WO2015025510A1 - Photoelectric conversion element and method for manufacturing photoelectric conversion element - Google Patents

Photoelectric conversion element and method for manufacturing photoelectric conversion element Download PDF

Info

Publication number
WO2015025510A1
WO2015025510A1 PCT/JP2014/004208 JP2014004208W WO2015025510A1 WO 2015025510 A1 WO2015025510 A1 WO 2015025510A1 JP 2014004208 W JP2014004208 W JP 2014004208W WO 2015025510 A1 WO2015025510 A1 WO 2015025510A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photoelectric conversion
conversion element
film formation
mask
Prior art date
Application number
PCT/JP2014/004208
Other languages
French (fr)
Japanese (ja)
Inventor
訓裕 川本
克也 岡部
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2015025510A1 publication Critical patent/WO2015025510A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photoelectric conversion element that forms a film using a mask.
  • Patent Document 1 relates to the manufacture of an organic EL element, but a vapor deposition method is adopted for forming an organic layer and a metal electrode. In vapor deposition, openings corresponding to predetermined patterns required for each layer are used. It is stated that a vapor deposition mask with a part is used.
  • the photoelectric conversion element In the film formation of the photoelectric conversion element, it is necessary to make the photoelectric conversion area as wide as possible while ensuring the overlap between the substrate and the mask for pressing the substrate with the mask.
  • the photoelectric conversion element according to the present invention includes a substrate and a film-forming layer deposited on the substrate, the film-forming layer having at least one notch that is not deposited on the periphery.
  • a method for manufacturing a photoelectric conversion element includes a step of preparing a substrate to be formed, and a step of preparing a mask having an opening that defines a film formation region, from the periphery of the opening to the opening. Preparing a mask having at least one substrate pressing projection protruding toward the inside of the substrate, positioning the mask opening portion so as to face the film-forming surface of the substrate, and forming the mask on the substrate through the mask opening portion. A film layer is formed.
  • the present invention it is possible to widen the photoelectric conversion possible region while ensuring the overlap between the substrate and the mask.
  • FIG. 1 is a diagram showing a photoelectric conversion element 10.
  • the main surface of the photoelectric conversion element 10 includes a light receiving surface and a back surface.
  • (A) is a plan view viewed from the light receiving surface side, and
  • (b) is a light receiving surface side above the paper surface and a back surface side below the paper surface.
  • (C) is an enlarged view of (b).
  • the photoelectric conversion element 10 generates photogenerated carriers of holes and electrons by receiving light such as sunlight.
  • the photoelectric conversion element 10 includes a substrate 12 and a plurality of film formation layers 13 that are sequentially stacked thereon.
  • the film-forming layer 13 is formed by depositing a predetermined thin film in a film-forming region smaller than the outer shape of the substrate 12, and has a notch 14 on the periphery of which the predetermined thin film is not deposited. In FIG. 1, three notches 14 C , 14 L , and 14 R are shown. Details of the notch 14 will be described later.
  • the substrate 12 is crystalline silicon (c-Si).
  • a semiconductor material such as gallium arsenide (GaAs) or indium phosphorus (InP) can be used.
  • the film forming layer 13 is a thin film layer that has the substrate 12 and the photoelectric conversion element 10 in a broad pn junction structure.
  • a pn junction structure in a broad sense a heterojunction of crystalline silicon and amorphous silicon can be used.
  • the substrate 12 is an n-type single crystal silicon substrate
  • a p-type film formation layer 13 is formed on the light receiving surface side of the substrate 12
  • an n-type film formation layer 15 is formed on the back surface side.
  • the film-forming layer 13 on the light-receiving surface side is a p-type amorphous material doped with i-type amorphous silicon layer 16, boron (B) and the like. It is obtained by sequentially laminating a silicon layer 17 and a transparent conductive film (TCO) 18 composed of a light-transmitting conductive oxide of indium oxide (In 2 O 3 ).
  • the film-forming layer 15 on the back surface side is formed on the back surface side of the n-type single crystal silicon substrate, which is the substrate 12, and on the light-receiving surface side of the n-type single crystal silicon substrate, which is the substrate 12, It is obtained by laminating an n-type amorphous silicon layer 20 doped with phosphorus (P) or the like and a transparent conductive film 21.
  • the photoelectric conversion element 10 may have a structure other than this as long as it has a function of converting light such as sunlight into electricity.
  • the substrate 12 may be a p-type polycrystalline silicon substrate, an n-type diffusion layer may be formed on the light receiving surface side, and an aluminum metal film may be formed on the back surface side.
  • the notch portion 14 is derived from a substrate pressing projection provided on a mask used for forming the film forming layers 13 and 15 on the substrate 12, and the substrate 12 is covered with the portion of the substrate pressing projection so that the substrate 12 is a place where a predetermined thin film is not deposited.
  • FIG. 2 is a diagram showing positioning between the substrate 12 and the mask
  • FIG. 3 is an enlarged view thereof.
  • FIG. 4 is a diagram illustrating the operation of the substrate pressing protrusion provided on the mask.
  • First step of the method for manufacturing the photoelectric conversion element 10 is a step of preparing the substrate 12.
  • an n-type single crystal silicon substrate is prepared as the substrate 12.
  • the prepared substrate 12 is positioned and arranged on the tray 22 of the film forming apparatus.
  • the tray 22 is shown in FIG.
  • An appropriate jig can be used for positioning and fixing the substrate 12 to the tray 22.
  • a procedure for forming the film formation layer 13 on the light receiving surface side of the substrate 12 will be described unless otherwise specified.
  • the film formation layer 15 can be formed on the back surface side of the substrate 12 by the same procedure.
  • a predetermined metal mask is positioned and arranged on the substrate 12 as the mask 30. This procedure will be described separately for the process of preparing the mask 30 and the process of positioning and arranging the prepared mask 30 on the light receiving surface side of the substrate 12.
  • the step of preparing the mask 30 is a step of preparing a mask having an opening that defines a film formation region, and has at least one substrate pressing protrusion protruding from the peripheral edge of the opening toward the inside of the opening. This is a step of preparing a mask.
  • the mask 30 is a film forming mask.
  • the mask 30 has an opening 32 surrounded by a frame 31 on four sides.
  • the opening 32 is a window for defining a film forming region on the substrate 12 within this range when a predetermined thin film is deposited in the next film forming process.
  • the four corners of the opening 32 have an oblique shape 33, but this corresponds to the case where the four corners of the substrate 12 have an oblique shape, and is not necessarily required.
  • the mask 30 has a substrate pressing protrusion 34 that protrudes from the peripheral edge of the opening 32 toward the inside of the opening 32.
  • the peripheral edge of the opening 32 is the inner edge of the frame 31.
  • “Toward the inside of the opening 32” means not in the direction of the recess that cuts out the frame 31, but in the direction in which the inner edge of the frame 31 protrudes.
  • the substrate pressing protrusion 34 is provided on the frame 31 on the upper side of the paper toward the lower side of the paper. In this case, the direction toward the lower side of the paper surface is the direction toward the inside of the opening 32.
  • Substrate holding projections 34 along the longitudinal direction of the frame portion 31, the substrate holding protrusion 34 C is provided at the center thereof, a substrate holding protrusion 34 L on the left side, the substrate holding projections 34 on the right Each R is provided.
  • the protrusion amount of the substrate pressing protrusion 34 is shown as D1.
  • a material obtained by processing an appropriate material into a predetermined shape can be used.
  • a metal material can be used, for example, stainless steel can be used.
  • a predetermined shape as shown in FIG. 2, a plurality of substrates 12 may have a shape having a number of openings 32 corresponding to the number of the substrates. Instead of this, the shape having one opening 32 may be used as one mask 30 for one substrate 12.
  • the step of positioning and arranging the prepared mask 30 on the light receiving surface side of the substrate 12 is performed such that the overlap in the plan view of the substrate 12 and the mask 30 is the same size along the peripheral edge of the substrate 12. Be placed.
  • the peripheral edge of the substrate 12 is covered with the mask 30, and this is indicated by a broken line.
  • the overlapping of the substrate 12 and the mask 30 has the same size along the peripheral edge of the substrate 12.
  • the tip of the substrate pressing projection 34 is the innermost edge of the peripheral edge of the mask 30 and the four sides of the frame portion 31 are the same. It means the same.
  • the magnitude of this overlap is shown as D2.
  • the peripheral portion of the frame portion 31 recedes outside except for the protruding portion of the substrate pressing projection 34, and only the corresponding region 35 is obtained.
  • the opening area of the opening 32 increases. Since the opening area corresponds to the photoelectric conversion possible area in the photoelectric conversion element 10, the photoelectric conversion possible area is expanded by the area of the expanded area 35.
  • the shape of the substrate pressing projection 34 can be a semicircular shape having a sufficiently small diameter compared to the length L of one side of the opening 32. Therefore, the area of the expanded region 35 is a value close to ⁇ (length L of one side of the opening 32) ⁇ (projection amount D1 of the substrate pressing projection 34) ⁇ .
  • the substrate pressing projection 34 having a sufficiently small dimension compared to the length L of one side of the opening 32, the substrate pressing projection 34 spreads while ensuring the overlap between the substrate 12 and the mask 30.
  • the photoelectric conversion possible region can be made wider by the area of the region 35.
  • a film forming process is performed next.
  • the film forming process is performed using a predetermined film forming apparatus.
  • a CVD first chamber in which an i-type amorphous silicon layer 16 is deposited
  • a second chamber in which a p-type amorphous silicon layer 17 is deposited
  • a third chamber in which a transparent conductive film 18 is deposited.
  • CVD Chemical Vapor Deposition
  • a tray 22 on which a set in which the substrate 12 and the mask 30 are combined is mounted on the tray 22 in a predetermined film formation order using the first chamber, the second chamber, and the third chamber. Then, the predetermined film formation layer 13 is formed by sequentially conveying the film. It is preferable to provide a separation chamber between the chambers so that i-type, p-type, etc. are not mixed.
  • a horizontal tray in which the substrate 12 and the mask 30 are arranged in the horizontal direction can be used. Instead, a vertical tray in which the substrate 12 and the mask 30 are arranged in parallel to the vertical direction may be used.
  • the mask 30 is removed from the substrate 12.
  • a notched portion 14 that has not been formed is formed corresponding to the substrate pressing protrusion 34.
  • the photoelectric conversion area is narrowed by the area of the notch 14, the shape of the notch 14 is the same as the shape of the substrate pressing protrusion 34, which is sufficiently larger than the length L of one side of the film formation layer 13.
  • the film forming process is performed on the film forming layer 15 on the back side of the substrate 12 with the same processing contents.
  • the photoelectric conversion element 10 is obtained by completing these film forming processes (S14).
  • FIG. 5 shows a state where the photoelectric conversion possible area is enlarged without providing the substrate pressing projection 34.
  • the size of the overlap between the substrate 12 and the mask 30 is (D2-D1) without providing the substrate pressing projection 34.
  • the overlap size is (D2 ⁇ D1) compared to the case where the overlap size is D2
  • the enlargement amount of the photoelectric conversion possible area is ⁇ (length L of one side of the opening 32) ⁇ (substrate presser).
  • the protrusion amount D1) ⁇ of the protrusion 34 is the protrusion amount of the protrusion 34.
  • FIG. 5A shows an initial state in which the substrate 12 and the mask 30 are positioned.
  • the initial state is room temperature.
  • (B) shows a state in which the film formation process has been performed and the temperature has increased.
  • the mask 30 is made of stainless steel, and the substrate 12 is single crystal silicon.
  • the linear expansion coefficient of stainless steel and the linear expansion coefficient of single crystal silicon are considerably different, and stainless steel has a larger linear expansion coefficient than single crystal silicon.
  • the size of the overlap between the substrate 12 and the mask 30 is (D2-D1), so that the substrate 12 is not detached from the mask 30.
  • the substrate 12 having a small linear expansion coefficient is hardly deformed, but the mask 30 having a large linear expansion coefficient is deformed according to the temperature.
  • the size of the overlap between the substrate 12 and the mask 30 becomes smaller than (D2-D1).
  • the substrate 12 is brought into a free state from the state of being pressed by the mask 30. In particular, when the vertical tray is used, the substrate 12 may be detached from the mask 30. .
  • the size of the overlap is reduced.
  • the size of the overlap is (D2-D1), and the substrate 12 may be detached from the mask 30 at a high temperature.
  • the substrate pressing projection 34 can ensure the overlap between the substrate 12 and the mask 30, and the substrate 12 is prevented from being detached from the mask 30 even at high temperatures. Further, by providing the substrate pressing protrusion 34 having a sufficiently small size compared to the length L of one side of the opening 32, the photoelectric conversion possible region can be further widened.
  • the notch portion 14 is derived from the substrate pressing projection 34 of the mask 30, but the portion where the substrate 12 and the mask 30 are likely to come off from the mask 30 due to a decrease in temperature due to a rise in temperature is located on the frame portion 31 of the mask 30. It is a central part in the extending direction. Therefore, it is preferable to provide the substrate pressing protrusions 34 C first, and if necessary, the substrate pressing protrusions 34 L and 34 R on the left and right sides thereof. Even if the substrate pressing projection 34 is provided after providing the substrate pressing projection 34 necessary to prevent the substrate 12 from being removed from the mask 30, the dimension of the substrate pressing projection 34 is the same as that of the opening 32. Since it is sufficiently smaller than the length L of one side, the photoelectric conversion possible region hardly changes.
  • the number of the substrate pressing protrusions 34 or the arrangement position along the peripheral edge is set in accordance with the scheduled film formation history of the film formation layer 13, so that the number of the notches 14 in the film formation layer 13 or The arrangement position along the peripheral edge corresponds to the film formation history of the film formation layer 13. Since the notch 14 formed in the film forming layer 13 is an identifiable mark, it can be used as a tracking mark for the film forming process state.
  • FIG. 5 is a diagram illustrating an example of the arrangement position and the number of notches in the film formation layer 13.
  • Figure 5 (a) (d) is an example of the upper side of the film formation layer 13 is provided a notch 14, in (a) is provided only notch 14 C, and the notch portion 14 C in (b) A notch 14 R is provided, (c) is provided with a notch 14 L and a notch 14 C , and (d) is provided with a notch 14 L , a notch 14 C, and a notch 14 R.
  • the four types of states can be distinguished by the presence or absence of the notch 14 L and the presence or absence of the notch 14 R. .
  • the four types can be distinguished using the first bit and the second bit.
  • four types of films i-type amorphous silicon layers 16 and 19, p-type amorphous silicon layer 17, n-type amorphous silicon layer 20, and transparent conductive films 18 and 21, are set in the first bit.
  • the first bit can be assigned to distinguish between two types of film forming apparatuses
  • the second bit can be assigned to distinguish the substrate arrangement in the film forming apparatus.
  • four types of film formation dates and times can be distinguished by using two of the first bit and the second bit.
  • FIGS. 5E to 5H are diagrams illustrating an example in which the notch portion 14 is provided on a side other than the upper side of the film formation layer 13.
  • notches 14 are provided on the upper side and lower side of the film-forming layer 13
  • (f) is provided with notches 14 on the upper side and the left side of the film-forming layer 13.
  • Cutouts 14 are provided on the upper left side of the film formation layer 13
  • cutouts 14 are provided on the upper side, lower side, left side, and right side of the film formation layer 13 in (h).
  • the substrate pressing projection 34 is provided at a position common to a plurality of thin film layers to be stacked, and the notch 14 is formed at a position common to the plurality of thin film layers stacked corresponding thereto.
  • the arrangement position of the substrate pressing projection 34 may be changed for each thin film, and the cutout portion 14 may be formed at a different position for each thin film correspondingly.
  • the overlapping of the substrate 12 and the mask 30 for pressing the substrate 12 with the mask 30 is ensured, the photoelectric conversion possible area is expanded,
  • the film forming history of the film forming process can be traced using the notch 14 of the film forming layer 13 corresponding to the substrate pressing protrusion 34.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 A photoelectric conversion element (10) provided with a substrate (12) and a film formation layer (13) deposited on the surface of the substrate (12), the film formation layer (13) having, on a peripheral edge part, at least one cutout part (14) on which no deposition takes place. The film formation layer (13) is formed using a photoelectric conversion element film formation mask having an opening defining a film formation region and having at least one substrate-holding protrusion protruding from the peripheral edge part of the opening towards the inside of the opening. The cutout part (14) is formed at a position on the photoelectric conversion element film formation mask corresponding to the position of the substrate-holding protrusion.

Description

光電変換素子及び光電変換素子の製造方法Photoelectric conversion element and method for producing photoelectric conversion element
 本発明は、マスクを用いて成膜する光電変換素子に関する。 The present invention relates to a photoelectric conversion element that forms a film using a mask.
 例えば、特許文献1には、有機EL素子の製造についてではあるが、有機層や金属電極の形成には蒸着方法が採用されており、蒸着にあたっては、各層に要求される所定パターンに対応した開口部を備えた蒸着マスクが利用されることが述べられている。 For example, Patent Document 1 relates to the manufacture of an organic EL element, but a vapor deposition method is adopted for forming an organic layer and a metal electrode. In vapor deposition, openings corresponding to predetermined patterns required for each layer are used. It is stated that a vapor deposition mask with a part is used.
特開2003-157974号公報JP 2003-157974 A
 光電変換素子の成膜の際に、基板をマスクで押えるための基板とマスクの重なりを確保しつつ、光電変換可能領域はできるだけ広くする必要がある。 In the film formation of the photoelectric conversion element, it is necessary to make the photoelectric conversion area as wide as possible while ensuring the overlap between the substrate and the mask for pressing the substrate with the mask.
 本発明に係る光電変換素子は、基板と、基板に堆積された成膜層であって、堆積がなされない切欠部を少なくとも1つ周縁部に有する成膜層と、を備える。 The photoelectric conversion element according to the present invention includes a substrate and a film-forming layer deposited on the substrate, the film-forming layer having at least one notch that is not deposited on the periphery.
 本発明に係る光電変換素子の製造方法は、成膜対象の基板を準備する工程と、成膜領域を規定する開口部を有するマスクを準備する工程であって、開口部の周縁部から開口部の内側に向かって突き出す基板押え突起部を少なくとも1つ有するマスクを準備する工程と、マスクの開口部を基板の成膜側表面に対向させて位置決め配置し、マスクの開口部を通して基板上に成膜層を形成する。 A method for manufacturing a photoelectric conversion element according to the present invention includes a step of preparing a substrate to be formed, and a step of preparing a mask having an opening that defines a film formation region, from the periphery of the opening to the opening. Preparing a mask having at least one substrate pressing projection protruding toward the inside of the substrate, positioning the mask opening portion so as to face the film-forming surface of the substrate, and forming the mask on the substrate through the mask opening portion. A film layer is formed.
 本発明によれば、基板とマスクの重なりを確保しつつ、光電変換可能領域をより広くすることができる。 According to the present invention, it is possible to widen the photoelectric conversion possible region while ensuring the overlap between the substrate and the mask.
本発明の実施の形態の光電変換素子を示す図で、(a)は平面図、(b)は断面図、(c)は(b)の拡大図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the photoelectric conversion element of embodiment of this invention, (a) is a top view, (b) is sectional drawing, (c) is an enlarged view of (b). 本発明の実施の形態における基板とマスクとの間の位置関係を示す平面図である。It is a top view which shows the positional relationship between the board | substrate and mask in embodiment of this invention. 図2のCの部分の拡大図である。(a)は平面図、(b)は断面図である。It is an enlarged view of the part of C of FIG. (A) is a top view, (b) is sectional drawing. 本発明の実施の形態の光電変換素子とマスクの関係を用いて、本発明の実施の形態の効果を説明する図である。It is a figure explaining the effect of embodiment of this invention using the relationship between the photoelectric conversion element and mask of embodiment of this invention. 本発明の実施の形態の光電変換素子において、成膜層の切欠部の配置位置と数の例を示す図である。In the photoelectric conversion element of embodiment of this invention, it is a figure which shows the example of the arrangement position and number of the notch part of a film-forming layer.
 以下に、図面を用いて本発明の実施の形態を詳細に説明する。以下で述べる材質、厚さ、寸法、切欠部または突起部の配置位置および数等は、説明のための例示であって、本発明の主旨を外れない範囲で適宜変更が可能である。以下では、全ての図面において対応する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The materials, thicknesses, dimensions, arrangement positions and numbers of notches or protrusions described below are examples for explanation, and can be appropriately changed without departing from the gist of the present invention. In the following, corresponding elements in all drawings are denoted by the same reference numerals, and redundant description is omitted.
 図1は、光電変換素子10を示す図である。光電変換素子10の主面としては、受光面と裏面があるが、(a)は受光面側からみた平面図、(b)は受光面側を紙面の上方側とし裏面側を紙面の下方側とした断面図、(c)は(b)の拡大図である。 FIG. 1 is a diagram showing a photoelectric conversion element 10. The main surface of the photoelectric conversion element 10 includes a light receiving surface and a back surface. (A) is a plan view viewed from the light receiving surface side, and (b) is a light receiving surface side above the paper surface and a back surface side below the paper surface. (C) is an enlarged view of (b).
 光電変換素子10は、太陽光等の光を受光することで正孔および電子の光生成キャリアを生成する。光電変換素子10は、基板12とその上に順次積層される複数の成膜層13を含んで構成される。成膜層13は、基板12の外形よりは小さめの成膜領域に所定の薄膜を堆積させて成膜したもので、その周縁部に、所定の薄膜の堆積がなされない切欠部14を有する。図1では、3つの切欠部14C,14L,14Rが示されている。切欠部14の詳細については後述する。 The photoelectric conversion element 10 generates photogenerated carriers of holes and electrons by receiving light such as sunlight. The photoelectric conversion element 10 includes a substrate 12 and a plurality of film formation layers 13 that are sequentially stacked thereon. The film-forming layer 13 is formed by depositing a predetermined thin film in a film-forming region smaller than the outer shape of the substrate 12, and has a notch 14 on the periphery of which the predetermined thin film is not deposited. In FIG. 1, three notches 14 C , 14 L , and 14 R are shown. Details of the notch 14 will be described later.
 基板12は、結晶性シリコン(c-Si)である。結晶性シリコン以外に、ガリウム砒素(GaAs)、インジウム燐(InP)等の半導体材料を用いることができる。 The substrate 12 is crystalline silicon (c-Si). In addition to crystalline silicon, a semiconductor material such as gallium arsenide (GaAs) or indium phosphorus (InP) can be used.
 成膜層13は、基板12と共に、光電変換素子10を広義のpn接合の構造とする薄膜層である。広義のpn接合の構造としては、結晶性シリコンと非晶質シリコンのヘテロ接合を用いることができる。例えば、基板12をn型単結晶シリコン基板として、基板12の受光面側にp型の成膜層13を形成し、裏面側にn型の成膜層15を形成する。 The film forming layer 13 is a thin film layer that has the substrate 12 and the photoelectric conversion element 10 in a broad pn junction structure. As a pn junction structure in a broad sense, a heterojunction of crystalline silicon and amorphous silicon can be used. For example, assuming that the substrate 12 is an n-type single crystal silicon substrate, a p-type film formation layer 13 is formed on the light receiving surface side of the substrate 12, and an n-type film formation layer 15 is formed on the back surface side.
 受光面側の成膜層13は、基板12であるn型単結晶シリコン基板の受光面側に、i型非晶質シリコン層16と、ボロン(B)等がドープされたp型非晶質シリコン層17と、酸化インジウム(In23)の透光性導電酸化物で構成される透明導電膜(TCO)18を順次積層して得られる。 On the light-receiving surface side of the n-type single crystal silicon substrate, which is the substrate 12, the film-forming layer 13 on the light-receiving surface side is a p-type amorphous material doped with i-type amorphous silicon layer 16, boron (B) and the like. It is obtained by sequentially laminating a silicon layer 17 and a transparent conductive film (TCO) 18 composed of a light-transmitting conductive oxide of indium oxide (In 2 O 3 ).
 裏面側の成膜層15は、基板12であるn型単結晶シリコン基板の裏面側に、基板12であるn型単結晶シリコン基板の受光面側に、i型非晶質シリコン層19と、燐(P)等がドープされたn型非晶質シリコン層20と、透明導電膜21を積層して得られる。 The film-forming layer 15 on the back surface side is formed on the back surface side of the n-type single crystal silicon substrate, which is the substrate 12, and on the light-receiving surface side of the n-type single crystal silicon substrate, which is the substrate 12, It is obtained by laminating an n-type amorphous silicon layer 20 doped with phosphorus (P) or the like and a transparent conductive film 21.
 光電変換素子10は、太陽光等の光を電気に変換する機能を有すれば、これ以外の構造であってもよい。例えば、基板12をp型多結晶シリコン基板とし、その受光面側にn型拡散層を形成し、その裏面側にアルミニウム金属膜を形成した構造でもよい。 The photoelectric conversion element 10 may have a structure other than this as long as it has a function of converting light such as sunlight into electricity. For example, the substrate 12 may be a p-type polycrystalline silicon substrate, an n-type diffusion layer may be formed on the light receiving surface side, and an aluminum metal film may be formed on the back surface side.
 次に、切欠部14について、図2以下を用いて詳細に説明する。切欠部14は、基板12に成膜層13,15を形成するために用いられるマスクに設けられる基板押え突起部に由来し、その基板押え突起部の部分で基板12が覆われることで、基板12に所定の薄膜の堆積がなされない箇所である。 Next, the notch 14 will be described in detail with reference to FIG. The notch portion 14 is derived from a substrate pressing projection provided on a mask used for forming the film forming layers 13 and 15 on the substrate 12, and the substrate 12 is covered with the portion of the substrate pressing projection so that the substrate 12 is a place where a predetermined thin film is not deposited.
 図2は、基板12とマスクとの間の位置決めを示す図で、図3はその拡大図である。図4は、マスクに設けられる基板押え突起部の作用を示す図である。 FIG. 2 is a diagram showing positioning between the substrate 12 and the mask, and FIG. 3 is an enlarged view thereof. FIG. 4 is a diagram illustrating the operation of the substrate pressing protrusion provided on the mask.
 光電変換素子10の製造方法の最初の手順は、基板12を準備する工程である。ここでは、n型単結晶シリコン基板が基板12として準備される。準備された基板12は、成膜装置のトレイ22に位置決めされて配置される。トレイ22は、図2に示した。基板12のトレイ22に対する位置決めと固定には適当な治具を用いることができる。以下では、特に断らない限り、基板12の受光面側に成膜層13を形成する手順について説明するが、同様な手順で、基板12の裏面側に成膜層15を形成することができる。 First step of the method for manufacturing the photoelectric conversion element 10 is a step of preparing the substrate 12. Here, an n-type single crystal silicon substrate is prepared as the substrate 12. The prepared substrate 12 is positioned and arranged on the tray 22 of the film forming apparatus. The tray 22 is shown in FIG. An appropriate jig can be used for positioning and fixing the substrate 12 to the tray 22. Hereinafter, a procedure for forming the film formation layer 13 on the light receiving surface side of the substrate 12 will be described unless otherwise specified. However, the film formation layer 15 can be formed on the back surface side of the substrate 12 by the same procedure.
 次に、マスク30として所定の金属マスクを、基板12に位置決めして配置する。この手順については、マスク30を準備する工程と、準備されたマスク30を基板12の受光面側に位置決めして配置する工程に分けて説明する。 Next, a predetermined metal mask is positioned and arranged on the substrate 12 as the mask 30. This procedure will be described separately for the process of preparing the mask 30 and the process of positioning and arranging the prepared mask 30 on the light receiving surface side of the substrate 12.
 マスク30を準備する工程は、成膜領域を規定する開口部を有するマスクを準備する工程であって、開口部の周縁部から開口部の内側に向かって突き出す基板押え突起部を少なくとも1つ有するマスクを準備する工程である。マスク30は、成膜用マスクである。 The step of preparing the mask 30 is a step of preparing a mask having an opening that defines a film formation region, and has at least one substrate pressing protrusion protruding from the peripheral edge of the opening toward the inside of the opening. This is a step of preparing a mask. The mask 30 is a film forming mask.
 図2に示されるように、マスク30は、4方を枠部31に囲まれた開口部32を有する。開口部32は、次の成膜工程において、所定の薄膜を堆積させる際に、基板12上の成膜領域をこの範囲に規定するための窓部である。開口部32の四隅は斜め形状33とされるが、これは基板12の四隅が斜め形状とされる場合に対応するもので、必ずしも必要ではない。 As shown in FIG. 2, the mask 30 has an opening 32 surrounded by a frame 31 on four sides. The opening 32 is a window for defining a film forming region on the substrate 12 within this range when a predetermined thin film is deposited in the next film forming process. The four corners of the opening 32 have an oblique shape 33, but this corresponds to the case where the four corners of the substrate 12 have an oblique shape, and is not necessarily required.
 マスク30は、開口部32の周縁部から開口部32の内側に向かって突き出す基板押え突起部34を有する。図2の例では、「開口部32の周縁部」とは、枠部31の内側縁部である。「開口部32の内側に向かって」とは、枠部31を切欠く窪みとなる方向ではなく、枠部31の内側縁部が張り出す方向に向かってという意味である。図2の例では、紙面の上方側の枠部31に、紙面の下方側に向かって基板押え突起部34が設けられる。この場合では、紙面の下方側に向かう方向が開口部32の内側に向かう方向である。基板押え突起部34は、枠部31の長手方向に沿って、その中央部に基板押え突起部34Cが設けられ、その左側に基板押え突起部34Lが、その右側に基板押え突起部34Rがそれぞれ設けられる。基板押え突起部34の突出量は、D1として示した。 The mask 30 has a substrate pressing protrusion 34 that protrudes from the peripheral edge of the opening 32 toward the inside of the opening 32. In the example of FIG. 2, “the peripheral edge of the opening 32” is the inner edge of the frame 31. “Toward the inside of the opening 32” means not in the direction of the recess that cuts out the frame 31, but in the direction in which the inner edge of the frame 31 protrudes. In the example of FIG. 2, the substrate pressing protrusion 34 is provided on the frame 31 on the upper side of the paper toward the lower side of the paper. In this case, the direction toward the lower side of the paper surface is the direction toward the inside of the opening 32. Substrate holding projections 34, along the longitudinal direction of the frame portion 31, the substrate holding protrusion 34 C is provided at the center thereof, a substrate holding protrusion 34 L on the left side, the substrate holding projections 34 on the right Each R is provided. The protrusion amount of the substrate pressing protrusion 34 is shown as D1.
 かかるマスク30としては、適当な材料を所定の形状に加工したものを用いることができる。適当な材料としては、金属材料を用いることができ、例えば、ステンレス鋼を用いることができる。所定の形状としては、図2に示すように、多数個の基板12に対し、その基板数に対応する数の開口部32を有する形状とすることができる。これに代えて、1つの開口部32を有する形状として、1枚の基板12に対し1つのマスク30としてもよい。 As such a mask 30, a material obtained by processing an appropriate material into a predetermined shape can be used. As a suitable material, a metal material can be used, for example, stainless steel can be used. As the predetermined shape, as shown in FIG. 2, a plurality of substrates 12 may have a shape having a number of openings 32 corresponding to the number of the substrates. Instead of this, the shape having one opening 32 may be used as one mask 30 for one substrate 12.
 準備されたマスク30を基板12の受光面側に位置決めして配置する工程は、基板12とマスク30の平面図における重なりが、基板12の周縁部に沿って同じ大きさとなるように位置決めされて配置される。図2においては、基板12の周縁部は、マスク30に覆われるので、これを破線で示した。基板12とマスク30の重なりが基板12の周縁部に沿って同じ大きさとは、基板押え突起部34の先端部がマスク30の周縁部の最内側として、枠部31の4辺のいずれにおいても同じという意味である。図3に、この重なりの大きさをD2として示した。 The step of positioning and arranging the prepared mask 30 on the light receiving surface side of the substrate 12 is performed such that the overlap in the plan view of the substrate 12 and the mask 30 is the same size along the peripheral edge of the substrate 12. Be placed. In FIG. 2, the peripheral edge of the substrate 12 is covered with the mask 30, and this is indicated by a broken line. The overlapping of the substrate 12 and the mask 30 has the same size along the peripheral edge of the substrate 12. The tip of the substrate pressing projection 34 is the innermost edge of the peripheral edge of the mask 30 and the four sides of the frame portion 31 are the same. It means the same. In FIG. 3, the magnitude of this overlap is shown as D2.
 図3に示すように、基板押え突起部34が設けられる枠部31では、基板押え突起部34の突出部分を除いて枠部31の周縁部が外側に後退し、その分の領域35だけ、開口部32の開口面積が広がる。開口面積は、光電変換素子10において光電変換可能面積に対応するので、広がった領域35の面積分だけ、光電変換可能領域が拡大する。基板押え突起部34の形状としては、開口部32の一辺の長さLに比べて十分に小さな直径を有する半円形とすることができる。したがって、広がった領域35の面積は、{(開口部32の一辺の長さL)×(基板押え突起部34の突出量D1)}に近い値となる。 As shown in FIG. 3, in the frame portion 31 provided with the substrate pressing projection 34, the peripheral portion of the frame portion 31 recedes outside except for the protruding portion of the substrate pressing projection 34, and only the corresponding region 35 is obtained. The opening area of the opening 32 increases. Since the opening area corresponds to the photoelectric conversion possible area in the photoelectric conversion element 10, the photoelectric conversion possible area is expanded by the area of the expanded area 35. The shape of the substrate pressing projection 34 can be a semicircular shape having a sufficiently small diameter compared to the length L of one side of the opening 32. Therefore, the area of the expanded region 35 is a value close to {(length L of one side of the opening 32) × (projection amount D1 of the substrate pressing projection 34)}.
 このように、開口部32の一辺の長さLに比べて十分に小さな寸法の基板押え突起部34を設けることで、基板12とマスク30の重なりを基板押え突起部34で確保しつつ、広がった領域35の面積分だけ、光電変換可能領域をより広くすることができる。 As described above, by providing the substrate pressing projection 34 having a sufficiently small dimension compared to the length L of one side of the opening 32, the substrate pressing projection 34 spreads while ensuring the overlap between the substrate 12 and the mask 30. The photoelectric conversion possible region can be made wider by the area of the region 35.
 基板12とマスク30の位置決め配置が終わると、次に、成膜処理が行われる。成膜処理は、所定の成膜装置を用いて行われる。一例を挙げると、i型非晶質シリコン層16を堆積させる第1チャンバ、p型非晶質シリコン層17を堆積させる第2チャンバと、透明導電膜18を堆積させる第3チャンバを有するCVD(Chemical Vapor Deposition)装置を用いることができる。 After the positioning of the substrate 12 and the mask 30 is completed, a film forming process is performed next. The film forming process is performed using a predetermined film forming apparatus. For example, a CVD (first chamber in which an i-type amorphous silicon layer 16 is deposited, a second chamber in which a p-type amorphous silicon layer 17 is deposited, and a third chamber in which a transparent conductive film 18 is deposited. (Chemical Vapor Deposition) apparatus can be used.
 3つのチャンバを有するCVD装置を用いる場合には、基板12とマスク30が組み合わされたセットが搭載されたトレイ22を、第1チャンバ、第2チャンバ、第3チャンバを用いて所定の成膜順序に従って順次搬送して、所定の成膜層13を形成する。各チャンバの間にそれぞれ分離チャンバを設け、i型、p型等が入り混じらないようにすることがよい。トレイ22は、基板12とマスク30を水平方向に配置する水平型トレイを用いることができる。これに代えて、基板12とマスク30を鉛直方向に対し平行に配置する垂直型トレイを用いてもよい。 When a CVD apparatus having three chambers is used, a tray 22 on which a set in which the substrate 12 and the mask 30 are combined is mounted on the tray 22 in a predetermined film formation order using the first chamber, the second chamber, and the third chamber. Then, the predetermined film formation layer 13 is formed by sequentially conveying the film. It is preferable to provide a separation chamber between the chambers so that i-type, p-type, etc. are not mixed. As the tray 22, a horizontal tray in which the substrate 12 and the mask 30 are arranged in the horizontal direction can be used. Instead, a vertical tray in which the substrate 12 and the mask 30 are arranged in parallel to the vertical direction may be used.
 基板12の受光面側の成膜層13についての成膜処理が終わると、マスク30が基板12から外される。このとき、基板12の受光面側に形成された成膜層13には、基板押え突起部34に対応して、成膜がなされなかった切欠部14が形成される。この切欠部14の面積分だけ、光電変換可能領域は狭くなるが、切欠部14の形状は基板押え突起部34の形状と同じで、成膜層13の一辺の長さLに比べて十分に小さな直径を有する半円形である。切欠量=突出量=D1である。したがって、光電変換可能領域は、{(成膜層13の一辺の長さL)×(切欠部14の切欠量D1)}に近い値だけ拡大する。 When the film forming process for the film forming layer 13 on the light receiving surface side of the substrate 12 is completed, the mask 30 is removed from the substrate 12. At this time, in the film forming layer 13 formed on the light receiving surface side of the substrate 12, a notched portion 14 that has not been formed is formed corresponding to the substrate pressing protrusion 34. Although the photoelectric conversion area is narrowed by the area of the notch 14, the shape of the notch 14 is the same as the shape of the substrate pressing protrusion 34, which is sufficiently larger than the length L of one side of the film formation layer 13. Semicircular with a small diameter. Notch amount = projection amount = D1. Therefore, the photoelectric conversion possible area is enlarged by a value close to {(length L of one side of the film formation layer 13) × (notch amount D1 of the notch portion 14)}.
 同様な処理内容で、基板12の裏面側の成膜層15についての成膜処理が行われる。これらの成膜処理が完了することで、光電変換素子10が得られる(S14)。 The film forming process is performed on the film forming layer 15 on the back side of the substrate 12 with the same processing contents. The photoelectric conversion element 10 is obtained by completing these film forming processes (S14).
 図5に、基板押え突起部34を設けずに、光電変換可能領域を拡大したときの様子を示す。ここでは、基板押え突起部34を設けずに、基板12とマスク30の重なりの大きさを(D2-D1)としたとする。重なりの大きさがD2である場合に比べ、重なりの大きさを(D2-D1)とすると、光電変換可能領域の拡大量は、{(開口部32の一辺の長さL)×(基板押え突起部34の突出量D1)}である。 FIG. 5 shows a state where the photoelectric conversion possible area is enlarged without providing the substrate pressing projection 34. Here, it is assumed that the size of the overlap between the substrate 12 and the mask 30 is (D2-D1) without providing the substrate pressing projection 34. When the overlap size is (D2−D1) compared to the case where the overlap size is D2, the enlargement amount of the photoelectric conversion possible area is {(length L of one side of the opening 32) × (substrate presser). The protrusion amount D1)} of the protrusion 34.
 図5(a)は、基板12とマスク30が位置決めされた初期状態である。初期状態は常温である。(b)は、成膜処理が行われて、温度が上昇した状態である。マスク30はステンレス鋼製であり、基板12は単結晶シリコンである。ステンレス鋼の線膨張係数と単結晶シリコンの線膨張係数はかなり異なり、ステンレス鋼の方が単結晶シリコンよりも線膨張係数が大きい。 FIG. 5A shows an initial state in which the substrate 12 and the mask 30 are positioned. The initial state is room temperature. (B) shows a state in which the film formation process has been performed and the temperature has increased. The mask 30 is made of stainless steel, and the substrate 12 is single crystal silicon. The linear expansion coefficient of stainless steel and the linear expansion coefficient of single crystal silicon are considerably different, and stainless steel has a larger linear expansion coefficient than single crystal silicon.
 常温状態である図4(a)のときは、基板12とマスク30との重なりの大きさは(D2-D1)であるので、基板12がマスク30から外れることがない。高温状態である図5(a)のときは、線膨張係数の小さい基板12はほとんど変形しないが、線膨張係数が大きいマスク30は、温度に応じて変形する。例えば、マスク30が基板12に対し浮く方向に変形すると、基板12とマスク30の重なりの大きさは(D2-D1)よりも小さくなる。そして、重なりの大きさがゼロになると、基板12はマスク30によって押えられた状態から自由状態となり、特に垂直型トレイを用いた場合にあっては、基板12がマスク30から外れることが生じ得る。 In FIG. 4A in the room temperature state, the size of the overlap between the substrate 12 and the mask 30 is (D2-D1), so that the substrate 12 is not detached from the mask 30. In the case of FIG. 5A in a high temperature state, the substrate 12 having a small linear expansion coefficient is hardly deformed, but the mask 30 having a large linear expansion coefficient is deformed according to the temperature. For example, when the mask 30 is deformed in a floating direction with respect to the substrate 12, the size of the overlap between the substrate 12 and the mask 30 becomes smaller than (D2-D1). When the size of the overlap becomes zero, the substrate 12 is brought into a free state from the state of being pressed by the mask 30. In particular, when the vertical tray is used, the substrate 12 may be detached from the mask 30. .
 このように、光電変換可能面積を増やすために単に枠部31の周縁部を外側に後退させると、重なりの大きさが減少する。例えば、重なりの大きさが(D2-D1)となり、高温下では、基板12がマスク30から外れることが生じ得る。これに対し、基板押え突起部34を設けると、基板12とマスク30の重なりを基板押え突起部34で確保することができ、高温下でも基板12がマスク30から外れることが抑制される。また、開口部32の一辺の長さLに比べて十分に小さな寸法の基板押え突起部34を設けるものとすることで、光電変換可能領域をより広くすることが出来る。 Thus, when the peripheral edge of the frame 31 is simply retracted outward in order to increase the photoelectric conversion possible area, the size of the overlap is reduced. For example, the size of the overlap is (D2-D1), and the substrate 12 may be detached from the mask 30 at a high temperature. On the other hand, when the substrate pressing projection 34 is provided, the substrate pressing projection 34 can ensure the overlap between the substrate 12 and the mask 30, and the substrate 12 is prevented from being detached from the mask 30 even at high temperatures. Further, by providing the substrate pressing protrusion 34 having a sufficiently small size compared to the length L of one side of the opening 32, the photoelectric conversion possible region can be further widened.
 切欠部14は、マスク30の基板押え突起部34に由来するが、温度上昇によって基板12とマスク30の重なりが減少して基板12がマスク30から外れやすい箇所は、マスク30の枠部31の延びる方向の中央部である。したがって、基板押え突起部34Cをまず設け、必要に応じその左右に基板押え突起部34L,34Rを設けることがよい。基板12がマスク30から外れないようにするために必要な基板押え突起部34を設けた上で、さらに基板押え突起部34を設けても、基板押え突起部34の寸法は、開口部32の一辺の長さLに比べて十分に小さいので、光電変換可能領域はほとんど変化しない。 The notch portion 14 is derived from the substrate pressing projection 34 of the mask 30, but the portion where the substrate 12 and the mask 30 are likely to come off from the mask 30 due to a decrease in temperature due to a rise in temperature is located on the frame portion 31 of the mask 30. It is a central part in the extending direction. Therefore, it is preferable to provide the substrate pressing protrusions 34 C first, and if necessary, the substrate pressing protrusions 34 L and 34 R on the left and right sides thereof. Even if the substrate pressing projection 34 is provided after providing the substrate pressing projection 34 necessary to prevent the substrate 12 from being removed from the mask 30, the dimension of the substrate pressing projection 34 is the same as that of the opening 32. Since it is sufficiently smaller than the length L of one side, the photoelectric conversion possible region hardly changes.
 そこで、基板押え突起部34の数または周縁部に沿った配置位置を、成膜層13の成膜予定履歴に応じて設定するものとすることで、成膜層13の切欠部14の数または周縁部に沿った配置位置は、成膜層13の成膜履歴に応じたものとなる。成膜層13に形成される切欠部14は、識別可能なマークであるので、これを用いて成膜処理状態の追跡マークとして利用することができる。 Therefore, the number of the substrate pressing protrusions 34 or the arrangement position along the peripheral edge is set in accordance with the scheduled film formation history of the film formation layer 13, so that the number of the notches 14 in the film formation layer 13 or The arrangement position along the peripheral edge corresponds to the film formation history of the film formation layer 13. Since the notch 14 formed in the film forming layer 13 is an identifiable mark, it can be used as a tracking mark for the film forming process state.
 図5は、成膜層13の切欠部の配置位置と数の例を示す図である。図5(a)から(d)は、成膜層13の上辺に切欠部14を設ける例で、(a)には切欠部14Cのみが設けられ、(b)には切欠部14Cと切欠部14Rが設けられ、(c)には切欠部14Lと切欠部14Cが設けられ、(d)には切欠部14Lと切欠部14Cと切欠部14Rが設けられる。ここで、基板12がマスク30から外れないようにするには切欠部14Cのみで十分であるとすると、切欠部14Lの有無、切欠部14Rの有無で、4種類の状態を区別できる。 FIG. 5 is a diagram illustrating an example of the arrangement position and the number of notches in the film formation layer 13. Figure 5 (a) (d) is an example of the upper side of the film formation layer 13 is provided a notch 14, in (a) is provided only notch 14 C, and the notch portion 14 C in (b) A notch 14 R is provided, (c) is provided with a notch 14 L and a notch 14 C , and (d) is provided with a notch 14 L , a notch 14 C, and a notch 14 R. Here, if only the notch 14 C is sufficient to prevent the substrate 12 from being removed from the mask 30, the four types of states can be distinguished by the presence or absence of the notch 14 L and the presence or absence of the notch 14 R. .
 すなわち、切欠部14Lの有無を1bit目の1と0で示し、切欠部14Lの有無を2ビット目の1と0で示すことにすると、図6(a)は、(00)の状態、(b)は(01)の状態、(c)は(10)の状態、(d)は(11)の状態を示す。この4つの状態の区別を利用して、成膜層の種類区別、成膜装置の区別、成膜装置内の基板配置位置及び成膜日時等を示すものとできる。 That is, the presence or absence of the cutout portions 14 L shown in 1 and 0 1bit th, the presence of notch 14 L 1 of the second bit and when to be indicated by 0, FIG. 6 (a), the state (00) , (B) shows the state of (01), (c) shows the state of (10), and (d) shows the state of (11). By using the distinction between the four states, it is possible to indicate the kind of the film formation layer, the distinction between the film formation apparatuses, the substrate arrangement position in the film formation apparatus, the film formation date and time, and the like.
 例えば、4種類の成膜装置がある場合、1ビット目と2ビット目の2つを用いて4種類を区別できる。また、i型非晶質シリコン層16,19と、p型非晶質シリコン層17と、n型非晶質シリコン層20と、透明導電膜18,21の4種類の膜種類を1ビット目と2ビット目の2つを用いて区別できる。あるいは、1ビット目を2種類の成膜装置の区別、2ビット目を成膜装置内の基板配置の区別に割り当てることもできる。また、1ビット目と2ビット目の2つを用いて、4種類の成膜日時を区別することができる。 For example, when there are four types of film forming apparatuses, the four types can be distinguished using the first bit and the second bit. In addition, four types of films, i-type amorphous silicon layers 16 and 19, p-type amorphous silicon layer 17, n-type amorphous silicon layer 20, and transparent conductive films 18 and 21, are set in the first bit. Can be distinguished using two of the second bit. Alternatively, the first bit can be assigned to distinguish between two types of film forming apparatuses, and the second bit can be assigned to distinguish the substrate arrangement in the film forming apparatus. Also, four types of film formation dates and times can be distinguished by using two of the first bit and the second bit.
 図5(e)から(h)は、切欠部14が成膜層13の上辺以外の辺にも設けられる例を示す図である。(e)には、成膜層13の上辺と下辺に切欠部14が設けられ、(f)には、成膜層13の上辺と左辺に切欠部14が設けられ、(g)には、成膜層13の左斜め上部の辺に切欠部14が設けられ、(h)には、成膜層13の上辺と下辺と左辺と右辺に切欠部14が設けられる。このように切欠部14を成膜層13の上辺以外の辺にも設けることで、図5(a)から(d)において4状態が区別できたことに比較し、はるかに大きなビット数の設定が可能になる。 FIGS. 5E to 5H are diagrams illustrating an example in which the notch portion 14 is provided on a side other than the upper side of the film formation layer 13. In (e), notches 14 are provided on the upper side and lower side of the film-forming layer 13, and (f) is provided with notches 14 on the upper side and the left side of the film-forming layer 13. Cutouts 14 are provided on the upper left side of the film formation layer 13, and cutouts 14 are provided on the upper side, lower side, left side, and right side of the film formation layer 13 in (h). By providing the notches 14 on the sides other than the upper side of the film formation layer 13 in this way, a much larger number of bits is set as compared with the fact that the four states can be distinguished in FIGS. Is possible.
 上記では、積層される複数の薄膜層に共通の位置に基板押え突起部34を設け、これに対応して積層される複数の薄膜層に共通の位置に切欠部14が形成されるものとした。これに代えて、薄膜毎に基板押え突起部34の配置位置を変更し、これに対応して薄膜毎に異なる位置に切欠部14が形成されるものとしてもよい。 In the above description, it is assumed that the substrate pressing projection 34 is provided at a position common to a plurality of thin film layers to be stacked, and the notch 14 is formed at a position common to the plurality of thin film layers stacked corresponding thereto. . Instead of this, the arrangement position of the substrate pressing projection 34 may be changed for each thin film, and the cutout portion 14 may be formed at a different position for each thin film correspondingly.
 このように、基板押え突起部34の数と配置位置を適当に設定することで、基板12をマスク30で押えるための基板12とマスク30の重なりを確保し、光電変換可能領域を拡大し、基板押え突起部34に対応する成膜層13の切欠部14を用いて成膜処理の成膜履歴を追跡することができる。 Thus, by appropriately setting the number and arrangement position of the substrate pressing protrusions 34, the overlapping of the substrate 12 and the mask 30 for pressing the substrate 12 with the mask 30 is ensured, the photoelectric conversion possible area is expanded, The film forming history of the film forming process can be traced using the notch 14 of the film forming layer 13 corresponding to the substrate pressing protrusion 34.
 10 光電変換素子、12 基板、13,15 成膜層、14,14C,14L,14R 切欠部、16,19 i型非晶質シリコン層、17 p型非晶質シリコン層、18,21 透明導電膜、20 n型非晶質シリコン層、22 トレイ、30 マスク、31 枠部、32 開口部、33 斜め形状、34,34C,34L,34R 突起部、35 領域。 DESCRIPTION OF SYMBOLS 10 Photoelectric conversion element, 12 Substrate, 13, 15 Film-forming layer, 14, 14 C , 14 L , 14 R notch, 16, 19 i-type amorphous silicon layer, 17 p-type amorphous silicon layer, 18, 21 transparent conductive film, 20 n-type amorphous silicon layer, 22 tray, 30 mask, 31 frame, 32 opening, 33 oblique shape, 34, 34 C , 34 L , 34 R protrusion, 35 region.

Claims (7)

  1.  基板と、
     基板に堆積された成膜層であって、堆積がなされない切欠部を少なくとも1つ周縁部に有する成膜層と、
     を備える光電変換素子。
    A substrate,
    A film-forming layer deposited on the substrate, the film-forming layer having at least one notch that is not deposited on the periphery;
    A photoelectric conversion element comprising:
  2.  請求項1に記載の光電変換素子において、
     切欠部の数または周縁部に沿った配置位置は、成膜層の成膜履歴に応じて設定される、光電変換素子。
    The photoelectric conversion element according to claim 1,
    The number of the cutout portions or the arrangement position along the peripheral portion is a photoelectric conversion element that is set according to the film formation history of the film formation layer.
  3.  請求項2に記載の光電変換素子において、
     切欠部の数または周縁部に沿った配置位置は、成膜層の種類区別、成膜装置の区別、成膜装置内の基板配置位置及び成膜日時の少なくとも1つに基づいて設定される、光電変換素子。
    The photoelectric conversion element according to claim 2,
    The number of notches or the arrangement position along the peripheral edge is set based on at least one of the types of film formation layers, the film formation apparatus, the substrate arrangement position in the film formation apparatus, and the film formation date and time. Photoelectric conversion element.
  4.  請求項1に記載の光電変換素子において、
     切欠部は、受光面側の成膜層に設けられる、光電変換素子。
    The photoelectric conversion element according to claim 1,
    The notch is a photoelectric conversion element provided in the film formation layer on the light receiving surface side.
  5.  請求項1に記載の光電変換素子において、
     基板は単結晶シリコン基板であり
     成膜層は、アモルファスシリコン層、透明導電膜層及びパッシベーション層の少なくとも1つである、光電変換素子。
    The photoelectric conversion element according to claim 1,
    The photoelectric conversion element, wherein the substrate is a single crystal silicon substrate, and the film formation layer is at least one of an amorphous silicon layer, a transparent conductive film layer, and a passivation layer.
  6.  成膜対象の基板を準備する工程と、
     成膜領域を規定する開口部を有するマスクを準備する工程であって、開口部の周縁部から開口部の内側に向かって突き出す基板押え突起部を少なくとも1つ有するマスクを準備する工程と、
     マスクの開口部を基板の成膜側表面に対向させて位置決め配置し、
     マスクの開口部を通して基板上に成膜層を形成する、光電変換素子の製造方法。
    Preparing a substrate to be deposited; and
    A step of preparing a mask having an opening that defines a film formation region, the step of preparing a mask having at least one substrate pressing protrusion protruding from the peripheral edge of the opening toward the inside of the opening;
    Positioned and positioned with the opening of the mask facing the deposition side surface of the substrate,
    A method for manufacturing a photoelectric conversion element, wherein a film formation layer is formed on a substrate through an opening of a mask.
  7.  請求項6の光電変換素子の製造方法において、
     マスクは、成膜層の成膜予定履歴に応じて数または周縁部に沿った配置位置が設定される少なくとも1つの押え突起部を有する、光電変換素子の製造方法。
    In the manufacturing method of the photoelectric conversion element of Claim 6,
    The method for manufacturing a photoelectric conversion element, wherein the mask has at least one pressing projection whose number or arrangement position along the peripheral edge is set according to a deposition schedule history of the deposition layer.
PCT/JP2014/004208 2013-08-21 2014-08-18 Photoelectric conversion element and method for manufacturing photoelectric conversion element WO2015025510A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-171155 2013-08-21
JP2013171155 2013-08-21

Publications (1)

Publication Number Publication Date
WO2015025510A1 true WO2015025510A1 (en) 2015-02-26

Family

ID=52483305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004208 WO2015025510A1 (en) 2013-08-21 2014-08-18 Photoelectric conversion element and method for manufacturing photoelectric conversion element

Country Status (1)

Country Link
WO (1) WO2015025510A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145944A1 (en) * 2014-03-25 2015-10-01 パナソニックIpマネジメント株式会社 Photoelectric conversion element and photoelectric conversion element manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104512A (en) * 2010-11-05 2012-05-31 Sharp Corp Thin film solar cell module and method of manufacturing the same
WO2012090640A1 (en) * 2010-12-29 2012-07-05 三洋電機株式会社 Solar cell, solar cell module, and production method for solar cell module
JP2013118351A (en) * 2011-10-31 2013-06-13 Mitsubishi Electric Corp Manufacturing apparatus for solar cell, solar cell, and manufacturing method for solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012104512A (en) * 2010-11-05 2012-05-31 Sharp Corp Thin film solar cell module and method of manufacturing the same
WO2012090640A1 (en) * 2010-12-29 2012-07-05 三洋電機株式会社 Solar cell, solar cell module, and production method for solar cell module
JP2013118351A (en) * 2011-10-31 2013-06-13 Mitsubishi Electric Corp Manufacturing apparatus for solar cell, solar cell, and manufacturing method for solar cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015145944A1 (en) * 2014-03-25 2015-10-01 パナソニックIpマネジメント株式会社 Photoelectric conversion element and photoelectric conversion element manufacturing method

Similar Documents

Publication Publication Date Title
US9257592B2 (en) Translucent solar cell and manufacturing method thereof
US9236505B2 (en) Solar cell and method for manufacturing the same
EP3018719B1 (en) Solar cell and method for manufacturing the same
US20160268454A1 (en) Solar Cell and Method for Manufacturing Same
JP6125594B2 (en) Method for manufacturing photoelectric conversion device
US20120186638A1 (en) Photoelectric conversion element and solar cell
JP2018085509A (en) Solar cell and manufacturing method of the same
JP2020098929A (en) Solar cell and method for manufacturing the same
JP2007227786A (en) Solar cell string and solar cell module
KR20090005872A (en) Solar cell and method of manufacturing the same
US20120264253A1 (en) Method of fabricating solar cell
US20100159633A1 (en) Method of manufacturing photovoltaic device
WO2015025510A1 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
KR102387611B1 (en) Solar cell and method for manufacturing the same
US9153725B2 (en) Solar cell and manufacturing method thereof
JPWO2011030729A1 (en) Solar cell module
JP2014183073A (en) Photoelectric conversion element and method of manufacturing photoelectric conversion element
TW202111459A (en) Large-size thin-film deposition substrate and method for manufacturing same, segmented thin-film deposition substrate and method for manufacturing same, and production management method and production management system thereof
JP2017152604A (en) Solar cell element and solar cell module
JP2010177655A (en) Method for manufacturing back junction type solar cell
KR101480924B1 (en) Method for fabricating solar cell using MOMBE and solar cell thereof
US20110284056A1 (en) Solar cell having reduced leakage current and method of manufacturing the same
JP6726890B2 (en) Solar cell manufacturing method and solar cell
JP2005268547A (en) Photoelectric converter
TWI718803B (en) Electrode structure and solar cell structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838132

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14838132

Country of ref document: EP

Kind code of ref document: A1