WO2015027611A1 - 液晶显示面板、液晶显示器及其制备方法 - Google Patents

液晶显示面板、液晶显示器及其制备方法 Download PDF

Info

Publication number
WO2015027611A1
WO2015027611A1 PCT/CN2013/088902 CN2013088902W WO2015027611A1 WO 2015027611 A1 WO2015027611 A1 WO 2015027611A1 CN 2013088902 W CN2013088902 W CN 2013088902W WO 2015027611 A1 WO2015027611 A1 WO 2015027611A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
reflective
area
crystal display
reflective layer
Prior art date
Application number
PCT/CN2013/088902
Other languages
English (en)
French (fr)
Inventor
崔贤植
李会
徐智强
严允晟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/378,086 priority Critical patent/US9709846B2/en
Publication of WO2015027611A1 publication Critical patent/WO2015027611A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • G02F2202/023Materials and properties organic material polymeric curable

Definitions

  • Liquid crystal display panel, liquid crystal display and preparation method thereof Liquid crystal display panel, liquid crystal display and preparation method thereof
  • Embodiments of the present invention relate to the field of liquid crystal display, and more particularly to a liquid crystal display panel, a liquid crystal display, and a method of fabricating the same. Background technique
  • LCD liquid crystal displays
  • the Advanced Super Dimension Switch (ADSDS) technology is a relatively advanced liquid crystal panel technology that uses an electric field generated by the edge of the slit electrode in the same plane and between the slit electrode layer and the plate electrode layer.
  • the generated electric field forms a multi-dimensional electric field, so that all the aligned liquid crystal molecules between the slit electrodes in the liquid crystal cell and directly above the electrode can be rotated, thereby improving the liquid crystal working efficiency and increasing the light transmission efficiency.
  • ADSDS can improve the picture quality of thin film FET liquid crystal displays, with high resolution, high transmittance, low power consumption, wide viewing angle, high aperture ratio, low chromatic aberration, no squeezing ripples, etc. advantage.
  • a liquid crystal display panel includes: a first substrate and a second substrate disposed opposite to each other, a liquid crystal layer disposed between the first substrate and the second substrate, wherein the first substrate includes a plurality of pixels a region, each of the pixel regions includes a transmissive region and a reflective region, wherein the first substrate has a reflective layer, and the reflective layer is disposed in the reflective region; in the liquid crystal layer corresponding to the reflective region, uniform Distributing a polymer formed by polymerization of an ultraviolet curing monomer; the liquid crystal display panel is a single box thickness, and the phase retardation amount of the reflected light emitted through the reflective region is controlled by the polymer to cause the reflected light The phase matches the phase of the transmitted light exiting through the transmissive region.
  • the UV curable monomer has a weight of from 3% to 5% by weight of the liquid crystal.
  • the first substrate further has a transparent substrate, a pixel electrode, a protective layer, and a common electrode in order from bottom to top, wherein the common electrodes are spaced apart in a horizontal direction; the reflective layer is located on the transparent substrate and the Between the pixel electrodes.
  • a slope is formed at an edge of the reflective layer, and the slope angle of the slope is less than 80.
  • the pixel electrode on the slope and the protective layer on the slope are inclined along the slope.
  • the slope angle is 30. ⁇ 70. .
  • the first substrate further has a transparent substrate, a pixel electrode, a protective layer, and a common electrode in order from bottom to top, wherein the common electrodes are spaced apart in a horizontal direction; the reflective layer is located at the pixel electrode and the Between the protective layers.
  • a slope is formed at an edge of the reflective layer along which the protective layer on the slope is inclined.
  • the ratio of the transmissive area to the reflective area is from 6:4 to 9:1.
  • Embodiments of the present invention provide a liquid crystal display, which is one of the above liquid crystal display panels.
  • An embodiment of the present invention provides a method for fabricating a liquid crystal display panel, the method comprising: forming a pixel electrode, a reflective layer, a protective layer, and a common electrode on a transparent substrate by a patterning process, wherein a region where the reflective layer is formed is a reflective region a region where the reflective layer is not formed is a transmissive region; a liquid crystal is dripped in the transmissive region, a mixed solution of the liquid crystal and the ultraviolet curable monomer is instilled in the reflective region; and the transmissive region is blocked by the mask, The reflective region is exposed to cure the ultraviolet curable monomer to form a polymer in the liquid crystal in the reflective region.
  • the UV curable monomer has a weight of from 3% to 5% by weight of the liquid crystal.
  • the forming a reflective layer, a pixel electrode, a protective layer, and a common electrode on the transparent substrate by a patterning process including: depositing a light reflective material film on the transparent substrate, forming a reflective layer by a patterning process, forming The region having the reflective layer is a reflective region, and the region where the reflective layer is not formed is a transmissive region; on the transparent substrate on which the reflective layer is formed, a pixel electrode, a protective layer, and a common electrode are respectively formed by a patterning process.
  • a slope is formed at an edge of the reflective layer, the slope of the slope having an angle of less than 80.
  • the pixel electrode on the slope surface and the protective layer on the slope are inclined along the slope.
  • the slope angle is 30. ⁇ 70. .
  • the forming a pixel electrode, a reflective layer, a protective layer, and a common electrode on a transparent substrate by a patterning process including: forming a pixel electrode by a patterning process on a transparent substrate; and transparently forming the pixel electrode Depositing a light reflective material film on the substrate, forming a reflective layer by a patterning process, a region where the reflective layer is formed is a reflective region, and a region where the reflective layer is not formed is a transmissive region; on a transparent substrate on which the reflective layer is formed
  • the protective layer and the common electrode are separately formed by a patterning process.
  • a slope is formed at an edge of the reflective layer, and a protective layer on the slope is inclined along the slope.
  • the ratio of the transmissive area to the reflective area is 6:4 to 9:1;
  • the mask includes a shielding area and a transmissive area, wherein a ratio of the shielding area to the transmissive area Corresponding to the ratio of the transmissive area and the reflective area.
  • FIG. 1 is a schematic structural view of a liquid crystal display panel according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural view of another liquid crystal display panel according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of an electric field when a voltage is applied to both sides of a common electrode and a pixel electrode in Embodiment 1 of the present invention
  • FIG. 4 is a light path diagram of a reflective region in a liquid crystal display panel according to Embodiment 1 of the present invention.
  • FIG. 5 is a light path diagram of a transmissive area in a liquid crystal display panel according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural view of a liquid crystal display panel according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural view of a liquid crystal display panel according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic view of a first substrate prepared according to Embodiment 5 of the present invention.
  • FIG. 9 is a schematic view of a liquid crystal instilled in a method of fabricating a liquid crystal display panel according to Embodiment 5 of the present invention.
  • FIG. 10 is a schematic view showing a polymer formed by exposure of a mask in a method of fabricating a liquid crystal display panel according to Embodiment 5 of the present invention.
  • a liquid crystal display panel as shown in FIG. 1, includes: a first substrate 1 and a second substrate 2 disposed opposite to each other, and a liquid crystal layer 3 disposed between the first substrate 1 and the second substrate 2, the first substrate 1 including a plurality of pixel regions divided by horizontally and vertically intersecting gate lines and data lines, each of the pixel regions including a transmissive area 4 and a reflective area 5,
  • the first substrate 1 has a reflective layer 6, and the reflective layer 6 is disposed in the reflective region 5;
  • a polymer 30 formed by polymerization of an ultraviolet curing monomer is uniformly distributed;
  • the liquid crystal display panel has a single cell thickness, and the phase retardation amount of the reflected light emitted from the reflection region 5 is controlled by the polymer 30 so that the phase of the reflected light matches the phase of the transmitted light emitted through the transmission region 6.
  • the light of the transmissive area 4 is directly emitted by the backlight
  • the light of the reflective area 5 is first incident on the surface of the liquid crystal display panel, reflected by the reflective layer 6, and then emitted from the surface of the liquid crystal display panel, so
  • the light path of the reflective region 5 travels twice as long as the optical path traveled by the light of the transmissive region 4, and the controlled reflection region of the polymer 30 formed by polymerization of the ultraviolet curable monomer in the liquid crystal molecules of the reflective region 5
  • the phase delay of the light is 1/2 of the transmissive area 4, so that the light emitted from the transmissive area 4 and the light emitted from the reflective area 5 are finally satisfied with the basic principle of transflecting to complete the transflective liquid crystal. Display of the display panel.
  • the first substrate 1 provided with the gate lines and the data lines is an array substrate
  • the second substrate 2 is a color filter substrate
  • liquid crystal is dropped on the first substrate 1 to form a liquid crystal layer 3.
  • the liquid crystal accommodating chamber of one drip nozzle stores pure liquid crystal
  • the other drop The liquid crystal accommodating chamber of the nozzle is stored with a liquid crystal in which an ultraviolet curing monomer is mixed.
  • the liquid crystal display panel in the transmissive area 4 As a first type of light source, and the other is an ambient light to be incident in the reflective area 5.
  • Reflection as The second light source in this way, the natural light reflected by the reflective area 5 can be used as a second light source to supplement the first light source generated by the backlight.
  • the image recognition degree of the liquid crystal display panel can also be maintained, so that the work of the backlight can be reduced by lowering the brightness of the first light source.
  • the reflective layer 6 may be selected from metals, metal oxides, etc., which may be ion deposited, materials commonly used by those skilled in the art. However, since aluminum has better light reflection properties and an appropriate price, in one example, the material of the reflective layer 6 may be aluminum.
  • the thickness of the pixel electrode 8 and the common electrode 10 is 40 ⁇ 70 ⁇
  • the thickness of the protective layer 9 is 2500 A
  • the thickness of the reflective layer 6 is 200 ⁇ 300 ⁇
  • the common electrode 10 is a strip electrode
  • the adjacent common electrode 10 The distance between them in the horizontal direction is 5 ⁇ 8 ⁇ .
  • the structure of each layer can be adaptively adjusted, and is not limited herein.
  • the transparent substrate 7 may be a glass substrate or a plastic substrate, and the material of the pixel electrode 8 and the common electrode 10 may be selected from indium tin oxide and indium oxide.
  • the material of the protective layer 9 may be As the single-layer film of silicon nitride, silicon oxide or silicon oxynitride, a multilayer film formed of a plurality of layers of the above materials may also be used.
  • the layer structure is not limited to the above materials, and may be formed using other materials, and is not limited herein.
  • the ratio of the transmissive area 4 and the reflective area 5 can be adjusted according to different requirements. For example, for electrical equipment that is often used in homes, since the ambient light is relatively weak, the transmissive area 4 can be selected. A larger proportion of the liquid crystal display panel; for the mobile terminal, because it is often used outdoors, the ambient light is relatively strong, so the proportion of the reflective area 5 can be increased, but since the mobile terminal may also be used for ambient light comparison In a weak place, it is also necessary to consider a case where the reflected light of the reflection area 5 cannot be completely used as a light source. Therefore, in one example, the ratio of the transmissive area 4 to the reflective area 5 may be 6:4 to 9:1.
  • the first substrate 1 is further provided with a transparent substrate 7, a pixel electrode 8, a protective layer 9 and a common electrode 10, and the common electrode 10 is a strip electrode, which is arranged at intervals in the horizontal direction;
  • the transparent substrate 7, the reflective layer 6, the pixel electrode 8, the protective layer 9, and the common electrode 10 are disposed in order from bottom to top, and the reflective layer 6 is disposed on the transparent substrate 7 and the pixel.
  • the reflective layer 6 may also be disposed between the pixel electrode 8 and the protective layer 9. The position of the reflective layer 6 can be selected according to actual needs, and is not limited herein.
  • a first ⁇ /4 compensation polarizer 12 and a lower polarizer 11 are disposed, and the incident light is polarized by the lower polarizer 11.
  • the linearly polarized light is formed, and the linearly polarized light is formed into circularly polarized light by the polarization of the first ⁇ /4 compensation polarizer 12; and the second ⁇ /4 compensation polarizer is disposed on the side of the second substrate 2 remote from the liquid crystal layer 3.
  • the circularly polarized light is reduced to linearly polarized light by the second ⁇ /4 compensation polarizer 14, and the linearly polarized light is emitted or shielded by the upper polarizer 13.
  • the polarization directions of the lower polarizing plate 11 and the upper polarizing plate 13 are perpendicular, so that when the light is not polarized, the light is blocked by the upper polarizing plate 13 when passing through the structure of the liquid crystal layer 3 or the like, and if the light is When the liquid crystal molecules are polarized, they pass through the upper polarizer 13 to complete the display.
  • the optical path of the reflected light incident into the reflective region 5 and reflected out of the liquid crystal display panel is twice as long as the optical path of the light emitted through the transmissive region 4, so that the reflective region is
  • the phase of the outgoing light is delayed by the phase of the light emitted from the transmissive region 4, and in order to ensure that the phase of the light emitted from the transmissive region 4 and the reflective region 5 coincides, it is necessary to phase retard the light incident on the reflective region 5.
  • the adjustment of the phase retardation amount described herein is achieved by the polymer 30 contained in the liquid crystal layer 3 in the reflection region 5, which is formed by polymerization of an ultraviolet curing monomer.
  • the ultraviolet curable monomer is uniformly distributed in the liquid crystal of the liquid crystal layer 3, the polymer 30 is also uniformly distributed in the liquid crystal layer 3 corresponding to the reflective region 5 after being cured by the ultraviolet rays.
  • the ultraviolet curable monomer may be a monomer such as an acrylate, an ethyl lactate or an ethenyl ether. Therefore, the above monomers are described by way of example only and do not constitute a limitation on the structure of the ultraviolet curing monomer.
  • the liquid crystal molecules in the liquid crystal layer 3 are arranged in a horizontal manner, and the backlight in the transmissive region 4 is in a closed state, in the reflective region 5, although the reflective layer 6 reflects the light, but since the liquid crystal molecules in the liquid crystal layer 3 do not polarize the circularly polarized light, the emitted light is shielded by the upper polarizer 13.
  • the liquid crystal display panel When the image is displayed through the liquid crystal display panel, the liquid crystal display panel corresponding to FIG. 1
  • the description is made by way of example only. The figure is only an example description. It does not represent the true rotation angle of the liquid crystal molecules.
  • the voltage is applied to the pixel electrode 8 and the common electrode 10 respectively, thereby forming an electric field as shown in FIG.
  • the electric field rotates under the action of the electric field; it should be noted that, in the transmissive region 4 and the reflective region 5, the rotation angle of the liquid crystal molecules is different, because in the transmissive region 4, the liquid crystal molecules rotate according to the formed electric field, while in the reflection
  • the polymer 30 is present in the liquid crystal layer 3 of the region 5, and the polymer 30 lowers the rotation angle of the liquid crystal molecules in the reflection region 5, delaying the phase retardation of the reflected light, thereby delaying the phase of the liquid crystal molecules in the transmission region 4 by a factor of two.
  • the phase of the liquid crystal molecules of the reflective region 5 is delayed and because the liquid crystal display panel is a single cell thickness, the light path experienced by the light in the reflective region 5 is twice the optical path experienced by the light transmitted through the region 4, so that the transmission region can be made
  • the light of 4 maintains the same phase as the light passing through the reflection zone 5.
  • the amount of the ultraviolet curing monomer mixed in the liquid crystal is adjusted depending on the voltage applied to the pixel electrode 8 and the common electrode 10 at the time of starting the liquid crystal display panel, but in order to avoid The polymer formed by the ultraviolet curing of the monomer excessively hinders the rotation of the liquid crystal molecules and the polymerization of the ultraviolet curing monomer to form a polymer having a large area to affect the display.
  • the weight of the ultraviolet curing monomer may be the weight of the liquid crystal. 3% to 5%.
  • the light emitted from the reflective region 5 and the light emitted from the transmissive region 4 are maintained in the same phase for display by the different amounts of liquid crystal rotation of the reflective region 5 and the transmissive region 4.
  • the following describes the process of implementing the bright state and the dark state of the transmissive region 4 and the reflective region 5 in combination with the optical path diagrams shown in FIG. 4 and FIG. 5, wherein the dark state corresponds to the non-display state of the liquid crystal display panel, and the bright state corresponds to the liquid crystal display panel. Displays the display status of the panel.
  • both the transmissive area 4 and the reflective area 5 are in a dark state, and the specific optical path diagram is shown in the dark state column of Fig. 4 and Fig. 5:
  • the ambient light is natural light, which is a collection of polarized light in each direction, the ambient light passes through the upper polarizer 13, and the transmission axis of the above polarizing plate 13 is in the vertical direction as an example.
  • linearly polarized light that is, linearly polarized light in the vertical direction
  • the polarizer 14 is compensated by the second ⁇ /4, thereby generating left-handed circularly polarized light.
  • the left circularly polarized light passes through the liquid crystal layer 3, since the liquid crystal molecules of the liquid crystal layer 3 have no electric field influence, and there is no retardation effect on the left circularly polarized light, so the left circularly polarized light enters the reflective layer 6, and after being reflected by the reflective layer 6, it becomes right.
  • Rotating the circularly polarized light the right-handed circularly polarized light enters the liquid crystal layer 3 again, passes through the second ⁇ /4 compensation polarizer 14 again without delay, and becomes linearly polarized light in the horizontal direction, which is the upper polarizer 13
  • the transmission axis is perpendicular to the linearly polarized light, and therefore cannot be emitted from the upper polarizer 13, thereby forming a dark state of the reflective region 5;
  • the light emitted from the backlight passes through the lower polarizer 11, wherein the transmission axis of the lower polarizer 11 and the transmission axis of the upper polarizer 13 are perpendicular, that is, the lower polarizer
  • the transmission axis of the sheet 11 is a horizontal direction.
  • the light emitted by the backlight is similar to natural light, and is a collection of linearly polarized light in various directions.
  • the light passes through the lower polarizer 11 to generate linearly polarized light parallel to the transmission axis of the lower polarizer 11 and passes through the first ⁇ /4 compensates for the polarizer 12, thereby generating right-handed circularly polarized light, and the right-handed circularly polarized light passes through the liquid crystal layer 3. Since the liquid crystal molecules of the liquid crystal layer 3 have no electric field influence, there is no delay to the right-handed circularly polarized light, so the right The circularly polarized light directly enters the second ⁇ /4 compensation polarizer 14 and becomes linearly polarized light in the horizontal direction. Since the transmission axis of the upper polarizer 13 is in the vertical direction, linearly polarized light perpendicular to the transmission axis cannot The light is emitted from the upper polarizer 13 to form a dark state of the transmissive region 4.
  • both the transmissive area 4 and the reflective area 5 are in a bright state, and the specific optical path diagram is as shown in the bright state in FIG. 4 and FIG.
  • the liquid crystal molecules in the liquid crystal layer 3 of the transmissive region 4 are deflected and arranged by the fringe field effect, and the polarized light is ⁇ /2 when passing through the liquid crystal layer 3 of the transmissive region 4.
  • phase retardation however, the liquid crystal molecules in the liquid crystal layer 3 of the reflective region 5 are deflected by the effect of the fringe field effect, which is reduced by the limitation of the polymer 30, when the polarized light passes through the liquid crystal layer 3 of the reflective region 5.
  • a ⁇ /4 phase delay occurs, as follows:
  • ambient light passes through the upper polarizer 13, and linearly polarized light having a polarization direction parallel to the transmission axis (vertical direction) of the upper polarizer 13 is generated, and passes through the second ⁇ / 4 compensating the polarizer 14 to generate left-handed circularly polarized light, and the left-handed circularly polarized light passes through the liquid crystal layer 3. Due to the ⁇ /4 phase retardation of the liquid crystal molecules of the liquid crystal layer 3, the left-handed polarized light passes through the liquid crystal layer 3 and becomes a horizontal line.
  • the linearly polarized light After the polarized light passes through the reflective layer 6, it is still linearly polarized light in the horizontal direction, and the linearly polarized light passes through the liquid crystal layer 3 to become left-handed circularly polarized light, and after passing through the second ⁇ /4 compensation polarizer 14 , the linearly polarized light in the vertical direction is parallel to the transmission axis of the upper polarizer 13 so as to be reflected by the upper polarizer 13 to form a bright state of the reflective region 5;
  • the light emitted from the backlight passes through the lower polarizer 11, and since the transmission axis of the lower polarizer 11 is in the horizontal direction, the light passes through the lower polarizer 11, and the polarization direction is generated.
  • the linearly polarized light of the lower polarizer 11 is parallel to the transmission axis, and passes through the first ⁇ /4 compensation polarizer 12, thereby generating right-handed circularly polarized light, and then passing through the ⁇ /2 phase retardation of the liquid crystal layer 3, becoming left-handed circularly polarized light, and then directly entering the second ⁇ /4 compensation polarizer 14 to become a vertical linear polarization Light, since the light transmission axis of the upper polarizer 13 is in the vertical direction, light can be emitted through the upper polarizer 13 to form a bright state of the transmissive area 4.
  • the conversion of the dark state and the bright state of the liquid crystal display panel is realized by the deflection of the liquid crystal molecules, that is, different states of display and shutdown of the liquid crystal display panel are realized.
  • the liquid crystal display panel provided by the embodiment of the present invention forms a uniformly distributed polymer by exposing the ultraviolet curing monomer in the liquid crystal of the reflective region to restrict the rotation of the liquid crystal in the reflective region, and the phase retardation of the liquid crystal molecules in the transmissive region is a reflective region.
  • the liquid crystal molecules have a phase delay of 2 times, and the optical path difference of the transmissive region is twice as large as that of the reflective region, and finally the exiting light satisfying the reflective region maintains the same phase as the outgoing light transmitted through the transmissive region, satisfying the liquid crystal display.
  • the transflective condition improves the image recognition degree of the liquid crystal display in the case of strong ambient light and reduces the power consumption of the liquid crystal display.
  • the double-thickness setting in the preparation of the transflective liquid crystal display panel causes a problem of complicated process
  • the liquid crystal display panel provided by the embodiment of the invention has a single-box thickness, so that the transflective liquid crystal display panel is The preparation process is cylinderized.
  • the structure of the liquid crystal display panel is as shown in FIG. 6, that is, the order of the structures in the first substrate 1 from bottom to top is the transparent substrate 7, the pixel electrode 8, the protective layer 9, the common electrode 10, and the common electrode 10 is horizontally
  • the spacer layer 6 is located between the transparent substrate 7 and the pixel electrode 8.
  • a slope 60 is formed at the edge of the reflective layer 6 formed by etching.
  • the pixel electrode 8 and the protective layer 9 are formed on the reflective layer 6.
  • the deposition of the two layers is formed on the reflective layer 6, so that in the process of forming the pixel electrode 8 and the protective layer 9, the pixel electrode 8 on the slope surface 60 and the protective layer 9 on the slope surface 60 are sloped. 60 and tilt.
  • the angle of the formed slope surface 60 can be controlled by controlling the concentration of the gas blown during etching of the reflective layer 6 and the speed of blowing.
  • the pixel electrode 8 since the thickness of the pixel electrode 8 is very thin, if the angle of the slope surface 60 is too large, the pixel electrode 8 may be broken on the slope surface 60, where the slope angle refers to the horizontal direction and the slope surface. The angle of 60 acute angles. Therefore, the slope angle can be less than 80. .
  • the slope angle When the slope angle is set to be small, the pixel electrode 8 can be inclined along the gentle slope 60 and cover the reflective layer 6.
  • the slope angle may be 30. ⁇ 70. .
  • the structure of the liquid crystal display panel is as shown in FIG. 7, that is, the order of the structures in the first substrate 1 from bottom to top is the transparent substrate 7, the pixel electrode 8, the protective layer 9, the common electrode 10, and the common electrode 10 is horizontally
  • the spacer layer 6 is located between the pixel electrode 8 and the protective layer 9.
  • a pixel electrode 8 is deposited and etched on the transparent substrate 7, a reflective layer 6 is formed on the pixel electrode 8, and the reflective layer 6 is formed on the reflective layer 6.
  • a protective layer 9 and a common electrode 10 are formed thereon. Since the reflective layer 6 is formed over the pixel electrode 8, the protective layer 9 on the slope 60 formed at the edge of the reflective layer 6 will be inclined along the slope 60.
  • the thickness of the protective layer 9 formed on the reflective layer 6 is relatively thick, and there is no problem of cracking, and the problem that the angle of the slope 60 of the reflective layer 6 is too large to cause structural fracture can be avoided.
  • the present invention further provides a liquid crystal display comprising the liquid crystal display panel according to any one of the above embodiments 1-3.
  • the liquid crystal display panel provided by the embodiment of the present invention forms a uniformly distributed polymer by exposing the ultraviolet curing monomer in the liquid crystal of the reflective region to restrict the rotation of the liquid crystal in the reflective region, and the phase retardation of the liquid crystal molecules in the transmissive region is a reflective region.
  • the liquid crystal molecules have a phase delay of 2 times, and the optical path difference of the transmissive region is twice as large as that of the reflective region, and finally the exiting light satisfying the reflective region maintains the same phase as the outgoing light transmitted through the transmissive region, satisfying the liquid crystal display.
  • the transflective condition improves the image recognition degree of the liquid crystal display in the case of strong ambient light and reduces the power consumption of the liquid crystal display.
  • the double-thickness setting in the preparation of the transflective liquid crystal display panel causes a problem of complicated process
  • the liquid crystal display panel provided by the embodiment of the invention has a single-box thickness, so that the transflective liquid crystal display panel is The preparation process is cylinderized.
  • the embodiment of the invention further provides a method for preparing a liquid crystal display panel, the method comprising:
  • the transparent substrate 7 is placed in a deposition apparatus, and the pixel electrode 8, the reflective layer 6, the protective layer 9, and the common electrode 10 are respectively formed on the transparent substrate 7 by a plurality of deposition and patterning processes.
  • the structure of the first substrate 1 formed according to the position of the reflective layer 6 may be as shown in FIG. 1 and FIG. 2 respectively, that is, the structure including the sequence shown in FIG. 1: the transparent substrate 7 is sequentially from bottom to top.
  • a reflective layer 6, a pixel electrode 8, a protective layer 9, and a common electrode 10 the reflective layer 6 being disposed between the transparent substrate 7 and the pixel electrode 8; or comprising the sequential structure shown in FIG. 2: a transparent substrate from bottom to top 7.
  • the reflective layer 6 is disposed between the pixel electrode 8 and the protective layer 9. The position of the reflective layer 6 can be selected according to actual needs, and is not limited herein.
  • the reflective layer 6 may be selected from materials commonly used by those skilled in the art, such as metals, metal oxides, etc., which can be ion deposited, but because aluminum has better reflective properties and an appropriate price, in one example, the reflective layer
  • the material of 6 can be aluminum.
  • the thickness of the pixel electrode 8 and the common electrode 10 is 40 ⁇ 70 ⁇
  • the thickness of the protective layer 9 is 2500 A
  • the thickness of the reflective layer 6 is 200 ⁇ 300 ⁇
  • the distance between adjacent common electrodes 10 in the horizontal direction It is 5 ⁇ 8 ⁇ .
  • the structure of each layer can be adaptively adjusted, and is not limited herein.
  • the transparent substrate 7 may be a glass substrate or a plastic substrate, and the material of the pixel electrode 8 and the common electrode 10 may be selected from indium tin oxide and indium oxide.
  • the material of the protective layer 9 may be As the single-layer film of silicon nitride, silicon oxide or silicon oxynitride, a multilayer film formed of a plurality of layers of the above materials may also be used.
  • the layer structure is not limited to the above materials, and may be formed using other materials, and is not limited herein.
  • the reflective region 5 is defined by the setting range of the reflective layer 6; in different liquid crystal display products, the transmissive region 4 and the reflective region 5 can be adjusted according to different needs. Proportion, for example, for electrical equipment that is often used in homes, because the ambient light is relatively weak, a larger proportion of the liquid crystal display panel of the transmissive area 4 can be selected; and for the mobile terminal, since it is often used outdoors, the ambient light is relatively It is stronger, so the proportion of the reflection area 5 can be increased. However, since the mobile terminal may also be used in a place where the ambient light is weak, it is also necessary to consider a case where the reflected light of the reflection area 5 cannot be completely used as a light source. Therefore, in one example, the ratio of the transmissive area 4 to the reflective area 5 may be 6:4 to 9:1.
  • the pixel electrode 8 After forming the pixel electrode 8, the reflective layer 6, the protective layer 9, and the common electrode, it is formed as shown in FIG.
  • the first substrate 1 is shown.
  • the first substrate 1 After the first substrate 1 is formed, it is necessary to apply a sealant around the first substrate 1 and provide a spacer. After the spacer is placed, the first substrate 1 is placed in the drip device, and the drop is performed. Note how the device works.
  • the drip device two drip nozzles 15 and 16 are required to be disposed, wherein the liquid crystal accommodating chamber corresponding to the drip nozzle 15 stores pure liquid crystal, and the liquid crystal accommodating chamber corresponding to the drip nozzle 16 is mixed and stored.
  • the liquid crystal of the ultraviolet curing monomer When the liquid crystal is dripped, as shown in FIG. 9, it is necessary to inject liquid crystal into the transmissive area 4 and the reflection area 5 through the two drip nozzles 15, 16 respectively, wherein the drip nozzle 16 is mixed with the ultraviolet curing monomer.
  • the liquid crystal is dropped on the reflective region 5, and the drip nozzle 15 injects pure liquid crystal into the transmissive region 4.
  • the liquid crystal in which the ultraviolet curable monomer is mixed is dropped in the reflective region 5, and the pure liquid crystal is dropped in the transmissive region 4, and the first substrate 1 in which the liquid crystal is dropped is taken out from the drip device.
  • the first substrate 1 in which the liquid crystal is dripped is placed in the exposure apparatus, and is shielded by the mask 17.
  • the mask 17 includes a shielding area 170 and a transmission area 171, wherein the shielding area 170 and The ratio of the transmissive area 171 corresponds to the ratio of the transmissive area 4 and the reflective area 5 on the first substrate 1, that is, it can be understood that the shielding area 170 on the mask 17 corresponds to the transmissive area 4 on the first substrate 1, and the mask The transmissive area 171 on the board 17 corresponds to the reflective area 5 on the first substrate 1.
  • the amount of the ultraviolet curing monomer mixed in the liquid crystal is adjusted depending on the voltage applied to the pixel electrode 8 and the common electrode 10 at the time of starting the liquid crystal display panel, but in order to avoid curing by ultraviolet curing
  • the polymer formed by the body excessively hinders the rotation of the liquid crystal molecules and the polymerization of the ultraviolet curing monomer to form a polymer having a large area, which affects the display.
  • the weight of the ultraviolet curing monomer may be 3% to 5% by weight of the liquid crystal. .
  • the proportion of the transmissive area 4 and the reflective area 5 may be adjusted according to different liquid crystal products.
  • the ratio of the transmissive area 4 and the reflective area 5 may be 6 :4 ⁇ 9: 1; corresponding to the proportion of the transmissive area 4 and the reflective area 5, on the mask 17,
  • the ratio of the masking region 170 and the transmissive region 171 to the masking plate 17 may also be 6:4 to 9:1, and the transmissive region 171 can be made through the arrangement of the proportion of the shielding region 170 and the transmissive region 171 on the masking plate 17.
  • the ultraviolet curable monomer in the reflective region 5 on the corresponding first substrate 1 is sufficiently exposed to be uniformly polymerized to form the polymer 30, and the transmissive region 4 is perfectly shielded by the masking region 170 of the masking plate 17. Therefore, the exposure of the ultraviolet rays is prevented from affecting the transmission region 4.
  • the exposure time experienced is also different, and those skilled in the art can set different exposure times depending on the ultraviolet curing monomer, and do not limit.
  • the ultraviolet curable monomer in the liquid crystal corresponding to the reflective region 5 is uniformly polymerized by exposure of the exposure device to form a polymer.
  • the first substrate 1 is taken out, and the first substrate 1 and the second substrate 2 are aligned, thereby forming a liquid crystal display panel.
  • the liquid crystal display panel provided by the embodiment of the present invention forms a uniformly distributed polymer by exposing the ultraviolet curing monomer in the liquid crystal of the reflective region to restrict the rotation of the liquid crystal in the reflective region, and the phase retardation of the liquid crystal molecules in the transmissive region is a reflective region.
  • the liquid crystal molecules have a phase delay of 2 times, and the optical path difference of the transmissive region is twice as large as that of the reflective region, and finally the exiting light satisfying the reflective region maintains the same phase as the outgoing light transmitted through the transmissive region, satisfying the liquid crystal display.
  • the transflective condition improves the image recognition degree of the liquid crystal display in the case of strong ambient light and reduces the power consumption of the liquid crystal display.
  • the double-thickness setting in the preparation of the transflective liquid crystal display panel causes a problem of complicated process
  • the liquid crystal display panel provided by the embodiment of the invention has a single-box thickness, so that the transflective liquid crystal display panel is The preparation process is cylinderized.
  • the bottom layer is a reflective layer, a pixel electrode, a protective layer, and a common electrode
  • the reflective layer is located at the transparent substrate 7 and the pixel electrode 8
  • the method includes:
  • S100A depositing a light reflective material film on the transparent substrate, forming a reflective layer by a patterning process, a region where the reflective layer is formed is a reflective region, and a region where the reflective layer is not formed is a transmissive region.
  • the light reflective material may be selected from materials commonly used by those skilled in the art, such as metals, metal oxides, etc., which can be ion deposited, but because aluminum has better reflective properties and an appropriate price, in one example, the light reflection
  • the material can be aluminum.
  • the region on the first substrate 1 is distinguished by whether or not the reflective layer 6 is formed, that is, the region where the reflective layer 6 is formed is the reflective region 5, and the region where the reflective layer 6 is not formed is transmitted. District 4.
  • a pixel electrode, a protective layer and a common electrode are respectively formed by a patterning process.
  • the pixel electrode 8, the protective layer 9 and the common electrode 10 are formed by a patterning process, so that the structure of the first substrate 1 formed is in the order of: transparent substrate 7 from bottom to top.
  • the reflective layer 6 is formed by a patterning process by dry etching, a slope 60 is formed at the edge of the reflective layer 6.
  • the pixel electrode 8 and the protective layer 9 are formed on the reflective layer 6.
  • the deposition of the two layers is formed on the reflective layer 6, so that in the process of forming the pixel electrode 8 and the protective layer 9, the pixel electrode 8 on the slope surface 60 and the protective layer 9 on the slope surface 60 are sloped. 60 and tilt.
  • the angle of the formed slope surface 60 can be controlled by controlling the concentration of the gas and the speed of the blowing when the reflective layer 6 is etched.
  • the slope angle can be less than 80.
  • the pixel electrode 8 can be inclined along the gentle slope 60 and cover the reflective layer 6, but the area covered by the reflective layer 6 is too large in order to avoid the slope angle being too small.
  • the slope angle can be 30o ⁇ 70. .
  • the first substrate 1 is formed in the following order: forming a pixel electrode, a reflective layer, a protective layer and a common electrode from bottom to top, the reflective layer Between the pixel electrode 8 and the protective layer 9, the forming of the pixel electrode, the reflective layer, the protective layer and the common electrode on the transparent substrate by the patterning process comprises:
  • a metal oxide film is deposited on the transparent substrate 7, and the pixel electrode 8 is formed by a patterning process.
  • S100D depositing a light reflective material film on the transparent substrate on which the pixel electrode is formed, forming a reflective layer by a patterning process, a region where the reflective layer is formed is a reflective region, and a region where the reflective layer is not formed is a transmissive region.
  • a light reflective material film is deposited on the transparent substrate 7 on which the pixel electrode 8 is formed, and a reflective layer 6 is formed by a patterning process, and the light reflective material can be selected.
  • the region on the first substrate 1 is distinguished by whether or not the reflective layer 6 is formed, that is, the region where the reflective layer 6 is formed is the reflective region 5, and the region where the reflective layer 6 is not formed is transmitted. District 4.
  • a protective layer and a common electrode are respectively formed by a patterning process.
  • the protective layer 9 and the common electrode 10 are formed by a patterning process, and finally the first substrate 1 is formed.
  • a pixel electrode 8 is formed by depositing and etching on the transparent substrate 7, and a reflective layer 6 is formed on the pixel electrode 8, and the reflective layer is formed thereon.
  • a protective layer 9 and a common electrode 10 are formed on 6. Since the reflective layer 6 is formed over the pixel electrode 8, the protective layer 9 on the slope 60 formed at the edge of the reflective layer 6 will be inclined along the slope 60.
  • the thickness of the protective layer 9 formed on the reflective layer 6 is relatively thick, and there is no problem of cracking, and the problem that the angle of the slope 60 of the reflective layer 6 is too large to cause structural fracture can be avoided.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板、液晶显示器及其制备方法。液晶显示面板包括:相对设置的第一基板(1)和第二基板(2),第一基板(1)和第二基板(2)之间设置有液晶层(3),第一基板(1)包括多个像素区域,每个像素区域包括透射区(4)和反射区(5);第一基板(1)具有反射层(6),反射层(6)设置于反射区(5);在反射区(5)对应的液晶层(3)中,均匀分布有由紫外线固化单体聚合而形成的聚合物(30)。液晶显示面板为单盒厚,通过聚合物(30)控制经反射区(5)出射的反射光的相位延迟量,以使反射光的相位与经所述透射区(4)出射的透射光的相位相匹配。

Description

液晶显示面板、 液晶显示器及其制备方法 技术领域
本发明的实施例涉及液晶显示领域, 尤其涉及一种液晶显示面板、 液晶 显示器及其制备方法。 背景技术
随着显示技术的发展, 液晶显示器(Liquid Crystal Display, 以下筒称 LCD ) 由于重量轻、 厚度薄和体积小等特性逐步的贏得用户的青睐。
高级超维场转换( Advanced Super Dimension Switch, 以下筒称 ADSDS ) 技术是一种较为先进的液晶面板技术, 通过同一平面内狭缝电极边缘所产生 的电场以及狭缝电极层与板状电极层间产生的电场形成多维电场, 使液晶盒 内狭缝电极间以及电极正上方的所有取向的液晶分子都能够产生旋转, 从而 提高了液晶工作效率并增大了透光效率。 相较其他液晶面板技术, ADSDS 可以提高薄膜场效应晶体管液晶显示器的画面质量, 具有高分辨率、 高透过 率、 低功耗、 宽视角、 高开口率、 低色差、 无挤压水波纹等优点。
但是, 在环境光较强的情况下, 背光亮度的不足会使屏幕上所显示的图 像难以被识别, 而当单纯地通过背光亮度适应较强的环境光的情况时, 会造 成耗电量的提升, 并且对于 LCD的显示效果的提升很小。 发明内容
本发明的实施例一种液晶显示面板包括: 相对设置的第一基板和第二基 板, 所述第一基板和所述第二基板之间设置有液晶层, 所述第一基板包括多 个像素区域, 每个所述像素区域包括透射区和反射区, 其中, 所述第一基板 具有反射层, 所述反射层设置于所述反射区; 在所述反射区所对应的液晶层 中, 均匀分布有由紫外线固化单体聚合而形成的聚合物; 所述液晶显示面板 为单盒厚, 通过所述聚合物控制经所述反射区出射的反射光的相位延迟量, 以使所述反射光的相位与经所述透射区出射的透射光的相位相匹配。
在一个示例中, 所述紫外线固化单体的重量为液晶的重量的 3%~5%。 在一个示例中,所述第一基板从下至上依次还具有透明基板、像素电极、 保护层、 公共电极, 所述公共电极在水平方向上间隔设置; 所述反射层位于 所述透明基板和所述像素电极之间。
在一个示例中, 在所述反射层的边缘形成有坡面, 所述坡面的坡面角度 小于 80。; 位于所述坡面上的像素电极和位于所述坡面上的保护层沿所述坡 面倾斜。
在一个示例中, 所述坡面角度为 30。~70。。
在一个示例中,所述第一基板从下至上依次还具有透明基板、像素电极、 保护层、 公共电极, 所述公共电极在水平方向上间隔设置; 所述反射层位于 所述像素电极和所述保护层之间。
在一个示例中, 在所述反射层的边缘形成有坡面, 位于坡面上的保护层 沿所述坡面倾斜。
在一个示例中, 所述透射区和所述反射区的比例为 6:4~9: 1。
本发明实施例提供一种液晶显示器, 其上述液晶显示面板之一。
本发明实施例提供一种液晶显示面板的制备方法, 该方法包括: 通过构 图工艺, 在透明基板上形成像素电极、 反射层、 保护层和公共电极, 其中, 形成有反射层的区域为反射区, 未形成反射层的区域为透射区; 在所述透射 区滴注液晶, 在所述反射区滴注液晶与紫外线固化单体的混合溶液; 通过掩 膜板遮挡所述透射区,对所述反射区进行曝光,使所述紫外线固化单体固化, 在所述反射区内的液晶中形成聚合物。
在一个示例中, 所述紫外线固化单体的重量为液晶的重量的 3%~5%。 在一个示例中, 所述通过构图工艺, 在透明基板上形成反射层、 像素电 极、 保护层和公共电极, 包括: 在所述透明基板上沉积光反射材料膜, 通过 构图工艺形成反射层, 形成有所述反射层的区域为反射区, 未形成所述反射 层的区域为透射区; 在形成有所述反射层的透明基板上, 通过构图工艺分别 形成像素电极、 保护层和公共电极。
在一个示例中, 在所述反射层边缘形成有坡面, 所述坡面的坡面角度小 于 80。; 位于所述坡面上的像素电极和位于所述坡面上的保护层沿所述坡面 倾斜。
在一个示例中, 所述坡面角度为 30。~70。。 在一个示例中, 所述通过构图工艺, 在透明基板上形成像素电极、 反射 层、 保护层和公共电极, 包括: 在透明基板上通过构图工艺形成像素电极; 在形成有所述像素电极的透明基板上沉积光反射材料膜, 通过构图工艺形成 反射层, 形成有所述反射层的区域为反射区, 未形成所述反射层的区域为透 射区; 在形成有所述反射层的透明基板上, 通过构图工艺分别形成保护层和 公共电极。
在一个示例中, 在所述反射层的边缘形成有坡面, 位于所述坡面上的保 护层沿所述坡面倾斜。
在一个示例中, 所述透射区和所述反射区的比例为 6:4~9: 1; 所述掩膜板 包括遮蔽区域和透射区域, 其中, 所述遮蔽区域和所述透射区域的比例与所 述透射区和所述反射区的比例相应。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附 图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例 1的一种液晶显示面板的结构示意图;
图 2为本发明实施例 1的另一种液晶显示面板的结构示意图;
图 3为本发明实施例 1中在公共电极和像素电极两侧加载电压时的电场 示意图;
图 4为本发明实施例 1的液晶显示面板中反射区的光路图;
图 5为本发明实施例 1的液晶显示面板中透射区的光路图;
图 6为本发明实施例 2的液晶显示面板的结构示意图;
图 7为本发明实施例 3的液晶显示面板的结构示意图;
图 8为本发明实施例 5的制备的第一基板的示意图;
图 9为本发明实施例 5的液晶显示面板的制备方法中滴注液晶的示意图; 图 10为本发明实施例 5的液晶显示面板的制备方法中通过掩膜版曝光形 成聚合物的示意图。 具体实施方式
下面结合附图对本发明实施例的液晶显示面板、 液晶显示器及其制备方 法进行详细描述。
应当明确, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的 实施例。 基于所公开的本发明的实施例, 本领域普通技术人员在没有做出创 造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例 1
一种液晶显示面板, 如图 1所示, 包括: 相对设置的第一基板 1和第二 基板 2,第一基板 1和第二基板 2之间设置有液晶层 3 ,第一基板 1包括由横 纵交叉的栅线和数据线划分出的多个像素区域, 每个像素区域包括透射区 4 和反射区 5,
第一基板 1具有反射层 6, 反射层 6设置于所述反射区 5中;
在反射区 5所对应的液晶层 3中, 均匀分布有由紫外线固化单体聚合而 形成的聚合物 30;
液晶显示面板为单盒厚,通过聚合物 30控制经反射区 5出射的反射光的 相位延迟量, 以使反射光的相位与经透射区 6出射的透射光的相位相匹配。
需要说明的是, 由于透射区 4的光线直接由背光源射出, 而反射区 5的 光线先由液晶显示面板表面射入, 再通过反射层 6进行反射, 之后再由液晶 显示面板表面射出, 所以反射区 5的光线所行进的光程是透射区 4的光线所 行进的光程的 2倍, 并且, 在反射区 5的液晶分子中经由紫外线固化单体聚 合形成的聚合物 30的控制反射区光线的相位延迟是透射区 4的 1/2, 这样一 来, 最终使从透射区 4射出的光线与从反射区 5射出的光线满足半透半反的 基本原理以完成半透半反的液晶显示面板的显示。
一般来说,如图 1所示,设置有栅线和数据线的第一基板 1为阵列基板, 而第二基板 2为彩膜基板, 在第一基板 1上滴注液晶以形成液晶层 3。 在第 一基板 1上滴注液晶时, 需要对反射区 5和透射区 4进行区分, 此时可以分 别设置两个滴注喷头, 一个滴注喷头的液晶容纳腔中贮存纯液晶, 另一个滴 注喷头的液晶容纳腔贮存有混合了紫外线固化单体的液晶。 其中, 在进行图 像的显示时, 存在两种光源, 其一是在透射区 4由液晶显示面板所提供的背 光源作为第一种光源, 其二是在反射区 5将射入的环境光进行反射从而作为 第二种光源, 这样一来, 便可以通过反射区 5所反射的自然光作为第二种光 源对背光源所产生的第一种光源进行补充。 由于通过上述对第一种光源的补 充, 在第一种光源的亮度降低的情况下, 同样可以保持液晶显示面板的图像 识别度, 所以可以通过降低第一种光源的亮度而降低背光源的功耗, 与全部 依靠背光源的液晶显示面板相比提供了一种低功耗的液晶显示面板。 在反射 区 5对环境光进行的反射是通过反射区 5中所设置的反射层 6实现的; 该反 射层 6可以选自可以进行离子沉积的金属、 金属氧化物等本领域技术人员常 用的材料, 但是, 因为铝具有较好的光反射性能以及适当的价格, 因而在一 个示例中, 该反射层 6的材料可以为铝。
一般地, 像素电极 8和公共电极 10的厚度为 40θΑ~70θΑ , 保护层 9的 厚度为 2500 A , 反射层 6的厚度为 200θΑ~300θΑ , 公共电极 10为条状电 极, 相邻的公共电极 10之间在水平方向上的距离为 5~8μηι。 但是, 根据所 生成的液晶显示产品的不同, 各层的结构也可以进行适应性的调整, 在此不 作限制。
另外, 作为液晶显示领域常用的材料, 透明基板 7可以选用玻璃基板或 塑料基板,像素电极 8和公共电极 10的材料可以选用铟锡氧化物和铟辞氧化 物等, 保护层 9的材料可以为氮化硅、 氧化硅或氮氧化硅的单层薄膜, 也可 以采用上述材料的多层形成的多层薄膜。 对于各层结构, 不限于上述材料, 也可以使用其他材料形成, 在此不作限制。
在不同的液晶显示产品中, 根据不同的需求, 可以调整透射区 4和反射 区 5的比例, 例如对于经常用于家中的电气设备, 因为环境光相对较弱, 便 可以选用透射区 4所占较大比例的液晶显示面板; 而对于移动终端, 因为会 经常在户外使用, 环境光相对较强, 所以可以将增大反射区 5所占的比例, 但是由于移动终端也可能用于环境光较弱的地方, 所以也需要考虑不能完全 依靠反射区 5的反射光作为光源的情形。 故, 在一个示例中, 透射区 4和反 射区 5的比例可以为 6:4~9:1。
需要说明的是, 第一基板 1还设置有透明基板 7、 像素电极 8、 保护层 9 和公共电极 10, 该公共电极 10为条状电极, 在水平方向上间隔设置; 上述 结构的设置顺序可以如图 1所示,即从下至上依次设置透明基板 7、反射层 6、 像素电极 8、 保护层 9和公共电极 10, 该反射层 6设置于透明基板 7和像素 电极 8之间。 另外, 可选择的, 如图 2所示, 该反射层 6还可以设置于像素 电极 8和保护层 9之间。 其中, 该反射层 6所设置的位置可以根据实际的需 要进行选择, 在此不作限制。
如图 2或图 3所示, 在第一基板 1的远离液晶层 3的一侧, 设置有第一 λ/4补偿偏光片 12和下偏光片 11 , 通过下偏光片 11将入射光线进行偏光而 形成线偏振光,并通过第一 λ/4补偿偏光片 12的偏光使线偏振光形成圓偏振 光;在第二基板 2的远离液晶层 3的一侧设置第二 λ/4补偿偏光片 14和上偏 光片 13 , 通过第二 λ/4补偿偏光片 14将圓偏振光还原成线偏振光, 并通过 上偏光片 13使线偏光射出或屏蔽。 一般来说, 下偏振片 11和上偏振片 13 的偏振方向是垂直的, 这样一来, 当经过液晶层 3等结构时如果光线未被偏 光则会被上偏振片 13屏蔽,而如果光线被液晶分子偏光,则会穿过上偏光片 13从而完成显示。
因为工作于半透射半反射的模式下, 所以射入反射区 5并反射出液晶显 示面板的反射光的光程比通过透射区 4出射的光线所经过的光程长一倍, 所 以从反射区 5出射的光线的相位比从透射区 4出射的光线的相位要滞后, 为 了确保射出透射区 4与反射区 5的光线的相位一致, 则需要对射入反射区 5 的光线进行相位延迟。 此处所述的相位延迟量的调整是通过反射区 5中的液 晶层 3中所包含的聚合物 30实现的, 该聚合物 30是由紫外线固化单体聚合 而形成的。
因为该紫外线固化单体在液晶层 3的液晶中均勾地分布, 所以在通过紫 外线进行固化后, 聚合物 30也均勾地分布在反射区 5所对应的液晶层 3中。 该紫外线固化单体可以为丙烯酸酯类、 乙婦基酯类和乙婦基醚类的单体等。 的, 所以上述的单体仅以举例的形式进行说明, 并不构成对于紫外线固化单 体的结构的限制。
在液晶显示面板未启动时, 如图 1、 2所示, 液晶层 3中的液晶分子以水 平的方式排布, 并且在透射区 4的背光源处于关闭状态, 在反射区 5 , 虽然 反射层 6会对光线进行反射, 但是因为液晶层 3中的液晶分子未对圓偏振光 进行偏光, 所以出射的光线会被上偏光片 13遮蔽。
在通过液晶显示面板对图像进行显示时, 以图 1所对应的液晶显示面板 为例进行描述, 图中仅为实例性的说明,并不代表液晶分子真实的旋转角度, 在像素电极 8和公共电极 10上分别加载电压, 从而形成如图 3所示的电场, 液晶分子在该电场的作用下旋转; 需要说明的是, 在透射区 4和反射区 5 , 液晶分子的旋转角度是不同的, 因为在透射区 4中液晶分子会按照所形成的 电场进行旋转, 而在反射区 5的液晶层 3中存在聚合物 30, 该聚合物 30会 降低反射区 5液晶分子的旋转角度, 使反射光的相位延迟滞后, 从而使透射 区 4的液晶分子的相位延迟为两倍的反射区 5的液晶分子的相位延迟并且因 为液晶显示面板为单盒厚, 光线在反射区 5所经历的光程是透射区 4的光线 所经历的光程的两倍, 所以可以使得通过透射区 4的光线和通过反射区 5的 光线保持相同的相位。 此时, 在滴注液晶时, 混合于液晶中的紫外线固化单 体的用量会随着液晶显示面板启动时施加于像素电极 8和公共电极 10两端的 电压的不同而进行调整, 但是为了避免由紫外线固化单体而形成的聚合物过 度阻碍液晶分子的旋转以及紫外线固化单体聚合过度而形成面积较大的聚合 物而影响显示, 在一个示例中, 紫外线固化单体的重量可以为液晶的重量的 3%~5%。
在液晶显示面板显示后, 通过反射区 5和透射区 4不同的液晶旋转量, 使射出反射区 5的光线和射出透射区 4的光线保持相同的相位,以进行显示。
下面结合图 4、图 5所示的光路图对透射区 4、反射区 5的实现亮态和暗 态过程进行描述, 其中, 该暗态对应液晶显示面板的非显示状态, 亮态则对 应液晶显示面板的显示状态。
( 1 )在液晶显示面板未加电压时, 透射区 4和反射区 5均呈暗态, 其具 体的光路图如图 4、 图 5中的暗态一栏中所示:
在反射区 5内, 如图 4所示, 环境光为自然光, 是各个方向上的偏振光 的集合, 环境光通过上偏光片 13 , 以上偏振片 13的透光轴在竖直方向上为 例进行说明,产生和上偏光片 13的透光轴平行的的线偏振光(即产生竖直方 向上的线偏振光) , 经过第二 λ/4补偿偏光片 14, 从而产生左旋圓偏振光, 左旋圓偏振光经过液晶层 3 , 由于液晶层 3的液晶分子未有电场影响, 对左 旋圓偏振光无延迟作用, 所以左旋圓偏振光进入反射层 6, 经过反射层 6反 射后, 变成右旋圓偏振光, 该右旋圓偏振光再次进入液晶层 3 , 无延迟并再 次通过第二 λ/4补偿偏光片 14, 变成水平方向的线偏振光, 是与上偏光片 13 的透光轴垂直的线偏振光, 因此, 无法从上偏光片 13射出,从而形成反射区 5的暗态;
在透射区 4内, 如图 5所示, 从背光源发射出的光线经过下偏光片 11 , 其中, 下偏光片 11的透光轴和上偏光片 13的透光轴方向垂直, 即下偏光片 11的透光轴为水平方向。 背光源发出的光线近似于自然光, 是各个方向上的 线偏振光的集合, 光线通过下偏光片 11 , 产生和下偏光片 11的透光轴平行 的水平方向的线偏振光, 并经过第一 λ/4补偿偏光片 12, 从而产生右旋圓偏 振光, 右旋圓偏振光经过液晶层 3 , 由于液晶层 3的液晶分子未有电场影响, 对右旋圓偏振光无延迟作用, 所以右旋圓偏振光直接进入第二 λ/4补偿偏光 片 14, 变成水平方向的线偏振光, 由于上偏光片 13的透光轴为竖直方向, 所以与其透光轴垂直的线偏振光无法从上偏光片 13射出,从而形成透射区 4 的暗态。
( 2 )在液晶显示面板加电压时, 即如图 3所示的情况下, 透射区 4和反 射区 5均呈亮态, 其具体的光路图如图 4和图 5中的亮态一栏中所示, 在液 晶显示面板加电压时, 透射区 4的液晶层 3中的液晶分子在边缘场效应的作 用下偏转排列, 偏振光在通过透射区 4的液晶层 3时, 发生 λ/2相位延迟, 然而反射区 5的液晶层 3中的液晶分子在边缘场效应的作用下偏转排列, 该 偏转受到聚合物 30的限制而减小,偏振光在通过反射区 5的液晶层 3时,发 生 λ/4相位延迟, 具体情况如下:
在反射区 5内, 如图 4所示, 环境光通过上偏光片 13 , 产生偏振方向和 上偏光片 13的透光轴(竖直方向)方向平行的线偏振光, 并经过第二 λ/4补 偿偏光片 14, 从而产生左旋圓偏振光, 左旋圓偏振光经过液晶层 3 , 由于液 晶层 3的液晶分子的 λ/4相位延迟, 左旋偏振光经过液晶层 3后变成水平方 向的线偏振光, 线偏振光经过反射层 6后, 仍为水平方向的线偏振光, 线偏 振光再次经过液晶层 3后变为左旋圓偏振光, 并在经过第二 λ/4补偿偏光片 14后, 变为竖直方向上的线偏振光, 和上偏光片 13的透光轴平行, 从而能 够通过上偏光片 13反射出, 从而形成反射区 5的亮态;
在透射区 4内, 如图 5所示, 从背光源发射出的光线经过下偏光片 11 , 由于下偏光片 11的透光轴沿水平方向, 所以光线通过下偏光片 11 , 产生偏 振方向与下偏光片 11的透光轴平行的线偏振光,并经过第一 λ/4补偿偏光片 12, 从而产生右旋圓偏振光, 再经过液晶层 3的 λ/2相位延迟, 变成左旋圓 偏振光, 然后直接进入第二 λ/4补偿偏光片 14, 变成竖直方向的线偏振光, 由于上偏光片 13的光透过轴为竖直方向, 所以光线能够通过上偏光片 13射 出, 形成透射区 4的亮态。
如上所述的, 实现了通过液晶分子的偏转实现液晶显示面板暗态和亮态 的转换, 也就是实现了液晶显示面板显示和关闭的不同状态。
本发明实施例提供的液晶显示面板, 在反射区的液晶中通过对紫外线固 化单体进行曝光形成均匀分布的聚合物以限制反射区液晶的旋转, 实现透射 区的液晶分子的相位延迟是反射区的液晶分子的相位延迟的 2倍, 并且实现 透射区的光程差为通过反射区的 2倍, 最终满足反射区的出射光与透射区透 射出的出射光保持相同的相位, 满足液晶显示器的半透半反的条件, 提高液 晶显示器在环境光较强的情况下的图像识别度以及降低液晶显示器的耗电 量。
另外, 在制备半透半反的液晶显示面板时双盒厚的设置造成工艺复杂的 问题, 而本发明实施例所提供的液晶显示面板为单盒厚, 使半透半反的液晶 显示面板的制备工艺得到筒化。
实施例 2
当液晶显示面板的结构如图 6所示时, 即第一基板 1中各结构从下至上 的顺序为透明基板 7、 像素电极 8、 保护层 9、 公共电极 10, 公共电极 10在 水平方向上间隔设置; 反射层 6位于透明基板 7和像素电极 8之间。
因为在第一基板 1的反射层 6的制备过程中,一般会采用干法刻蚀形成, 此时, 在刻蚀形成的反射层 6的边缘会形成坡面 60。 在反射层 6形成后, 在 反射层 6上会形成像素电极 8和保护层 9。 这两层的沉积是在反射层 6上形 成的,所以在形成像素电极 8和保护层 9的过程中,位于坡面 60上的像素电 极 8和位于坡面 60上的保护层 9沿坡面 60而倾斜。 通过控制刻蚀反射层 6 时吹入的气体的浓度和吹入的速度, 可以控制形成的坡面 60的角度。
需要说明的是, 因为像素电极 8的厚度很薄,所以如果坡面 60的角度过 大,则可能会在坡面 60上出现像素电极 8的断裂,这里的坡面角度指水平方 向与坡面 60所成的锐角的角度。 故该坡面角度可以小于 80。。 当设置坡面角 度较小时,则像素电极 8便可以沿着较緩和的坡面 60倾斜,并覆盖反射层 6, 但为了避免坡面角度过小而造成反射层 6覆盖的面积过大的问题, , 例如坡 面角度可以为 30。~70。。
实施例 3
当液晶显示面板的结构如图 7所示时, 即第一基板 1中各结构从下至上 的顺序为透明基板 7、 像素电极 8、 保护层 9、 公共电极 10, 公共电极 10在 水平方向上间隔设置; 反射层 6位于像素电极 8和保护层 9之间。
与实施例 2不同的是, 在制备第一基板 1的过程中, 先在透明基板 7上 沉积并刻蚀形成像素电极 8,在该像素电极 8上形成反射层 6,并在该反射层 6上形成保护层 9和公共电极 10。 因为反射层 6形成于像素电极 8之上, 所 以在反射层 6的边缘所形成的坡面 60上的保护层 9将会沿着坡面 60而倾斜。 在反射层 6上所形成的保护层 9的厚度相对较厚, 不会出现断裂的问题, 可 以避免反射层 6的坡面 60的角度过大而造成结构断裂的问题。
实施例 4
与上述一种液晶显示面板相对应, 本发明还提供了一种液晶显示器, 包 含上述实施例 1-3任一所述的液晶显示面板。
本发明实施例提供的液晶显示面板, 在反射区的液晶中通过对紫外线固 化单体进行曝光形成均匀分布的聚合物以限制反射区液晶的旋转, 实现透射 区的液晶分子的相位延迟是反射区的液晶分子的相位延迟的 2倍, 并且实现 透射区的光程差为通过反射区的 2倍, 最终满足反射区的出射光与透射区透 射出的出射光保持相同的相位, 满足液晶显示器的半透半反的条件, 提高液 晶显示器在环境光较强的情况下的图像识别度以及降低液晶显示器的耗电 量。 另外, 在制备半透半反的液晶显示面板时双盒厚的设置造成工艺复杂的 问题, 而本发明实施例所提供的液晶显示面板为单盒厚, 使半透半反的液晶 显示面板的制备工艺得到筒化。
实施例 5
与上述一种液晶显示面板相对应, 本发明实施例还提供了一种液晶显示 面板的制备方法, 该方法包括:
S100, 通过构图工艺, 在透明基板上形成像素电极、 反射层、 保护层和 公共电极, 其中, 形成有反射层的区域为反射区, 未形成反射层的区域为透 射区。 将透明基板 7放入沉积设备中, 通过多次沉积和构图工艺在透明基板 7 上分别形成像素电极 8、 反射层 6、 保护层 9和公共电极 10。 其中, 根据反 射层 6所设置的位置的不同, 形成的第一基板 1 的结构可以分别如图 1、 2 所示, 即包含图 1所示顺序的结构: 从下至上依次为透明基板 7、 反射层 6、 像素电极 8、 保护层 9和公共电极 10, 该反射层 6设置于透明基板 7和像素 电极 8之间; 或包含图 2所示的顺序的结构: 从下至上依次为透明基板 7、 像素电极 8、 反射层 6、 保护层 9和公共电极 10, 该反射层 6设置于像素电 极 8和保护层 9之间。 其中, 该反射层 6所设置的位置可以根据实际的需要 进行选择, 在此不作限制。
该反射层 6可以选自可以进行离子沉积的金属、 金属氧化物等本领域技 术人员常用的材料, 但是, 因为铝具有较好的反射性能以及适当的价格, 因 而在一个示例中, 该反射层 6的材料可以为铝。
一般地, 像素电极 8和公共电极 10的厚度为 40θΑ~70θΑ, 保护层 9的 厚度为 2500 A , 反射层 6的厚度为 200θΑ~300θΑ , 相邻的公共电极 10之 间在水平方向上的距离为 5~8μηι。但是,根据所生成的液晶显示产品的不同, 各层的结构也可以进行适应性的调整, 在此不作限制。
另外, 作为液晶显示领域常用的材料, 透明基板 7可以选用玻璃基板或 塑料基板,像素电极 8和公共电极 10的材料可以选用铟锡氧化物和铟辞氧化 物等, 保护层 9的材料可以为氮化硅、 氧化硅或氮氧化硅的单层薄膜, 也可 以采用上述材料的多层形成的多层薄膜。 对于各层结构, 不限于上述材料, 也可以使用其他材料形成, 在此不作限制。
需要说明的是, 在沉积反射层 6的过程中, 通过反射层 6的设置范围来 界定反射区 5; 在不同的液晶显示产品中, 根据不同的需求, 可以调整透射 区 4和反射区 5的比例, 例如对于经常用于家中的电气设备, 因为环境光相 对较弱, 便可以选用透射区 4所占较大比例的液晶显示面板; 而对于移动终 端, 因为会经常在户外使用, 环境光相对较强, 所以可以将增大反射区 5所 占的比例, 但是由于移动终端也可能用于环境光较弱的地方, 所以也需要考 虑不能完全依靠反射区 5的反射光作为光源的情形。 故在一个示例中, 透射 区 4和反射区 5的比例可以为 6:4~9: 1。
在通过形成像素电极 8、 反射层 6、 保护层 9和公共电极后, 形成如图 8 所示的第一基板 1。
5101 , 在透射区滴注液晶, 在反射区滴注液晶与紫外线固化单体的混合 溶液。
在第一基板 1形成后, 需要在第一基板 1的四周涂抹封框胶, 并设置隔 垫物, 在完成隔垫物的放置后, 将第一基板 1放入滴注设备内, 对滴注设备 的作业方式进行设置。在滴注设备内, 需要设置两个滴注喷头 15、 16, 其中, 滴注喷头 15所对应的液晶容纳腔中贮存有纯液晶, 滴注喷头 16所对应的液 晶容纳腔中贮存有混合了紫外线固化单体的液晶。 在进行液晶的滴注时, 如 图 9所示,需要通过两个滴注喷头 15、 16分别向透射区 4和反射区 5滴注液 晶, 其中, 滴注喷头 16将混合有紫外线固化单体的液晶滴注于反射区 5、 滴 注喷头 15将纯液晶滴注于透射区 4。
需要说明的是, 向反射区 5滴注混合有紫外线固化单体的液晶以及向透 射区 4滴注纯液晶的顺序可以根据实际的需要进行, 在此不作限制。
分别在反射区 5滴注混合有紫外线固化单体的液晶以及在透射区 4滴注 纯液晶后, 从滴注设备中将滴注完液晶的第一基板 1取出。
5102, 通过掩膜板遮挡透射区, 对反射区进行曝光, 使紫外线固化单体 固化, 在透射区内的液晶中形成聚合物。
将滴注有液晶的第一基板 1放置到曝光设备中,通过掩膜板 17进行遮挡, 如图 10所示, 该掩膜板 17包括遮蔽区域 170和透射区域 171 , 其中, 遮蔽 区域 170和透射区域 171的比例与第一基板 1上的透射区 4和反射区 5的比 例相应,即可以理解为掩膜板 17上的遮蔽区域 170对应第一基板 1上的透射 区 4, 而掩膜板 17上的透射区域 171对应第一基板 1上的反射区 5。 在滴注 液晶时, 混合于液晶中的紫外线固化单体的用量会随着液晶显示面板启动时 施加于像素电极 8和公共电极 10两端的电压的不同而进行调整,但是为了避 免由紫外线固化单体而形成的聚合物过度阻碍液晶分子的旋转以及紫外线固 化单体聚合过度而形成面积较大的聚合物而影响显示, 例如, 紫外线固化单 体的重量可以为液晶的重量的 3%~5%。
需要说明的是, 在第一基板 1上, 透射区 4和反射区 5的所占的比例可 以按照液晶产品的不同进行调整, 例如, 透射区 4和反射区 5的所占的比例 可以为 6:4~9: 1; 与透射区 4和反射区 5所占的比例相对应,在掩膜板 17上, 遮蔽区域 170和透射区域 171所占掩膜板 17的比例也可以为 6:4~9:1 , 通过 掩膜板 17上遮蔽区域 170和透射区域 171所占比例的设置,可以使透射区域 171对应的第一基板 1上的反射区 5中的紫外线固化单体得到充分的曝光, 从而使其均匀地聚合, 形成聚合物 30, 而透射区 4被掩膜板 17的遮蔽区域 170完好地遮蔽, 从而避免紫外线的曝光对透射区 4造成影响。 另外, 根据 所选用的紫外线固化单体的不同、 聚合过程的不同等, 所经历的曝光时间也 不相同, 本领域技术人员可以根据紫外线固化单体的不同而设置不同的曝光 时间, 在此不作限制。
在第一基板 1上设置掩膜板 17后, 通过曝光设备的曝光, 使反射区 5 对应的液晶中的紫外线固化单体得到均匀地聚合, 形成聚合物。
在曝光完成后, 将第一基板 1取出, 并将该第一基板 1与第二基板 2进 行对盒, 从而形成液晶显示面板。
本发明实施例提供的液晶显示面板, 在反射区的液晶中通过对紫外线固 化单体进行曝光形成均匀分布的聚合物以限制反射区液晶的旋转, 实现透射 区的液晶分子的相位延迟是反射区的液晶分子的相位延迟的 2倍, 并且实现 透射区的光程差为通过反射区的 2倍, 最终满足反射区的出射光与透射区透 射出的出射光保持相同的相位, 满足液晶显示器的半透半反的条件, 提高液 晶显示器在环境光较强的情况下的图像识别度以及降低液晶显示器的耗电 量。 另外, 在制备半透半反的液晶显示面板时双盒厚的设置造成工艺复杂的 问题, 而本发明实施例所提供的液晶显示面板为单盒厚, 使半透半反的液晶 显示面板的制备工艺得到筒化。
实施例 6
需要进一步说明的是, 当为了形成具有以下结构顺序的第一基板 1时: 自下而上依次为反射层、 像素电极、 保护层和公共电极并且该反射层位于透 明基板 7和像素电极 8之间时, 所述在通过构图工艺, 在透明基板上形成像 素电极、 反射层、 保护层和公共电极, 包括:
S100A, 在透明基板上沉积光反射材料膜, 通过构图工艺形成反射层, 形成有反射层的区域为反射区, 未形成反射层的区域为透射区。
为了形成反射层 6位于透明基板 7和像素电极 8之间的结构, 即为了最 终形成如图 6所示的液晶显示面板,需要先在透明基板 7上沉积光反射材料, 该光反射材料可以选自可以进行离子沉积的金属、 金属氧化物等本领域技术 人员常用的材料, 但是, 因为铝具有较好的反射性能以及适当的价格, 因而 在一个示例中, 该光反射材料可以为铝。
在通过构图工艺形成反射层 6时, 通过是否形成有反射层 6来区分第一 基板 1上的区域, 即, 形成了反射层 6的区域为反射区 5 , 未形成反射层 6 的区域为透射区 4。
S100B , 在形成有反射层的透明基板上, 通过构图工艺分别形成像素电 极、 保护层和公共电极。
在形成有反射层 6的透明基板 7上,通过构图工艺继而形成像素电极 8、 保护层 9和公共电极 10, 从而使形成的第一基板 1的结构顺序为: 从下至上 依次为透明基板 7、 反射层 6、 像素电极 8、 保护层 9和公共电极 10。
需要说明的是, 因为在通过构图工艺形成反射层 6时, 是通过干法刻蚀 形成的, 所以在反射层 6的边缘会形成有坡面 60。 在反射层 6形成后, 在反 射层 6上会形成像素电极 8和保护层 9。 这两层的沉积是在反射层 6上形成 的,所以在形成像素电极 8和保护层 9的过程中,位于坡面 60上的像素电极 8和位于坡面 60上的保护层 9沿坡面 60而倾斜。 通过控制刻蚀反射层 6时 ^Τ 的气体的浓度和吹入的速度, 可以控制形成的坡面 60的角度。
因为像素电极 8的厚度 4艮薄,所以如果坡面 60的角度过大,则可能会在 坡面 60上出现像素电极 8的断裂, 这里的坡面角度指水平方向与坡面 60所 成的锐角的角度。 故该坡面角度可以小于 80。。 当设置坡面角度较小时, 则 像素电极 8便可以沿着较緩和的坡面 60倾斜, 并覆盖反射层 6, 但为了避免 坡面角度过小而造成反射层 6覆盖的面积过大的问题, 例如, 坡面角度可以 为 30o~70。。
实施例 7
需要进一步说明的是, 为了最终形成如图 7所示的液晶显示面板, 形成 的第一基板 1的结构顺序为: 自下而上形成像素电极、 反射层、 保护层和公 共电极, 该反射层位于像素电极 8和保护层 9之间, 所述在通过构图工艺, 在透明基板上形成像素电极、 反射层、 保护层和公共电极包括:
S100C, 在透明基板上通过构图工艺形成像素电极。
在透明基板 7上沉积金属氧化物膜, 并通过构图工艺形成像素电极 8。 S100D, 在形成有像素电极的透明基板上沉积光反射材料膜, 通过构图 工艺形成反射层, 形成有反射层的区域为反射区, 未形成反射层的区域为透 射区。
为了形成反射层 6位于像素电极 8和保护层 9之间的结构, 在形成有像 素电极 8的透明基板 7上沉积光反射材料膜,并通过构图工艺形成反射层 6, 该光反射材料可以选自可以进行离子沉积的金属、 金属氧化物等本领域技术 人员常用的材料, 但是, 因为铝具有较好的反射性能以及适当的价格, 因而 在一个示例中, 该光反射材料可以为铝。
在通过构图工艺形成反射层 6时, 通过是否形成有反射层 6来区分第一 基板 1上的区域, 即, 形成了反射层 6的区域为反射区 5, 未形成反射层 6 的区域为透射区 4。
S100E, 在形成有反射层的透明基板上, 通过构图工艺分别形成保护层 和公共电极。
在形成了反射层 6的透明基板 7上, 继而通过构图工艺形成保护层 9和 公共电极 10, 最终形成第一基板 1。
与实施例 6不同的是, 在制备第一基板 1的过程中, 先在透明基板 7上 沉积并刻蚀而形成像素电极 8,在该像素电极 8上形成反射层 6,并在该反射 层 6上形成保护层 9和公共电极 10。 因为反射层 6形成于像素电极 8之上, 在反射层 6的边缘所形成的坡面 60上的保护层 9将会沿着坡面 60而倾斜。 在反射层 6上所形成的保护层 9的厚度相对较厚, 不会出现断裂的问题, 可 以避免反射层 6的坡面 60的角度过大而造成结构断裂的问题。
以上所述, 仅为本发明的一些实施例, 但本发明实施例的保护范围并不 局限于此, 任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围 内, 可轻易想到变化或替换, 其都应涵盖在本发明实施例的保护范围之内。 因此, 本发明实施例的保护范围应以所述权利要求的保护范围为准。

Claims

权利要求书
1、 一种液晶显示面板, 包括: 相对设置的第一基板和第二基板, 所述第 一基板和所述第二基板之间设置有液晶层,所述第一基板包括多个像素区域, 每个所述像素区域包括透射区和反射区, 其中,
所述第一基板具有反射层, 所述反射层设置于所述反射区;
在所述反射区所对应的液晶层中, 均匀分布有由紫外线固化单体聚合而 形成的聚合物;
所述液晶显示面板为单盒厚, 通过所述聚合物控制经所述反射区出射的 反射光的相位延迟量, 以使所述反射光的相位与经所述透射区出射的透射光 的相位相匹配。
2、根据权利要求 1所述的液晶显示面板, 其中, 所述紫外线固化单体的 重量为液晶的重量的 3%~5%。
3、根据权利要求 1或 2所述的液晶显示面板, 其中, 所述第一基板从下 至上依次还具有透明基板、 像素电极、 保护层、 公共电极, 所述公共电极在 水平方向上间隔设置;
所述反射层位于所述透明基板和所述像素电极之间。
4、根据权利要求 3所述的液晶显示面板, 其中, 在所述反射层的边缘形 成有坡面, 所述坡面的坡面角度小于 80。;
位于所述坡面上的像素电极和位于所述坡面上的保护层沿所述坡面倾 斜。
5、根据权利要求 4所述的液晶显示面板,其中,所述坡面角度为 30。~70。。
6、根据权利要求 1或 2所述的液晶显示面板, 其中, 所述第一基板从下 至上依次还具有透明基板、 像素电极、 保护层、 公共电极, 所述公共电极在 水平方向上间隔设置;
所述反射层位于所述像素电极和所述保护层之间。
7、根据权利要求 6所述的液晶显示面板, 其中, 在所述反射层的边缘形 成有坡面, 位于坡面上的保护层沿所述坡面倾斜。
8、 根据权利要求 1、 2、 4、 5、 7任意一项所述的液晶显示面板, 其中, 所述透射区和所述反射区的比例为 6:4~9: 1。
9、 一种液晶显示器, 其中, 包括权利要求 1-8任意一项所述的液晶显示 面板。
10、 一种液晶显示面板的制备方法, 包括:
通过构图工艺, 在透明基板上形成像素电极、 反射层、 保护层和公共电 极, 其中, 形成有反射层的区域为反射区, 未形成反射层的区域为透射区; 在所述透射区滴注液晶, 在所述反射区滴注液晶与紫外线固化单体的混 合溶液;
通过掩膜板遮挡所述透射区, 对所述反射区进行曝光, 使所述紫外线固 化单体固化, 在所述反射区内的液晶中形成聚合物。
11、根据权利要求 10所述的方法, 其中, 所述紫外线固化单体的重量为 液晶的重量的 3%~5%。
12、 根据权利要求 10或 11所述的方法, 其中, 所述通过构图工艺, 在 透明基板上形成反射层、 像素电极、 保护层和公共电极, 包括:
在所述透明基板上沉积光反射材料膜, 通过构图工艺形成反射层, 形成 有所述反射层的区域为反射区, 未形成所述反射层的区域为透射区;
在形成有所述反射层的透明基板上, 通过构图工艺分别形成像素电极、 保护层和公共电极。
13、根据权利要求 12所述的方法,其中,在所述反射层边缘形成有坡面, 所述坡面的坡面角度小于 80°;
位于所述坡面上的像素电极和位于所述坡面上的保护层沿所述坡面倾 斜。
14、 根据权利要求 13所述的方法, 其中, 所述坡面角度为 30°~70°。
15、 根据权利要求 10或 11所述的方法, 其中, 所述通过构图工艺, 在 透明基板上形成像素电极、 反射层、 保护层和公共电极, 包括:
在透明基板上通过构图工艺形成像素电极;
在形成有所述像素电极的透明基板上沉积光反射材料膜, 通过构图工艺 形成反射层, 形成有所述反射层的区域为反射区, 未形成所述反射层的区域 为透射区;
在形成有所述反射层的透明基板上, 通过构图工艺分别形成保护层和公 共电极。
16、根据权利要求 13所述的方法, 其中, 在所述反射层的边缘形成有坡 面, 位于所述坡面上的保护层沿所述坡面倾斜。
17、 根据权利要求 10、 11、 13、 14、 16任意一项所述的方法, 其中, 所 述透射区和所述反射区的比例为 6:4~9: 1;
所述掩膜板包括遮蔽区域和透射区域, 其中, 所述遮蔽区域和所述透射 区域的比例与所述透射区和所述反射区的比例相应。
PCT/CN2013/088902 2013-08-29 2013-12-09 液晶显示面板、液晶显示器及其制备方法 WO2015027611A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/378,086 US9709846B2 (en) 2013-08-29 2013-12-09 Liquid crystal display (LCD) panel, LCD and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310383057.XA CN103454804B (zh) 2013-08-29 2013-08-29 液晶显示面板、液晶显示器及其制备方法
CN201310383057.X 2013-08-29

Publications (1)

Publication Number Publication Date
WO2015027611A1 true WO2015027611A1 (zh) 2015-03-05

Family

ID=49737352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088902 WO2015027611A1 (zh) 2013-08-29 2013-12-09 液晶显示面板、液晶显示器及其制备方法

Country Status (3)

Country Link
US (1) US9709846B2 (zh)
CN (1) CN103454804B (zh)
WO (1) WO2015027611A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103488008B (zh) * 2013-10-09 2017-02-01 京东方科技集团股份有限公司 阵列基板及其驱动方法、显示装置
CN109031752B (zh) * 2017-06-16 2023-11-14 京东方科技集团股份有限公司 一种反射式液晶显示面板及显示装置
CN109947284A (zh) * 2017-12-21 2019-06-28 南昌欧菲显示科技有限公司 触控屏及其制备方法以及包含该触控屏的电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1749816A (zh) * 2004-09-13 2006-03-22 财团法人工业技术研究院 半反射半穿透液晶显示器组件及其制备方法
CN1851547A (zh) * 2005-04-22 2006-10-25 三星电子株式会社 透射反射型液晶显示器及其制造方法
JP2009116194A (ja) * 2007-11-08 2009-05-28 Sharp Corp 液晶表示装置の製造方法
CN101520563A (zh) * 2008-02-29 2009-09-02 深圳富泰宏精密工业有限公司 高分子散射型半穿反液晶显示组件及其制作方法
TWI333091B (en) * 2004-05-27 2010-11-11 Fujitsu Ltd Liquid crystal display and method of manufacturing the same
US8199286B2 (en) * 2004-07-29 2012-06-12 Kent State University Polymer stabilized electrically controlled birefringence transflective LCD
CN102629034A (zh) * 2011-07-21 2012-08-08 京东方科技集团股份有限公司 半透射半反射液晶显示器及其制作方法
CN102645798A (zh) * 2012-02-27 2012-08-22 京东方科技集团股份有限公司 一种显示装置及其制作方法
CN102707355A (zh) * 2011-10-24 2012-10-03 京东方科技集团股份有限公司 一种半反半透彩色滤光片及其制作方法
CN202939393U (zh) * 2012-11-16 2013-05-15 北京京东方光电科技有限公司 基于ads显示模式的半透半反式液晶面板及显示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI333091B (en) * 2004-05-27 2010-11-11 Fujitsu Ltd Liquid crystal display and method of manufacturing the same
US8199286B2 (en) * 2004-07-29 2012-06-12 Kent State University Polymer stabilized electrically controlled birefringence transflective LCD
CN1749816A (zh) * 2004-09-13 2006-03-22 财团法人工业技术研究院 半反射半穿透液晶显示器组件及其制备方法
CN1851547A (zh) * 2005-04-22 2006-10-25 三星电子株式会社 透射反射型液晶显示器及其制造方法
JP2009116194A (ja) * 2007-11-08 2009-05-28 Sharp Corp 液晶表示装置の製造方法
CN101520563A (zh) * 2008-02-29 2009-09-02 深圳富泰宏精密工业有限公司 高分子散射型半穿反液晶显示组件及其制作方法
CN102629034A (zh) * 2011-07-21 2012-08-08 京东方科技集团股份有限公司 半透射半反射液晶显示器及其制作方法
CN102707355A (zh) * 2011-10-24 2012-10-03 京东方科技集团股份有限公司 一种半反半透彩色滤光片及其制作方法
CN102645798A (zh) * 2012-02-27 2012-08-22 京东方科技集团股份有限公司 一种显示装置及其制作方法
CN202939393U (zh) * 2012-11-16 2013-05-15 北京京东方光电科技有限公司 基于ads显示模式的半透半反式液晶面板及显示装置

Also Published As

Publication number Publication date
US9709846B2 (en) 2017-07-18
CN103454804A (zh) 2013-12-18
CN103454804B (zh) 2015-07-01
US20150316817A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
US10429692B2 (en) Liquid crystal display panel and fabrication method
US9104070B2 (en) Liquid crystal display panel and display apparatus using the same
US9541793B2 (en) Liquid crystal display panel and display apparatus using the same
WO2014176886A1 (zh) 半透半反式液晶显示面板、显示装置及阵列基板
US20140168585A1 (en) Color filter substrate, manfacturing method for the same, and display device
US20170192306A1 (en) Liquid crystal display panel
JP2011128586A (ja) 半透過半反射型液晶表示装置
JP2000009911A (ja) 拡散反射板及びその製造方法と反射型表示装置
WO2017181732A1 (zh) 显示面板及其制作方法、以及显示装置
US9110335B2 (en) Liquid crystal display panel and display apparatus using the same
WO2014206018A1 (zh) 半透半反显示面板及其制备方法、显示装置
WO2006039060A1 (en) Liquid crystal on silicon (lcos) microdisplay with retarder that reduces light beam polarization changes
US10884269B2 (en) Method for manufacturing a liquid crystal display panel comprising performing a photo-alignment treatment using a photo-alignment treatment device having a light irradiation mechanism and a rotation adjustment mechanism
WO2015109817A1 (zh) 半透半反液晶显示面板及其制作方法、显示装置
US9013661B2 (en) Liquid crystal display panel and display apparatus using the same
CA2623124C (en) Transparent, conductive film with a large birefringence
US20150062496A1 (en) Liquid crystal display panel and display apparatus using the same
US20230089004A1 (en) Display device and driving method therefor and manufacturing method thereof
WO2014187102A1 (zh) 半透半反液晶显示面板及其制作方法、液晶显示装置
KR20180003687A (ko) 반사형 액정표시장치
WO2015027611A1 (zh) 液晶显示面板、液晶显示器及其制备方法
US9720276B2 (en) Liquid crystal display panel and display apparatus using the same
WO2019039358A1 (ja) 液晶表示パネル及び液晶表示パネルの製造方法
TWI354170B (en) In-plane switching mode liquid crystal display dev
WO2013010491A1 (zh) 半透射半反射液晶显示器及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14378086

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM F1205A DATED 11.07.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13892191

Country of ref document: EP

Kind code of ref document: A1