补偿相位,根据与m个逻辑端口一一对应的m路信号生成4路基带信号;根据4个发射通道分别对应的补偿系数和馈缆补偿相位对4路基带信号进行校正,向中射频单元发送校正后的4路基带信号;中射频单元用于通过4个发射通道和双列交叉极化天线向 UE发送校正后的4路基带信号。本发明实施例中,通过根据UE的上行探测信号确定馈缆补偿相位,并根据4个发射通道的补偿系数和馈缆补偿相位校正4路基带信号,从而能够准确控制各路发射信号的相位。

Description

通信设备、 基带单元和通信方法
本申请要求于 2013年 9月 2日提交中国专利局、 申请号为 201310392709.6、 发明 名称为 "通信设备、 基带单元和通信方法"的中国专利申请的优先权, 其全部内容通过 引用结合在本申请中。 技术领域
本发明涉及通信领域, 并且具体地, 涉及通信设备、 基带单元和通信方法。 发明背景
在长期演进 (Long Term Evolution, LTE) 系统中, 对于具有双列交叉极化天线的 基站, 通常包括基带单元和中射频单元。 中射频单元可以通过馈缆 (Cable) 与双列交 叉极化天线相连接。 基带单元可以生成基带信号, 然后发送给中射频单元, 中射频单元 可以将基带信号转化为射频信号, 然后通过双列交叉极化天线发送给用户设备 (User Equipment, UE)。然而, 由于中射频单元内部的各个发射通道以及连接中射频单元与天 线之间的各个馈缆等之间存在差异, 因此会造成各路发射信号之间的相位无法准确控 制。 发明内容
本发明实施例提供通信设备、 基带单元和通信方法, 以解决各路发射信号的相位无 法准确控制的问题。
第一方面, 提供了一种通信设备, 包括: 基带单元, 中射频单元以及双列交叉极化 天线; 所述基带单元与所述中射频单元之间通过光纤连接, 所述中射频单元与所述双列 交叉极化天线之间通过馈缆连接, 所述中射频单元包括 4个发射通道, 所述双列交叉极 化天线由第一组同极化天线和第二组同极化天线组成,所述通信设备工作在 m个逻辑端 口的模式下, 其中 m为正整数;
所述基带单元, 用于: 确定所述 4个发射通道分别对应的补偿系数; 根据接收到的 用户设备 UE的上行探测信号, 确定馈缆补偿相位, 所述馈缆补偿相位为所述第一组同 极化天线对应的馈缆相位差与所述第二组同极化天线对应的馈缆相位差之间的差; 根据 与所述 m个逻辑端口一一对应的 m路信号生成 4路基带信号; 根据所述 4个发射通道 分别对应的补偿系数和所述馈缆补偿相位, 对所述 4路基带信号进行校正; 向所述中射 频单元发送校正后的 4路基带信号; 所述中射频单元, 用于: 通过所述 4个发射通道和所述双列交叉极化天线, 向所述 UE发送所述校正后的 4路基带信号。
结合第一方面, 在第一种可能的实现方式中, 所述基带单元用于根据接收到的用户 设备 UE的上行探测信号, 确定馈缆补偿相位包括: 所述基带单元, 用于: 根据所述接 收到的 UE的上行探测信号, 确定所述 UE与所述基带单元之间的信道响应; 根据所述 UE与所述基带单元之间的信道响应, 确定所述 UE与所述双列交叉极化天线之间的信 道为直达 LOS径;根据所述 UE与所述基带单元之间的信道响应确定所述馈缆补偿相位。
结合第一方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述基带单 元用于根据所述 UE与所述基带单元之间的信道响应, 确定所述 UE与所述双列交叉极 化天线之间的信道为 LOS径, 包括: 所述基带单元, 用于: 根据所述 UE与所述基带单 元之间的信道响应, 确定全频带空域相关矩阵; 根据所述全频带空域相关矩阵, 确定所 述 UE与所述双列交叉极化天线之间的信道为 LOS径。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述第一组 同极化天线由第一天线和第三天线组成,所述第二组同极化天线由第二天线和第四天线 组成, 所述 UE与所述基带单元之间的信道由第一信道、 第二信道、 第三信道和第四信 道组成, 所述第一天线与第一信道对应, 所述第二天线与所述第二信道对应, 所述第三 天线与所述第三信道对应, 所述第四天线与所述第四信道对应;
所述基带单元用于根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极 化天线之间的信道为 LOS径包括: 所述基带单元, 用于: 在所述第一信道与所述第三 信道之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于 所述阈值的情况下, 确定所述 UE与所述双列交叉极化天线之间的信道为 LOS径。
结合第一方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述基带单 元用于根据所述 UE与所述基带单元之间的信道响应确定所述馈缆补偿相位包括: 所述 基带单元,用于:根据所述全频带空域相关矩阵,确定第一相位与第二相位之间的差值, 所述第一相位是所述第一信道与所述第三信道之间的相位差,所述第二相位是所述第二 信道与所述第四信道之间的相位差; 对所述第一相位与所述第二相位之间的差值进行滤 波, 得到所述馈缆补偿相位。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 在所述基带 单元第 p次接收到所述 UE的上行探测信号时, foo (p) r0l (p) O) ^03 (P)
rl0 (p) rn (p) rl2 (p) rl3 (p)
所述全频带空域相关矩阵 RO) =
r22 (p) r23 (p) '
r30 (p) r3l (p) 其中,所述 RO)中的元素^ ^p)表示在所述基带单元第 p次接收到所述 UE的上行 探测信号时 UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整 数;
所述基带单元用于在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与 所述双列交叉极化天线之间的信道为 LOS径, 包括:
所述基带单元, 用于: 在下列不等式均成立的情况下, 确定在第 p 次接收到所述 UE 的上行探测信号时所述 UE 与所述双列交叉极化天线之间的信道为 LOS 径: 卜 020)| I roo (Ρ 22 (P) > Thre,
Figure imgf000005_0001
I rn (p)r33 (p) > Th r
其中, Thre表示所述阈值。
结合第一方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述基带单 元用于根据所述全频带空域相关矩阵确定第一相位与第二相位之间的差值包括:
所述基带单元, 用于: 根据下列等式确定在第 p次接收到所述 UE的上行探测信号 时第一相位与第二相位之间的差值 ΔΟ),
HP) = phase(r20 (p)) - phase(r31 (p))
其中, ;? ½we(r2。(;?))表示所述第一相位, ;?/½we(r31 (;?))表示所述第二相位; 所述基带单元用于对所述第一相位与所述第二相位之间的差值进行滤波得到所述 馈缆补偿相位包括:
所述基带单元, 用于:
当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上行探测信号时的馈 缆补偿相位 λ(ρ): Αθ) = (1 - α) * Αθ - 1) + α * Α(ρ) 其中, 1)表示在第(p-1 )次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 Α(1) : Δ(1)= Δ(1)。 结合第一方面或第一方面的第一种可能的实现方式至第六种可能的实现方式中任 方式, 在第七种可能的实现方式中, m为 2;
所述基带单元用于根据与所述 m个逻辑端口对应的 m路信号生成 4路基带信号包 所述基带单元, 用于: 根据下列等式生成 4路基带信号,
Figure imgf000006_0001
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2( 和 x3( :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数; xQ( 和 x2( 分别对应于所述第一组同极化天线, 和 x3( :)分别对应于所述第二组同极化 天线。
结合第一方面或第一方面的第一种可能的实现方式至第六种可能的实现方式中任 一方式, 在第八种可能的实现方式中, m为 4;
所述基带单元用于根据与所述 m个逻辑端口对应的 m路信号生成 4路基带信号包 括: 所述基带单元, 用于: 根据与第 1个逻辑端口对应的信号生成第 1路基带信号, 根 据与第 3个逻辑端口对应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信 号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
结合第一方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述基带单 元用于根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口 对应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号生成第 3路基带信 号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号, 包括:
所述基带单元, 用于:
根据下列等式生成所述 4路基带信号,
Figure imgf000006_0002
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2( 和 x3( :)表示在第 k个子载波上 的 4路基带信号, Sl (k) , (^)和 表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k 为正整数; xQ( 和 x2( 分别对应于所述第一组同极化天线, ! (k)和 x3 (k)分别对应于所述第二组同极化天线。
结合第一方面或第一方面的第一种可能的实现方式至第九种可能的实现方式中任 一方式, 在第十种可能的实现方式中, 所述通信设备为基站。
第二方面, 提供了一种基带单元, 所述基带单元包括处理器和存储器,
所述存储器和所述处理器之间通过数据总线相连接; 其中, 所述存储器, 用于存储 可执行指令;
所述处理器, 执行所述存储器存储的可执行指令, 用于: 确定中射频单元的 4个发 射通道分别对应的补偿系数; 根据接收到的用户设备 UE的上行探测信号, 确定馈缆补 偿相位, 其中, 所述基带单元所属的基站的双列交叉极化天线由第一组同极化天线和第 二组同极化天线组成,所述馈缆补偿相位为所述第一组同极化天线对应的馈缆相位差与 所述第二组同极化天线对应的馈缆相位差之间的差;根据与 m个逻辑端口一一对应的 m 路信号生成 4路基带信号,其中 m为正整数;根据所述 4个发射通道分别对应的补偿系 数和所述馈缆补偿相位, 对所述 4路基带信号进行校正, 以便通过所述 4个发射通道以 及所述双列交叉极化天线, 向所述 UE发送校正后的 4路基带信号。
结合第二方面, 在第一种可能的实现方式中, 所述处理器用于根据接收到的 UE的 上行探测信号确定馈缆补偿相位包括:
所述处理器用于: 根据所述接收到的 UE的上行探测信号, 确定所述 UE与所述基 带单元之间的信道响应; 根据所述 UE与所述基带单元之间的信道响应, 确定所述 UE 与所述双列交叉极化天线之间的信道为直达 LOS径;根据所述 UE与所述基带单元之间 的信道响应确定所述馈缆补偿相位。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述处理器 用于根据所述 UE与所述基带单元之间的信道响应确定所述 UE与所述双列交叉极化天 线之间的信道为 LOS径包括:所述处理器用于:根据所述 UE与所述基带单元之间的信 道响应, 确定全频带空域相关矩阵; 根据所述全频带空域相关矩阵, 确定所述 UE与所 述双列交叉极化天线之间的信道为 LOS径。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述第一组 同极化天线由第一天线和第三天线组成,所述第二组同极化天线由第二天线和第四天线 组成, 所述 UE与所述基带单元之间的信道由第一信道、 第二信道、 第三信道和第四信 道组成, 所述第一天线与第一信道对应, 所述第二天线与所述第二信道对应, 所述第三 天线与所述第三信道对应, 所述第四天线与所述第四信道对应;
所述处理器用于根据所述全频带空域相关矩阵确定所述 UE与所述双列交叉极化天 线之间的信道为 LOS径包括: 所述处理器用于: 在所述第一信道与所述第三信道之间 的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值 的情况下, 确定所述 UE与所述双列交叉极化天线之间的信道为 LOS径。
结合第二方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述处理器 用于根据所述 UE与所述基带单元之间的信道响应确定所述馈缆补偿相位包括:
所述处理器用于: 根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间的 差值, 所述第一相位是所述第一信道与所述第三信道之间的相位差, 所述第二相位是所 述第二信道与所述第四信道之间的相位差; 对所述第一相位与所述第二相位之间的差值 进行滤波, 得到所述馈缆补偿相位。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 在所述基带 单元第 p次接收到所述 UE的上行探测信号时,
所述全频带空域相关矩阵
Figure imgf000008_0001
其中,所述 中的元素^ ^;?)表示在所述基带单元第 p次接收到所述 UE的上行 探测信号时 UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整 数;
所述处理器用于在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且 所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与所 述双列交叉极化天线之间的信道为 LOS径, 包括:
所述处理器用于: 在下列不等式均成立的情况下, 确定在第 p次接收到所述 UE的 上行探测信号时所述 UE 与所述双列交叉极化天线之间的信道为 LOS 径: 卜 020)| I ¾ (Ρ 22 (p) > Thn, |r130)| I
Figure imgf000008_0002
> Th r
其中, Thre表示所述阈值。
结合第二方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述处理器 用于根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间的差值, 包括: 所述处理器用于: 根据下列等式确定在第 p次接收到所述 UE的上行探测信号时第 一相位与第二相位之间的差值 ΔΟ),
HP) = phase(r20 (p)) - phase(r31 (p))
其中, /? ½we(r2。(j?))表示所述第一相位, /?/½we(r31 (/?》表示所述第二相位, p为 正整数;
所述处理器用于对所述第一相位与所述第二相位之间的差值进行滤波,得到所述馈 缆补偿相位, 包括:
所述处理器用于: 当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上 行探测信号时的馈缆补偿相位 A(J7):
Δ(^) = (1 - α) * Α(ρ - 1) + α * Δ(^) 其中, Αθ- 1)表示在第(p-l )次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 A(l) :
Δ(1) = Δ(1)。
结合第二方面或第二方面的第一种可能的实现方式至第六种可能的实现方式,在第 七种可能的实现方式中, m为 2;
所述处理器用于根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包括: 所 述处理器用于:
根据下列等式生成 4路基带信号,
Figure imgf000009_0001
其中, k表示子载波索引, xQC^)、 Xl (k)、 x2C 和 x3 :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数; XQ( :)和 x2 (k)分别对应于所述第一组同极化天线, X, (k)和 x3 (k)分别对应于所述第二组同极化 天线。
结合第二方面或第二方面的第一种可能的实现方式至第六种可能的实现方式,在第 八种可能的实现方式中, m为 4;
所述处理器用于所述根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包括: 所述处理器用于: 根据与第 1个逻辑端口对应的信号生成第 1路基带信号, 根据与第 3 个逻辑端口对应的信号生成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
结合第二方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述处理器 用于根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口对 应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号, 包括:
所述处理器, 用于: 根据下列等式生成所述 4路基带信号,
Figure imgf000010_0001
其中, k表示子载波索引, xQ ::)、 Xl (k) , x :)和 x3 :)表示在第 k个子载波上 的 4路基带信号, )、 Sl (k) , ^C^)和 ^ C^)表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k 为正整数; XQ ( 和 X2 ( 分别对应于所述第一组同极化天线, i (k)和 X3 (k)分别对应于所述第二组同极化天线。
第三方面, 提供了一种通信方法, 包括: 确定 4个发射通道分别对应的补偿系数; 根据接收到的用户设备 UE的上行探测信号, 确定馈缆补偿相位, 其中, 基站的双列交 叉极化天线由第一组同极化天线和第二组同极化天线组成,所述馈缆补偿相位为第一组 同极化天线对应的馈缆相位差与第二组同极化天线对应的馈缆相位差之间的差; 根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号, 其中 m为正整数; 根据所述 4 个发射通道分别对应的补偿系数和所述馈缆补偿相位, 对所述 4路基带信号进行校正, 以便通过所述 4个发射通道以及所述双列交叉极化天线, 向所述 UE发送校正后的 4路 基带信号。
结合第三方面,在第一种可能的实现方式中,所述根据接收到 UE的上行探测信号, 确定馈缆补偿相位, 包括: 根据所述接收到的 UE的上行探测信号, 确定所述 UE与所 述基站之间的信道响应; 根据所述 UE与所述基站之间的信道响应, 确定所述 UE与所 述双列交叉极化天线之间的信道为直达 LOS径;根据所述 UE与所述基站之间的信道响 应确定所述馈缆补偿相位。
结合第三方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述根据所 述 UE与所述基站之间的信道响应, 确定所述 UE与所述双列交叉极化天线之间的信道 为 LOS径,包括:根据所述 UE与所述基站之间的信道响应,确定全频带空域相关矩阵; 根据所述全频带空域相关矩阵, 确定所述 UE 与所述双列交叉极化天线之间的信道为 LOS径。
结合第三方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述第一组 同极化天线由第一天线和第三天线组成,所述第二组同极化天线由第二天线和第四天线 组成, 所述 UE与所述基站之间的信道由第一信道、 第二信道、 第三信道和第四信道组 成, 所述第一天线与第一信道对应, 所述第二天线与所述第二信道对应, 所述第三天线 与所述第三信道对应, 所述第四天线与所述第四信道对应;
所述根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极化天线之间的 信道为 LOS径, 包括: 在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与 所述双列交叉极化天线之间的信道为 LOS径。
结合第三方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述根据所 述 UE与所述基站之间的信道响应确定所述馈缆补偿相位, 包括: 根据所述全频带空域 相关矩阵, 确定第一相位与第二相位之间的差值, 所述第一相位是所述第一信道与所述 第三信道之间的相位差, 所述第二相位是所述第二信道与所述第四信道之间的相位差; 对所述第一相位与所述第二相位之间的差值进行滤波, 得到所述馈缆补偿相位。
结合第三方面的第四种可能的实现方式, 在第五种可能的实现方式中, 在第 p次接 收到所述 UE的上行探测信号时,
所述全频带空域相关矩阵
Figure imgf000011_0001
其中, 所述 RO)中的元素^ ^;?)表示在第 p次接收到所述 UE的上行探测信号时 UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整数; 所述在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信 道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与所述双列交叉 极化天线之间的信道为 LOS径, 包括: 在下列不等式均成立的情况下, 确定在第 p次 接收到所述 UE的上行探测信号时所述 UE与所述双列交叉极化天线之间的信道为 LOS 径: 卜 020)11 ^οο (Ρ 22 (ρ) > Thre, |r130)| I rn (p)r33 (p) > Th r
其中, Thre表示所述阈值。
结合第三方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述根据所 述全频带空域相关矩阵, 确定第一相位与第二相位之间的差值, 包括: 根据下列等式确 定在第 p次接收到所述 UE的上行探测信号时第一相位与第二相位之间的差值 ΔΟ),
HP) = phase(r20 (p)) - phase(r31 (p))
其中, ;? ½we(r2。(;?))表示所述第一相位, ;?/½we(r31 (;?))表示所述第二相位; 所述对所述第一相位与所述第二相位之间的差值进行滤波, 得到所述馈缆补偿相 位, 包括: 当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上行探测信号 时的馈缆补偿相位 A(J7) :
Δ(^) = (1 - α) * Α(ρ - 1) + α * Δ(^) 其中, Αθ- 1)表示在第(ρ-1 )次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 Α(1) : Δ(1) = Δ(1)。
结合第三方面或第三方面的第一种可能的实现方式至第六种可能的实现方式,在第 七种可能的实现方式中, m为 2;
所述根据与 m个逻辑端口对应的 m路信号生成 4路基带信号, 包括: 根据下列等 式生成 4路基带信号,
Figure imgf000012_0001
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2 ( 和 x3 ( :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数; xQ ( 和 x2 (k)分别对应于所述第一组同极化天线, X, (k)和 x3 (k)分别对应于所述第二组同极化 天线。
结合第三方面或第三方面的第一种可能的实现方式至第六种可能的实现方式,在第 八种可能的实现方式中, m为 4; 所述根据与 m个逻辑端口对应的 m路信号生成 4路 基带信号, 包括: 根据与第 1个逻辑端口对应的信号生成第 1路基带信号, 根据与第 3 个逻辑端口对应的信号生成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
结合第三方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述根据与 第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口对应的信号生 成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与 第 4个逻辑端口对应的信号生成第 4路基带信号, 包括:
根据下列等式生成所述 4路基带信号,
Figure imgf000013_0001
其中, k表示子载波索引, xQ ^)、 Xl (k)、 x2 C 和 x3 :)表示在第 k个子载波上 的 4路基带信号, (^)、 Sl (k) , ^ ^)和 ^ ^)表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k 为正整数; xQ ( 和 x2 ( 分别对应于所述第一组同极化天线, X, (k)和 X3 (k)分别对应于所述第二组同极化天线。
第四方面, 提供了一种基带单元, 包括: 确定单元, 用于确定 4个发射通道分别对 应的补偿系数; 所述确定单元, 还用于根据接收到的用户设备 UE的上行探测信号, 确 定馈缆补偿相位, 其中, 所述基带单元所属的基站的双列交叉极化天线由第一组同极化 天线和第二组同极化天线组成,所述馈缆补偿相位为第一组同极化天线对应的馈缆相位 差与第二组同极化天线对应的馈缆相位差之间的差; 生成单元,用于根据与 m个逻辑端 口一一对应的 m路信号生成 4路基带信号, 其中 m为正整数; 校正单元, 用于根据所 述 4个发射通道分别对应的补偿系数和所述馈缆补偿相位,对所述 4路基带信号进行校 正, 以便通过所述 4个发射通道以及所述双列交叉极化天线, 向所述 UE发送校正后的 4路基带信号。
结合第四方面, 在第一种可能的实现方式中, 所述确定单元用于根据接收到的 UE 的上行探测信号确定馈缆补偿相位包括: 所述确定单元用于: 根据所述接收到的 UE的 上行探测信号, 确定所述 UE与所述基带单元之间的信道响应; 根据所述 UE与所述基 带单元之间的信道响应, 确定所述 UE与所述双列交叉极化天线之间的信道为直达 LOS 径; 根据所述 UE与所述基带单元之间的信道响应确定所述馈缆补偿相位。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述确定单 元用于根据所述 UE与所述基带单元之间的信道响应确定所述 UE与所述双列交叉极化 天线之间的信道为 LOS径包括:所述确定单元用于:根据所述 UE与所述基带单元之间 的信道响应, 确定全频带空域相关矩阵; 根据所述全频带空域相关矩阵, 确定所述 UE 与所述双列交叉极化天线之间的信道为 LOS径。
结合第四方面的第二种可能的实现方式, 在第三种可能的实现方式中, 所述第一组 同极化天线由第一天线和第三天线组成,所述第二组同极化天线由第二天线和第四天线 组成, 所述 UE与所述基带单元之间的信道由第一信道、 第二信道、 第三信道和第四信 道组成, 所述第一天线与第一信道对应, 所述第二天线与所述第二信道对应, 所述第三 天线与所述第三信道对应, 所述第四天线与所述第四信道对应;
所述确定单元用于根据所述全频带空域相关矩阵确定所述 UE与所述双列交叉极化 天线之间的信道为 LOS径包括: 所述确定单元用于: 在所述第一信道与所述第三信道 之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述 阈值的情况下, 确定所述 UE与所述双列交叉极化天线之间的信道为 LOS径。
结合第四方面的第三种可能的实现方式, 在第四种可能的实现方式中, 所述确定单 元用于根据所述 UE与所述基带单元之间的信道响应确定所述馈缆补偿相位包括: 所述确定单元用于: 根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间 的差值, 所述第一相位是所述第一信道与所述第三信道之间的相位差, 所述第二相位是 所述第二信道与所述第四信道之间的相位差; 对所述第一相位与所述第二相位之间的差 值进行滤波, 得到所述馈缆补偿相位。
结合第四方面的第四种可能的实现方式, 在第五种可能的实现方式中, 在所述基带 单元第 p次接收到所述 UE的上行探测信号时, r00(P) roi(P) r02(p ro (P
rwiP) rn(P)
所述全频带空域相关矩阵 RO) =
其中,所述 RO)中的元素^ ^p)表示在所述基带单元第 p次接收到所述 UE的上行 探测信号时 UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整 数;
所述确定单元用于在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与 所述双列交叉极化天线之间的信道为 LOS径, 包括:
所述确定单元具体用于: 在下列不等式均成立的情况下, 确定在第 p次接收到所述 UE 的上行探测信号时所述 UE 与所述双列交叉极化天线之间的信道为 LOS 径:
02 rm{p)r22{p) >Thre, 13 rniP)r^{p) >Thr
其中, Thre表示所述阈值。
结合第四方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述确定单 元用于根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间的差值, 包括: 所述确定单元用于: 根据下列等式确定在第 p次接收到所述 UE的上行探测信号时 第一相位与第二相位之间的差值 ΔΟ),
A(p) = phase(r20 (ρ)) - phase(rl (ρ))
其中, /?½wer2。(j?))表示所述第一相位, /?/½^r31(j?))表示所述第二相位; 所述确定单元用于对所述第一相位与所述第二相位之间的差值进行滤波,得到所述 馈缆补偿相位, 包括:
所述确定单元用于:
当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上行探测信号时的馈 缆补偿相位^ J?):
Δ(^) = (1-α)* Α(ρ - 1) + α * Δ(ρ) 其中, A(J7- 1)表示在第(p-1)次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 Δ( ) :
Δ(1) = Δ(1)。
结合第四方面或第四方面的第一种可能的实现方式至第六种可能的实现方式中任 一方式, 在第七种可能的实现方式中, m为 2;
所述生成单元用于根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包括: 所述生成单元用于: 根据下列等式生成 4路基带信号,
Figure imgf000016_0001
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2 ( 和 x3 ( :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数; xQ ( :)和 x2 (k)分别对应于所述第一组同极化天线, ! (k)和 x3 (k)分别对应于所述第二组同极化 天线。
结合第四方面或第四方面的第一种可能的实现方式至第六种可能的实现方式中任 一方式, 在第八种可能的实现方式中, m为 4;
所述生成单元用于所述根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包 括: 所述生成单元用于: 根据与第 1个逻辑端口对应的信号生成第 1路基带信号, 根据 与第 3个逻辑端口对应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号 生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
结合第四方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述生成单 元用于根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口 对应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号生成第 3路基带信 号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号, 包括:
所述生成单元, 用于: 根据下列等式生成所述 4路基带信号,
Figure imgf000017_0001
其中, k表示子载波索引, xQ(^)、 Xl (k)、 x2( 和 x3 ( :)表示在第 k个子载波上 的 4路基带信号, Sl(k) , (^)和 表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k 为正整数; xQ( 和 x2( 分别对应于所述第一组同极化天线, (k)和 X3 (k)分别对应于所述第二组同极化天线。
本发明实施例中, 通过根据 UE的上行探测信号确定馈缆补偿相位, 并根据 4个发 射通道的补偿系数和馈缆补偿相位对 4路基带信号进行校正, 从而能够准确控制各路发 射信号的相位。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中所需要使用 的附图作简单地介绍, 显而易见地, 下面所描述的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。
图 1是根据本发明一个实施例的通信方法的示意性流程图。
图 2是可应用本发明实施例的一个场景的示意图。
图 3是根据本发明一个实施例的逻辑端口映射示意图。
图 4是根据本发明另一实施例的逻辑端口映射示意图。
图 5是根据本发明一个实施例的基带单元的示意框图。
图 6是根据本发明另一实施例的基带单元的示意框图。
图 7是根据本发明实施例的通信设备的示意框图。 实施本发明的方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整 地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不是全部实施例。 基于本 发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其 他实施例, 都应属于本发明保护的范围。 图 1是根据本发明一个实施例的通信方法的示意性流程图。 图 1的方法由基站内的 基带单元执行。 例如, 可以由分布式基站、 宏基站或小基站等基站内的基带单元执行。
110, 确定 4个发射通道分别对应的补偿系数。
120, 根据接收到的用户设备(User Equipment, UE)的上行探测(Sounding)信号, 确定馈缆补偿相位,馈缆补偿相位为第一组同极化天线对应的馈缆相位差与第二组同极 化天线对应的馈缆相位差之间的差。
130, 根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号。
140, 根据 4个发射通道分别对应的补偿系数和馈缆补偿相位, 对 4路基带信号进 行校正, 以便通过 4个发射通道以及双列交叉极化天线, 向 UE发送校正后的 4路基带 信号。
基站可以包括基带单元、 中射频单元以及双列交叉极化天线。 基带单元与中射频单 元之间可以通过光纤连接, 中射频单元与双列交叉极化天线之间可以通过馈缆连接, 中 射频单元可以包括 4个发射通道,双列交叉极化天线可以由第一组同极化天线和第二组 同极化天线组成, 基站可以工作在 m个逻辑端口的模式下, 其中 m为正整数。 应理解, 对于中射频单元, 在不同形态的基站中, 可以是其它名称, 例如对于分布式基站而言, 中射频单元称为射频拉远单元 (Radio Remote Unit, RRU)。 本发明实施例对此不做限 定。
本发明实施例中, 双列交叉极化天线可以包括 4列极化天线, 即第一列正 45度极 化天线、 第一列负 45度极化天线、 第二列正 45度极化天线和第二列负 45度极化天线。 因此, 第一组同极化天线可以包括第一列正 45度极化天线和第二列正 45度极化天线, 第二组同极化天线可以包括第一列负 45度极化天线和第二列负 45度极化天线。 可见, 上述第一组同极化天线也可以称为第一对同极化天线, 上述第二组同极化天线也可以称 为第二对同极化天线。
中射频单元上可以设置有 4个天线接口,每个天线接口通过 1根馈缆与双列交叉极 化天线中的一列天线相连接。 因此, 每列天线对应于 1根馈缆。
第一组同极化天线之间的馈缆相位差可以是第一组同极化天线中的两列天线对应 的馈缆之间的相位差, 例如, 第一组同极化天线之间的馈缆相位差可以是连接于第一列 正 45度极化天线的馈缆与连接于第二列正 45度极化天线的馈缆之间的相位差。
第二组同极化天线之间的馈缆相位差可以是第二组同极化天线中的两列天线对应 的馈缆之间的相位差, 例如, 第二组同极化天线之间的馈缆相位差可以是连接于第一列 负 45度极化天线的馈缆与连接于第二列负 45度极化天线的馈缆之间的相位差。馈缆补 偿相位为第一组同极化天线之间的馈缆相位差与第二组同极化天线之间的馈缆相位差 之间的差, 因此馈缆补偿相位可以用于补偿两组同极化天线对应的馈缆相位差之间的差 由于连接天线接口与双列交叉极化天线的各个馈缆之间存在差异,会导致馈缆之间 存在相位差。 具体来说, 会导致各组同极化天线对应的馈缆相位差不一致。 而在现有的 校正方案中, 基带单元仅利用发射通道的补偿系数对发射信号进行校正, 也就是仅仅对 中射频单元内部的发射通道进行了校正, 并没有考虑馈缆之间的相位差。 然而这样的相 位差会导致发射信号的相位无法准确控制, 降低下行吞吐量。 本发明实施例中在发送信 号时充分考虑了各组同极化天线对应的馈缆相位差之间的差异。 具体来说, 基带单元可 以根据 UE的上行探测信号确定馈缆补偿相位。 然后可以根据 4个发射通道的补偿系数 以及馈缆补偿相位, 对生成的 4路基带信号进行校正, 从而能够准确控制各路信号的相 位, 同时能够提高系统的下行吞吐量。
本发明实施例中, 通过根据 UE的上行探测信号确定馈缆补偿相位, 并根据 4个发 射通道的补偿系数和馈缆补偿相位对 4路基带信号进行校正, 从而能够准确控制各路发 射信号的相位。
此外, 由于能够准确控制各路发射信号的相位, 从而能够提高下行吞吐量。
应理解, 本发明实施例不仅可以应用于一组双列交叉极化天线的系统中, 也可以应 用于多组双列交叉极化天线的系统中。 例如, 对于 8列交叉极化天线而言, 可以看作是 两组双列交叉极化天线。 对于每组双列交叉极化天线, 可以执行步骤 110至步骤 140的 过程。
可选地, 作为一个实施例, 在步骤 110中, 可以按照现有的校正方案确定 4个发射 通道的补偿系数。 例如, 对于分布式基站而言, BBU 可以在每个发射通路发送发校正 参考信号,发校正参考信号经过发射通道、校正耦合电路和校正接收通道后,返回 BBU。 BBU可以计算各个发射通道返回的信号与发校正参考信号之间的幅度和 /或相位差, 来 作为各个发射通道的补偿系数。发射通道的补偿系数可以用于对发射通道的幅度和 /或相 位进行校正。
此外, 还可以计算各个接收通道的补偿系数, 例如, 对于分布式基站而言, BBU 可以在校正发射通道发送收校正参考信号, 收校正参考信号经过校正发射通道、 校正耦 合电路以及接收通道后, 返回 BBU。 BBU可以计算各个接收通道返回的信号与收校正 参考信号之间的幅度和 /或相位差,作为各个接收通道的补偿系数。接收通道的补偿系数 可以用于校正基站从 UE接收的信号。 例如, 上述 UE的上行探测信号可以是基站接收 到 UE发送的上行探测信号后利用接收通道的补偿系数校正得到的。 接收通道的补偿系 数可以用于对接收通道的幅度和 /或相位进行校正。
可选地, 作为另一实施例, 在步骤 120中, 可以根据接收到的 UE的上行探测信号, 确定 UE与基站之间的信道响应。 可以根据 UE与基站之间的信道响应, 确定 UE与双 列交叉极化天线之间的信道为直达 (Line of sight, LOS) 径。 可以根据所述 UE与所述 基站之间的信道响应确定馈缆补偿相位。
本发明实施例中, UE与双列交叉极化天线之间的信道可以指 UE的发射天线与基 站的双列交叉极化天线之间的信道。 UE与基站之间的信道是指 UE的发射天线与基站 的基带单元之间的信道。 因此, UE与基站之间的信道可以是由 UE的发射天线与基站 的双列交叉极化天线之间的信道、 馈缆以及中射频单元内部的接收通道组成。
对于双列交叉极化天线而言, UE的发射天线与基站的基带单元之间可以有 4个信 道, 相应地, UE的发射天线与双列交叉极化天线之间也可以有 4个信道。 UE的发射天 线与基站的基带单元之间的每个信道可以由 UE 的发射天线与 1 列极化天线之间的信 道、 该列极化天线、 该列极化天线与基站的天线接口之间的馈缆以及基站内部的接收通 道组成。 因此, UE与双列交叉极化天线之间的信道以及 UE与基带单元之间的信道之 间是一一对应的。
由于上述方法是由基带单元执行的, 因此根据 UE的上行探测信号确定的 UE与基 站之间的信道响应可以是指 UE与基带单元之间的信道响应。 例如, 对于具有双列交叉 极化天线的分布式基站而言, 根据 UE的上行探测信号得到的 UE与基站之间的信道响 应可以指 UE的发射天线与 BBU之间的信道响应。
LOS 径是指通信双方之间不存在障碍物遮挡的路径。 对于双列交叉极化天线, 在 UE与双列交叉极化天线之间的信道为 LOS径的情况下, 一组同极化天线与 UE之间的 两个信道的相位差和另一组同极化天线与 UE之间的两个信道的相位差是相同的。此外, 由于基带单元对接收通道进行校正后, 接收通道的响应是一致的, 即不存在相位差, 那么, 可以根据接收到的 UE的上行探测信号确定 UE的发射天线与基站的基带处 理单元之间的信道响应, 该过程可以参照现有的过程, 不再赘述。 这样, 在 UE与双列 交叉极化天线之间的信道为 LOS径的情况下, 可以根据 UE与基站之间的信道响应,也 就是 UE与基带单元之间的信道响应, 确定出馈缆补偿相位。 可选地, 作为另一实施例, 在步骤 120中, 可以根据 UE与基站之间的信道响应, 确定全频带空域相关矩阵。 然后可以根据全频带空域相关矩阵, 确定 UE与双列交叉极 化天线之间的信道为 LOS径。
具体地, 可以 UE与基站之间的各个信道的响应结果, 可以确定全频带空域相关矩 阵。全频带空域相关矩阵中每个元素可以表示 UE与基站之间的信道两两之间的相关性。 因此, 可以根据全频带空域相关矩阵确定 UE 与双列交叉极化天线之间的信道是否为 LOS径。
可选地, 作为另一实施例, 在步骤 120中, 第一组同极化天线可以由第一天线和第 三天线组成, 第二组同极化天线可以由第二天线和第四天线组成, UE与基站之间的信 道由第一信道、 第二信道、 第三信道和第四信道组成, 第一天线与第一信道对应, 第二 天线与第二信道对应, 第三天线与第三信道对应, 第四天线与第四信道对应。
可以在第一信道与第三信道之间的相关性大于预设的阈值, 且第二信道与第四信道 之间的相关性大于阈值的情况下, 确定 UE与双列交叉极化天线之间的信道为 LOS径。
例如, 第一天线可以指上述第一列正 45度天线, 第二天线可以指上述第一列负 45 度天线, 第三天线可以指上述第二列正 45度天线, 第四天线可以指上述第二列负 45度 天线。 如上所述, UE与基站之间的信道与双列交叉极化天线一一对应, 因此 UE与基 站之间的信道可以包括 4个信道, 本发明实施例中称为第一信道、 第二信道、 第三信道 以及第四信道。
对于 UE与双列交叉极化天线之间的信道为 LOS径的情况下, 一组同极化天线与 UE 的发射天线之间的信道响应在整个频带内的幅度相同, 仅相差一个相位, 因此同极 化天线与 UE的发射天线之间的两个信道的相关性比较大。 如果在非 LOS径的情况下, 一组同极化天线与 UE的发射天线之间的信道响应在每个子载波上都有差别, 那么同极 化天线与 UE的发射天线之间的两个信道相关性比较小。
全频带空域相关矩阵中,每个元素可以表示 UE与基站之间的信道两两间的相关性。 由于各个接收通道的响应相同, 并且两组同极化天线对应的馈缆相位差之间的差异引起 的是在全频带上信道之间的固定相位差, 并不影响信道相关性的幅度值。 因此可以根据 全频带空域相关矩阵, 利用 UE与基站之间的信道中第一组同极化天线对应的信道的相 关性的幅度, 以及第二组同极化天线对应的信道的相关性的幅度来判断 LOS径。 也就 是, 可以利用第一信道与第三信道之间的相关性的幅度以及第二信道与第四信道之间的 相关性的幅度来判断 LOS径。 具体来说, 可以确定第一信道与第三信道之间的相关性 是否大于某一阈值, 并确定第二信道与第四信道之间的相关性是否也大于该阈值。 如果 这两个相关性均大于该阈值, 则可以说明 UE 与双列交叉极化天线之间的信道为 LOS 径。 上述阈值可以是预先设定的, 其取值范围可以是 0〜1, 例如, 该阈值可以设定为 0.8 或 0.9。
可选地, 作为另一实施例, 在步骤 120中, 在 UE与双列交叉极化天线之间的信道 为 LOS径的情况下, 可以根据全频带空域相关矩阵, 确定第一相位与第二相位之间的 差值, 第一相位是第一信道与第三信道之间的相位差, 第二相位是第二信道与第四信道 之间的相位差。 可以对第一相位与第二相位之间的差值进行滤波, 得到馈缆补偿相位。
对于双列交叉极化天线,在 UE与双列交叉极化天线之间的信道为 LOS径的情况下, 第一组同极化天线与 UE之间的两个信道的相位差与第二组同极化天线与 UE之间的两 个信道的相位差是相同的。 具体来说, 假设第一天线与 UE 之间的信道和第三天线与 UE之间的信道这两个信道的相位差为 A, 第二天线与 UE之间的信道和第四天线与 UE 之间的信道这两个信道的相位差为 B,在 UE与双列交叉极化天线之间的信道为 LOS径 的情况下, A和 B是相同的。 而各个接收通道的响应是相同的, 那么可以确定第一信道 与第三信道之间的相位差, 以及第二信道与第四信道之间的相位差, 并计算第一相位和 第二相位之间的差值。 为了降低误差, 可以对上述差值进行滤波, 得到最终的馈缆补偿 相位。
应理解, 由于在不断地接收 UE的上行探测信号, 因此在每次接收到 UE的上行探 测信号时, 都可以计算一次馈缆补偿相位。 因此, 上述接收到的 UE的上行探测信号可 以理解为当前接收到的 UE的上行探测信号, 上述馈缆补偿相位可以理解为当前的馈缆 补偿相位。 如果根据当前接收到的 UE的探测信号, 确定 UE与双列交叉极化天线之间 的信道不为 LOS径,那么可以将前一次接收到 UE的上行探测信号时得到的馈缆补偿相 位作为当前的馈缆补偿相位, 也就是馈缆补偿相位维持不变。 应注意, 如果根据第 1次 接收到 UE的上行探测信号确定 UE与双列交叉极化天线之间的信道不为 LOS径,那么 可以将馈缆补偿相位默认为 0。
下面以第 p次接收到 UE的上行探测信号为例说明如何确定馈缆补偿相位。
可选地, 作为另一实施例, 在第 p次接收到 UE的上行探测信号时, r00(P) roi(P) r02(p ro (P
rwiP) rn(P)
全频带空域相关矩阵 RO) =
其中, RO)中的元素^ ^p)表示在第 p次接收到 UE的上行探测信号时 UE与基带 单元之间的第 i个信道与第 j个信道之间的相关性, p为正整数。
在下列不等式 (1) 和 (2) 均成立的情况下, 可以确定在第 p次接收到 UE的上行 探测信号时 UE与双列交叉极化天线之间的信道为 LOS径:
Figure imgf000023_0001
其中, Thre表示阈值。该阈值可以是预先设定的。例如, 7¾re可以设置为 0.8或 0.9。 可选地, 作为另一实施例, 可以根据等式 (3) 确定在第 p次接收到 UE的上行探 测信号时第一相位与第二相位之间的差值 ΔΟ),
A(p) = phase(r20 (pj)― phase(r3l (pj) ( 3 )
其中, ;?//0«?( 2。( ))可以表示第一相位, ;?/½we(;r31( ))可以表示第二相位。 对于对 ΔΟ)进行滤波的过程可以分为以下两种情况:
当 p大于 1时, 可以根据等式 (4) 对在第 p次接收到 UE的上行探测信号时第一 相位与第二相位之间的差值进行滤波, 得到在第 p次接收到 UE的上行探测信号时的馈 缆补偿相位^ J?),
Λ(^) = (1 - α) * - 1) + α * Δ(^) (4) 其中, ρ- 1)表示第(ρ-1)次接收到 UE的上行探测信号时的馈缆补偿相位, α 表示滤波系数, 通常 0<α<1。
当 ρ为 1时, 可以根据等式 (5) 得到在第 1次接收到 UE的上行探测信号时的馈 缆补偿相位 A(l),
Δ(1)= Δ(1) (5)。
本发明实施例中, 等式中的符号 "Λ"可以表示估计值。
可见, 本发明实施例中, 每次接收到 UE的上行探测信号, 都可以执行一次馈缆补 偿相位的计算过程, 将得到的馈缆相位补偿作为本次基带信号的相位校正的依据, 从而 能够实现基带信号的在线校正, 能够降低误差。
可选地, 作为另一实施例, 当 p大于 1时, 在不等式 (1 ) 或不等式 (2) 不成立的 情况下, 可以确定在第 p次接收到 UE的上行探测信号时, UE与双列交叉极化天线之 间的信道不为 LOS径。 相应地, 在 p次接收到 UE的上行探测信号时的馈缆补偿相位
Ao) = Ao - 1)。 具体来说, 如果在第 p次接收到 UE的上行探测信号时, UE与双列 交叉极化天线之间的信道不为 LOS径,那么可以利用前一次接收到 UE的上行探测信号 时的馈缆补偿相位进行本次基带信号的相位校正。 当 p为 1时, 如果根据第 1次接收到 UE的上行探测信号确定 UE与双列交叉极化天线之间的信道不为 LOS径, 那么可以将 馈缆补偿相位默认为 0。
上面详细描述了确定馈缆补偿相位的过程。 在得到馈缆补偿相位后, 基站可以执行 逻辑端口与物理天线之间的映射操作。也就是,可以根据与 m个逻辑端口一一对应的信 号生成 4路基带信号。
可选地, 作为另一实施例, 在步骤 130中, m可以为 2, 也就是说基站可以工作在 2个逻辑端口的模式下。 可以根据等式 (6) 生成 4路基带信号,
Figure imgf000024_0001
其中, k表示子载波索引, xQ ^)、 Xl (k)、 和 x3 表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数。 xQ( 和 x2( 分别对应于第一组同极化天线, :)和 x3 ( :)分别对应于第二组同极化天线。
可见, 本实施例中, 两个逻辑端口的信号形成互补, 这样使得 UE接收到的两个逻 辑端口的信号能量总和将为固定常数, 从而能够避免信道频域波动, 提升下行吞吐量, 并且能够提高分集增益。
可选地, 作为另一实施例, 在步骤 130中, m可以为 4。 可以根据与第 1个逻辑端 口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口对应的信号生成第 2路基带 信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端 口对应的信号生成第 4路基带信号。
具体地, 当基站工作在 4个逻辑端口的模式时, 可以将第 1个端口的信号映射到第 1个发射通道, 第 3个端口的信号映射到第 2个发射通道, 第 2个端口的信号映射到第 3个发射通道, 第 4个端口的信号映射到第 4个发射通道。 在闭环 MIMO系统中, 对于 大部分码字而言,前 2个逻辑端口之间的权值相位差与后 2个逻辑端口之间的权值相位 差相同。 这样, 使得基站与 UE之间的 MIMO信道响应与闭环 MIMO码本匹配性更好, 从而能够提高下行吞吐量。
可选地, 作为另一实施例, 在步骤 130中, m可以为 4。 可以根据等式 (7 ) 生成 4 路基带信号,
Figure imgf000025_0001
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2( 和 x3( :)表示在第 k个子载波上 的 4路基带信号, Sl (k) , (^)和 表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k为正整数; xQ( 和 x2( 分别对应于第一组同极化天线, Xl (k) 和 x3 ( 分别对应于第二组同极化天线。
可选地, 作为另一实施例, 在步骤 140中, 可以将 4路基带信号分别乘以其对应的 发射通道的补偿系数, 并可以将其中 1路的基带信号同时乘以馈缆补偿相位, 从而得到 校正后的信号。
可选地, 作为另一实施例, 在得到校正后的 4路基带信号后, 可以通过每个发射通 道以及相应的一列极化天线向 UE发送一路校正后的基带信号。 例如, 可以通过第 1个 发射通道以及第一列正 45度极化天线, 向 UE发送第 1路校正后的基带信号; 通过第 2 个发射通道以及第一列负 45度极化天线向 UE发送第 2路校正后的基带信号; 依次类 推。
下面将结合具体例子详细地描述本发明实施例。 应注意, 下面的例子只是为了帮助 本领域技术人员更好地理解本发明实施例, 而非限制本发明实施例的范围。
图 2是可应用本发明实施例的一个场景的示意图。
在图 2所示的场景中, 基站 210可以为分布式基站, 基站 210和 UE 220之间可以 进行通信。
基站 210可以包括 BBU 21 KR U 212以及双列交叉极化天线 213。BBU 211和 R U
212之间可以通过光纤连接, R U 212上具有 4个天线接口 (图 2中未示出), 各个天 线接口与双列交叉极化天线 213之间可以分别通过 4根馈缆连接。
R U 212可以包括发射通道 0至发射通道 3、 接收通道 0至接收通道 3、 校正发通 道、 校正收通道和校正耦合电路。 双列交叉极化天线 213可以包括第一列正 45度极化 天线、 第一列负 45度极化天线、 第二列正 45度极化天线和第二列负 45度极化天线。
可见, 发射通道、 接收通道、 馈缆以及极化天线之间是一一对应的。
下面将基于图 2所示的场景详细描述基站 210和 UE 220之间的传输信号的过程。 步骤一: BBU 211计算 R U 212内的各个发射通道和各个接收通道的补偿系数。 具体地, BBU 211可以分别向发射通道 0至 3发送发校正参考信号, 发校正参考信 号通过校正耦合电路和校正收通道后返回 BBU 211。 BBU 211计算各个反馈信号与发校 正参考信号之间的幅相差, 将计算的幅相差分别作为相应的发射通道的补偿系数。
BBU 211可以向校正发通道发送收校正参考信号, 收校正参考信号经过校正耦合电 路和接收通道 0至 3后, 分别返回 BBU 211。 BBU 211计算各个反馈信号与收校正参考 信号之间的幅相差, 将计算的幅相差分别作为相应的接收通道的补偿系数。
各个发射通道的补偿系数的作用是使得各个发射通道的响应一致, 即 Τ0 = Ί = Τ2 = Ί, 其中 Τ。、 、 T2和 T3分别表示发射通道 0至 3的响应特性。
各个接收通道的补偿系数的作用是使得各个接收通道的响应一致, 即 R。 = Ri = R2 = R3, 其中 Ro、 、 R2和 R3分别表示接收通道 0至 3的响应特性。
步骤二: BBU 211计算馈缆补偿相位。 在图 2中, 可以以6 °、 e 、 6^和6 3分别表示 RRU 212与第一列正 45度极 化天线、 第一列负 45度极化天线、 第二列正 45度极化天线以及第二列负 45度极化天 线之间的馈缆响应特性。
可以以 :)、 h^k) , ( 和 /¾3 ( 分别表示在第 k个子载波上双列交叉极化天 线 213与 UE 220的发射天线之间的信道响应。 k为正整数。 BBU 211每接收到一次 UE 220的上行探测信号,将计算一次馈缆补偿相位。下面将以 BBU 211第 p次接收到 UE 220 的上行探测信号为例进行描述, p为正整数。
A) BBU 211计算 UE 220的发射天线与 BBU 211之间的信道响应。
UE 220的发射天线与 BBU 211之间存在 4个信道。 UE 220的发射天线与 BBU 211 之间的每个信道由 UE 220与一列极化天线之间的信道、 这列极化天线与 R U 212之间 的馈缆以及相应的接收通道组成。 例如, UE 220的发射天线与 BBU 211之间的第 0个 信道可以由 UE 220与第一列正 45度极化天线之间的信道、 第一列正 45度极化天线与 R U 212之间的馈缆以及接收通道 0组成。
BBU 211可以根据第 p次接收到的上行探测信号确定在第 k个子载波上 UE 220的 发射天线与 BBU 211之间的第 i个信道的信道响应 p(^)。 对于 BBU 211来说, 在接 收到上行探测信号时, 首先利用步骤一计算的接收通道的补偿系数对上行探测信号进行 补偿,然后利用补偿后的上行探测信号确定在第 k个子载波上 UE 220的发射天线与 BBU
211之间第 i水个^信道 ΐ的信道响应 。
由于 UE 220的发射天线与 BBU 211之间的每个信道可以由接收通道、 馈缆以及双 列交叉极化天线与 UE之间的信道组成, 因此, UE 220的发射天线与 BBU 211之间的 第 i个信道的信道响应 ^ ^)与第 i个接收通道的响应特性、 第 i个馈缆的响应特性以 及 UE 220的发射天线与双列交叉极化天线 213之间的第 i个信道响应特性之间的关系 可以通过等式 (8) 来表示。
h. ( Vk) - R. h. (k)e ( 8)
其中, i为 0、 1、 2或 3。
此处, ,ρ为在根据第 i个接收通道的补偿系数校正后得到的第 i个接收通道的响应 特性。 基于步骤一的描述, 在利用各个接收通道的补偿系数对各个接收通道校正后, 各 个接收通道的响应特性是相同的。
B) BBU 211可以根据 UE 220的发射天线与 BBU 211之间的各个信道的信道响应, 按照 (9) 计算全频带空域相关矩阵 R。
Figure imgf000027_0001
(9)
其中, K表示信号带宽内子载波数目,例如,对于 20MHz带宽的 LTE系统, K=1200。
C) BBU 211可以判断上述两个不等式 (1 ) 和 (2) 是否成立。
D)在确定不等式 (1 )和 (2)均成立的情况下, BBU 211确定 UE 220与基站 210 的双列交叉极化天线之间的信道为 L0S径。
在 UE与双列交叉极化天线之间的信道为 L0S径的情况下, 第一组同极化天线与 UE之间的两个信道的相位差与第二组同极化天线与 UE之间的两个信道的相位差相同, 即满足等式 (10)。
phase(h0 {k)h2* (k)) =
Figure imgf000028_0001
(k)h3* (k)) (10)
因此, 利用该特性, BBU 211可以根据等式 (11) 计算在第 p次接收到 UE 220的 上行探测信号时,第一相位与第二相位之间的差值△( ),第一相位可以是 UE 220的发 射天线与 BBU 211之间的第 0个信道与 UE 220的发射天线与 BBU 211之间的第 2个信 道这两个信道之间的相位差, 第二相位可以是 UE 220的发射天线与 BBU 211之间的第 1个信道与 UE 220的发射天线与 BBU 211之间的第 3个信道这两个信道之间的相位差。
HP) = (φ2 -(Ρο)- (Ψ3 -(Ρι) = p ase(r20 (p)) - phase(r3l (p)) (11) 然后, 根据等式 (4) 对由等式 (11) 得到的差值进行滤波, 得到最终的馈缆补偿 相位^ J7)。 事实上, 根据等式 (11) 得到的结果是未滤波前的馈缆补偿相位。
步骤三: BBU211根据与逻辑端口一一对应的信号, 生成 4路基带信号。
具体地, 该步骤中, BBU211执行逻辑端口与发射通道之间的映射操作。
A)假设基站 210工作在 2个逻辑端口的模式下, 那么 BBU 211可以将 2个逻辑端 口映射到 4个发射通道上。
图 3是根据本发明一个实施例的逻辑端口映射示意图。 如图 3所示, BBU211可以 对与逻辑端口一一对应的信号进行 MIMO编码, 然后按照等式(6)根据 MIMO编码得 到的信号 (^)和 生成 4路基带信号 xQ(^)、 Xl(k)、 2(^)和 (^:)。
可见, 两个端口的信号形成互补, 这样使得 UE接收到的两个端口的信号能量总和 将为固定常数, 从而能够避免信道频域波动, 提升下行吞吐量。
B)假设基站 210工作 4个逻辑端口的模式下, 那么 BBU 211可以将 4个逻辑端口 映射到 4个发射通道上。
图 4是根据本发明另一实施例的逻辑端口映射示意图。 如图 4所示, BBU211可以 对与逻辑端口一一对应的信号进行 MIMO编码, 然后可以按照等式 (7), 根据 MIMO 编码得到的信号 ( )、 s.ik)、 s2(k)和 ,生成 4路基带信号 XQ( )、 xx{k)、 x2{k) 禾口 X3 (k)。
在这种情况下, 将逻辑端口 0映射到发射通道 0、 逻辑端口 2映射到发射通道 1、 逻辑端口 1映射到发射通道 2以及逻辑端口 3映射到发射通道 3。
表 1是第三代合作伙伴计划(3rd Generation Partnership Project, 3GPP)协议(36.211 ) 规定的闭环码本。 4端口闭环码本共有 16个码字, 其中前 12个码字有一个共同特点。 如表 1所示, 该共同特点为: 端口 0与端口 1之间的权值相位差和端口 2与端口 3之间 的权值相位差相同。
表 1 闭环码本
Figure imgf000029_0001
可见,上述这种映射方案使得基站与 UE之间的信道响应与闭环 MIMO码本的特性 一致, 从而使得基站与 UE之间的信道响应与闭环 MIMO码本的匹配性更好, 能够提升 闭环 MIMO性能。
步骤四: BBU211根据步骤一得到的发射通道的补偿系数以及步骤二得到的馈缆补 偿相位, 对 4路基带信号 XQ(^)、 Xl(k)、 X2 )和 X3C:)进行校正。
具体地, BBU211将 XQ( )、 Xl(k), X2( )和 X3(:)分别乘以相应的发射通道的补 偿系数, 例如, 将发射通道 0 的补偿系数乘以 xQ (^), 将发射通道 1 的补偿系数乘以 xx {k) , 依次类推, 分别得到信号 x[{k) , 和 x;(:)。 然后 BBU 211 可以将信号 ( 进行馈缆相位的补偿, 即 ( 乘以 Αϋ 得到 xl{k)。
如图 3或图 4所示, 在根据与逻辑端口对应的信号得到 4路基带信号后, 对得到的
4路基带信号进行校正。
步骤五: BBU 211将校正后的 4路基带信号通过相应的发射通道以及极化天线发送 给 UE 220。
具体地, BBU 211可以通过发射通道 0以及第一列正 45度极化天线, 向 UE 220发 送信号 χό (k), 通过发射通道 1和第一列负 45度极化天线向 UE 220发送信号 , 通过发射通道 2和第二列正 45度极化天线向 UE 220发送信号 ( , 通过发射通道 3 和第二列负 45度极化天线向 UE 220发送信号 X ( i、。
本发明实施例中, 通过基站根据 UE的上行探测信号确定馈缆补偿相位, 并根据 4 个发射通道的补偿系数和馈缆补偿相位对 4路基带信号进行校正, 从而能够准确控制各 路发射信号的相位。
图 5是根据本发明一个实施例的基带单元的示意框图。 图 5的基带单元 500包括确 定单元 510、 生成单元 520和校正单元 530。
确定单元 510确定 4个发射通道分别对应的补偿系数。确定单元 510还根据接收到 的 UE的上行探测信号, 确定馈缆补偿相位, 其中, 基带单元 500所属的基站的双列交 叉极化天线由第一组同极化天线和第二组同极化天线组成,馈缆补偿相位为第一组同极 化天线对应的馈缆相位差与第二组同极化天线对应的馈缆相位差之间的差。 生成单元 520根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号, 其中 m为正整数。 校正单元 530根据 4个发射通道分别对应的补偿系数和馈缆补偿相位,对 4路基带信号 进行校正, 以便通过 4个发射通道以及双列交叉极化天线, 向 UE发送校正后的 4路基 带信号。
本发明实施例中, 通过根据 UE的上行探测信号确定馈缆补偿相位, 并根据 4个发 射通道的补偿系数和馈缆补偿相位对 4路基带信号进行校正, 从而能够准确控制各路发 射信号的相位。
可选地, 作为一个实施例, 确定单元 510可以根据接收到的 UE的上行探测信号, 确定 UE与基带单元 500之间的信道响应。 确定单元 510可以根据 UE与基带单元 500 之间的信道响应, 确定 UE与双列交叉极化天线之间的信道为 LOS径。 确定单元 510 根据 UE与基带单元 500之间的信道响应确定馈缆补偿相位。
可选地, 作为另一实施例, 确定单元 510可以根据 UE与基带单元 500之间的信道 响应, 确定全频带空域相关矩阵。 确定单元 510 可以根据全频带空域相关矩阵, 确定 UE与双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 第一组同极化天线由第一天线和第三天线组成, 第二组 同极化天线由第二天线和第四天线组成, UE与基带单元之间的信道由第一信道、 第二 信道、第三信道和第四信道组成,第一天线与第一信道对应,第二天线与第二信道对应, 第三天线与第三信道对应, 第四天线与第四信道对应。 确定单元 510可以在第一信道与 第三信道之间的相关性大于预设的阈值, 且第二信道与第四信道之间的相关性大于阈值 的情况下, 确定 UE与双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 确定单元 510可以根据全频带空域相关矩阵, 确定第一 相位与第二相位之间的差值, 第一相位是第一信道与第三信道之间的相位差, 第二相位 是第二信道与第四信道之间的相位差。确定单元 510可以对第一相位与第二相位之间的 差值进行滤波, 得到馈缆补偿相位。
可选地, 作为另一实施例, 基带单元 500第 p次接收到 UE的上行探测信号时,
全频带空域相关矩阵
Figure imgf000031_0001
其中, 中的元素^ ^;?)表示在基带单元 500第 p次接收到 UE的上行探测信号 时 UE与基带单元 500之间的第 i个信道与第 j个信道之间的相关性, p为正整数。
确定单元 510可以在下列不等式 (1 ) 和不等式 (2) 均成立的情况下, 确定在第 p 次接收到 UE的上行探测信号时 UE与双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 确定单元 510可以根据等式 (3 ) 确定在第 p次接收到 UE的上行探测信号时第一相位与第二相位之间的差值 ΔΟ)。
当 p大于 1时, 确定单元 510可以根据等式 (4) 对在第 p次接收到 UE的上行探 测信号时第一相位与第二相位之间的差值进行滤波, 得到在第 p次接收到 UE的上行探 测信号时的馈缆补偿相位 A(J7)。 当 p为 1时, 确定单元 510可以根据等式 (5) 得到在第 1次接收到 UE的上行探 测信号时的馈缆补偿相位 λ(1)。
可选地, 作为另一实施例, m可以为 2。
生成单元 520可以根据等式 (6) 生成 4路基带信号。
可选地, 作为另一实施例, m可以为 4。 生成单元 520可以根据与第 1个逻辑端口 对应的信号生成第 1路基带信号,根据与第 3个逻辑端口对应的信号生成第 2路基带信 号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口 对应的信号生成第 4路基带信号。
可选地, 作为另一实施例, m可以为 4。 生成单元 520可以根据等式 (7) 生成 4 路基带信号。
需要说明的是, 基带单元 500可以对应于执行图 1的通信方法的基带单元, 从而可 以实现图 1的通信方法的相应流程。 对于图 1的通信方法和基带单元 500中的实施例, 可以相互结合, 相互参照。
图 6是根据本发明另一实施例的基带单元的示意框图。 图 6的基带单元 600包括存 储器 610和处理器 620。
存储器 610和处理器 620之间通过数据总线 630相连接; 其中,
存储器 610存储可执行指令。
处理器 620, 执行存储器 610存储的可执行指令, 用于: 确定中射频单元的 4个发 射通道分别对应的补偿系数; 根据接收到的 UE的上行探测信号, 确定馈缆补偿相位, 基带单元 600所属的基站的双列交叉极化天线由第一组同极化天线和第二组同极化天线 组成,馈缆补偿相位为第一组同极化天线对应的馈缆相位差与第二组同极化天线对应的 馈缆相位差之间的差; 根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号, 其中 m为正整数;根据 4个发射通道分别对应的补偿系数和馈缆补偿相位,对 4路基带 信号进行校正, 以便通过 4个发射通道以及双列交叉极化天线, 向 UE发送校正后的 4 路基带信号。
本发明实施例中, 通过根据 UE的上行探测信号确定馈缆补偿相位, 并根据 4个发 射通道的补偿系数和馈缆补偿相位对 4路基带信号进行校正, 从而能够准确控制各路发 射信号的相位。
可选地, 作为一个实施例, 处理器 620可以根据接收到的 UE的上行探测信号, 确 定 UE与基带单元 600之间的信道响应。 处理器 620可以根据 UE与基带单元 600之间 的信道响应,确定 UE与双列交叉极化天线之间的信道为 LOS径。处理器 620可以根据 UE与基带单元 600之间的信道响应确定馈缆补偿相位。
可选地, 作为另一实施例, 处理器 620可以根据 UE与基带单元 600之间的信道响 应, 确定全频带空域相关矩阵。 处理器 620根据全频带空域相关矩阵, 确定 UE与双列 交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 第一组同极化天线由第一天线和第三天线组成, 第二组 同极化天线由第二天线和第四天线组成, UE与基带单元之间的信道由第一信道、 第二 信道、第三信道和第四信道组成,第一天线与第一信道对应,第二天线与第二信道对应, 第三天线与第三信道对应, 第四天线与第四信道对应。 处理器 620可以在第一信道与第 三信道之间的相关性大于预设的阈值, 且第二信道与第四信道之间的相关性大于阈值的 情况下, 确定 UE与双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 处理器 620可以根据全频带空域相关矩阵, 确定第一相 位与第二相位之间的差值, 第一相位是第一信道与第三信道之间的相位差, 第二相位是 第二信道与第四信道之间的相位差。处理器 620可以对第一相位与第二相位之间的差值 进行滤波, 得到馈缆补偿相位。
可选地, 作为另一实施例, 在基带单元 600第 p次接收到 UE的上行探测信号时, r00 (p) roi (P) roi (P) roi (P)
rw (P) rn (P) rn (P) r P
全频带空域相关矩阵 RO) =
r20 (P rii (P r2i (P riAP)
r30 (p) r3l (p) r32 (p) r33 (p)_ 其中, RO)中的元素^ ^p)表示在基带单元 600第 p次接收到 UE的上行探测信号 时 UE与基带单元 600之间的第 i个信道与第 j个信道之间的相关性, p为正整数。
处理器 620可以在下列不等式 (1 )和不等式 (2)均成立的情况下, 确定在第 p次 接收到 UE的上行探测信号时 UE与双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 处理器 620可以根据等式(3 )确定在第 p次接收到 UE 的上行探测信号时第一相位与第二相位之间的差值 ΔΟ)。
当 p大于 1时, 处理器 620可以根据等式 (4) 对在第 p次接收到 UE的上行探测 信号时第一相位与第二相位之间的差值进行滤波, 得到在第 p次接收到 UE的上行探测 信号时的馈缆补偿相位 A(J7)。
当 p为 1时, 理器 620可以根据等式 (5 ) 得到在第 p次接收到 UE的上行探测信 号时的馈缆补偿相位 Α(ι)。
可选地, 作为另一实施例, m可以为 2。
处理器 620可以根据等式 (6) 生成 4路基带信号。
可选地, 作为另一实施例, m可以为 4。
处理器 620可以根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第
3个逻辑端口对应的信号生成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成 第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
可选地, 作为另一实施例, m可以为 4。 处理器 620可以根据等式(7)生成 4路基 带信号。
需要说明的是, 基带单元 600可以对应于执行图 1的通信方法的基带单元, 从而可 以实现图 1的通信方法的相应流程。 对于图 1的通信方法和基带单元 600中的实施例, 可以相互结合, 相互参照。
图 7是根据本发明实施例的通信设备的示意框图。 图 7的通信设备 700包括基带单 元 710、 中射频单元 720和双列交叉极化天线 730。
所述基带单元 710与所述中射频单元 720之间通过光纤连接, 所述中射频单元 720 与所述双列交叉极化天线 730之间通过馈缆连接, 所述中射频单元包括 4个发射通道。 双列交叉极化天线 730由第一组同极化天线和第二组同极化天线组成,通信设备 700工 作在 m个逻辑端口的模式下, 其中 m为正整数。
基带单元 710用于: 确定 4个发射通道分别对应的补偿系数;
根据接收到的用户设备 UE的上行探测信号, 确定馈缆补偿相位, 馈缆补偿相位为 第一组同极化天线对应的馈缆相位差与第二组同极化天线对应的馈缆相位差之间的差; 根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号; 根据 4个发射通道分别 对应的补偿系数和馈缆补偿相位, 对 4路基带信号进行校正; 向中射频单元 720发送校 正后的 4路基带信号。
中射频单元 720通过 4个发射通道和双列交叉极化天线 730, 向 UE发送校正后的
4路基带信号。
本发明实施例中, 通过根据 UE的上行探测信号确定馈缆补偿相位, 并根据 4个发 射通道的补偿系数和馈缆补偿相位对 4路基带信号进行校正, 从而能够准确控制各路发 射信号的相位。
可选地, 作为一个实施例, 通信设备 700可以为基站, 例如可以为分布式基站、 宏 基站或小基站等基站。
例如,对于具有双列交叉极化天线的分布式基站来说,可以包括基带单元(Baseband Unit, BBU)、 RRU以及双列交叉极化天线。 BBU和 RRU之间可以通过光纤连接。 R U 可以包括 4个接收通道和 4个发射通道。 在 R U上还设置有 4个天线接口。 每个天线 接口可以通过 1个馈缆与 1列极化天线相连接。
可选地, 作为另一实施例, 基带单元 710可以根据接收到的 UE的上行探测信号, 确定 UE与基带单元 710之间的信道响应。 基带单元 710可以根据 UE与基带单元 710 之间的信道响应, 确定 UE与双列交叉极化天线之间的信道为 LOS径。 基带单元 710 可以根据 UE与基带单元 710之间的信道响应确定馈缆补偿相位。
可选地, 作为另一实施例, 基带单元 710可以根据 UE与基带单元 710之间的信道 响应, 确定全频带空域相关矩阵。 基带单元 710根据全频带空域相关矩阵, 确定 UE与 双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 第一组同极化天线由第一天线和第三天线组成, 第二组 同极化天线由第二天线和第四天线组成, UE与基带单元之间的信道由第一信道、 第二 信道、第三信道和第四信道组成,第一天线与第一信道对应,第二天线与第二信道对应, 第三天线与第三信道对应, 第四天线与第四信道对应。 基带单元 710可以在第一信道与 第三信道之间的相关性大于预设的阈值, 且第二信道与第四信道之间的相关性大于阈值 的情况下, 确定 UE与双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 基带单元 710可以根据全频带空域相关矩阵, 确定第一 相位与第二相位之间的差值, 第一相位是第一信道与第三信道之间的相位差, 第二相位 是第二信道与第四信道之间的相位差。基带单元 710可以对第一相位与第二相位之间的 差值进行滤波, 得到馈缆补偿相位。
可选地, 作为另一实施例, 在基带单元 710第 p次接收到 UE的上行探测信号时,
全频带空域相关矩阵 RO) =
Figure imgf000035_0001
其中, RO)中的元素^ ^;?)表示在基带单元第 p次接收到 UE的上行探测信号时
UE与基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整数。
基带单元 710可以在下列不等式 (1 ) 和不等式 (2) 均成立的情况下, 确定在第 p 次接收到 UE的上行探测信号时 UE与双列交叉极化天线之间的信道为 LOS径。
可选地, 作为另一实施例, 基带单元 710可以根据等式 (3 ) 确定在第 p次接收到 UE的上行探测信号时第一相位与第二相位之间的差值 ΔΟ)。
当 p大于 1时, 基带单元 710可以根据等式 (4) 对在第 p次接收到 UE的上行探 测信号时第一相位与第二相位之间的差值进行滤波, 得到在第 p次接收到 UE的上行探 测信号时的馈缆补偿相位 A(J7)。
当 p为 1时, 基带单元 710可以根据等式 (5) 得到第 1次接收到 UE的上行探测 信号时的馈缆补偿相位 A(l)。
可选地, 作为另一实施例, m可以为 2。
基带单元 710可以根据等式 (6) 生成 4路基带信号。
可选地, 作为另一实施例, m可以为 4。
基带单元 710可以根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与 第 3个逻辑端口对应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号生 成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
可选地, 作为另一实施例, m可以为 4。 基带单元 710可以根据等式 (7) 生成 4 路基带信号。
需要说明的是,通信设备 700中的基带单元 710可以对应于执行图 1的通信方法的 基带单元,也可以对应于图 5中的基带单元 500,或者可以对应于图 6中的基带单元 600, 从而可以实现图 1的通信方法的相应流程。对于图 1的通信方法和通信设备 700中的实 施例, 可以相互结合, 相互参照。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各示例的单元 及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现。 这些功能究 竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设计约束条件。 专业技术 人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认 为超出本发明的范围。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 上述描述的系统、 装置和单元的具体工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和方法, 可以 通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示意性的, 例如, 所述单 元的划分, 仅仅为一种逻辑功能划分, 实际实现时可以有另外的划分方式, 例如多个单 元或组件可以结合或者可以集成到另一个系统, 或一些特征可以忽略, 或不执行。 另一 点, 所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置 或单元的间接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作为单元显示 的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个 网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的 目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是 各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时, 可以存 储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说 对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来, 该 计算机软件产品存储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以 是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory) 随机存取存储器 (RAM, Random Access Memory)、 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限于此, 任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想到变化或替换, 都应 涵盖在本发明的保护范围之内。 因此, 本发明的保护范围应以所述权利要求的保护范围 为准。

Claims

权利要求
1. 一种通信设备, 其特征在于, 包括:
基带单元, 中射频单元以及双列交叉极化天线;
所述基带单元与所述中射频单元之间通过光纤连接,所述中射频单元与所述双列交 叉极化天线之间通过馈缆连接, 所述中射频单元包括 4个发射通道, 所述双列交叉极化 天线由第一组同极化天线和第二组同极化天线组成,所述通信设备工作在 m个逻辑端口 的模式下, 其中 m为正整数;
所述基带单元, 用于:
确定所述 4个发射通道分别对应的补偿系数;
根据接收到的用户设备 UE的上行探测信号, 确定馈缆补偿相位, 所述馈缆补偿相 位为所述第一组同极化天线对应的馈缆相位差与所述第二组同极化天线对应的馈缆相 位差之间的差;
根据与所述 m个逻辑端口一一对应的 m路信号生成 4路基带信号;
根据所述 4个发射通道分别对应的补偿系数和所述馈缆补偿相位,对所述 4路基带 信号进行校正; 向所述中射频单元发送校正后的 4路基带信号;
所述中射频单元, 用于:
通过所述 4个发射通道和所述双列交叉极化天线, 向所述 UE发送所述校正后的 4 路基带信号。
2. 根据权利要求 1所述的通信设备, 其特征在于, 所述基带单元用于根据接收到 的用户设备 UE的上行探测信号, 确定馈缆补偿相位包括:
所述基带单元, 用于:
根据所述接收到的 UE的上行探测信号, 确定所述 UE与所述基带单元之间的信道 响应;
根据所述 UE与所述基带单元之间的信道响应, 确定所述 UE与所述双列交叉极化 天线之间的信道为直达 LOS径;
根据所述 UE与所述基带单元之间的信道响应确定所述馈缆补偿相位。
3. 根据权利要求 2所述的通信设备, 其特征在于, 所述基带单元用于根据所述 UE 与所述基带单元之间的信道响应, 确定所述 UE与所述双列交叉极化天线之间的信道为 LOS径, 包括:
所述基带单元, 用于: 根据所述 UE与所述基带单元之间的信道响应, 确定全频带空域相关矩阵; 根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极化天线之间的信道 为 LOS径。
4. 根据权利要求 3所述的通信设备, 其特征在于, 所述第一组同极化天线由第一 天线和第三天线组成, 所述第二组同极化天线由第二天线和第四天线组成, 所述 UE与 所述基带单元之间的信道由第一信道、 第二信道、 第三信道和第四信道组成, 所述第一 天线与第一信道对应, 所述第二天线与所述第二信道对应, 所述第三天线与所述第三信 道对应, 所述第四天线与所述第四信道对应;
所述基带单元用于根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极 化天线之间的信道为 LOS径包括:
所述基带单元, 用于:
在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与 所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与所述双列交叉极化 天线之间的信道为 LOS径。
5. 根据权利要求 4所述的通信设备, 其特征在于, 所述基带单元用于根据所述 UE 与所述基带单元之间的信道响应确定所述馈缆补偿相位包括:
所述基带单元, 用于:
根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间的差值, 所述第一相 位是所述第一信道与所述第三信道之间的相位差,所述第二相位是所述第二信道与所述 第四信道之间的相位差;
对所述第一相位与所述第二相位之间的差值进行滤波, 得到所述馈缆补偿相位。
6. 根据权利要求 5所述的通信设备, 其特征在于, 在所述基带单元第 p次接收到 所述 UE的上行探测信号时,
所述全频带空域相关矩阵 RO) =
Figure imgf000039_0001
其中,所述 中的元素^ ^;?)表示在所述基带单元第 p次接收到所述 UE的上行 探测信号时 UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整 数; 所述基带单元用于在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与 所述双列交叉极化天线之间的信道为 LOS径, 包括:
所述基带单元, 用于:
在下列不等式均成立的情况下, 确定在第 p次接收到所述 UE的上行探测信号时所 述 UE与所述双列交叉极化天线之间的信道为 LOS径: 卜 020)11 ^οο (Ρ 22 (ρ) > Thre, |r130)| I rn (p)r33 (p) > Th r
其中, Thre表示所述阈值。
7. 根据权利要求 6所述的通信设备, 其特征在于, 所述基带单元用于根据所述全 频带空域相关矩阵确定第一相位与第二相位之间的差值包括:
所述基带单元, 用于:
根据下列等式确定在第 p次接收到所述 UE的上行探测信号时第一相位与第二相位 之间的差值△( ),
HP) = phase(r20 (p)) - phase(r31 (p))
其中, ;? ½we(r2。(;?))表示所述第一相位, ;?/½we(r31 (;?))表示所述第二相位; 所述基带单元用于对所述第一相位与所述第二相位之间的差值进行滤波得到所述 馈缆补偿相位包括:
所述基带单元, 用于:
当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上行探测信号时的馈 缆补偿相位 A(J7) :
Δ(^) = (1 - α) * Α(ρ - 1) + α * Δ(^) 其中, Αθ- 1)表示在第(ρ-1 )次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 A(l) :
Δ(1) = Δ(1)。
8. 根据权利要求 1至 7中任一项所述的通信设备, 其特征在于, m为 2;
所述基带单元用于根据与所述 m个逻辑端口对应的 m路信号生成 4路基带信号包 括:
所述基带单元, 用于: 根据下列等式生成 4路基带信号,
Figure imgf000041_0001
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2( 和 x3( :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数;
x0 (k)和 x2 (k)分别对应于所述第一组同极化天线, (k)和 x3 (k)分别对应于所述 第二组同极化天线。
9. 根据权利要求 1至 7中任一项所述的通信设备, 其特征在于, m为 4;
所述基带单元用于根据与所述 m个逻辑端口对应的 m路信号生成 4路基带信号包 括:
所述基带单元, 用于: 根据与第 1个逻辑端口对应的信号生成第 1路基带信号, 根 据与第 3个逻辑端口对应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信 号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
10. 根据权利要求 9所述的通信设备, 其特征在于, 所述基带单元用于根据与第 1 个逻辑端口对应的信号生成第 1路基带信号, 根据与第 3个逻辑端口对应的信号生成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4 个逻辑端口对应的信号生成第 4路基带信号, 包括:
所述基带单元, 用于:
根据下列等式生成所述 4路基带信号,
Figure imgf000041_0002
其中, k表示子载波索引, xQ ^)、 Xl (k)、 x2C 和 x3 :)表示在第 k个子载波上 的 4路基带信号, )、 Sl (k) , ^C^)和 ^C^)表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k为正整数; x0 (k)和 x2 (k)分别对应于所述第一组同极化天线, (k)和 x3 (k)分别对应于所述 第二组同极化天线。
11. 根据权利要求 1至 10中任一项所述的通信设备, 其特征在于, 所述通信设备 为基站。
12. 一种基带单元, 其特征在于, 所述基带单元包括处理器和存储器,
所述存储器和所述处理器之间通过数据总线相连接; 其中,
所述存储器, 用于存储可执行指令;
所述处理器, 执行所述存储器存储的可执行指令, 用于:
确定中射频单元的 4个发射通道分别对应的补偿系数;
根据接收到的用户设备 UE的上行探测信号, 确定馈缆补偿相位, 其中, 所述基带 单元所属的基站的双列交叉极化天线由第一组同极化天线和第二组同极化天线组成,所 述馈缆补偿相位为所述第一组同极化天线对应的馈缆相位差与所述第二组同极化天线 对应的馈缆相位差之间的差;
根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号, 其中 m为正整数; 根据所述 4个发射通道分别对应的补偿系数和所述馈缆补偿相位,对所述 4路基带 信号进行校正, 以便通过所述 4个发射通道以及所述双列交叉极化天线, 向所述 UE发 送校正后的 4路基带信号。
13. 根据权利要求 12所述的基带单元, 其特征在于, 所述处理器用于根据接收到 的 UE的上行探测信号确定馈缆补偿相位包括:
所述处理器用于: 根据所述接收到的 UE的上行探测信号, 确定所述 UE与所述基 带单元之间的信道响应; 根据所述 UE与所述基带单元之间的信道响应, 确定所述 UE 与所述双列交叉极化天线之间的信道为直达 LOS径;根据所述 UE与所述基带单元之间 的信道响应确定所述馈缆补偿相位。
14. 根据权利要求 13所述的基带单元, 其特征在于, 所述处理器用于根据所述 UE 与所述基带单元之间的信道响应确定所述 UE 与所述双列交叉极化天线之间的信道为
LOS径包括:
所述处理器用于: 根据所述 UE与所述基带单元之间的信道响应, 确定全频带空域 相关矩阵; 根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极化天线之间 的信道为 LOS径。
15. 根据权利要求 14所述的基带单元, 其特征在于, 所述第一组同极化天线由第 一天线和第三天线组成, 所述第二组同极化天线由第二天线和第四天线组成, 所述 UE 与所述基带单元之间的信道由第一信道、 第二信道、 第三信道和第四信道组成, 所述第 一天线与第一信道对应, 所述第二天线与所述第二信道对应, 所述第三天线与所述第三 信道对应, 所述第四天线与所述第四信道对应;
所述处理器用于根据所述全频带空域相关矩阵确定所述 UE与所述双列交叉极化天 线之间的信道为 LOS径包括:
所述处理器用于: 在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与 所述双列交叉极化天线之间的信道为 LOS径。
16. 根据权利要求 15所述的基带单元, 其特征在于, 所述处理器用于根据所述 UE 与所述基带单元之间的信道响应确定所述馈缆补偿相位包括:
所述处理器用于: 根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间的 差值, 所述第一相位是所述第一信道与所述第三信道之间的相位差, 所述第二相位是所 述第二信道与所述第四信道之间的相位差;
对所述第一相位与所述第二相位之间的差值进行滤波, 得到所述馈缆补偿相位。
17. 根据权利要求 16所述的基带单元, 其特征在于, 在所述基带单元第 p次接收 到所述 UE的上行探测信号时,
所述全频带空域相关矩阵
Figure imgf000043_0001
其中,所述 中的元素^ ^;?)表示在所述基带单元第 p次接收到所述 UE的上行 探测信号时 UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整 数;
所述处理器用于在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且 所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与所 述双列交叉极化天线之间的信道为 LOS径, 包括:
所述处理器用于:
在下列不等式均成立的情况下, 确定在第 p次接收到所述 UE的上行探测信号时所 述 UE与所述双列交叉极化天线之间的信道为 LOS径: 卜 02
Figure imgf000044_0001
> Thre, |r13 ( )| I rn(p)r33(p) >Thr 其中, Thre表示所述阈值。
18. 根据权利要求 17所述的基带单元, 其特征在于, 所述处理器用于根据所述全 频带空域相关矩阵, 确定第一相位与第二相位之间的差值, 包括:
所述处理器用于:
根据下列等式确定在第 p次接收到所述 UE的上行探测信号时第一相位与第二相位 之间的差值△( ),
HP) = phase(r20 (p)) - phase(r31 (p))
其中, ;?/½we(r2。(j?))表示所述第一相位, ;?/½we(r31(;?》表示所述第二相位, p为 正整数;
所述处理器用于对所述第一相位与所述第二相位之间的差值进行滤波,得到所述馈 缆补偿相位, 包括:
所述处理器用于:
当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上行探测信号时的馈 缆补偿相位 A(J7) :
Δ(^) = (1-α)* Α(ρ - 1) + α * Δ(ρ) 其中, A(J7- 1)表示在第(p-1)次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 A(l):
Δ(1)= Δ(1)。
19. 根据权利要求 12至 18中任一项所述的基带单元, 其特征在于, m为 2; 所述处理器用于根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包括: 所述处理器用于:
根据下列等式生成 4路基带信号,
Figure imgf000045_0001
其中, k表示子载波索引, x0(c)、 Xl(k), x2( 和 x3( :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数;
X。 (k)和 X2 (k)分别对应于所述第一组同极化天线, (k)和 X3 (k)分别对应于所述 第二组同极化天线。
20. 根据权利要求 12至 18中任一项所述的基带单元, 其特征在于, m为 4;
所述处理器用于所述根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包括: 所述处理器用于:
根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口对 应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
21. 根据权利要求 20所述的基带单元, 其特征在于, 所述处理器用于根据与第 1 个逻辑端口对应的信号生成第 1路基带信号, 根据与第 3个逻辑端口对应的信号生成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4 个逻辑端口对应的信号生成第 4路基带信号, 包括:
所述处理器, 用于:
根据下列等式生成所述 4路基带信号,
Figure imgf000045_0002
其中, k表示子载波索引, xQ ::)、 Xl(k), x :)和 x3 :)表示在第 k个子载波上 的 4路基带信号, )、 Sl(k), 和 表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k为正整数;
x0 (k)和 x2 (k)分别对应于所述第一组同极化天线, (k)和 x3 (k)分别对应于所述 第二组同极化天线。
22. 一种通信方法, 其特征在于, 包括:
确定 4个发射通道分别对应的补偿系数;
根据接收到的用户设备 UE的上行探测信号, 确定馈缆补偿相位, 其中, 基站的双 列交叉极化天线由第一组同极化天线和第二组同极化天线组成,所述馈缆补偿相位为第 一组同极化天线对应的馈缆相位差与第二组同极化天线对应的馈缆相位差之间的差; 根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号, 其中 m为正整数; 根据所述 4个发射通道分别对应的补偿系数和所述馈缆补偿相位,对所述 4路基带 信号进行校正, 以便通过所述 4个发射通道以及所述双列交叉极化天线, 向所述 UE发 送校正后的 4路基带信号。
23. 根据权利要求 22所述的方法, 其特征在于, 所述根据接收到 UE的上行探测 信号, 确定馈缆补偿相位, 包括:
根据所述接收到的 UE的上行探测信号,确定所述 UE与所述基站之间的信道响应; 根据所述 UE与所述基站之间的信道响应, 确定所述 UE与所述双列交叉极化天线 之间的信道为直达 LOS径;
根据所述 UE与所述基站之间的信道响应确定所述馈缆补偿相位。
24. 根据权利要求 23所述的方法, 其特征在于, 所述根据所述 UE与所述基站之 间的信道响应, 确定所述 UE与所述双列交叉极化天线之间的信道为 LOS径, 包括: 根据所述 UE与所述基站之间的信道响应, 确定全频带空域相关矩阵;
根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极化天线之间的信道 为 LOS径。
25. 根据权利要求 24所述的方法, 其特征在于, 所述第一组同极化天线由第一天 线和第三天线组成, 所述第二组同极化天线由第二天线和第四天线组成, 所述 UE与所 述基站之间的信道由第一信道、 第二信道、 第三信道和第四信道组成, 所述第一天线与 第一信道对应,所述第二天线与所述第二信道对应,所述第三天线与所述第三信道对应, 所述第四天线与所述第四信道对应;
所述根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极化天线之间的 信道为 LOS径, 包括:
在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与 所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与所述双列交叉极化 天线之间的信道为 LOS径。
26. 根据权利要求 25所述的方法, 其特征在于, 所述根据所述 UE与所述基站之 间的信道响应确定所述馈缆补偿相位, 包括:
根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间的差值, 所述第一相 位是所述第一信道与所述第三信道之间的相位差,所述第二相位是所述第二信道与所述 第四信道之间的相位差;
对所述第一相位与所述第二相位之间的差值进行滤波, 得到所述馈缆补偿相位。
27. 根据权利要求 26所述的方法, 其特征在于, 在第 p次接收到所述 UE的上行 探测信号时, roo (P) roi (P) 所述全频带空域相关矩阵 RO) = rw iP) rn (P)
其中, 所述 RO)中的元素^ ^;?)表示在第 p次接收到所述 UE的上行探测信号时
UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整数;
所述在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信 道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与所述双列交叉 极化天线之间的信道为 LOS径, 包括:
在下列不等式均成立的情况下, 确定在第 p次接收到所述 UE的上行探测信号时所 述 UE与所述双列交叉极化天线之间的信道为 LOS径: 卜 020)11 ^οο (Ρ 22 (ρ) > Thre, |r130)| I rn (p)r33 (p) > Th r
其中, Thre表示所述阈值。
28. 根据权利要求 27所述的方法, 其特征在于, 所述根据所述全频带空域相关矩 阵, 确定第一相位与第二相位之间的差值, 包括:
根据下列等式确定在第 p次接收到所述 UE的上行探测信号时第一相位与第二相位 之间的差值 ΔΟ),
HP) = phase(r20 (p)) - phase(r31 (p))
其中, ;? ½we(r2。(;?))表示所述第一相位, ;?/½we(r31 (;?))表示所述第二相位; 所述对所述第一相位与所述第二相位之间的差值进行滤波, 得到所述馈缆补偿相 位, 包括:
当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上行探测信号时的馈 缆补偿相位^
Δ(^) = (1 - α) * Α(ρ - 1) + α * Δ(ρ) 其中, A(J7 - 1)表示在第(p-1 )次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 Δ( ) :
Δ(1) = Δ(1)。
29. 根据权利要求 22至 28中任一项所述的方法, 其特征在于, m为 2;
所述根据与 m个逻辑端口对应的 m路信号生成 4路基带信号, 包括:
根据下列等式生成 4路基带信号,
Figure imgf000048_0001
其中, k表示子载波索引, xQC^)、 Xl (k)、 x2C 和 x3 :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数;
x0 (k)和 x2 (k)分别对应于所述第一组同极化天线, (k)和 x3 (k)分别对应于所述 第二组同极化天线。
30. 根据权利要求 22至 28中任一项所述的方法, 其特征在于, m为 4;
所述根据与 m个逻辑端口对应的 m路信号生成 4路基带信号, 包括:
根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口对 应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
31. 根据权利要求 30所述的方法, 其特征在于, 所述根据与第 1个逻辑端口对应 的信号生成第 1路基带信号, 根据与第 3个逻辑端口对应的信号生成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口对应 的信号生成第 4路基带信号, 包括:
根据下列等式生成所述 4路基带信号,
Figure imgf000049_0001
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2( 和 x3( :)表示在第 k个子载波上 的 4路基带信号, Sl (k) , S2( 和 表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k为正整数;
x0 (k)和 x2 (k)分别对应于所述第一组同极化天线, (k)和 x3 (k)分别对应于所述 第二组同极化天线。
32. 一种基带单元, 其特征在于, 包括:
确定单元, 用于确定 4个发射通道分别对应的补偿系数;
所述确定单元, 还用于根据接收到的用户设备 UE的上行探测信号, 确定馈缆补偿 相位, 其中, 所述基带单元所属的基站的双列交叉极化天线由第一组同极化天线和第二 组同极化天线组成,所述馈缆补偿相位为第一组同极化天线对应的馈缆相位差与第二组 同极化天线对应的馈缆相位差之间的差;
生成单元, 用于根据与 m个逻辑端口一一对应的 m路信号生成 4路基带信号, 其 中 m为正整数;
校正单元, 用于根据所述 4个发射通道分别对应的补偿系数和所述馈缆补偿相位, 对所述 4路基带信号进行校正,以便通过所述 4个发射通道以及所述双列交叉极化天线, 向所述 UE发送校正后的 4路基带信号。
33. 根据权利要求 32所述的基带单元, 其特征在于, 所述确定单元用于根据接收 到的 UE的上行探测信号确定馈缆补偿相位包括:
所述确定单元用于: 根据所述接收到的 UE的上行探测信号, 确定所述 UE与所述 基带单元之间的信道响应; 根据所述 UE 与所述基带单元之间的信道响应, 确定所述 UE与所述双列交叉极化天线之间的信道为直达 LOS径; 根据所述 UE与所述基带单元 之间的信道响应确定所述馈缆补偿相位。
34. 根据权利要求 33所述的基带单元, 其特征在于, 所述确定单元用于根据所述 UE与所述基带单元之间的信道响应确定所述 UE与所述双列交叉极化天线之间的信道 为 LOS径包括:
所述确定单元用于: 根据所述 UE与所述基带单元之间的信道响应, 确定全频带空 域相关矩阵; 根据所述全频带空域相关矩阵, 确定所述 UE与所述双列交叉极化天线之 间的信道为 LOS径。
35. 根据权利要求 34所述的基带单元, 其特征在于, 所述第一组同极化天线由第 一天线和第三天线组成, 所述第二组同极化天线由第二天线和第四天线组成, 所述 UE 与所述基带单元之间的信道由第一信道、 第二信道、 第三信道和第四信道组成, 所述第 一天线与第一信道对应, 所述第二天线与所述第二信道对应, 所述第三天线与所述第三 信道对应, 所述第四天线与所述第四信道对应;
所述确定单元用于根据所述全频带空域相关矩阵确定所述 UE与所述双列交叉极化 天线之间的信道为 LOS径包括:
所述确定单元用于: 在所述第一信道与所述第三信道之间的相关性大于预设的阈 值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与所述双列交叉极化天线之间的信道为 LOS径。
36. 根据权利要求 35所述的基带单元, 其特征在于, 所述确定单元用于根据所述
UE与所述基带单元之间的信道响应确定所述馈缆补偿相位包括:
所述确定单元用于: 根据所述全频带空域相关矩阵, 确定第一相位与第二相位之间 的差值, 所述第一相位是所述第一信道与所述第三信道之间的相位差, 所述第二相位是 所述第二信道与所述第四信道之间的相位差;
对所述第一相位与所述第二相位之间的差值进行滤波, 得到所述馈缆补偿相位。
37. 根据权利要求 36所述的基带单元, 其特征在于, 在所述基带单元第 p次接收 到所述 UE的上行探测信号时,
所述全频带空域相关矩阵
Figure imgf000050_0001
其中,所述 中的元素^ ^;?)表示在所述基带单元第 p次接收到所述 UE的上行 探测信号时 UE与所述基带单元之间的第 i个信道与第 j个信道之间的相关性, p为正整 数;
所述确定单元用于在所述第一信道与所述第三信道之间的相关性大于预设的阈值, 且所述第二信道与所述第四信道之间的相关性大于所述阈值的情况下, 确定所述 UE与 所述双列交叉极化天线之间的信道为 LOS径, 包括:
所述确定单元具体用于: 在下列不等式均成立的情况下, 确定在第 p次接收到所述 UE的上行探测信号时所述 UE与所述双列交叉极化天线之间的信道为 LOS径: 卜 020)| I > Thre, |r130)| I rn (p)r33 (p) > Th r
其中, Thre表示所述阈值。
38. 根据权利要求 37所述的基带单元, 其特征在于,
所述确定单元用于根据所述全频带空域相关矩阵,确定第一相位与第二相位之间的 差值, 包括:
所述确定单元用于:
根据下列等式确定在第 p次接收到所述 UE的上行探测信号时第一相位与第二相位 之间的差值△( ),
A(p) = phase(r20 (ρ)) - phase(r3l (ρ))
其中, /?/½we(r2。(j?))表示所述第一相位, /?/½we(r31 (/?))表示所述第二相位; 所述确定单元用于对所述第一相位与所述第二相位之间的差值进行滤波,得到所述 馈缆补偿相位, 包括:
所述确定单元用于:
当 p大于 1时, 根据下列等式得到在第 p次接收到所述 UE的上行探测信号时的馈 缆补偿相位^ J?) :
A(^) = (1 - α) * Α(ρ - 1) + α * Δ(^) 其中, 1)表示在第(ρ-1 )次接收到所述 UE的上行探测信号时的馈缆补偿相 位, α表示滤波系数;
当 ρ为 1时, 根据下列等式得到第 1次接收到所述 UE的上行探测信号时的馈缆补 偿相位 Δ(1) : Δ(1) = Δ(1)。
39. 根据权利要求 32至 38中任一项所述的基带单元, 其特征在于, m为 2; 所述生成单元用于根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包括: 所述生成单元用于: 根据下列等式生成 4路基带信号,
Figure imgf000052_0001
其中, k表示子载波索引, x0 ( c)、 Xl (k) , x2( 和 x3( :)表示在第 k个子载波上 的 4路基带信号, (k)和 (k)表示在第 k个子载波上分别与 2个逻辑端口对应的信号, d表示循环时延点数, Nffl表示系统快速傅里叶变换 FFT点数, k为正整数;
x0 (k)和 x2 (k)分别对应于所述第一组同极化天线, (k)和 x3 (k)分别对应于所述 第二组同极化天线。
40. 根据权利要求 32至 38中任一项所述的基带单元, 其特征在于, m为 4;
所述生成单元用于所述根据与 m个逻辑端口对应的 m路信号生成 4路基带信号包 括:
所述生成单元用于:
根据与第 1个逻辑端口对应的信号生成第 1路基带信号,根据与第 3个逻辑端口对 应的信号生成第 2路基带信号,根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4个逻辑端口对应的信号生成第 4路基带信号。
41. 根据权利要求 40所述的基带单元, 其特征在于, 所述生成单元用于根据与第 1 个逻辑端口对应的信号生成第 1路基带信号, 根据与第 3个逻辑端口对应的信号生成第 2路基带信号, 根据与第 2个逻辑端口对应的信号生成第 3路基带信号, 并根据与第 4 个逻辑端口对应的信号生成第 4路基带信号, 包括:
所述生成单元, 用于:
根据下列等式生成所述 4路基带信号,
Figure imgf000052_0002
其中, k表示子载波索引, xQ ^)、 Xl (k)、 x2C 和 x3 :)表示在第 k个子载波上 的 4路基带信号, )、 Sl (k) , ^C^)和 ^C^)表示在第 k个子载波上分别与 4个逻 辑端口对应的信号, k为正整数; x0 (k)和 x2 (k)分别对应于所述第一组同极化天线, (k)和 x3 (k)分别对应于所述 第二组同极化天线。
PCT/CN2014/070226 2013-09-02 2014-01-07 通信设备、基带单元和通信方法 WO2015027675A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167007377A KR101722946B1 (ko) 2013-09-02 2014-01-07 통신 장치, 베이스 밴드 유닛 및 통신 방법
EP14839494.3A EP3029900B1 (en) 2013-09-02 2014-01-07 Communication device, baseband unit and communication method
JP2015533444A JP5981658B2 (ja) 2013-09-02 2014-01-07 通信デバイス、ベースバンドユニット、および通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310392709.6 2013-09-02
CN201310392709.6A CN103475609B (zh) 2013-09-02 2013-09-02 通信设备、基带单元和通信方法

Publications (1)

Publication Number Publication Date
WO2015027675A1 true WO2015027675A1 (zh) 2015-03-05

Family

ID=49800311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070226 WO2015027675A1 (zh) 2013-09-02 2014-01-07 通信设备、基带单元和通信方法

Country Status (5)

Country Link
EP (1) EP3029900B1 (zh)
JP (2) JP5981658B2 (zh)
KR (1) KR101722946B1 (zh)
CN (2) CN103475609B (zh)
WO (1) WO2015027675A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432150A (zh) * 2015-12-21 2018-08-21 华为技术有限公司 Rru通道频率响应差异的获取方法及系统、基站设备
CN113938167A (zh) * 2021-10-22 2022-01-14 上海创远仪器技术股份有限公司 实现5g mimo信道模拟器外接电缆校准的系统、方法、装置、处理器及其存储介质
CN114244411A (zh) * 2020-09-09 2022-03-25 苹果公司 基于设备内操作的先听后讲系统、设备和方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475609B (zh) * 2013-09-02 2016-11-09 华为技术有限公司 通信设备、基带单元和通信方法
CN106161290B (zh) * 2015-03-23 2020-07-07 中兴通讯股份有限公司 一种流间干扰计算方法、装置及通信系统
CN106454871A (zh) * 2015-08-06 2017-02-22 中兴通讯股份有限公司 一种波束使用方法及装置
JP6930859B2 (ja) * 2017-05-30 2021-09-01 株式会社東芝 アンテナ配置決定装置、アンテナ配置決定方法、無線通信装置および通信システム
CN113949468B (zh) * 2020-07-17 2022-12-30 华为技术有限公司 发射通道的初相校正方法、基站及计算机存储介质
CN114070429B (zh) * 2021-10-28 2023-04-18 中国电子科技集团公司第二十九研究所 一种射频内外校正相结合的方法及计算机存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283901A (zh) * 1999-08-10 2001-02-14 信息产业部电信科学技术研究院 一种校准智能天线阵的方法和装置
CN101080031A (zh) * 2006-05-26 2007-11-28 大唐移动通信设备有限公司 基带拉远技术的智能天线校准系统及其方法
WO2010142321A1 (en) * 2009-06-08 2010-12-16 Telefonaktiebolaget L M Ericsson (Publ) A wireless communication node and a method related thereto
CN201797604U (zh) * 2010-03-26 2011-04-13 中国移动通信集团设计院有限公司 一种基站子系统
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm系统中的天线阵列校准方法和装置
CN103475609A (zh) * 2013-09-02 2013-12-25 华为技术有限公司 通信设备、基带单元和通信方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001217760A (ja) * 2000-02-03 2001-08-10 Nippon Telegr & Teleph Corp <Ntt> アダプティブアンテナ装置の校正システム
JP4523472B2 (ja) * 2005-03-31 2010-08-11 Kddi株式会社 アレーアンテナ用rf回路伝送特性調整装置およびその方法
US7538740B2 (en) * 2006-03-06 2009-05-26 Alcatel-Lucent Usa Inc. Multiple-element antenna array for communication network
WO2008133582A2 (en) * 2007-04-30 2008-11-06 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for adapting a multi-antenna transmission
CN101572576B (zh) * 2008-04-30 2012-11-28 京信通信系统(中国)有限公司 一种多通道td-rru的通道校正方法
US8102785B2 (en) * 2008-05-21 2012-01-24 Alcatel Lucent Calibrating radiofrequency paths of a phased-array antenna
DE102008034567B4 (de) * 2008-07-24 2010-09-30 Siemens Aktiengesellschaft Verfahren zur Ortung von drahtlos kommunizierenden Funkteilnehmern
JP2011024099A (ja) * 2009-07-17 2011-02-03 Fujitsu Ltd 無線装置制御装置、基地局、およびデータ中継方法
CN102014094B (zh) * 2009-09-07 2013-04-03 电信科学技术研究院 智能天线发射通道及接收通道的校准方法及相关装置
EP2560306A4 (en) * 2010-04-15 2016-03-23 Nec Corp DEVICE FOR COMPENSATING A POLARIZATION INTERFERENCE AND METHOD AND PROGRAM FOR COMPENSATING A POLARIZATION INTERFERENCE
GB2482912A (en) * 2010-08-20 2012-02-22 Socowave Technologies Ltd Polarisation control device, integrated circuit and method for compensating phase mismatch
US8817834B2 (en) * 2011-05-02 2014-08-26 Maxlinear, Inc. Method and system for I/Q mismatch calibration and compensation for wideband communication receivers
CN102217210A (zh) * 2011-05-31 2011-10-12 华为技术有限公司 信号的发射方法、装置及系统
CN102955155B (zh) * 2011-08-26 2015-03-18 中国科学院空间科学与应用研究中心 一种分布式有源相控阵雷达及其波束形成方法
WO2013056398A1 (en) * 2011-10-21 2013-04-25 Telefonaktiebolaget L M Ericcson (Publ) Methods, processing device, computer programs, computer program products and antenna apparatus for calibration of antenna apparatus
JP2013150268A (ja) * 2012-01-23 2013-08-01 Sharp Corp 通信装置、通信方法およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1283901A (zh) * 1999-08-10 2001-02-14 信息产业部电信科学技术研究院 一种校准智能天线阵的方法和装置
CN101080031A (zh) * 2006-05-26 2007-11-28 大唐移动通信设备有限公司 基带拉远技术的智能天线校准系统及其方法
WO2010142321A1 (en) * 2009-06-08 2010-12-16 Telefonaktiebolaget L M Ericsson (Publ) A wireless communication node and a method related thereto
CN201797604U (zh) * 2010-03-26 2011-04-13 中国移动通信集团设计院有限公司 一种基站子系统
CN102404033A (zh) * 2011-11-24 2012-04-04 北京交通大学 一种ofdm系统中的天线阵列校准方法和装置
CN103475609A (zh) * 2013-09-02 2013-12-25 华为技术有限公司 通信设备、基带单元和通信方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108432150A (zh) * 2015-12-21 2018-08-21 华为技术有限公司 Rru通道频率响应差异的获取方法及系统、基站设备
EP3382902A4 (en) * 2015-12-21 2018-12-19 Huawei Technologies Co., Ltd. Method and system for acquiring frequency response difference of radio remote unit (rru) channel, and base station equipment
US10420172B2 (en) 2015-12-21 2019-09-17 Huawei Technologies Co., Ltd. RRU channel frequency response difference obtaining method and system, and base station device
CN114244411A (zh) * 2020-09-09 2022-03-25 苹果公司 基于设备内操作的先听后讲系统、设备和方法
CN113938167A (zh) * 2021-10-22 2022-01-14 上海创远仪器技术股份有限公司 实现5g mimo信道模拟器外接电缆校准的系统、方法、装置、处理器及其存储介质
CN113938167B (zh) * 2021-10-22 2024-03-15 上海创远仪器技术股份有限公司 实现5g mimo信道模拟器外接电缆校准的系统及其方法

Also Published As

Publication number Publication date
KR20160045828A (ko) 2016-04-27
JP2015532076A (ja) 2015-11-05
EP3029900B1 (en) 2018-08-22
JP5981658B2 (ja) 2016-08-31
JP2016226007A (ja) 2016-12-28
CN103475609A (zh) 2013-12-25
CN103475609B (zh) 2016-11-09
EP3029900A4 (en) 2016-08-31
EP3029900A1 (en) 2016-06-08
CN106411378A (zh) 2017-02-15
KR101722946B1 (ko) 2017-04-18
CN106411378B (zh) 2019-11-29
JP6342956B2 (ja) 2018-06-13

Similar Documents

Publication Publication Date Title
WO2015027675A1 (zh) 通信设备、基带单元和通信方法
CA3019372C (en) Methods and devices for determiniing precoder parameters in a wireless communication network
EP2901569B1 (en) Method for wifi beamforming, feedback, and sounding (wibeam)
WO2015131378A1 (zh) 报告信道状态信息的方法、用户设备和基站
WO2014179991A1 (zh) 确定预编码矩阵指示的方法、用户设备和基站
EP4179638A1 (en) Signaling to aid enhanced nr type ii csi feedback
WO2014089992A1 (zh) 协作消除干扰的方法、装置及系统
WO2018023735A1 (zh) 一种终端、基站和获得信道信息的方法
Yoon et al. Frequency divided group beamforming with sparse space‐frequency code for above 6 GHz URLLC systems
WO2012113185A1 (zh) 一种发射信号预处理发送方法及装置
WO2014094654A1 (zh) 一种单片射频双流传输的装置,使用方法,及天线系统
WO2014201874A1 (zh) 一种提高单射频多进多出mimo传输可靠性方法及装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015533444

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014839494

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167007377

Country of ref document: KR

Kind code of ref document: A