WO2015025868A1 - 田植機 - Google Patents

田植機 Download PDF

Info

Publication number
WO2015025868A1
WO2015025868A1 PCT/JP2014/071724 JP2014071724W WO2015025868A1 WO 2015025868 A1 WO2015025868 A1 WO 2015025868A1 JP 2014071724 W JP2014071724 W JP 2014071724W WO 2015025868 A1 WO2015025868 A1 WO 2015025868A1
Authority
WO
WIPO (PCT)
Prior art keywords
planting
gear
speed
shaft
transmission
Prior art date
Application number
PCT/JP2014/071724
Other languages
English (en)
French (fr)
Inventor
竹山 智洋
土井 邦夫
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to KR1020157035630A priority Critical patent/KR20160043524A/ko
Priority to CN201480045573.4A priority patent/CN105451538B/zh
Publication of WO2015025868A1 publication Critical patent/WO2015025868A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/006Other parts or details or planting machines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C11/00Transplanting machines
    • A01C11/003Transplanting machines for aquatic plants; for planting underwater, e.g. rice

Definitions

  • the present invention relates to a rice transplanter in which a seedling planting apparatus having a seedling platform and a plurality of planting claws is attached to a traveling machine body and a seedling planting operation is continuously performed.
  • a seedling planting device having a seedling stage and a transplanting mechanism with planting claws is mounted on the rear part of the traveling machine body.
  • a transplanting mechanism of a seedling planting apparatus a type in which two planting claws are provided in one rotary case is common. When the rotary case rotates once, the two planting claws are opposite to the rotary case. Make one turn in the direction. That is, the planting claw rotates while revolving around the axis of the rotary case.
  • planting claws facing the direction of the front seedling platform are made while intermittently feeding the seedling platform on which the seedling mat is placed to the left and right at regular intervals.
  • the planting claws are reciprocated between the seedling stage and the field scene, and the seedlings are scraped one by one from the seedling mat and planted in the field.
  • the operation period (planting period) of the planting claws in the seedling planting apparatus is linked to the traveling speed of the traveling machine body, and the seedling planting interval (between plants) is kept constant even if the traveling speed changes.
  • the number of seedlings to be planted per unit area (generally 3.3 square meters) is not necessarily constant.
  • the desired number of plants to be planted per unit area varies depending on the region or user.
  • the conventional rice transplanter is provided with an inter-strain transmission that adjusts the interlocking relationship between the traveling speed and the planting cycle.
  • the inter-strain is changed and the number of planted strains per unit area is changed.
  • Patent Documents 1 and 2 describe a rice transplanter equipped with an inconstant speed member that transmits inconstant speed rotational power to the transplant mechanism in order to prevent the planting claws from being dragged in the field during sparse planting.
  • the inconstant speed member is configured to change the angular speed during one rotation of the rotary case constituting the transplantation mechanism (inconstant speed rotation), and increase the speed at which the planting claws escape from the field even during sparse planting.
  • an inconstant speed member is incorporated in the inter-strain transmission in the mission case.
  • an inconstant velocity member is provided on the downstream side of power transmission with respect to the lateral feed drive mechanism of the seedling stage.
  • the power transmission system from the inter-strain transmission to the transplanting mechanism is composed of transmission elements such as gears and rotating shafts.
  • a transmission element such as a rotating shaft is not a perfect rigid body, and is slightly elastically deformed when a load (rotational torque) is applied, and returns and deforms with an elastic restoring force when the load is released. That is, in the transmission element of the power transmission system, torsion and torsion release occur alternately with rotation, and this appears as vibration.
  • the inconstant velocity member accelerates and decelerates the angular velocity during one rotation of the transmission element, and the load fluctuation acting on the transmission element is further increased by the acceleration and deceleration.
  • the present invention has been made in view of the current situation as described above, and intends to prevent the inconvenience while enjoying the advantages of the inconstant velocity member.
  • the invention according to claim 1 is a transmission case for shifting the power of an engine mounted on a traveling machine body, a seedling planting device having a transplanting mechanism with a planting claw for drawing a non-circular motion locus, and a traveling speed of the traveling machine body
  • a rice transplanter comprising: an inter-strain transmission for changing the strain between the transplant mechanisms by changing the operating speed of the transplant mechanism; and an inconstant speed member for transmitting the inconstant speed rotational power to the transplant mechanism.
  • a reverse phase torque generating member for adding a reverse phase torque having a phase opposite to that of the rotational torque to the rotational torque of the transplanting mechanism based on power is further provided.
  • the power transmission system from the inter-strain transmission to the transplanting mechanism includes rotating shafts that intersect each other, and these intersecting rotating shafts are connected via bevel gear pairs
  • the bevel gear pair is configured as an inconstant speed gear pair as the downstream inconstant speed member, and the antiphase torque generating member is connected to the downstream inconstant speed gear of the inconstant speed gear pair.
  • the invention according to claim 3 is the rice transplanter according to claim 1, wherein the power transmission from the inter-strain transmission to the transplanting mechanism is interrupted in the longitudinal longitudinal transmission transmission case of the seedling planting apparatus.
  • a stop clutch is provided, and the reverse phase torque generating member is disposed in the planting transmission case on the downstream side of the row stop clutch.
  • a plurality of combinations of the planting transmission case and the hooking clutch are provided, and the antiphase torque generating member is provided for each combination. It is.
  • the power take-out capable of transmitting power to an optional device mounted on the seedling planting device in the longitudinal planting transmission case of the seedling planting device A shaft is provided, and the power take-out shaft is used as a component of the antiphase torque generating member.
  • a sixth aspect of the present invention is the rice transplanter according to the fifth aspect, wherein a plurality of combinations of the planting transmission case and the streak clutch are provided, and the antiphase torque generating member is provided for each combination. It is.
  • An inconstant speed gear is also arranged inside the rotary case constituting the transplanting mechanism, which operates the planting claw so as to draw a long non-circular motion trajectory up and down. This is different from an inconstant speed member (that is, a member that imparts inconstant speed rotation (acceleration / deceleration) to a transmission element of a power transmission system).
  • a transmission case for shifting the power of an engine mounted on a traveling machine body, a seedling planting device having a transplanting mechanism with a planting claw for drawing a non-circular motion locus, and the traveling speed of the traveling machine body In a rice transplanter equipped with an inter-strain transmission that changes the operating speed of the transplanting mechanism to change the stock, and an inconstant speed member that transmits the inconstant speed rotational power to the transplanting mechanism,
  • the anti-phase torque generating member further includes an anti-phase torque generating member for adding an anti-phase torque having a phase opposite to that of the rotational torque with respect to the rotational torque of the transplanting mechanism based on the anti-phase torque generated from the anti-phase torque generating member.
  • the power transmission system from the inter-strain transmission to the transplanting mechanism includes rotating shafts that intersect each other, and these intersecting rotating shafts are configured to transmit power via a bevel gear pair
  • the bevel gear pair is configured as an inconstant speed gear pair as the downstream inconstant speed member
  • the antiphase torque generating member is connected to the inconstant speed gear on the downstream side of the inconstant speed gear pair.
  • Existing members such as inconstant speed gear pairs can be used, which is advantageous in terms of cost.
  • the antiphase torque is not generated when the strut clutch is in a power cut-off state, and there is no possibility that unnecessary torque is propagated around the transplantation mechanism.
  • a strut clutch for interrupting power transmission from the inter-strain transmission to the transplant mechanism, and the stapling is stopped in the planting transmission case. Since the anti-phase torque generating member is disposed downstream of the clutch, the anti-phase torque generating member is positioned in the vicinity of the transplant mechanism that is the source of load fluctuation, and the anti-phase torque is The effect of offsetting the rotational torque of the transplantation mechanism, that is, the effect of leveling load fluctuations is high.
  • the front and rear longitudinal planting transmission case in the seedling planting device is provided with a power take-off shaft capable of transmitting power to an optional device mounted on the seedling planting device, Since the power take-off shaft is a constituent element of the anti-phase torque generating member, the load fluctuation (torque fluctuation) acting on the transplant mechanism is leveled to ensure smooth rotation of the transplant mechanism,
  • the power take-out shaft can be effectively used as the anti-phase torque generating member, contributing to simplification and weight reduction of the power transmission structure to the seedling planting device.
  • (A) is a perspective view which shows the whole power transmission path
  • (B) is a perspective view of a transplant mechanism.
  • (A) is a side view of a power transmission path
  • (B) is a side view of a place of a transplant mechanism
  • (C) is a view showing a locus of a planting claw.
  • (A) is a top view which shows a power transmission path
  • (B) is an external appearance perspective view of a stock change apparatus
  • (C) and (D) are external appearance perspective views of the center case provided in the planting part.
  • (A) is an external appearance perspective view of the gear group in a stock change apparatus and a center case
  • (B) is a perspective view of the gear group in a center case. It is a transmission system diagram.
  • (A) is a top view which shows the power transmission path
  • (B) is the isolation
  • (C) is the schematic of a bevel gear.
  • (A) And (B) is a top view which shows the meshing state of a bevel gear
  • D) is a perspective view of a bevel gear
  • (E) is a contrast figure which arranged the pair of bevel gears.
  • the embodiment is applied to a riding type rice transplanter (hereinafter simply referred to as “rice transplanter”).
  • rice transplanter a riding type rice transplanter
  • the front / rear / left / right wording is used to specify the direction, but the front / rear / left / right wording defines the forward direction of the rice transplanter as the front.
  • the front view direction is opposite to the forward direction.
  • the rice transplanter has a traveling machine body 1 and a seedling planting device 2 disposed behind the traveling machine body 1.
  • the traveling machine body 1 has front and rear wheels 3, 4, a control seat 5, and a control handle 6, while the seedling planting device 2 has a seedling mounting base 7 and a transplanting mechanism 8 on which a seedling mat is placed.
  • the rice transplanter of the embodiment is an eight-row planting type. For this reason, eight seedling mat placement areas are formed on the seedling placing stand 7, and eight transplanting mechanisms are provided at the rear part of the seedling planting device 2. 8 are arranged in a horizontal row.
  • the traveling machine body 1 has a frame 9 made of a large number of frame members, and an engine 10 is supported by the front portion of the frame 9.
  • a mission case 11 is disposed behind the engine 10.
  • a hydrostatic continuously variable transmission (HST) 12 is mounted on the left side surface of the mission case 11, and the power of the engine 10 is hydrostatically continuously variable by a belt 13. Is transmitted to the machine (HST) 12.
  • the engine 10 is covered with a hood 14. Further, a portion of the traveling machine body 1 excluding the hood 14 is covered with a vehicle body cover 15.
  • a front axle device 17 is attached to the left and right side surfaces of the mission case 11, and the front wheel 3 is attached to the front axle device 17.
  • a rear axle case 18 is disposed behind the transmission case 11, and the rear wheel 4 is attached to a rear axle that protrudes laterally from the rear axle case 18.
  • the transmission case 11 and the rear axle case 18 are connected to each other by a longitudinal joint material 19.
  • Two rear struts 20 are attached to the rear axle case 18, and the upper end of the rear strut 20 is fixed to a laterally long rear frame 9 a (see FIG. 3) that constitutes the rear end portion of the frame 9. .
  • a link device 21 composed of upper and lower link bodies (top link and lower link) is rotatably connected to the left and right rear columns 20, and a seedling planting device 2 is attached to the rear end of the link device 21.
  • the link device 21 can be rotated by a hydraulic cylinder (elevating cylinder) 22 connected to the joint material 19. Therefore, the seedling planting device 2 moves up and down by expanding and contracting the hydraulic cylinder 22.
  • a stock transmission 26 is attached to the right side of the rear axle case 18, and power is transmitted from the transmission case 11 to the stock transmission 26 via a planting power transmission shaft 27.
  • the rotation of the planting power transmission shaft 27 is shifted by a gear group incorporated in the inter-strain transmission 26 and transmitted to the seedling planting device 2 by the PTO shaft 29.
  • the seedling planting apparatus 2 has a horizontally long main frame 28, and a center case 30 is fixed to a substantially right and left intermediate portion of the main frame 28, and the power of the PTO shaft 29 is a gear built in the center case 30. Transmitted to the group.
  • Four planting transmission cases 31 extending rearward are fixed to the rear surface of the main frame 28, and a pair of left and right transplanting mechanisms 8 are rotatably attached to the rear side of the planting transmission case 31.
  • a left and right horizontally long planting drive shaft 32 passes through the front side (base end side) of the planting transmission case 31, and the transplanting mechanism 8 is driven by the rotation of the planting drive shaft 32 (details will be described later). To do). Further, power is transmitted from the PTO shaft 29 to the planting drive shaft 32 via a gear group built in the center case 30.
  • the center case 30 is also provided with a laterally long lateral feed shaft 33, and the seedling stage 7 moves laterally by one pitch by the rotation of the lateral feed shaft 33.
  • the seedling planting device 2 has a group of belts 34 on which a seedling mat is placed, and the belts 34 are wound around a pair of upper and lower vertical feed shafts 35.
  • the vertical feed support shaft 35 rotates and the seedling mat moves downward by one pitch.
  • each transplantation mechanism 8 has one rotary case 36 and a planting claw member 37 that is rotatably provided at both ends thereof, and the rotary case 36 is rotated by half. Each time the seedling claw member 37 scrapes off the seedling and plantes it. Further, the rotary case 36 is set to rotate 1/2 when the PTO shaft 29 rotates once.
  • the rotational speed of the PTO shaft 29 is basically proportional to the traveling speed of the traveling machine body 1, but by changing the relationship between the traveling speed and the rotational speed of the PTO shaft 29 by the stock transmission 26, seedling planting The interval (between stocks) can be changed.
  • the stock transmission 26 has a front / back split stock case 40 shown in FIG. 6 (B), and a gear group as shown in FIGS. 6 (A) and 6 (C) is arranged therein. .
  • an input shaft 41 and an output shaft 42 are arranged, and the rear end of the planting power transmission shaft 27 is connected to the input shaft 41 via a universal joint.
  • a first gear 43 and a second gear 44 having the same diameter are fixed to the input shaft 41. Although both gears 43 and 44 have the same diameter, the number of teeth of the second gear 44 is slightly smaller than that of the first gear 43.
  • the input shaft 41 and the output shaft 42 are arranged concentrically.
  • a cylindrical intermediate shaft 45 is fitted to the input shaft 41 so as to be relatively rotatable, and the intermediate shaft 45 is fitted in a state of rotating together with the output shaft 42 (a state in which relative rotation is impossible).
  • a third gear 46 and a fourth gear 47 are slidably fitted on the intermediate shaft 45 by spline fitting or the like so as not to rotate relative to each other. Further, the upstream inconstant speed first gear 48 and the upstream inconstant speed third gear 121 are fitted to the intermediate shaft 45 so as to be relatively rotatable.
  • the camshaft main clutch 49 is provided on the output shaft 42.
  • the main clutch 49 includes a fixed part 49a and a slide part 49b.
  • the slide part 49b is urged toward the fixed part 49a by a clutch spring 49c (see FIG. 7C).
  • a clutch spring 49c see FIG. 7C.
  • the main clutch 49 is disengaged when the seedling planting device 2 is being lifted, such as when traveling on the road or turning.
  • the disengagement operation of the main clutch 49 is performed by lowering the main clutch operation shaft 50.
  • An idle shaft 51 extending in parallel with the input shaft 41 and the output shaft 42 in a side view is rotatably supported inside the inter-case case 40, and the idle gear 51 is supported by the first gear 43 or the second gear 44.
  • the fifth gear 52 that can mesh with each other is fitted so as to be slidable and relatively non-rotatable by spline fitting or the like.
  • the fifth gear 52 has about twice as many teeth as the first gear 43 or the second gear 44, and a first position meshed with the first gear 43 and a second position meshed with the second gear 44 can be selected. .
  • the idle shaft 51 meshes with the upstream inconstant speed fourth gear 122 that always meshes with the upstream inconstant speed third gear 121, the sixth gear 54 that meshes with and away from the third gear 46, and the fourth gear 47.
  • the seventh gear 55 that separates and the upstream unequal speed second gear 56 that is always meshed with the upstream unequal speed first gear 48 are fixed.
  • the ratio of the number of teeth of the seventh gear 55 to the fourth gear 47 is set to be smaller than the ratio of the sixth gear 54 to the third gear 46. Accordingly, the rotational speed of the intermediate shaft 45 (and the output shaft 42) is higher when the fourth gear 47 and the seventh gear 55 are engaged than when the third gear 46 and the sixth gear 54 are engaged. Is lower.
  • the upstream inconstant speed first gear 48 and the upstream inconstant speed second gear 56 are non-circular profiles such as ellipses, and the number of teeth is set to be the same. Therefore, in a state where the rotation of the idle shaft 51 is transmitted to the intermediate shaft 45 and the output shaft 42 via both the inconstant speed gears 48 and 56, the rotational speeds of the idle shaft 51 and the output shaft 42 are the same, and The output shaft 42 rotates in a state where the angular velocity is periodically changed during one rotation.
  • the two inconstant speed gears 48 and 56 are non-circular and are always kept in meshing because of the particularity that the phase of meshing is always determined.
  • the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 have non-circular profiles such as ellipses, and the number of teeth is set to be the same. Therefore, in a state where the rotation of the idle shaft 51 is transmitted to the intermediate shaft 45 and the output shaft 42 via both the inconstant speed gears 48 and 56, the rotational speeds of the idle shaft 51 and the output shaft 42 are the same, and The output shaft 42 rotates in a state where the angular velocity is periodically changed during one rotation. That is, the upstream inconstant speed first gear 48 and the upstream inconstant speed second gear 56 are non-circular gear pairs such as eccentric gears, and have a large acceleration / deceleration ratio (inconstant speed ratio). The upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 are also non-circular gear pairs such as eccentric gears, but have a small acceleration / deceleration ratio (inconstant speed ratio).
  • the highest speed phase of each planting claw 96 in the planting claw member 37 (the phase where the operation speed of the planting claw 96 becomes the highest speed) is set.
  • Acceleration / deceleration is provided so as to be near the bottom dead center, but in the embodiment, the upstream inconstant speed first gear 48 and the upstream inconstant speed second gear 56 provided in the inter-variety transmission 26 are used.
  • a slightly larger acceleration / deceleration is applied to the rotational power from the stock case 40 to output the inconstant rotational power.
  • the acceleration / deceleration ratio (unequal speed ratio) is larger than the combination of the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122, the bottom of the operating locus of the planting claw 96 is near the bottom dead center. The operating speed of the is greatly increased. Further, the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 give slightly smaller acceleration / deceleration to the rotational power from the stock case 40 to output the inconstant rotational power.
  • the acceleration / deceleration ratio (unequal speed ratio) is smaller than the combination of the upstream inconstant speed first gear 48 and the upstream inconstant speed fourth gear 56, the bottom of the operating locus of the planting claw 96 is near the bottom dead center. Increase the operating speed of.
  • the upstream inconstant speed first to fourth gears 48, 56, 121, 122 correspond to upstream inconstant speed members on the inter-strain transmission 26 side that transmit the inconstant speed rotational power to the transplantation mechanism 8.
  • the first intermediate clutch 57 that can be engaged and separated is provided between the fourth gear 47 and the upstream inconstant speed first gear 48.
  • the fourth gear 47 slides further to the right from the state of FIG. 8 once engaged with the seventh gear 55, the first intermediate clutch 57 is engaged.
  • the power of the idle shaft 51 is transmitted to the output shaft 42 via the upstream inconstant speed second gear 56 and the upstream inconstant speed first gear 48.
  • the third gear 46 and the fourth gear 47 are idling. Accordingly, the first intermediate clutch 57 serves to disconnect the connection between the intermediate shaft 45 and the upstream inconstant speed first gear 48.
  • the third gear 46 and the upstream inconstant speed third gear 121 are provided with a second intermediate clutch 123 that can be engaged and separated.
  • the second intermediate clutch 123 is engaged with the intermediate shaft 45.
  • the power of the idle shaft 51 is transmitted to the output shaft 42 via the upstream inconstant speed fourth gear 122 and the upstream inconstant speed third gear 121.
  • the second intermediate clutch 123 serves to disconnect the connection between the intermediate shaft 45 and the upstream inconstant speed third gear 121.
  • FIG. 11 shows the relationship between the combination of gears and the number of planted stocks in the embodiment.
  • the first gear 43 and the fifth gear 52 are engaged with each other, if the fourth gear 47 and the seventh gear 55 are engaged, the number of planted stocks is set to the constant strain d, and the third gear 46 and the sixth gear 52 are combined. If the gear 54 is meshed, the number of planted stocks is set to a constant-speed f strain.
  • the number of planted stocks is set to b strains with unequal speed.
  • the second gear 44 and the fifth gear 52 are meshed with each other, if the fourth gear 47 and the seventh gear 55 are meshed, the number of planted strains is set to a constant c strain, and the third gear 46 and the sixth gear 52 are coupled.
  • the gear 54 is meshed, the number of planted stocks is set to a constant speed e strain.
  • the first intermediate clutch 57 is engaged, the number of planted strains is set to a strain having an unequal speed. In this case, the number of stocks indicated in alphabets has a large relationship in alphabetical order.
  • the upstream inconstant speed first to fourth gears 48, 56, 121, 122 are attached to the intermediate shaft 45 and the idle shaft 51 by adjusting the mounting phase, so that the operation of the planting claw 96 in the transplanting mechanism 8 is performed.
  • the fastest phase at which the speed is the fastest can be changed within the range before and after the bottom dead center.
  • FIG. 12 shows, as an example, an operation locus of the planting claw 96 when 43 strains are set at unequal speed.
  • the reference symbol MS1 in FIG. 12 indicates that the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 are set so that the operating speed of the planting claw 96 becomes the highest speed on the front side (upstream side) from the bottom dead center.
  • MS2 is the highest speed phase when assembled, and MS2 is the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 so that the operating speed of the planting claw 96 becomes the fastest near the bottom dead center. Is the fastest phase when.
  • the symbol MS3 is assembled with the upstream non-constant speed third gear 121 and the upstream non-constant speed fourth gear 122 so that the operation speed of the planting claw 96 is the highest after the bottom dead center (downstream side). Is the fastest phase.
  • the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 are assembled so that the front side (upstream side) from the bottom dead center is the highest speed phase MS1.
  • the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 are assembled so that the vicinity of the bottom dead center is the highest speed phase MS2, and further, the rear side (downstream side) from the bottom dead center is the highest speed. It is possible to assemble the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 so as to be in the phase MS3.
  • the twist of the power transmission system is large due to the relationship with the assembling accuracy and the operation period of the planting claw 96 is concerned, or when the twist of the power transmission system is small and the vibration of the power transmission system is minimized. Even if you want to suppress it, you can change the setting of the fastest phase around the bottom dead center. Then, the so-called “sucking” of the planting claw 96 can be suppressed or the vibration of the power transmission system can be suppressed.
  • the upstream inconstant speed first gear 48 and the upstream inconstant speed second gear 56 may be assembled to the intermediate shaft 45 or the idle shaft 51 by adjusting the mounting phase.
  • a fertilizer rotation shaft 58 extending in parallel with the input shaft 41 and the output shaft 42 is rotatably disposed on the upper portion of the inter-case case 40, and the fertilizer rotation shaft 58 is engaged with the first gear 43.
  • a gear 59 is fitted so as to be relatively rotatable. Power is transmitted from the fertilizer rotating shaft 58 to the fertilizer driving shaft 62 via the bevel gear 61.
  • the inter-stock transmission 26 has two operation shafts of a first operation shaft 63 and a second operation shaft 64. These operation shafts 63 and 64 have a longitudinal and longitudinal posture, and are exposed in front of the inter-case case 40.
  • the first operation shaft 63 can be slid back and forth with the first lever 65
  • the second operation shaft 64 can be slid back and forth with the second lever 66.
  • the first operating shaft 63 is for sliding the fifth gear 52 and has a shifter for sliding the fifth gear 52.
  • the second operating shaft 64 is for sliding the intermediate shaft 45 and includes a shifter that engages with the intermediate shaft 45.
  • the center case 30 is formed of a left and right split type shell body, and a longitudinal input shaft 69 is rotatably held.
  • the front end of the input shaft 69 and the rear end of the PTO shaft 29 are connected via a universal joint.
  • the left and right longitudinal intermediate shaft 70 is disposed inside the center case 30, and the rotation of the input shaft 69 is transmitted to the intermediate shaft 70 by a pair of first bevel gears 71a and 71b.
  • a lateral feed drive shaft 72 is disposed in a horizontally long posture, and the lateral feed shaft 33 is connected to the lateral feed drive shaft 72.
  • Three transverse feed adjustment driven gears 73 are fixed to the transverse feed drive shaft 72, while three transverse feed adjustment adjustable drive gears corresponding to the transverse feed adjustment driven gear 73 are fixed to the intermediate shaft 70. 74 is loosely fitted. Power is selectively transmitted from the intermediate shaft 70 to only one of the three lateral feed amount adjusting main driving gears 74 by a slide key 76 (see FIG. 8).
  • the slide key 76 is slid by a slide lever 77 shown in FIGS. 6C, 6D, 7A, and 7B.
  • the ratio of the number of teeth of the pair of the lateral feed amount adjusting gears 73 and 74 is different, and when the combination of the lateral feed amount adjusting gears 73 and 74 is changed, the rotation ratio of the lateral feed drive shaft 72 to the PTO shaft 29 is changed. . As a result, the lateral feed pitch of the seedling stage 7 changes and the amount of seedling scraping changes.
  • the center case 30 has a projecting portion 30a extending rearward and downward, and a horizontally long planting output shaft 78 is rotatably held by the projecting portion 30a.
  • the planting output shaft 78 includes an intermediate shaft 70.
  • the power is transmitted via the fourth relay gear 84.
  • the fourth relay gear 84 is attached to the planting output shaft 78 via the sleeve 83.
  • the ratio of the number of teeth of the first bevel gears 71a and 71b is 1: 1, and the number of teeth of the first relay gear 79, the second relay gear 80, and the fourth relay gear 84 is 1: 1: 1.
  • the rotational speed between the PTO shaft 29 and the planting output shaft 78 has a 1: 1 relationship. Since the third relay gear 82 is a simple idle gear, the number of teeth does not affect the rotational speed of the fourth relay gear 84.
  • the planting output shaft 78 and the planting drive shaft 32 located adjacent to the planting output shaft 78 are connected by a coupling (sleeve) 86.
  • a relay shaft 85 is disposed between the planting drive shafts 32 adjacent to each other on the left and right, and the drive shaft 32 and the relay shaft 85 are also connected by a coupling 86. Therefore, each planting drive shaft 32 rotates integrally.
  • the planting drive shaft 32 is divided for each transplantation mechanism 8, and adjacent planting drive shafts 32 are connected by a coupling 86.
  • the planting output shaft 78, each planting drive shaft 32, and the relay shaft 85 can be formed as a single structure made of a single bar.
  • the planting transmission case 31 has a hollow structure, and as shown in FIG. 8, a longitudinally planting transmission shaft 87 is rotatably held therein.
  • Power is transmitted to the planting transmission shaft 87 from the planting drive shaft 32 by the second bevel gear pair 88a, 88b.
  • the bevel gear 88 b that rotates concentrically with the planting transmission shaft 87 is attached to a torque limiter 89 fitted to the planting transmission shaft 87.
  • the torque limiter 89 has a spring 90.
  • a left and right horizontally planted central shaft 91 is rotatably held on the rear side (front end side) of the planting transmission case 31 via a pair of left and right bearings 104.
  • the planting center shaft 91 projects to the left and right outside of the planting transmission case 31, and a sun gear 92 built in the rotary case 36 is fixed to the projecting end portion.
  • the rotary case 36 is rotatably held at the rear end portion of the planting transmission case 31.
  • the rotary case 36 has a hollow structure in which two left and right shell bodies are overlapped.
  • the sun gear 92 described above is disposed in the longitudinal middle portion thereof, the intermediate gear 93 is disposed outside thereof, and the planetary gear is disposed outside thereof.
  • a gear 94 is arranged.
  • Each gear 92, 93, 94 is non-circular and eccentric.
  • the planting claw member 37 is fixed to the unit shaft 95 fixed to the planetary gear 94.
  • the planting claw member 37 is provided with a planting claw 96 and a protruding rod 97, and as shown in FIG.
  • the seedlings are planted in the field by moving only to the field and projecting near the bottom dead center and the rod 97 moving forward relative to the planting claws 96.
  • the downstream inconstant speed main drive bevel gear 98 has a stepped boss body 98a, and the coupling 100 is fitted in a small diameter portion of the boss body 98a.
  • a bearing 101 is fitted in the boss body 98a.
  • the coupling 100 is fixed to the planting transmission shaft 87 by welding and is not relatively rotatable.
  • the downstream inconstant speed driven bevel gear 99 is fitted to the planting center shaft 91 so as to be capable of relative rotation, and has a cam portion 103 that meshes with the latching clutch 102.
  • An operation ring 105 is integrally welded to the streak clutch 102.
  • the streak clutch 102 is slidable on the planting center shaft 91 and is held so as not to be relatively rotatable.
  • the strut clutch 102 is normally pushed by the spring 106 so as to mesh with the downstream inconstant speed driven bevel gear 99.
  • the streak clutch 102 is separated from the downstream inconstant speed driven bevel gear 99 along the axis of the planting center shaft 91, and the power to the planting center shaft 91 is cut off.
  • downstream inconstant speed bevel gear pair 98, 99 has a function of rotating (acceleration / deceleration) at inconstant speed (the downstream inconstant speed bevel gear pair 98, 99 is used as the downstream inconstant speed member. Is adopted). This point will be described mainly based on FIGS. 10 and 9C. As shown in FIG. 10 (E), when a large number of teeth 107 are formed on the downstream inconstant speed main driving bevel gear 98, the distance from the tip of each tooth 107 to the axis O1 is gradually increased and narrowed again. is doing.
  • each tooth 107 has a pitch cone angle minimum portion 108 with the shortest distance from the axis O1 to the tip, and a pitch cone angle maximum portion 109 with the widest distance from the axis O1 to the tip. The distance between them is gradually changing.
  • the pitch circle 110 of each tooth 107 has a shape close to an ellipse and is decentered with respect to a perfect circle (reference numeral 110 ′ indicates the pitch circle in the case of a true circle). ing).
  • the outer peripheral surface of the virtual cone is inclined at the same angle with respect to the axis at any part, but in the downstream inconstant speed main drive bevel gear 98 of the embodiment, As the outer peripheral surface of the spindle moves in the circumferential direction, the inclination angle ⁇ 1 (see FIGS. 10A and 10C) of the outer peripheral surface is gradually changed.
  • the downstream inconstant speed driven bevel gear 99 has teeth 112 that is twice the number of teeth of the downstream inconstant speed driven bevel gear 98. And the position of the axial direction of each tooth
  • gear 112 has shifted
  • the downstream inconstant speed driven bevel gear 99 of the embodiment as in the downstream inconstant speed driven bevel gear 98, as the outer peripheral surface of the imaginary circular cylinder moves in the circumferential direction, the inclination angle ⁇ 2 of the outer peripheral surface (FIG. 10). (See (A)) is gradually changed.
  • the downstream inconstant speed driven bevel gear 99 Since the downstream inconstant speed driven bevel gear 99 has twice the number of teeth of the downstream inconstant speed driven bevel gear 98, the downstream inconstant speed driven bevel gear 99 has two pitch cone angle maximum parts 113 and a minimum pitch cone angle minimum. Part 114. Therefore, as shown in FIG. 9 (C), the pitch circle 115 of the downstream inconstant speed driven bevel gear 99 has a substantially elliptical shape, and is symmetrical with respect to the axis O2 (FIG. 9 (C). ), The pitch circle in the case of a perfect circle is indicated by reference numeral 115 ').
  • the downstream inconstant velocity bevel gear pair 98, 99 continuously changes the pitch cone angles ⁇ 1, ⁇ 2 along the rotation direction in a state where the cone distance ⁇ (see FIG. 10C) is constant. It is.
  • the downstream inconstant speed bevel gear pair 98, 99 as the downstream inconstant speed member is a single stage, and the upstream inconstant speed first to fourth gears 48, 56 as the upstream inconstant speed member. , 121, 122 are not changed (no speed switching).
  • the pitch circles 110 and 115 of the downstream inconstant velocity bevel gears 98 and 99 are eccentric with respect to a perfect circle having a shape close to an ellipse and centering on the rotation axes O1 and O2, and the outer diameter shape thereof.
  • the pair of downstream inconstant speed bevel gears 98, 99 can be formed in the same size as a normal bevel gear, and the assembly space for the pair of downstream inconstant speed bevel gears 98, 99 in the power transmission system Can be made smaller and more compact.
  • the idea of manufacturing the downstream inconstant velocity bevel gears 98 and 99 is that the distorted cone shape formed with a constant cone distance is cut by a cylinder having the common rotation axes O1 and O2, and the outer diameter shape is true. It will be a circle.
  • the downstream inconstant speed bevel gear pair 98, 99 also adjusts the mounting phase in the same manner as the upstream inconstant speed first to fourth gears 48, 56, 121, 122, and the above-mentioned maximum speed phase is set to the bottom dead center.
  • the setting can be changed in a direction further away from the position.
  • FIG. 13 shows, as an example, a change in angular velocity of the planting claw 96 when 43 strains are set at unequal speed.
  • the thick one-dot chain line in FIG. 13A is obtained by assembling the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 so that the front side (upstream side) from the bottom dead center is the fastest phase MS1.
  • the downstream inconstant velocity bevel gear pair 98, 99 is further assembled so that the front side from the bottom dead center is the highest speed phase MS1 '(see FIG. 12).
  • a thick solid line in FIG. 13B indicates that the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 are assembled and the downstream inconstant speed bevel gear pair is set so that the vicinity of the bottom dead center is the fastest phase MS2. This is a case where 98 and 99 are assembled.
  • the thick two-dot chain line in FIG. 13C assembles the upstream inconstant speed third gear 121 and the upstream inconstant speed fourth gear 122 so that the rear side (downstream side) from the bottom dead center is the highest speed phase MS3.
  • downstream inconstant velocity bevel gear pair 98, 99 is further assembled so that the rearmost side from the bottom dead center is the highest speed phase MS3 ′ (see FIG. 12).
  • the operation speed of the planting claw 96 increases near the bottom dead center, and the effect of allowing the planting claw 96 to escape from the bottom dead center accurately and quickly can be further promoted.
  • FIG. 5C shows the relationship between the number of planted stocks per 3.3 square meters and the movement trajectory of the planting claws 96.
  • the inter-strain transmission 26 is provided with the upstream inconstant speed first to fourth gears 48, 56, 121, 122, and the seedling planting apparatus 2 is provided with the downstream inconstant speed bevel gear pair 98, 99.
  • the planting claw member 37 is accelerated and rotated so that the operation speed is increased in the vicinity where the planting claw 96 is located at the bottom dead center. For this reason, the planting claw 96 quickly escapes from the bottom dead center, and as a result, it is possible to prevent the planting claw 96 from moving the seedling forward.
  • the inconstant speed member is separated and arranged in the inter-strain transmission device 26 and the seedling planting device 2, the distance from the inter-strain transmission device 26 to the downstream inconstant speed bevel gear pair 98, 99 is compared with the conventional one.
  • the ratio of non-uniform rotation is small.
  • torsion occurring in the transmission elements (PTO shaft 29, planting drive shaft 32, planting transmission shaft 87, etc.) constituting the power transmission system is remarkably suppressed, and smooth movement of the transplanting mechanism 8 can be ensured.
  • produces in a power transmission system can also be suppressed, the malfunction that the timing of unequal speed shifts
  • the transplanting mechanism 8 since the transplanting mechanism 8 has a configuration in which the planting claw members 37 are swingably attached to both ends of the elongated rotary case 36, the planting claw member 37 itself plays the role of a weight and generates a large inertia force. In addition, a large load is generated when the seedling is scraped, and a negative load is generated thereafter. That is, due to the swinging of the planting claw member 37, a large torque fluctuation occurs in a cycle of overload ⁇ no load ⁇ negative load with respect to the rotation of the transplant mechanism 8. Such torque fluctuations appear remarkably when the resonance rotational speed is exceeded even when rotating at a constant speed during dense planting (because the transplanting mechanism 8 rotates at a higher speed during dense planting than during loose planting).
  • the transplanting mechanism 8 rotates at a constant speed, when one planting claw member 37 escapes from the field, the other planting claw member 37 has shifted to scraping of the seedlings. It can be said that the planting claw member 37 acts to cancel each other's load fluctuations. However, since a large torque is required for scraping off the seedlings, the function of leveling the torque fluctuation is weak only by the movement of the two planting claw members 37. For this reason, the transplanting mechanism 8 does not rotate smoothly, and a phenomenon called “sucking” easily occurs.
  • the transplantation mechanism 8 when the transplant mechanism 8 is slightly rotated at a non-uniform speed by the downstream inconstant speed bevel gear pair 98, 99 even in the dense planting state as in the embodiment, the seedling scraping by the planting claw member 37 causes the inertial force.
  • the transplantation mechanism 8 since the transplantation mechanism 8 is decelerated after the seedling is scraped off, it is possible to suppress a large inertial force from acting on the transplantation mechanism 8. For this reason, load fluctuations (or torque fluctuations) acting on the transplantation mechanism 8 can be leveled to ensure smooth rotation.
  • the rotational torque T of the transplanting mechanism 8 based on the unequal speed rotational power of the upstream unequal speed and downstream unequal speed bevel gear pairs 98 and 99 is opposite to the rotational torque T.
  • An anti-phase torque generating member 130 for adding the phase torque Tan is provided.
  • the antiphase torque generating member 130 is provided in each of a plurality of (four) planting transmission cases 31. Since the planting transmission case 31 is provided with each planting transmission case 31, the antiphase torque generating member 130 exists for each of a total of four combinations of the planting transmission case 31 and the planting clutch 102.
  • a hollow structure end case 131 is integrally provided on the rear end side of the planting transmission case 31.
  • the end case 131 may be a separate structure that is detachably attached to the rear end side of the planting transmission case 31.
  • the planting transmission case 31 and the end case 131 communicate with each other.
  • a planting branch shaft 132 having a longitudinal length is rotatably supported through a bearing at a communicating portion between the planting transmission case 31 and the end case 131.
  • a leveling bevel gear 133 that always meshes with the downstream inconstant speed driven bevel gear 99 is provided on the front end side of the planting branch shaft 132.
  • the leveling bevel gear 133 and the downstream inconstant speed main drive bevel gear 98 are in a positional relationship facing (opposing) before and after sandwiching the planting center shaft 91.
  • the leveling bevel gear 133 is formed in the same shape as the downstream inconstant speed main driving bevel gear 98. That is, the leveling bevel gear 133 has the same number of teeth as that of the downstream inconstant speed main driving bevel gear 98 and the pitch cone angle in the rotational direction with a constant cone distance in the same manner as the downstream inconstant speed main driving bevel gear 98. It is formed in a shape that is continuously changed along. Accordingly, the leveling bevel gear 133 and the planting branch shaft 132 rotate in the reverse direction at the same speed as the downstream inconstant speed main driving bevel gear 98 (revolving at twice the speed of the downstream inconstant speed driven bevel gear 99). .
  • the rear end side of the planting branch shaft 132 protrudes in the middle in the vertical direction in the end case 131.
  • An eccentric shaft 134 extending in parallel with the planting branch shaft 132 is fixed to the projecting portion on the rear end side.
  • the axis of the eccentric shaft 134 is eccentric with respect to the rotation center of the planting branch shaft 132.
  • the planting branch shaft 132 and the eccentric shaft 134 are in the form of a crankshaft (the function of the crankshaft is exhibited).
  • a locking pin 135 is attached to the lower side in the end case 131.
  • a tension spring 136 as a means for generating an antiphase torque is mounted on the eccentric shaft 134 and the locking pin 135.
  • the tension spring 136 is always biased in the direction in which the eccentric shaft 134 is moved to the lower side of the planting branch shaft 132.
  • the tension spring 136 is set so as to exceed the fulcrum.
  • the planting branch shaft 132, the eccentric shaft 134, and the tension spring 136 constitute the antiphase torque generating member 130.
  • a driving spur gear 137 is fixed to the projecting portion on the rear end side of the planting branch shaft 132.
  • a power take-out shaft 138 extending in parallel with the planting branch shaft 132 is rotatably supported on the upper side in the end case 131.
  • a driven spur gear 139 is fixed to the front side of the power take-out shaft 138.
  • the drive spur gear 137 and the driven spur gear 139 are always meshed.
  • the rear end side of the power take-out shaft 138 protrudes rearward from the rear surface of the end case 131.
  • the rotational power of the planting transmission shaft 87 is transmitted to the power take-out shaft 138 through the downstream inconstant velocity bevel gear pair 98, 99, the leveling bevel gear 133, the planting branch shaft 132, the driving flat gear 137, and the driven flat gear 139. Is done.
  • an optional device such as a medicine spreader is mounted on the seedling planting device 2
  • the rotational power of the power take-out shaft 138 is transmitted to the optional device.
  • FIG. 18 shows, as an example, the relationship between the rotational torque T (fluctuation torque) of the planting center shaft 91 in the transplanting mechanism 8, the antiphase torque Tan, and the combined torque Tco obtained by combining these torques.
  • 18 represents the rotational torque T (variation torque) of the planting center shaft 91, and the rotational torque T is near the bottom dead center where the planting claws 96 of the planting claw member 37 plant the seedlings. Become the largest.
  • 18 represents the reverse phase torque Tan generated by the antiphase torque generating member 130 (the planting branch shaft 132, the eccentric shaft 134, and the tension spring 136). In the vicinity of the bottom dead center 96 where seedlings are planted, the antiphase torque Tan is the smallest.
  • the elastic restoring force of the tension spring 136 is transmitted from the leveling bevel gear 133 provided on the planting branch shaft 132 to the planting center shaft 91 via the downstream inconstant speed driven bevel gear 99.
  • the rotational torque T and the antiphase torque Tan are combined, and the combined torque Tco is transmitted to the transplantation mechanism 8. That is, the rotational torque T leveled (cancelled) by the synthesis of the antiphase torque Tan is transmitted to the transplantation mechanism 8.
  • load variation (which may be referred to as torque variation) acting on the transplantation mechanism 8 is leveled, and smooth rotation of the transplantation mechanism 8 can be ensured. Therefore, it is possible to plant seedlings in an appropriate planting posture while suppressing the occurrence of a phenomenon called “shakuri”.
  • the transmission case 11 for shifting the power of the engine 10 mounted on the traveling machine body 1 and the planting claw 96 for drawing a non-circular motion locus are provided.
  • a seedling planting apparatus 2 having a transplanting mechanism 8, an inter-strain transmission device 26 that changes the operating speed of the transplanting mechanism 8 with respect to the traveling speed of the traveling machine body 1 to change the strain, and the transplanting mechanism 8 at an inconstant speed.
  • the rotational torque T is in a phase opposite to the rotational torque T of the transplanting mechanism 8 based on the inconstant speed rotational power.
  • the anti-phase torque generating member 130 for adding the anti-phase torque Tan is further provided, so that the anti-phase torque Tan from the anti-phase torque generating member 130 is generated by the inconstant rotational power.
  • the 8 rotational torque T of the load fluctuation acting on the implant mechanism 8 (which may be referred to as a torque variation) and leveling, smooth rotation of the implant mechanism 8 is secured. Therefore, it is possible to plant seedlings in an appropriate planting posture while suppressing the occurrence of a phenomenon called “shakuri”.
  • the power transmission system from the inter-strain transmission 26 to the transplanting mechanism 8 includes rotating shafts 87 and 91 that intersect each other, and these intersecting rotating shafts 87 and 91 are configured to transmit power via a bevel gear pair.
  • the bevel gear pair is configured as an inconstant speed gear pair 98, 99 as the inconstant speed member, and the antiphase torque generating member 130 is added to the inconstant speed gear 99 on the downstream side of the inconstant speed gear pair 98, 99. Since these are connected, the existing member of the inconstant speed gear pair 98, 99 can be utilized, which is advantageous in terms of cost.
  • Second and Third Embodiments of Antiphase Torque Generating Member Next, a second embodiment of the antiphase torque generating member 130 will be described with reference to FIG.
  • the end case 131 is eliminated from the rear end side of the planting transmission case 31 and the antiphase torque generating member 130 is disposed on the rear side of the planting transmission case 31. This is different from the example.
  • external teeth 141 are formed on the outer peripheral side of the operation ring 105 of the hooking clutch 102.
  • the outer teeth 142 of the operation ring 105 mesh with a leveling flat gear 143 that is rotatably supported on the rear side in the planting transmission case 31.
  • the rotation center shaft 144 of the leveling flat gear 143 extends in parallel with the planting center shaft 91.
  • a locking pin 145 is provided upright on one side of the leveling flat gear 143.
  • a tension spring 146 is mounted on the locking pin 145 and the inner peripheral wall of the planting transmission case 31 as a means for generating a reverse phase torque.
  • the tension spring 146 always urges the locking pin 145 in a direction away from the operation ring 105.
  • the tension spring 146 expands and contracts by the rotation of the leveling flat gear 143.
  • the leveling flat gear 143 and the tension spring 146 have a kind of crank structure.
  • the operation ring 105, the leveling flat gear 143, the locking pin 145, and the tension spring 146 constitute the antiphase torque generating member 130. That is, the anti-phase torque generating member 130 is positioned in the planting transmission case 31 on the downstream side of the line stopping clutch 102.
  • the elastic restoring force of the tension spring 146 is transmitted from the leveling flat gear 143 to the planting center shaft 91 through the operation ring 105 of the streak clutch 102.
  • the rotational torque T and the antiphase torque Tan are combined, and the combined torque Tco is transmitted to the transplantation mechanism 8 to transfer the transplantation mechanism. 8 smooth rotations can be secured. Therefore, as in the case of the first embodiment, it is possible to plant seedlings in an appropriate planting posture while suppressing the occurrence of a phenomenon called “shackle”.
  • the reverse phase torque generating member 130 is disposed in the planting transmission case 31 on the downstream side of the strut clutch 102, the reverse phase torque generating member 130 is located in the vicinity of the transplant mechanism 8 that is the source of the load fluctuation. Will be located. For this reason, the effect of offsetting the rotational torque T of the transplanting mechanism 8 with the antiphase torque Tan, that is, the effect of leveling the load fluctuation is high. Moreover, since the antiphase torque Tan is not generated when the strut clutch 102 is in the power cut-off state, there is no possibility that unnecessary torque is propagated around the transplant mechanism 8.
  • FIG. 20 shows a third embodiment of the antiphase torque generating member 130.
  • the third embodiment shown in FIG. 20 is a modification of the second embodiment described above.
  • the third embodiment is common to the second embodiment in that the anti-phase torque generating member 130 is disposed on the rear side in the planting transmission case 31 and on the downstream side of the anchoring clutch 102.
  • the second embodiment is different from the second embodiment in that an anti-phase torque generating member 130 is provided independently of the hooking clutch 102.
  • the leveling first spur gear 152 is fixed to the opposite side of the streak clutch 102 with the downstream inconstant speed driven bevel gear 99 sandwiched between the planting center shaft 91.
  • the leveling first spur gear 152 meshes with a leveling second spur gear 153 rotatably supported on the rear side in the planting transmission case 31.
  • the rotation center shaft 154 of the leveling second flat gear 153 extends in parallel with the planting center shaft 91.
  • a locking pin 155 is provided upright on one side of the leveling second flat gear 153.
  • a tension spring 156 is mounted on the locking pin 155 and the inner peripheral wall of the planting transmission case 31 as a means for generating a reverse phase torque.
  • the tension spring 156 always urges the locking pin 155 in a direction away from the leveling first spur gear 152.
  • the tension spring 156 expands and contracts by the rotation of the leveling second flat gear 153.
  • the leveling second flat gear 153 and the tension spring 156 have a kind of crank structure.
  • the leveling first and second flat gears 152 and 153, the locking pin 155 and the tension spring 156 constitute the antiphase torque generating member 130.
  • the transmission case 11 for shifting the power of the engine 10 mounted on the traveling machine body 1, and the transplantation with the planting claws 96 that draw a non-circular motion locus A seedling planting device 2 having a mechanism 8, a strain transmission device 26 that changes the operating speed of the transplanting mechanism 8 with respect to the traveling speed of the traveling machine body 1 to change the strain, and the transplanting mechanism 8 with inconstant rotational power.
  • the rotational torque T of the transplantation mechanism 8 based on the inconstant speed rotational power is opposite to the rotational torque T.
  • the anti-phase torque Tan from the anti-phase torque generating member 130 is used as the transplant mechanism by the non-uniform speed rotational power. Will be to offset the rotation torque T, the load fluctuation acting on the implant mechanism 8 (which may be referred to as a torque variation) and leveling, smooth rotation of the implant mechanism 8 is secured. Therefore, it is possible to plant seedlings in an appropriate planting posture while suppressing the occurrence of a phenomenon called “shakuri”.
  • the planting transmission case 31 is provided in the planting transmission case 31 having a longitudinal longitudinal direction in the seedling planting device 2 to interrupt power transmission from the inter-strain transmission 26 to the transplanting mechanism 8.
  • the reverse phase torque generating member 130 is disposed downstream of the streak clutch 102, so that the reverse phase torque generating member 130 is positioned in the vicinity of the transplantation mechanism 8 that is the source of load fluctuation. Therefore, the effect of canceling the rotational torque T of the transplantation mechanism 8 with the antiphase torque Tan, that is, the effect of leveling the load fluctuation is high.
  • the antiphase torque generating member 130 is applied to a structure in which the rotation of the planting drive shaft 32 is transmitted to the planting central shaft 91 by the chain 163.
  • the driving sprocket 161 is rotatably supported on the planting drive shaft 32 in the planting transmission case 31, while the driven sprocket 162 is rotatably supported on the planting center shaft 91.
  • a power transmission chain 163 is wound around the main sprocket 161 and the driven sprocket 162.
  • a torque limiter 164 is slidably fitted on the planting drive shaft 32 so as not to be relatively rotatable. When a load exceeding a predetermined value is applied to the planting drive shaft 32, the torque limiter 164 is disengaged and the power transmission from the planting drive shaft 32 to the main sprocket 161 is interrupted.
  • the planting center shaft 91 is fitted with a slidable clutch 102 for interrupting power transmission from the driven sprocket 162 to the planting center shaft 91 so as to be slidable and relatively non-rotatable.
  • the main sprocket 161 and the driven sprocket 162 are configured as inconstant speed sprockets having an elliptical shape (non-circular shape).
  • An idle roller 163 ′ is brought into contact with the chain 163. With such a configuration, the planting center shaft 91 is imparted with non-uniform speed rotation.
  • the reduction ratio in the chain 163 transmission is 1 ⁇ 2 on average.
  • a power take-off shaft 165 extending in parallel with the planting center shaft 91 is rotatably supported on the rear end side of the planting center shaft 91.
  • One end side (right end side in the embodiment) of the power take-out shaft 165 is protruded from the planting transmission case 31 to the left and right outwards.
  • the leveling main drive sprocket 166 is fixed on the opposite side of the anchoring clutch 102 across the driven sprocket 162 in the planting center shaft 91, while the leveling driven sprocket 167 is fixed to the power take-out shaft 165.
  • a power transmission chain 168 is wound around the leveling main drive sprocket 166 and the leveling driven sprocket 167.
  • the rotational power of the planting center shaft 91 is branched and transmitted to the power take-out shaft 165.
  • an optional device such as a medicine spreader is attached to the seedling planting device 2
  • the rotational power of the power take-out shaft 165 is transmitted to the optional device.
  • the other end side of the power take-out shaft 165 is bent into a crank shape.
  • a tension spring 169 as a means for generating a reverse phase torque is mounted on the crank front end side of the power take-off shaft 165 and the inner peripheral wall of the planting transmission case 31.
  • the tension spring 169 always urges the crank end of the power take-off shaft 165 to move below the rotation center of the power take-out shaft 165.
  • the tension spring 169 expands and contracts by the rotation of the power take-out shaft 165 via the leveled driven sprocket 167.
  • the power take-off shaft 165, the leveling main and driven sprockets 166 and 167, the chain 168, and the tension spring 169 constitute the antiphase torque generating member 130.
  • the power take-out shaft 165 is one of the components of the antiphase torque generating member 130.
  • the fifth and subsequent embodiments shown in FIG. 23 have a structure in which the rotation of the planting drive shaft 32 is transmitted to the planting central shaft 91 by the chain 163, and the antiphase torque generating member. 130 is applied.
  • both the main sprocket 161 provided on the planting drive shaft 32 and the driven sprocket 162 provided on the idle shaft 170 are formed as circular but eccentric constant speed sprockets.
  • a main driving gear 171 is fixed to the idle shaft 170, and a driven gear 172 is fixed to the planting center shaft 91. By engaging the main driving gear 171 and the driven gear 172, the planting center shaft 91 is imparted with non-uniform speed rotation.
  • the average reduction ratio in the chain 163 transmission is 1, but the reduction ratio in the gear transmission from the main driving gear 171 to the driven gear 172 is 1 ⁇ 2.
  • An idle roller 163 ′ is brought into contact with the chain 163.
  • a configuration may be adopted in which only one of the sprockets 161 and 162 is decentered and one is not decentered.
  • the sixth embodiment shown in FIG. 24 and the seventh embodiment shown in FIG. 25 are modifications of the fourth embodiment shown in FIGS.
  • the main sprocket 161 provided on the planting drive shaft 32 is configured as a circular constant velocity sprocket.
  • the main driving sprocket 161 provided on the planting drive shaft 32 is configured as a circular but eccentric constant speed sprocket.
  • the reduction ratio in the chain 163 transmission is 1 ⁇ 2 on average.
  • the main sprocket 161 provided on the planting drive shaft 32 is configured as a circular but eccentric non-constant speed sprocket
  • the driven sprocket 162 provided on the planting central shaft 91 is formed as a circular constant speed. Sprocket.
  • the reduction ratio in the chain 163 transmission is also 1 ⁇ 2 on average.
  • the main sprocket 161 provided on the planting drive shaft 32 is configured as an inconstant sprocket having an elliptical shape (non-circular), and the driven sprocket 162 provided on the planting central shaft 91 is provided.
  • a non-uniform sprocket having a polygonal shape (non-circular shape) is formed.
  • the reduction ratio in the chain 163 transmission is also 1 ⁇ 2 on average. Since the driven sprocket 162 is formed in a substantially square shape, four times of acceleration / deceleration occurs in one rotation of the planting center shaft 91.
  • the rotational torque T of the transplanting mechanism 8 based on the inconstant speed rotational power is opposite to the rotational torque T.
  • An anti-phase torque generating member 130 for adding a phase torque Tan is further provided, and an optional device attached to the seedling planting device 2 is powered by the longitudinal planting transmission case 31 in the seedling planting device 2. Since the power take-off shaft 165 that can be reached is provided and the power take-out shaft 165 is a component of the antiphase torque generating member 130, the load fluctuation (torque fluctuation) acting on the transplantation mechanism 8 is leveled, While ensuring smooth rotation of the transplanting mechanism 8, the power take-off shaft 165 can be used effectively to be used as the antiphase torque generating member 130, and the power transmission structure to the seedling planting device 2 can be simplified. And can contribute to weight reduction.
  • the inter-stock transmission 26 can be built in the mission case 11, and in this case, one upstream inconstant speed member is built in the mission case 11.
  • the acceleration / deceleration ratio (the inconstant speed ratio) may be set as necessary. Therefore, in some cases, the acceleration / deceleration ratio (unequal speed ratio) on the traveling machine body 1 side can be made smaller than the inconstant speed conversion ratio in the seedling planting device 2.
  • belt transmission (timing belt is preferred) may be adopted.
  • the crank structure portion and the tension spring of the antiphase torque generating member 130 can be disposed outside the planting transmission case 31.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Transplanting Machines (AREA)
  • Gear Transmission (AREA)

Abstract

 ロータリー式の苗植付装置を有する田植機において、不等速部材を機能させることに起因した伝動要素のねじれ等の不具合を是正することを課題としている。本願発明の田植機は、走行機体1に搭載したエンジン10の動力を変速するミッションケース11と、非円形の動作軌跡を描く植付爪96付きの移植機構8を有する苗植付装置2と、走行機体1の走行速度に対する前記移植機構8の動作速度を変速して株間を変更する株間変速装置26と、移植機構8に不等速回転動力を伝達する不等速部材98,99とを備える。更に、不等速回転動力に基づく移植機構8の回転トルクTに対して、回転トルクTとは逆位相になる逆位相トルクTanを付加させる逆位相トルク発生部材130を備える。

Description

田植機
 本願発明は、苗載台及び複数の植付爪を有する苗植付装置を走行機体に装着し、連続的に苗植え作業を行う田植機に関するものである。
 従来の田植機では、走行機体の後部に、苗載台及び植付爪付きの移植機構を有する苗植付装置が装着されている。苗植付装置の移植機構としては、1つのロータリケースに2つの植付爪を設けたタイプが一般的であり、ロータリケースが1回転すると、2つの植付爪はそれぞれロータリケースに対して逆向きに1回転する。すなわち、植付爪はロータリケースの軸心回りに公転しながら自転する。
 この種の田植機を用いた苗植え作業では、苗マットが載置された苗載台を所定間隔で間欠的に左右横送りさせながら、前方の苗載台の方向に向いた植付爪をロータリケースの軸心回りに公転しつつ自転させることによって、植付爪を苗載台と圃場面との間で往復動させ、苗マットから苗を1株ずつ掻き取って圃場に植え付けている。苗植付装置における植付爪の動作周期(植付け周期)は走行機体の走行速度に連動していて、走行速度が変化しても苗の植付け間隔(株間)は一定に保持される。
 単位面積(一般に3.3平方m)当りに苗を何株植えるかは必ずしも一定でなく、例えば地域やユーザー等によって、希望する単位面積当りの植付け株数は異なる。この点、従来の田植機には、走行速度と植付け周期との連動関係を調節する株間変速装置が設けられている。この場合、株間変速装置にて走行速度に対する移植機構の動作速度(植付け速度)を変更することによって、株間が変更されて単位面積当りの植付け株数が変わる。
 近年、圃場に植え付けられた苗の生育条件等を考慮して、標準植えに比べて株間を長くとる疎植が行われているが、株間を長くするほど植付け速度を遅くする必要がある。しかし、株間変速装置によって単に植付け速度を遅くしただけでは、植付爪先端が圃場で引き摺られて、苗が前倒れしたり浮き苗が発生したりするという問題がある。
 この点、特許文献1及び2には、疎植の際に植付爪を圃場で引き摺らないようにするため、移植機構に不等速回転動力を伝達する不等速部材を備えた田植機の構造が開示されている。不等速部材は、移植機構を構成するロータリケースの1回転中の角速度を変化(不等速回転)させるように構成されていて、疎植時でも植付爪が圃場から逃げる速度を速めている。特許文献1の田植機では、ミッションケース内にある株間変速装置に不等速部材を組み込んでいる。特許文献2の田植機では、苗載台の横送り駆動機構よりも動力伝達下流側に不等速部材を設けている。
特許第4376154号公報 特開2003-189712号公報
 さて、株間変速装置から移植機構に至る動力伝達系は、ギヤや回転軸等の伝動要素で構成される。回転軸等の伝動要素は完全な剛体ではなく、負荷(回転トルク)が掛かるとわずかながら弾性変形し、負荷が解除されると弾性復原力で戻り変形する。つまり、動力伝達系の伝動要素には、回転に伴いねじれとねじれ解除とが交互に発生し、これが振動として現れる。一方、不等速部材は伝動要素の1回転中の角速度を加減速するものであり、当該加減速によって伝動要素に作用する負荷変動は更に大きくなる。このため、前記先行技術のように疎植時に不等速部材を機能させる構成では、伝動要素の振動が顕著に現れることになり、植付爪の動作周期がずれて植付け不良を招来するという問題があった。このような傾向は、走行機体の走行速度が速くなるほど顕著に現れるのであった。
 本願発明は上記のような現状に鑑みなされたものであり、不等速部材の利点は享受しつつ、その不具合を防止しようとするものである。
 請求項1の発明は、走行機体に搭載したエンジンの動力を変速するミッションケースと、非円形の動作軌跡を描く植付爪付きの移植機構を有する苗植付装置と、前記走行機体の走行速度に対する前記移植機構の動作速度を変速して株間を変更する株間変速装置と、前記移植機構に不等速回転動力を伝達する不等速部材とを備えている田植機において、前記不等速回転動力に基づく前記移植機構の回転トルクに対して、前記回転トルクとは逆位相になる逆位相トルクを付加させる逆位相トルク発生部材を更に備えているというものである。
 請求項2の発明は、請求項1に記載の田植機において、前記株間変速装置から前記移植機構に至る動力伝達系は互いに交差した回転軸を備え、これら交差した回転軸はベベルギヤ対を介して動力伝達するように構成し、前記下流不等速部材として前記ベベルギヤ対を不等速ギヤ対に構成し、前記不等速ギヤ対のうち下流側の不等速ギヤに前記逆位相トルク発生部材を連結しているというものである。
 請求項3の発明は、請求項1に記載の田植機において、前記苗植付装置における前後長手の植付伝動ケース内に、前記株間変速装置から前記移植機構への動力伝達を継断する条止めクラッチを設け、前記植付伝動ケース内において前記条止めクラッチよりも下流側に前記逆位相トルク発生部材を配置しているというものである。
 請求項4の発明は、請求項3に記載の田植機において、前記植付伝動ケース及び前記条止めクラッチの組合せを複数個備え、前記組合せごとに前記逆位相トルク発生部材を設けているというものである。
 請求項5の発明は、請求項1に記載の田植機において、前記苗植付装置における前後長手の植付伝動ケースに、前記苗植付装置に装着されるオプション装置に動力伝達可能な動力取出軸を設け、前記動力取出軸を前記逆位相トルク発生部材の構成要素にしているというものである。
 請求項6の発明は、請求項5に記載の田植機において、前記植付伝動ケース及び前記条止めクラッチの組合せを複数個備え、前記組合せごとに前記逆位相トルク発生部材を設けているというものである。
 なお、移植機構を構成するロータリケースの内部にも不等速ギヤを配置するが、これは上下に長い非円形の動作軌跡を描くように植付爪を動作させるものであり、本願発明でいう不等速部材(すなわち、動力伝達系の伝動要素に不等速回転(加減速)を付与する部材)とは相違する。
 本願発明によると、走行機体に搭載したエンジンの動力を変速するミッションケースと、非円形の動作軌跡を描く植付爪付きの移植機構を有する苗植付装置と、前記走行機体の走行速度に対する前記移植機構の動作速度を変速して株間を変更する株間変速装置と、前記移植機構に不等速回転動力を伝達する不等速部材とを備えている田植機において、前記不等速回転動力に基づく前記移植機構の回転トルクに対して、前記回転トルクとは逆位相になる逆位相トルクを付加させる逆位相トルク発生部材を更に備えているから、前記逆位相トルク発生部材からの前記逆位相トルクが前記不等速回転動力による前記移植機構の回転トルクを相殺することになり、前記移植機構に作用する負荷変動(トルク変動と言ってもよい)を平準化して、前記移植機構のスムーズな回転が確保される。従って、「しゃくり」と呼ばれる現象の発生を抑制して、適正な植付け姿勢で苗を植付けできる。
 特に請求項2の発明によると、前記株間変速装置から前記移植機構に至る動力伝達系は互いに交差した回転軸を備え、これら交差した回転軸はベベルギヤ対を介して動力伝達するように構成し、前記下流不等速部材として前記ベベルギヤ対を不等速ギヤ対に構成し、前記不等速ギヤ対のうち下流側の不等速ギヤに前記逆位相トルク発生部材を連結しているから、前記不等速ギヤ対という既存の部材を活用でき、コスト面で有利である。
 また、請求項3及び4の発明によると、前記条止めクラッチを動力遮断状態にしたときは前記逆位相トルクが発生しないことになり、不要なトルクを前記移植機構周辺に伝播させるおそれがない。しかも、前記苗植付装置における前後長手の植付伝動ケース内に、前記株間変速装置から前記移植機構への動力伝達を継断する条止めクラッチを設け、前記植付伝動ケース内において前記条止めクラッチよりも下流側に前記逆位相トルク発生部材を配置しているから、負荷変動の発生元である前記移植機構の近傍に前記逆位相トルク発生部材を位置させることになり、前記逆位相トルクで前記移植機構の回転トルクを相殺する効果、すなわち、負荷変動を平準化する効果が高い。
 更に、請求項5及び6の発明によると、前記苗植付装置における前後長手の植付伝動ケースに、前記苗植付装置に装着されるオプション装置に動力伝達可能な動力取出軸を設け、前記動力取出軸を前記逆位相トルク発生部材の構成要素にしているから、前記移植機構に作用する負荷変動(トルク変動)を平準化して、前記移植機構のスムーズな回転を確保したものでありながら、前記動力取出軸を有効利用して前記逆位相トルク発生部材に兼用でき、前記苗植付装置への動力伝達構造の簡素化や軽量化に貢献できる。
実施形態に係る田植機の平面図である。 田植機の側面図である。 田植機の骨組を示す斜視図である。 (A)は動力伝達経路の全体を示す斜視図、(B)は移植機構の斜視図である。 (A)は動力伝達経路の側面図、(B)は移植機構の箇所の側面図、(C)は植付爪の軌跡を示す図である。 (A)は動力伝達経路を示す平面図、(B)は株間変更装置の外観斜視図、(C)及び(D)は植付け部に設けたセンターケースの外観斜視図である。 (A)は株間変更装置及びセンターケースにおけるギヤ群の外観斜視図、(B)はセンターケースにおけるギヤ群の斜視図である。 伝動系統図である。 (A)は植付け装置への動力伝達経路を示す平面図、(B)は動力伝達経路の末端植付け部の分離平面図、(C)はベベルギヤの概略図である。 (A)及び(B)はベベルギヤの噛み合い状態を示す平面図、(C)(D)はベベルギヤの斜視図、(E)はベベルギヤの対を並べた対比図である。 株間変速装置内のギヤの組合せと植付け株数との関係を示す図表である。 不等速の43株に設定した場合の植付爪の動作軌跡を示す図である。 不等速の43株に設定した場合の植付爪の角速度変化を示す図である。 第1実施例における移植機構の配置構造を示す平面図である。 植付伝動ケース内の動力伝達構造を示す平面断面図である。 植付伝動ケース後部の拡大平面断面図である。 植付伝動ケース後部の拡大側面断面図である。 移植機構の回転トルクと逆位相トルクとの関係を示す図である。 第2実施例における植付伝動ケースから移植機構に至る動力伝達系統図である。 第3実施例における植付伝動ケースから移植機構に至る動力伝達系統図である。 第4実施例における植付伝動ケースから移植機構に至る動力伝達系統図である。 第4実施例における不等速部材を模式的に示す説明図である。 第5実施例における不等速部材を模式的に示す説明図である。 第6実施例における不等速部材を模式的に示す説明図である。 第7実施例における不等速部材を模式的に示す説明図である。 第8実施例における不等速部材を模式的に示す説明図である。 第9実施例における不等速部材を模式的に示す説明図である。
 次に、本願発明の実施形態を図面に基づいて説明する。実施形態は乗用型田植機(以下、単に「田植機」という)に適用している。以下の説明では方向を特定するため前後・左右の文言を使用しているが、この前後・左右の文言は、田植機の前進方向を前として定義している。正面視方向は前進方向と対向した方向になる。
 (1).田植機の概要
 まず、図1~図5に基づいて田植機の概要を説明する。図1~図3に示すように、田植機は走行機体1とその後ろに配置された苗植付装置2とを有している。走行機体1は前後の車輪3,4や操縦座席5、操縦ハンドル6を有しており、一方、苗植付装置2は苗マットが載る苗載台7や移植機構8を有している。実施形態の田植機は8条植えタイプであり、このため、苗載台7には8つの苗マット載置エリアが形成されていると共に、苗植付装置2の後部には8個の移植機構8が横一列に配置されている。
 図3に示すように、走行機体1は多数のフレーム材から成る骨組み9を有しており、骨組み9の前部でエンジン10が支持されている。エンジン10の後ろにはミッションケース11が配置されている。図4(A)に明示するように、ミッションケース11の左側面には静油圧式無段変速機(HST)12が装着されており、エンジン10の動力はベルト13によって静油圧式無段変速機(HST)12に伝達される。エンジン10はボンネット14で覆われている。また、走行機体1のうちボンネット14を除いた部分は車体カバー15で覆われている。
 ミッションケース11の左右側面にはフロントアクスル装置17が取り付けられており、フロントアクスル装置17に前輪3が取り付けられている。ミッションケース11の後ろにはリヤアクスルケース18が配置されており、リヤアクスルケース18から横向きに突出させた後ろ車軸に後輪4が取付けられている。ミッションケース11とリヤアクスルケース18とは前後長手のジョイント材19で連結されている。リヤアクスルケース18には左右2本のリヤ支柱20が取付けられており、リヤ支柱20の上端は、骨組み9の後端部を構成する左右横長のリヤフレーム9a(図3参照)に固定されている。
 左右のリヤ支柱20には上下のリンク体(トップリンク及びロアリンク)から成るリンク装置21が回動自在に連結されており、リンク装置21の後端に苗植付装置2が取付けられている。リンク装置21は、ジョイント材19に連結された油圧シリンダ(昇降シリンダ)22によって回動させることができる。従って、油圧シリンダ22を伸縮させることにより、苗植付装置2が昇降する。
 図4から容易に理解できるように、ミッションケース11の内部からリヤアクスルケース18の内部に後輪ドライブ軸23で動力伝達される。後輪ドライブ軸23の回転はリヤアクスルケース18に設けたギヤ群を介して後輪4に伝達される。実施形態の田植機は苗植付装置2に整地ロータ24を設けており、整地ロータ24にはリヤアクスルケース18から後ろ向き突出したロータ駆動軸25で動力伝達される。
 実施形態ではリヤアクスルケース18の右側部に株間変速装置26を取り付けており、植付用動力伝達軸27を介してミッションケース11から株間変速装置26に動力伝達される。植付用動力伝達軸27の回転は株間変速装置26に内蔵したギヤ群によって変速され、PTO軸29によって苗植付装置2に伝達される。
 苗植付装置2は左右横長のメインフレーム28を有しており、メインフレーム28の略左右中間部にセンターケース30が固定されており、PTO軸29の動力はセンターケース30に内蔵されたギヤ群に伝達される。メインフレーム28の後面には後ろ向きに延びる4本の植付伝動ケース31が固定されており、植付伝動ケース31の後部側に左右一対ずつの移植機構8が回転自在に取付けられている。
 植付伝動ケース31の前部側(基端側)には左右横長の植付駆動軸32が貫通しており、この植付駆動軸32の回転によって移植機構8が駆動される(詳細は後述する)。また、植付駆動軸32には、センターケース30に内蔵したギヤ群を介してPTO軸29から動力が伝達される。センターケース30には左右横長の横送り軸33も取付けられており、横送り軸33の回転によって苗載台7が1ピッチずつ横移動する。
 苗植付装置2は苗マットが載るベルト34の群を有しており、ベルト34は上下一対の縦送り支軸35に巻き掛けられている。苗載台7が左右のいずれか一方に移動し切ると縦送り支軸35は回転し、苗マットが1ピッチだけ下降動する。
 図4(B)に示すように、各移植機構8は1つのロータリケース36とその両端部に回転自在に設けた植付爪部材37とを有しており、ロータリケース36が1/2回転するごとに植付爪部材37による苗の掻き取りと植付けとが行われる。また、PTO軸29が1回転するとロータリケース36は1/2回転するように設定されている。そして、PTO軸29の回転数は基本的に走行機体1の走行速度に比例しているが、株間変速装置26によって走行速度とPTO軸29の回転数との関係を変えることにより、苗の植付け間隔(株間)を変更することができる。
 (2).株間変速装置の構造・動力伝達構造(上流不等速部材)
 以下、株間変速装置26から移植機構8に至る動力伝達系の詳細を説明する。まず、株間変速装置26の構造やこれに対する動力伝達構造を、主として図6~8に基づいて説明する。株間変速装置26は、図6(B)に示す前後2つ割り方式の株間ケース40を有しており、その内部に図6(A)(C)に示すようなギヤ群が配置されている。
 株間ケース40の内部には、入力軸41と出力軸42とが配置されており、入力軸41に自在継手を介して植付用動力伝達軸27の後端が接続されている。入力軸41には同径の第1ギヤ43と第2ギヤ44とが固定されている。両ギヤ43,44は同径ではあるが、歯数は第1ギヤ43よりも第2ギヤ44が僅かに少なくなっている。
 入力軸41と出力軸42とは同心に配置されている。入力軸41には筒型の中間軸45が相対回転可能に嵌まっており、中間軸45は出力軸42と一緒に回転する状態(相対回転不能な状態)で嵌まっている。中間軸45には第3ギヤ46と第4ギヤ47とがスプライン嵌合等によってスライド可能で相対回転不能に嵌まっている。更に、中間軸45には上流不等速第1ギヤ48及び上流不等速第3ギヤ121が相対回転自在に嵌まっている。
 出力軸42にはカム式のメインクラッチ49を設けている。メインクラッチ49は固定パーツ49aとスライドパーツ49bとから成っており、スライドパーツ49bはクラッチばね49c(図7(C)参照)で固定パーツ49aに向けて付勢されている。スライドパーツ49bがクラッチばね49cに抗して固定パーツ49aから離反すると入力軸41から出力軸42への動力伝達は遮断される。路上走行時や旋回時のように苗植付装置2を上昇させている状態ではメインクラッチ49が切れる。メインクラッチ49の切り操作はメインクラッチ操作軸50を下降させることで行われる。
 株間ケース40の内部には、側面視で入力軸41及び出力軸42と平行に延びるアイドル軸51が回転自在に軸支されており、このアイドル軸51に第1ギヤ43又は第2ギヤ44に噛み合い得る第5ギヤ52がスプライン嵌合等によってスライド可能・相対回転不能に嵌まっている。第5ギヤ52は第1ギヤ43又は第2ギヤ44の2倍程度の歯数であり、第1ギヤ43に噛合した第1ポジションと、第2ギヤ44に噛合した第2ポジションとを選択できる。
 アイドル軸51には、上流不等速第3ギヤ121と常に噛み合っている上流不等速第4ギヤ122、第3ギヤ46に対して噛み合い・離反する第6ギヤ54、第4ギヤ47に噛み合い・離反する第7ギヤ55、並びに、上流不等速第1ギヤ48と常に噛み合っている上流不等速第2ギヤ56が固定されている。第3ギヤ46に対する第6ギヤ54の比率よりも、第4ギヤ47に対する第7ギヤ55の歯数の比率が小さくなるように設定されている。従って、中間軸45(及び出力軸42)の回転数は、第3ギヤ46と第6ギヤ54とが噛み合っている状態よりも、第4ギヤ47と第7ギヤ55とが噛み合っている状態の方が低くなっている。
 上流不等速第1ギヤ48と上流不等速第2ギヤ56とは楕円のような非円形のプロフィールであり、歯数は同じに設定されている。従って、両不等速ギヤ48,56を介してアイドル軸51の回転が中間軸45及び出力軸42が伝えられている状態では、アイドル軸51と出力軸42との回転数は同じで、且つ、出力軸42はその1回転中で角速度を周期的に変化させた状態で回転する。両不等速ギヤ48,56は非円形であって噛み合わせの位相が常に決まっているという特殊性から、常に噛み合い状態に保持されている。また同様に、上流不等速第3ギヤ121と上流不等速第4ギヤ122とについても、楕円のような非円形のプロフィールであり、歯数は同じに設定されている。従って、両不等速ギヤ48,56を介してアイドル軸51の回転が中間軸45及び出力軸42が伝えられている状態では、アイドル軸51と出力軸42との回転数は同じで、且つ、出力軸42はその1回転中で角速度を周期的に変化させた状態で回転する。つまり、上流不等速第1ギヤ48及び上流不等速第2ギヤ56は、偏芯歯車等の非円形ギヤ対であって、加減速比(不等速比率)の大きいものである。上流不等速第3ギヤ121及び上流不等速第4ギヤ122も、偏芯歯車等の非円形ギヤ対であるが、加減速比(不等速比率)の小さいものである。
 ここで、ロータリケース36では、例えば37株/平方mの疎植時に、植付爪部材37における各植付爪96の最高速位相(植付爪96の動作速度が最高速になる位相)を下死点付近にするような加減速を付与しているが、その上で実施形態では、株間変速装置26に設けた上流不等速第1ギヤ48及び上流不等速第2ギヤ56によって、株間ケース40からの回転動力にやや大きめの加減速を付与して不等速回転動力を出力させる。従って、加減速比(不等速比率)が上流不等速第3ギヤ121及び上流不等速第4ギヤ122の組合せよりも大きいので、植付爪96の動作軌跡のうち下死点付近での動作速度を大きく増速させる。また、上流不等速第3ギヤ121及び上流不等速第4ギヤ122によって、株間ケース40からの回転動力にやや小さめの加減速を付与して不等速回転動力を出力させる。従って、加減速比(不等速比率)が上流不等速第1ギヤ48及び上流不等速第4ギヤ56の組合せよりも小さいので、植付爪96の動作軌跡のうち下死点付近での動作速度を小さく増速させる。上流不等速第1~第4ギヤ48,56,121,122は、移植機構8に不等速回転動力を伝達する株間変速装置26側の上流不等速部材に相当する。
 第4ギヤ47と上流不等速第1ギヤ48とには、噛み合い・離間自在な第1中間クラッチ57を設けている。第4ギヤ47が図8の状態からいったん第7ギヤ55と噛合した状態を経て更に右向きにスライドすると、第1中間クラッチ57が噛み合う。第1中間クラッチ57が噛み合った状態では、アイドル軸51の動力は、上流不等速第2ギヤ56及び上流不等速第1ギヤ48を介して出力軸42に伝えられる。第1中間クラッチ57が噛み合っている状態では第3ギヤ46と第4ギヤ47は空転している。従って、第1中間クラッチ57は中間軸45と上流不等速第1ギヤ48との連結を継断する働きをしている。
 また、第3ギヤ46と上流不等速第3ギヤ121とにも、噛み合い・離間自在な第2中間クラッチ123を設けている。第3ギヤ46が図8の状態から一旦第6ギヤ54と噛合した状態を経て更に左向きにスライドすると、中間軸45に対して第2中間クラッチ123が噛み合う。第2中間クラッチ123が噛み合った状態では、アイドル軸51の動力は、上流不等速第4ギヤ122及び上流不等速第3ギヤ121を介して出力軸42に伝えられる。この場合も、第2中間クラッチ123が噛み合っていれば第3ギヤ46と第4ギヤ47が空転する。従って、第2中間クラッチ123は中間軸45と上流不等速第3ギヤ121との連結を継断する働きをしている。
 第5ギヤ52がスライドすることで2段階の切り換えが行われ、中間軸45がスライドすることで4段階の切り換えが行われる。従って、全体として8段階の組み合わせ(速度切換)が存在する。例えば、3.3平方m当たりの株数として、37株~85株といった株数に変更できるのであり、疎植・密植の全エリアを殆ど網羅している。図11には、実施形態におけるギヤの組合せと植付け株数との関係を示している。第1ギヤ43と第5ギヤ52とを噛み合わせた場合において、第4ギヤ47と第7ギヤ55とを噛み合わせれば植付け株数が等速のd株に設定され、第3ギヤ46と第6ギヤ54とを噛み合わせれば植付け株数が等速のf株に設定される。第2中間クラッチ123を噛み合わせれば植付け株数が不等速のb株に設定される。第2ギヤ44と第5ギヤ52とを噛み合わせた場合において、第4ギヤ47と第7ギヤ55とを噛み合わせれば植付け株数が等速のc株に設定され、第3ギヤ46と第6ギヤ54とを噛み合わせれば植付け株数が等速のe株に設定される。第1中間クラッチ57を噛み合わせれば植付け株数が不等速のa株に設定される。この場合、アルファベットで示した株数はアルファベット順に多い関係にある。
 ここで、上流不等速第1~第4ギヤ48,56,121,122は、取付け位相を調節して中間軸45やアイドル軸51に組み付けることによって、移植機構8における植付爪96の動作速度が最高速になる最高速位相を、下死点を挟んだ前後範囲で設定変更可能になっている。図12には一例として、不等速の43株に設定した場合の植付爪96の動作軌跡を示している。図12の符号MS1は、下死点より前側(上流側)で植付爪96の動作速度が最高速になるように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた場合の最高速位相であり、MS2は、下死点付近で植付爪96の動作速度が最高速になるように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた場合の最高速位相である。符号MS3は、下死点より後側(下流側)で植付爪96の動作速度が最高速になるように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた場合の最高速位相である。
 組付け精度との関係等に応じて、例えば下死点より前側(上流側)を最高速位相MS1にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けたり、下死点付近を最高速位相MS2にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けたり、更には下死点より後側(下流側)を最高速位相MS3にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けたりすることが可能である。すなわち、例えば組付け精度との関係等で、動力伝達系のねじれが大きくて植付爪96の動作周期ずれが懸念される場合や、動力伝達系のねじれが小さく且つ動力伝達系の振動を極力抑制したい場合にも最高速位相を下死点前後に設定変更できる。そうすれば、植付爪96のいわゆる「しゃくり」を抑制したり動力伝達系の振動を抑制したりできる。なお、上流不等速第1ギヤ48及び上流不等速第2ギヤ56に関して、取付け位相を調節して中間軸45やアイドル軸51に組み付けてよいことは言うまでもない。
 株間ケース40の上部には、入力軸41及び出力軸42と平行に延びる施肥用回転軸58が回転自在に配置されており、この施肥用回転軸58に、第1ギヤ43と噛合する第8ギヤ59が相対回転自在に嵌まっている。施肥用回転軸58からはベベルギヤ61を介して施肥駆動軸62に動力伝達される。
 図7(A)に示すように、株間変速装置26は第1操作軸63と第2操作軸64との2本の操作軸を有する。これら操作軸63,64は前後長手の姿勢になっており、株間ケース40の手前に露出している。図6(B)から理解できるように、第1操作軸63は第1レバー65で前後スライド操作することができ、第2操作軸64は第2レバー66で前後スライド操作することができる。第1操作軸63は第5ギヤ52をスライド操作するためのものであり、第5ギヤ52をスライドさせるシフターを有している。第2操作軸64は中間軸45をスライド操作するためのものであり、中間軸45に係合するシフターを備えている。
 (3).センターケースの内部構造
 次に、図6~図8に基づいてセンターケース30の内部構造(すなわち植付け部変速装置)を説明する。センターケース30は左右2つ割り方式のシェル体から成っており、前後長手の入力軸69が回転自在に保持されている。入力軸69の前端とPTO軸29の後端とは自在継手を介して接続されている。
 センターケース30の内部には左右長手の中間軸70が配置されており、入力軸69の回転は第1ベベルギヤ71a,71bの対によって中間軸70に伝達される。センターケース30の内部には横送り駆動軸72が左右横長の姿勢で配置されており、横送り駆動軸72に横送り軸33が連結されている。
 横送り駆動軸72には3枚の横送り量調節従動ギヤ73が固定されている一方、中間軸70には、横送り量調節従動ギヤ73に対応して3枚の横送り量調節主動ギヤ74が遊嵌されている。3枚の横送り量調節主動ギヤ74のうちいずれか1つのみに、スライドキー76(図8参照)によって中間軸70から選択的に動力伝達される。スライドキー76は、図6(C)(D)及び図7(A)(B)に示すスライドレバー77によってスライド操作される。
 横送り量調節ギヤ73,74の対はそれぞれ歯数の比率が相違しており、横送り量調節ギヤ73,74の組み合わせを変えると、PTO軸29に対する横送り駆動軸72の回転比率が変わる。その結果、苗載台7の横送りピッチが変化して苗の掻取り量が変化する。
 センターケース30は後ろ下向きに延びる張り出し部30aを有しており、この張り出し部30aに左右横長の植付出力軸78が回転自在に保持されており、植付出力軸78には、中間軸70に固定した第1中継ギヤ79、横送り駆動軸72に相対回転自在に嵌まった第2中継ギヤ80、センターケース30にアイドル軸81を介して回転自在に保持された第3中継ギヤ82、及び第4中継ギヤ84を介して動力伝達される。第4中継ギヤ84は、植付出力軸78にスリーブ83を介して取り付けられている。
 第1ベベルギヤ71a,71bの各歯数の比率は1:1の関係にあり、また、第1中継ギヤ79、第2中継ギヤ80及び第4中継ギヤ84の歯数は1:1:1の関係にある。従って、PTO軸29と植付出力軸78との回転数は1:1の関係になっている。なお、第3中継ギヤ82は単なるアイドルギヤなので、その歯数は第4中継ギヤ84の回転数に影響しない。
 植付出力軸78とその隣に位置した植付駆動軸32とは、カップリング(スリーブ)86で接続されている。また、左右に隣り合った植付駆動軸32の間には中継軸85が配置されており、駆動軸32と中継軸85もカップリング86で接続されている。従って、各植付駆動軸32は一体に回転する。植付駆動軸32は各移植機構8の箇所ごとに分断されており、隣り合った植付駆動軸32はカップリング86で接続されている。なお、植付出力軸78と各植付駆動軸32と中継軸85とを1本の棒材から成る単一構造体とすることも可能である。
 (4).移植機構の構造・動力伝達構造
 次に、移植機構8の構造やこれに対する動力伝達構造を説明する。これらは実施形態の要部を成すものであり、主に図8~図10に表示されている(図6(A)も参照)。植付伝動ケース31は中空構造になっており、図8に示すように、その内部に前後長手の植付伝動軸87が回転自在に保持されている。
 植付伝動軸87には植付駆動軸32から第2ベベルギヤ対88a,88bで動力伝達されている。第2ベベルギヤ対88a,88bのうち植付伝動軸87と同心に回転するベベルギヤ88bは植付伝動軸87に嵌ったトルクリミッタ89に取り付けられている。トルクリミッタ89はばね90を有しており、植付伝動軸87に所定以上の負荷がかかると、噛み合いが外れて動力伝達が遮断される。
 植付伝動ケース31の後部側(先端側)には、左右一対の軸受け104を介して左右横長の植付中心軸91が回転自在に保持されている。植付中心軸91は植付伝動ケース31の左右外側に突出しており、その突出端部にロータリケース36に内蔵された太陽ギヤ92が固定されている。詳細は省略するが、ロータリケース36は植付伝動ケース31の後端部に回転可能に保持されている。
 ロータリケース36は左右2つのシェル体を重ね合わせた中空構造になっており、その長手中間部には既述の太陽ギヤ92が配置され、その外側に中間ギヤ93が配置され、その外側に遊星ギヤ94が配置されている。各ギヤ92,93,94は非円形で偏心している。そして、遊星ギヤ94に固定されたユニット軸95に植付爪部材37が固定されている。
 図5に明示するように、植付爪部材37は植付爪96と突出しロッド97とを備えており、図5(C)に示すように、植付爪96で苗マットから苗を1株だけ切り取って圃場に移行させ、下死点近傍で突出しロッド97が植付爪96に対して相対的に前進することによって、苗は圃場に植え付けられる。
 図9に示すように、植付中心軸91には、下流不等速ベベルギヤ対98,99によって、植付伝動軸87から動力が伝達される。すなわち、植付伝動軸87にはカップリング100を介して下流不等速主動ベベルギヤ98が固定されている一方、植付中心軸91には下流不等速従動ベベルギヤ99が嵌まっており、これら不等速ベベルギヤ対98,99によって、植付伝動軸87から植付中心軸91に不等速回転が伝達される。
 下流不等速主動ベベルギヤ98は段違い状のボス体98aを有しており、カップリング100はボス体98aの小径部に嵌まっている。ボス体98aにはベアリング101が嵌まっている。なお、カップリング100は、植付伝動軸87に溶接固定され相対回転不能に保持されている。下流不等速従動ベベルギヤ99は植付中心軸91に相対回転可能に嵌まっており、且つ、条止めクラッチ102と噛み合うカム部103を有している。条止めクラッチ102には、操作リング105が一体に溶接されている。
 条止めクラッチ102は、植付中心軸91にスライド可能で相対回転不能に保持されている。そして、条止めクラッチ102は通常、ばね106で下流不等速従動ベベルギヤ99に噛み合う状態に押されている。操作ロッド129を操作すると、条止めクラッチ102が植付中心軸91の軸心に沿って下流不等速従動ベベルギヤ99から離反し、植付中心軸91への動力が遮断される。
 例えば畦際での植付け作業において、4対の移植機構8のうち一部は作動させたくない場合があるが、このような場合に条止めクラッチ102を操作して、一部の移植機構8の機能を停止させることができる。つまり、植付け条数を減らす条止め機能が発揮される。
 (5).下流不等速部材
 実施形態では、下流不等速ベベルギヤ対98,99に不等速回転(加減速)させる機能を持たせている(下流不等速部材として下流不等速ベベルギヤ対98,99を採用している)。この点を主に図10と図9(C)とに基づき説明する。図10(E)に示すように、下流不等速主動ベベルギヤ98に多数の歯107を形成するにおいて、各歯107の先端から軸心O1までの距離が少しずつ大きく広がって再び狭まるように設定している。すなわち、各歯107は、軸心O1から先端までの距離が最も狭いピッチ円錐角最小部108と、軸心O1から先端までの距離が最も広いピッチ円錐角最大部109とを有しており、両者の間では間隔は徐々に変化している。
 換言すると、図9(C)に示すように、各歯107のピッチ円110は楕円に近い形状でかつ真円に対して偏心している(符号110′では真円の場合のピッチ円を表示している)。逆の視点で述べると、通常のベベルギヤは、仮想円錘の外周面はどの部位においても軸心に対して同じ角度で傾斜しているが、実施形態の下流不等速主動ベベルギヤ98では、仮想円錘の外周面が周方向に移行するに従い、当該外周面の傾斜角度θ1(図10(A)(C)参照)を徐々に変化させている。
 下流不等速従動ベベルギヤ99は下流不等速主動ベベルギヤ98の歯数の2倍の歯112を有している。そして、図10(A)(B)から明瞭に把握できるように、各歯112の軸方向の位置が少しずつずれている。換言すると、実施形態の下流不等速従動ベベルギヤ99でも、下流不等速主動ベベルギヤ98と同様に、仮想円錘の外周面が周方向に移行するに従い、当該外周面の傾斜角度θ2(図10(A)参照)を徐々に変化させている。
 下流不等速従動ベベルギヤ99は下流不等速主動ベベルギヤ98の歯数の2倍の歯数なので、下流不等速従動ベベルギヤ99は、2つずつのピッチ円錐角最大部113及びピッチ円錐角最小部114を有している。従って、図9(C)に示すように、下流不等速従動ベベルギヤ99のピッチ円115は略楕円形状になっており、軸心O2を挟んで対称の形状になっている(図9(C)では、真円の場合のピッチ円を符号115′で表示している)。つまり、下流不等速ベベルギヤ対98,99は、円錐距離γ(図10(C)参照)を一定にした状態で、ピッチ円錐角θ1,θ2を回転方向に沿って連続的に変化させているのである。上記の説明から分かるように、下流不等速部材としての下流不等速ベベルギヤ対98,99は単段であり、上流不等速部材としての上流不等速第1~第4ギヤ48,56,121,122のような変速動作はしない(速度切換がない)。
 このように、下流不等速ベベルギヤ98,99のピッチ円110,115を、楕円に近い形状で且つ回転軸O1,O2を中心とする真円に対して偏心させた上で、その外径形状をそれぞれ真円とすることによって、下流不等速ベベルギヤ98,99の対をそれぞれ通常のベベルギヤ並みのサイズに形成できることになり、動力伝達系における下流不等速ベベルギヤ98,99対の組付けスペースの小型化・コンパクト化を図れる。この場合の下流不等速ベベルギヤ98,99製造の考え方としては、円錐距離を一定にして形成された歪んだ円錐形状を回転軸O1,O2が共通の円柱でカットして、外径形状を真円にするということになる。
 ここで、下流不等速ベベルギヤ対98,99も、上流不等速第1~第4ギヤ48,56,121,122と同様に取付け位相を調節して、前述した最高速位相を下死点から更に離れる方向に設定変更可能になっている。図13には一例として、不等速の43株に設定した場合の植付爪96の角速度変化を示している。図13(A)の太い一点鎖線は、下死点より前側(上流側)を最高速位相MS1にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた上で、更に下死点より前側を最高速位相MS1′(図12参照)にするように下流不等速ベベルギヤ対98,99を組み付けた場合である。図13(B)の太い実線は、下死点付近を最高速位相MS2にするように、上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けると共に下流不等速ベベルギヤ対98,99を組み付けた場合である。図13(C)の太い二点鎖線は、下死点より後側(下流側)を最高速位相MS3にするように上流不等速第3ギヤ121及び上流不等速第4ギヤ122を組み付けた上で、更に下死点より後側を最高速位相MS3′(図12参照)にするように下流不等速ベベルギヤ対98,99を組み付けた場合である。このように構成した場合、植付爪96の動作速度が下死点付近で速まり、植付爪96を下死点から的確に素早く逃がせるという効果をより一層助長できるのである。
 (6).まとめ
 図5(C)では、3.3平方m当たりの植付け株数と植付爪96の動作軌跡との関係を示している。この図から理解できるように、密植時には植付爪96が下死点から真上に上昇しても、疎植時になると植付爪96の逃げが悪くなって苗を前倒しする現象を引き起こすことが理解できる。
 そして、実施形態では、株間変速装置26に上流不等速第1~第4ギヤ48,56,121,122を設けたことと、苗植付装置2に下流不等速ベベルギヤ対98,99を設けたこととにより、植付爪部材37は、植付爪96が下死点に位置した付近で動作速度が速くなるように加速して回転駆動する。このため、植付爪96は下死点から素早く逃げることになり、その結果、植付爪96で苗を前倒しする現象を防止できる。
 そして、実施形態では、不等速部材を株間変速装置26と苗植付装置2とに分離して配置したため、株間変速装置26から下流不等速ベベルギヤ対98,99までの間は従来に比べて不等速回転の割合が少ない。その結果、動力伝達系を構成する伝動要素(PTO軸29や植付駆動軸32、植付伝動軸87等)に発生するねじれが著しく抑制され、移植機構8の円滑な動きを確保できる。また、動力伝達系に発生するガタも抑制できるため、不等速のタイミングがずれて、苗の植付け姿勢が乱れたりするといった不具合も防止できる。
 さて、移植機構8は細長いロータリケース36の両端に植付爪部材37を揺動可能に取り付けた形態であるため、植付爪部材37自体が重りの役割を果たして大きな慣性力が生ずる。しかも、苗の掻取り時には大きな負荷が発生し、その後は負の負荷が生ずる。すなわち、植付爪部材37の揺動により、移植機構8の回転に対して、過負荷→無負荷→負の負荷といった周期で大きなトルク変動が生ずる。このようなトルク変動は、密植時に等速回転していても、共振回転数を超えた場合に顕著に現れる(密植時には、疎植時に比べて移植機構8が高速回転するためである)。
 更に述べると、移植機構8が等速回転しても、1つの植付爪部材37が圃場から逃げるときは他の植付爪部材37は苗の掻取りに移行しており、従って、2つの植付爪部材37は互いの負荷変動を打ち消すように作用していると言える。しかし、苗の掻取りには大きなトルクが必要であるため、2つの植付爪部材37の動きのみではトルク変動を平準化する機能が弱いのである。このため、移植機構8が滑らかに回転せず、「しゃくり」と呼ばれる現象も発生しやすくなる。
 これに対して、実施形態のように密植状態でも下流不等速ベベルギヤ対98,99によって移植機構8に若干の不等速回転を付与すると、植付爪部材37による苗の掻取りが慣性力を利用しつつ加速をつけた状態で行われ、しかも、苗の掻取りが行われた後は移植機構8が減速するため、移植機構8に大きな慣性力が作用するのを抑制できる。このため、移植機構8に作用する負荷変動(或いはトルク変動)を平準化してスムーズな回転を確保できる。
 (7).逆位相トルク発生部材の第1実施例
 次に、図8及び図14~図18を参照しながら、逆位相トルク発生部材130の第1実施例について説明する。実施形態の田植機は、上流不等速と下流不等速ベベルギヤ対98,99の不等速回転動力に基づく移植機構8の回転トルクTに対して、回転トルクTとは逆位相になる逆位相トルクTanを付加させる逆位相トルク発生部材130を備えている。第1実施例では、複数本(4本)の植付伝動ケース31のそれぞれに逆位相トルク発生部材130を設けている。各植付伝動ケース31には条止めクラッチ102を設けているので、計4組の植付伝動ケース31及び条止めクラッチ102の組合せごとに逆位相トルク発生部材130が存在することになる。
 図14~図17に示すように、植付伝動ケース31の後端側には、中空構造の端部ケース131を一体的に設けている。なお、端部ケース131は、植付伝動ケース31の後端側に着脱可能に取り付ける別体構造であってもよい。植付伝動ケース31内部と端部ケース131内部とは連通している。植付伝動ケース31内部と端部ケース131内部との連通箇所に、軸受を介して前後長手の植付分岐軸132を回転可能に軸支している。植付分岐軸132の前端側に、下流不等速従動ベベルギヤ99と常時噛み合う平準化用ベベルギヤ133を設けている。平準化用ベベルギヤ133と下流不等速主動ベベルギヤ98とは、植付中心軸91を挟んだ前後で向かい合う(対向する)位置関係にある。
 平準化用ベベルギヤ133は、下流不等速主動ベベルギヤ98と同じ形状に形成している。すなわち、平準化用ベベルギヤ133は、下流不等速主動ベベルギヤ98と同じ歯数で、且つ、下流不等速主動ベベルギヤ98と同様に、円錐距離を一定にした状態でピッチ円錐角を回転方向に沿って連続的に変化させた形状に形成している。従って、平準化用ベベルギヤ133ひいては植付分岐軸132は、下流不等速主動ベベルギヤ98と同じ速度で逆方向に回転する(下流不等速従動ベベルギヤ99と比較すると2倍の速度で回転する)。
 植付分岐軸132の後端側は端部ケース131内の上下中途部に突出している。当該後端側の突出部には、植付分岐軸132と平行状に延びる偏心軸134を固定している。偏心軸134の軸心は、植付分岐軸132の回転中心に対して偏心している。このため、植付分岐軸132と偏心軸134とはクランク軸状になっている(クランク軸の機能を発揮する)。端部ケース131内の下部側に係止ピン135を取り付けている。偏心軸134と係止ピン135とに、逆位相トルクを発生させる手段としての引張バネ136を装架している。引張バネ136は、偏心軸134を植付分岐軸132の下側に移動させる方向に常時付勢している。偏心軸134が植付分岐軸132の直上を通過する際に、引張バネ136が支点越えするように設定している。第1実施例では、植付分岐軸132、偏心軸134及び引張バネ136が逆位相トルク発生部材130を構成している。
 なお、植付分岐軸132における後端側の突出部には、駆動平ギヤ137を固定している。端部ケース131内の上部側には、植付分岐軸132と平行状に延びる動力取出軸138を回転可能に軸支している。動力取出軸138の前部側に従動平ギヤ139を固定している。駆動平ギヤ137と従動平ギヤ139とを常時噛み合わせている。動力取出軸138の後端側は、端部ケース131の後面から後ろ向きに突出している。植付伝動軸87の回転動力は、下流不等速ベベルギヤ対98,99、平準化用ベベルギヤ133、植付分岐軸132、駆動平ギヤ137及び従動平ギヤ139を経て、動力取出軸138に伝達される。薬剤散布機等のオプション装置を苗植付装置2に装着した場合、動力取出軸138の回転動力がオプション装置に伝達される。
 ここで、図18には一例として、移植機構8における植付中心軸91の回転トルクT(変動トルク)と、逆位相トルクTanと、これらを合成した合成トルクTcoとの関係を示している。図18の一点鎖線は、植付中心軸91の回転トルクT(変動トルク)を表しており、植付爪部材37の各植付爪96が苗を植え付ける下死点付近で、回転トルクTは最も大きくなる。図18の二点鎖線は、逆位相トルク発生部材130(植付分岐軸132、偏心軸134及び引張バネ136)によって生ずる逆位相トルクTanを表しており、植付爪部材37の各植付爪96が苗を植え付ける下死点付近で、逆位相トルクTanは最も小さくなる。
 引張バネ136の弾性復原力は、植付分岐軸132に設けた平準化用ベベルギヤ133から下流不等速従動ベベルギヤ99を経て、植付中心軸91に伝わる。その結果、図18の実線で示すように、回転トルクTと逆位相トルクTanとが合成され、当該合成トルクTcoが移植機構8に伝達される。すなわち、逆位相トルクTanの合成によって平準化(相殺)された回転トルクTが移植機構8に伝達される。このため、移植機構8に作用する負荷変動(トルク変動と言ってもよい)が平準化され、移植機構8のスムーズな回転を確保できる。従って、「しゃくり」と呼ばれる現象の発生を抑制して、適正な植付け姿勢で苗を植付けできる。
 上記の説明、並びに、図8及び図14~図18から明らかなように、走行機体1に搭載したエンジン10の動力を変速するミッションケース11と、非円形の動作軌跡を描く植付爪96付きの移植機構8を有する苗植付装置2と、前記走行機体1の走行速度に対する前記移植機構8の動作速度を変速して株間を変更する株間変速装置26と、前記移植機構8に不等速回転動力を伝達する不等速部材98,99とを備えている田植機において、前記不等速回転動力に基づく前記移植機構8の回転トルクTに対して、前記回転トルクTとは逆位相になる逆位相トルクTanを付加させる逆位相トルク発生部材130を更に備えているから、前記逆位相トルク発生部材130からの前記逆位相トルクTanが前記不等速回転動力による前記移植機構8の回転トルクTを相殺することになり、前記移植機構8に作用する負荷変動(トルク変動と言ってもよい)を平準化して、前記移植機構8のスムーズな回転が確保される。従って、「しゃくり」と呼ばれる現象の発生を抑制して、適正な植付け姿勢で苗を植付けできる。
 特に、前記株間変速装置26から前記移植機構8に至る動力伝達系は互いに交差した回転軸87,91を備え、これら交差した回転軸87,91はベベルギヤ対を介して動力伝達するように構成し、前記不等速部材として前記ベベルギヤ対を不等速ギヤ対98,99に構成し、前記不等速ギヤ対98,99のうち下流側の不等速ギヤ99に前記逆位相トルク発生部材130を連結しているから、前記不等速ギヤ対98,99という既存の部材を活用でき、コスト面で有利である。
 (8).逆位相トルク発生部材の第2及び第3実施例
 次に、図19を参照しながら、逆位相トルク発生部材130の第2実施例について説明する。第2実施例では、植付伝動ケース31の後端側から端部ケース131をなくした上で、植付伝動ケース31内の後部側に逆位相トルク発生部材130を配置した点において、第1実施例のものと相違している。
 この場合、条止めクラッチ102の操作リング105の外周側に外歯141を形成している。操作リング105の外歯142には、植付伝動ケース31内の後部側に回転可能に軸支した平準化用平ギヤ143を噛み合わせている。平準化用平ギヤ143の回転中心軸144は植付中心軸91と平行状に延びている。平準化用平ギヤ143の一側面には係止ピン145を立設させている。
 係止ピン145と植付伝動ケース31の内周壁とに、逆位相トルクを発生させる手段としての引張バネ146を装架している。引張バネ146は、係止ピン145を操作リング105から離す方向に常時付勢している。平準化用平ギヤ143の回転によって引張バネ146が伸縮する。平準化用平ギヤ143と引張バネ146とは一種のクランク構造になっている。第2実施例では、条止めクラッチ102の操作リング105、平準化用平ギヤ143、係止ピン145及び引張バネ146が逆位相トルク発生部材130を構成している。つまり、植付伝動ケース31内において条止めクラッチ102よりも下流側に逆位相トルク発生部材130を位置させている。なお、第2実施例でも、第1実施例の場合と同様に、計4組の植付伝動ケース31及び条止めクラッチ102の組合せごとに逆位相トルク発生部材130が存在している。
 上記のように構成した場合、引張バネ146の弾性復原力は、平準化用平ギヤ143から条止めクラッチ102の操作リング105を経て、植付中心軸91に伝わる。その結果、第1実施例の場合と同様に(図18の実線で示すように)、回転トルクTと逆位相トルクTanとが合成され、当該合成トルクTcoが移植機構8に伝達され、移植機構8のスムーズな回転を確保できる。従って、第1実施例の場合と同様に、「しゃくり」と呼ばれる現象の発生を抑制して、適正な植付け姿勢で苗を植付けできる。
 また、植付伝動ケース31内において条止めクラッチ102よりも下流側に逆位相トルク発生部材130を配置しているから、負荷変動の発生元である移植機構8の近傍に逆位相トルク発生部材130を位置させることになる。このため、逆位相トルクTanで移植機構8の回転トルクTを相殺する効果、すなわち、負荷変動を平準化する効果が高い。しかも、条止めクラッチ102を動力遮断状態にしたときは逆位相トルクTanが発生しないから、不要なトルクを移植機構8周辺に伝播させるおそれがない。
 図20は逆位相トルク発生部材130の第3実施例を示している。図20に示す第3実施例は前述した第2実施例の変形例である。第3実施例は、植付伝動ケース31内の後部側で且つ条止めクラッチ102よりも下流側に逆位相トルク発生部材130を配置した点において、第2実施例のものと共通しているが、条止めクラッチ102とは別個独立して逆位相トルク発生部材130を設けた点で、第2実施例のものと相違している。
 この場合、植付中心軸91において下流不等速従動ベベルギヤ99を挟んで条止めクラッチ102の反対側に、平準化用第1平ギヤ152を固定している。平準化用第1平ギヤ152には、植付伝動ケース31内の後部側に回転可能に軸支した平準化用第2平ギヤ153を噛み合わせている。平準化用第2平ギヤ153の回転中心軸154は植付中心軸91と平行状に延びている。平準化用第2平ギヤ153の一側面には係止ピン155を立設させている。
 係止ピン155と植付伝動ケース31の内周壁とに、逆位相トルクを発生させる手段としての引張バネ156を装架している。引張バネ156は、係止ピン155を平準化用第1平ギヤ152から離す方向に常時付勢している。平準化用第2平ギヤ153の回転によって引張バネ156が伸縮する。平準化用第2平ギヤ153と引張バネ156とは一種のクランク構造になっている。第3実施例では、平準化用第1及び第2平ギヤ152,153、係止ピン155及び引張バネ156が逆位相トルク発生部材130を構成している。なお、第3実施例でも、計4組の植付伝動ケース31及び条止めクラッチ102の組合せごとに逆位相トルク発生部材130が存在している。上記のように構成した場合も、第2実施例と同様の作用効果を奏する。
 上記の実施形態、並びに、図19及び図20から明らかなように、走行機体1に搭載したエンジン10の動力を変速するミッションケース11と、非円形の動作軌跡を描く植付爪96付きの移植機構8を有する苗植付装置2と、前記走行機体1の走行速度に対する前記移植機構8の動作速度を変速して株間を変更する株間変速装置26と、前記移植機構8に不等速回転動力を伝達する不等速部材98,99とを備えている田植機において、前記不等速回転動力に基づく前記移植機構8の回転トルクTに対して、前記回転トルクTとは逆位相になる逆位相トルクTanを付加させる逆位相トルク発生部材130を更に備えているから、前記逆位相トルク発生部材130からの前記逆位相トルクTanが前記不等速回転動力による前記移植機構8の回転トルクTを相殺することになり、前記移植機構8に作用する負荷変動(トルク変動と言ってもよい)を平準化して、前記移植機構8のスムーズな回転が確保される。従って、「しゃくり」と呼ばれる現象の発生を抑制して、適正な植付け姿勢で苗を植付けできる。
 また、前記条止めクラッチ102を動力遮断状態にしたときは前記逆位相トルクTanが発生しないことになり、不要なトルクを前記移植機構8周辺に伝播させるおそれがない。しかも、前記苗植付装置2における前後長手の植付伝動ケース31内に、前記株間変速装置26から前記移植機構8への動力伝達を継断する条止めクラッチ102を設け、前記植付伝動ケース31内において前記条止めクラッチ102よりも下流側に前記逆位相トルク発生部材130を配置しているから、負荷変動の発生元である前記移植機構8の近傍に前記逆位相トルク発生部材130を位置させることになり、前記逆位相トルクTanで前記移植機構8の回転トルクTを相殺する効果、すなわち、負荷変動を平準化する効果が高い。
 (9).逆位相トルク発生部材の第4~第9実施例
 次に、図21及び図22を参照しながら、逆位相トルク発生部材130の第4実施例について説明する。第4実施例では、植付駆動軸32の回転をチェン163で植付中心軸91に伝達する構造に、逆位相トルク発生部材130を適用している。この場合、植付伝動ケース31内の植付駆動軸32に主動スプロケット161を回転可能に軸支する一方、植付中心軸91に従動スプロケット162を回転可能に軸支している。植付伝動ケース31内で、主動スプロケット161と従動スプロケット162とに動力伝達用のチェン163を巻き掛けている。植付駆動軸32にはトルクリミッタ164をスライド可能で相対回転不能に被嵌している。植付駆動軸32に所定以上の負荷がかかると、トルクリミッタ164の噛み合いが外れて植付駆動軸32から主動スプロケット161への動力伝達が遮断される。植付中心軸91には、従動スプロケット162から植付中心軸91への動力伝達を継断する条止めクラッチ102をスライド可能で且つ相対回転不能に被嵌している。図22に示すように、主動スプロケット161と従動スプロケット162とは、楕円形状等(非円形)の不等速スプロケットに構成している。チェン163にはアイドルローラ163′を当接させている。このような構成によって植付中心軸91に不等速回転を付与している。第4実施例において、チェン163伝動での減速比は平均1/2である。
 植付伝動ケース31内のうち植付中心軸91よりも更に後端側に、植付中心軸91と平行状に延びる動力取出軸165を回転可能に軸支している。動力取出軸165の一端側(実施例では右端側)を植付伝動ケース31から左右外向きに突出させている。植付中心軸91において従動スプロケット162を挟んで条止めクラッチ102の反対側に、平準化用主動スプロケット166を固定している一方、動力取出軸165には、平準化用従動スプロケット167を固定している。平準化用主動スプロケット166と平準化用従動スプロケット167とに動力伝達用のチェン168を巻き掛けている。スプロケット及びチェン伝動系166~168を介して、動力取出軸165に植付中心軸91の回転動力を分岐させて伝達するように構成している。薬剤散布機等のオプション装置を苗植付装置2に装着した場合、動力取出軸165の回転動力がオプション装置に伝達される。
 動力取出軸165の他端側はクランク形状に屈曲している。動力取出軸165のクランク先端側と植付伝動ケース31の内周壁とに、逆位相トルクを発生させる手段としての引張バネ169を装架している。引張バネ169は、動力取出軸165のクランク先端側を動力取出軸165の回転中心の下側に移動させるように常時付勢している。平準化従動スプロケット167を介した動力取出軸165の回転によって、引張バネ169が伸縮することになる。第4実施例では、動力取出軸165、平準化用主動及び従動スプロケット166,167、チェン168及び引張バネ169が逆位相トルク発生部材130を構成している。すなわち、動力取出軸165を逆位相トルク発生部材130の構成要素の一つにしている。なお、第4実施例でも、計4組の植付伝動ケース31及び条止めクラッチ102の組合せごとに逆位相トルク発生部材130が存在している。上記のように構成した場合も、第2及び第3実施例と同様の作用効果を奏する。
 図23に示す第5実施例以降のものはいずれも、第4実施例と同様に、植付駆動軸32の回転をチェン163で植付中心軸91に伝達する構造に、逆位相トルク発生部材130を適用したものである。第5実施例では、植付駆動軸32に設けた主動スプロケット161とアイドル軸170に設けた従動スプロケット162との両方を、円形であるが偏心した不等速スプロケットに構成している。アイドル軸170に主動ギヤ171を固定し、植付中心軸91に従動ギヤ172を固定している。主動ギヤ171と従動ギヤ172とを噛み合わせることによって、植付中心軸91に不等速回転を付与している。チェン163伝動での減速比は平均1だが、主動ギヤ171から従動ギヤ172へのギヤ伝動での減速比は1/2である。チェン163にはアイドルローラ163′を当接させている。両スプロケット161,162のうち一方だけを偏心させて片方は偏心させない構成にしても差し支えない。
 図24に示す第6実施例、及び、図25に示す第7実施例は、図21及び図22に示す第4実施例の変形例である。図24に示す第6実施例では、植付駆動軸32に設けた主動スプロケット161を円形の等速スプロケットに構成している。図25に示す第7実施例では、植付駆動軸32に設けた主動スプロケット161を、円形だが偏心した不等速スプロケットに構成している。第6及び第7実施例において、チェン163伝動での減速比は平均1/2である。
 図26に示す第8実施例は、植付駆動軸32に設けた主動スプロケット161を円形だが偏心した不等速スプロケットに構成し、植付中心軸91に設けた従動スプロケット162を円形の等速スプロケットにしている。この場合のチェン163伝動での減速比も平均1/2である。
 図27に示す第9実施例は、植付駆動軸32に設けた主動スプロケット161を楕円形状等(非円形)の不等速スプロケットに構成し、植付中心軸91に設けた従動スプロケット162を、多角形状(非円形)の不等速スプロケットに構成している。この場合のチェン163伝動での減速比も平均1/2である。従動スプロケット162を略四角形状に形成しているため、植付中心軸91の1回転において4回加減速を生ずることになる。
 上記の実施形態、並びに、図21~図27から明らかなように、走行機体1に搭載したエンジン10の動力を変速するミッションケース11と、非円形の動作軌跡を描く植付爪96付きの移植機構8を有する苗植付装置2と、前記走行機体1の走行速度に対する前記移植機構8の動作速度を変速して株間を変更する株間変速装置26と、前記移植機構8に不等速回転動力を伝達する不等速部材161,162とを備えている田植機において、前記不等速回転動力に基づく前記移植機構8の回転トルクTに対して、前記回転トルクTとは逆位相になる逆位相トルクTanを付加させる逆位相トルク発生部材130を更に備え、前記苗植付装置2における前後長手の植付伝動ケース31に、前記苗植付装置2に装着されるオプション装置に動力伝達可能な動力取出軸165を設け、前記動力取出軸165を前記逆位相トルク発生部材130の構成要素にしているから、前記移植機構8に作用する負荷変動(トルク変動)を平準化して、前記移植機構8のスムーズな回転を確保したものでありながら、前記動力取出軸165を有効利用して前記逆位相トルク発生部材130に兼用でき、前記苗植付装置2への動力伝達構造の簡素化や軽量化に貢献できる。
 (10).その他
 本願発明は上記の実施形態の他にも様々に具体化できる。例えば株間変速装置26はミッションケース11に内蔵することも可能であり、この場合は、1つの上流不等速部材をミッションケース11に内蔵することになる。走行機体1と苗植付装置2とのそれぞれに不等速部材を設ける場合、加減速比(不等速比率)は必要に応じて設定したらよい。従って、場合によっては、走行機体1側での加減速比(不等速比率)を苗植付装置2での不等速変換比率より小さくすることも可能である。チェン伝動に変えてベルト伝動(タイミングベルトが好ましい)を採用してもよい。第1~第9実施例のいずれにおいても、逆位相トルク発生部材130のクランク構造部や引張バネを植付伝動ケース31の外部に配置することが可能である。
1 走行機体
2 苗植付装置
8 移植機構
10 エンジン
11 ミッションケース
26 株間変速装置
36 ロータリケース
37 植付爪部材
40 株間ケース
87 植付伝動軸
91 植付中心軸
96 植付爪
98 下流不等速主動ベベルギヤ
99 下流不等速従動ベベルギヤ
102 条止めクラッチ
105 操作リング
130 逆位相トルク発生部材
131 端部ケース
132 植付分岐軸
133 平準化用ベベルギヤ
134 偏心軸
136 引張バネ
142 外歯
143 平準化用平ギヤ
145,155 係止ピン
146,156,169 引張バネ
152 平準化用第1平ギヤ
153 平準化用第2平ギヤ
161 主動スプロケット
162 従動スプロケット
163,168 チェン
164 トルクリミッタ
165 動力取出軸
166 平準化用主動スプロケット
167 平準化用従動スプロケット
169 引張バネ

Claims (6)

  1.  走行機体に搭載したエンジンの動力を変速するミッションケースと、非円形の動作軌跡を描く植付爪付きの移植機構を有する苗植付装置と、前記走行機体の走行速度に対する前記移植機構の動作速度を変速して株間を変更する株間変速装置と、前記移植機構に不等速回転動力を伝達する不等速部材とを備えている田植機において、
     前記不等速回転動力に基づく前記移植機構の回転トルクに対して、前記回転トルクとは逆位相になる逆位相トルクを付加させる逆位相トルク発生部材を更に備えている、
    田植機。
  2.  前記株間変速装置から前記移植機構に至る動力伝達系は互いに交差した回転軸を備え、これら交差した回転軸はベベルギヤ対を介して動力伝達するように構成し、前記下流不等速部材として前記ベベルギヤ対を不等速ギヤ対に構成し、前記不等速ギヤ対のうち下流側の不等速ギヤに前記逆位相トルク発生部材を連結している、
    請求項1に記載の田植機。
  3.  前記苗植付装置における前後長手の植付伝動ケース内に、前記株間変速装置から前記移植機構への動力伝達を継断する条止めクラッチを設け、前記植付伝動ケース内において前記条止めクラッチよりも下流側に前記逆位相トルク発生部材を配置している、
    請求項1に記載の田植機。
  4.  前記植付伝動ケース及び前記条止めクラッチの組合せを複数個備え、前記組合せごとに前記逆位相トルク発生部材を設けている、
    請求項3に記載の田植機。
  5.  前記苗植付装置における前後長手の植付伝動ケースに、前記苗植付装置に装着されるオプション装置に動力伝達可能な動力取出軸を設け、前記動力取出軸を前記逆位相トルク発生部材の構成要素にしている、
    請求項1に記載の田植機。
  6.  前記植付伝動ケース及び前記条止めクラッチの組合せを複数個備え、前記組合せごとに前記逆位相トルク発生部材を設けている、
    請求項5に記載の田植機。
PCT/JP2014/071724 2013-08-20 2014-08-20 田植機 WO2015025868A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020157035630A KR20160043524A (ko) 2013-08-20 2014-08-20 이앙기
CN201480045573.4A CN105451538B (zh) 2013-08-20 2014-08-20 插秧机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-170126 2013-08-20
JP2013170126A JP2015039302A (ja) 2013-08-20 2013-08-20 田植機

Publications (1)

Publication Number Publication Date
WO2015025868A1 true WO2015025868A1 (ja) 2015-02-26

Family

ID=52483640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071724 WO2015025868A1 (ja) 2013-08-20 2014-08-20 田植機

Country Status (4)

Country Link
JP (1) JP2015039302A (ja)
KR (1) KR20160043524A (ja)
CN (1) CN105451538B (ja)
WO (1) WO2015025868A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547073B (zh) * 2018-06-01 2022-06-14 株式会社久保田 作业机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724972Y2 (ja) * 1988-11-28 1995-06-07 ヤンマー農機株式会社 植付部伝動装置
JP2012196199A (ja) * 2011-03-10 2012-10-18 Yanmar Co Ltd 苗移植機
JP2012244952A (ja) * 2011-05-30 2012-12-13 Yanmar Co Ltd 苗移植機
JP2013106597A (ja) * 2011-11-24 2013-06-06 Yanmar Co Ltd 苗移植機

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102918970B (zh) * 2012-11-21 2013-10-30 湖南农业大学 一种新型插秧机驱动系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0724972Y2 (ja) * 1988-11-28 1995-06-07 ヤンマー農機株式会社 植付部伝動装置
JP2012196199A (ja) * 2011-03-10 2012-10-18 Yanmar Co Ltd 苗移植機
JP2012244952A (ja) * 2011-05-30 2012-12-13 Yanmar Co Ltd 苗移植機
JP2013106597A (ja) * 2011-11-24 2013-06-06 Yanmar Co Ltd 苗移植機

Also Published As

Publication number Publication date
KR20160043524A (ko) 2016-04-21
JP2015039302A (ja) 2015-03-02
CN105451538A (zh) 2016-03-30
CN105451538B (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
JP5814084B2 (ja) 苗移植機
JP2012244952A (ja) 苗移植機
JP2012187044A (ja) 苗移植機
JP2012034625A (ja) 田植機
JP6698141B2 (ja) 田植機
JP6204114B2 (ja) 田植機
JP6930699B2 (ja) 田植機
WO2015025868A1 (ja) 田植機
JP6448731B2 (ja) 田植機
JP5860315B2 (ja) 田植機
JP5650024B2 (ja) 苗移植機
WO2013137028A1 (ja) 移植機
JP2015039300A (ja) 田植機
JP2009072112A (ja) 移植機
JP7139501B2 (ja) 田植機
JP5860314B2 (ja) 不等速ベベルギヤ機構及びこれを備えた田植機
JP5851008B2 (ja) 苗移植機
JP2003189712A (ja) 移植機
JP4436063B2 (ja) 移植機
JP2012196200A (ja) 乗用型苗移植機
JP4356816B2 (ja) 移植機
JP4376154B2 (ja) 移植機
JP6320234B2 (ja) 田植機
JP2010057458A (ja) 移植機
JP6320235B2 (ja) 田植機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045573.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157035630

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837965

Country of ref document: EP

Kind code of ref document: A1