JP2010177655A - Method for manufacturing back junction type solar cell - Google Patents

Method for manufacturing back junction type solar cell Download PDF

Info

Publication number
JP2010177655A
JP2010177655A JP2009035855A JP2009035855A JP2010177655A JP 2010177655 A JP2010177655 A JP 2010177655A JP 2009035855 A JP2009035855 A JP 2009035855A JP 2009035855 A JP2009035855 A JP 2009035855A JP 2010177655 A JP2010177655 A JP 2010177655A
Authority
JP
Japan
Prior art keywords
electrode
conductivity type
solar cell
silicon substrate
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009035855A
Other languages
Japanese (ja)
Inventor
Fumimasa Yo
文昌 葉
Shoon Ko
祥恩 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009035855A priority Critical patent/JP2010177655A/en
Publication of JP2010177655A publication Critical patent/JP2010177655A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive method for manufacturing a back junction type solar cell having high pn electrode resolution, thin substrate correspondence, and low temperature manufacturing processes. <P>SOLUTION: One conductivity silicon region and its electrode are formed by combination of a low temperature sputter epitaxial deposition method and a shielding mask, and then, the another conductivity silicon region and its electrode are formed by self-aligning technique. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光入射面と反対の面にPN接合が形成された裏面接合型太陽電池に関し、シリコン基板上に基板と異なる導電型または不純物濃度の領域を形成する際に、遮蔽マスクを利用したスパッタエピタキシャル堆積法によって従来のフォトリソグラフィ工程もしくは印刷工程を代替することによって製造コストを低減しなおかつ効率を向上できる裏面接合型太陽電池の製造方法に関する。The present invention relates to a back-junction solar cell in which a PN junction is formed on a surface opposite to a light incident surface, and a shielding mask is used when a region having a conductivity type or impurity concentration different from that of a substrate is formed on a silicon substrate. The present invention relates to a method for manufacturing a back junction solar cell that can reduce the manufacturing cost and improve the efficiency by substituting a conventional photolithography process or printing process by a sputter epitaxial deposition method.

まず最初に、本明細書で使用する単語について説明しておく。本明細書においては、原則として「遮蔽マスク」とは開口部が形成されているシートのことであり、スパッタや蒸着等の真空堆積では開口部の形状通りにパターン化された膜が堆積される。また「真空堆積」とは、堆積時圧力が40mTorr以下、望ましくは10mTorr以下の真空度で蒸着やスパッタ法を用いて膜を堆積することを指す。First, the words used in this specification will be described. In this specification, in principle, a “shielding mask” is a sheet in which an opening is formed. In vacuum deposition such as sputtering or vapor deposition, a film patterned according to the shape of the opening is deposited. . “Vacuum deposition” refers to depositing a film by vapor deposition or sputtering at a vacuum pressure of 40 mTorr or less, preferably 10 mTorr or less.

近年、大気中のCOの増加のような地球環境問題などからクリーンなエネルギの開発が望まれており、特に太陽電池を用いた再生エネルギが新しいエネルギ源として開発、実用化され、発展の道を歩んでいる。In recent years, development of clean energy has been desired due to global environmental problems such as an increase in CO 2 in the atmosphere, and in particular, renewable energy using solar cells has been developed and put into practical use as a new energy source, and the path of development Is walking.

現在工業的に大量に生産されている太陽電池の殆どは、単結晶もしくは多結晶シリコン基板を用いたものである。これはシリコン材料が比較的安いことと、無毒であることと、変換効率が高いことによる。しかしながら、太陽電池の発電コストは火力発電と比べるとまだ高く、それが太陽電池が普及する上でのネックとなっている。発電コストを下げるには、太陽電池の発電効率を上げると同時に製造コストを下げる必要がある。Currently, most of the solar cells that are industrially produced in large quantities use single crystal or polycrystalline silicon substrates. This is due to the relatively cheap silicon material, non-toxicity and high conversion efficiency. However, the power generation cost of solar cells is still higher than that of thermal power generation, which is a bottleneck in the spread of solar cells. In order to reduce the power generation cost, it is necessary to increase the power generation efficiency of the solar cell and at the same time reduce the manufacturing cost.

発電効率を上げる観点から言えば、シリコン基板の受光面には電極を形成せず、シリコン基板の裏面にpn接合を形成するいわゆる裏面接合型太陽電池が開発されている。裏面接合型太陽電池は一般的に受光面に電極を有しないことから、電極による損失がなく、従来のシリコン基板の受光面に電極を有する太陽電池と比べて高い出力を得ることができる。From the viewpoint of increasing power generation efficiency, a so-called back junction solar cell has been developed in which an electrode is not formed on the light receiving surface of a silicon substrate, but a pn junction is formed on the back surface of the silicon substrate. Since a back junction solar cell generally does not have an electrode on the light receiving surface, there is no loss due to the electrode, and a higher output can be obtained compared to a solar cell having an electrode on the light receiving surface of a conventional silicon substrate.

裏面接合型太陽電池の製造方法の典型的な例として印刷法による裏面接合型太陽電池の製造方法を示した特許文献1がある。しかし印刷法の問題点としては、パターンの精密度と複数パターン間の位置合わせ精度がある。
特開2007−088254号公報
There exists patent document 1 which showed the manufacturing method of the back junction type solar cell by the printing method as a typical example of the manufacturing method of a back junction type solar cell. However, there are problems with the printing method, such as the precision of patterns and the alignment accuracy between multiple patterns.
JP 2007-088254 A

一般的に印刷法で形成きる最小パターンはおおよそ0.1mm、更に位置合わせ精度を0.1mmとする。この精密度と精度の限界により、裏面に形成されるp型領域とn型領域の間隔はこの位置合わせ精度を仮定した場合で0.5mm程度となる。しかしpn電極間の間隔がこれほど長いとキャリアが途中で再結合する確率が高くなるので、変換効率は低下してしまう。変換効率を上げるためにはキャリア拡散距離が長いFZ基板(浮遊帯溶融(floating zone melting)法により製造される基板)を使うことができるが、しかしこの基板は従来のCz基板(チョクラルスキー(Czochralski)法により製造される基板)と比べると格段に高い。従って効率は向上するが、コストは高くなるとの問題は残る。従来のCz基板で効率を上げるためには、pn櫛型電極の間隔を狭くする工夫が必要である。Generally, the minimum pattern that can be formed by printing is approximately 0.1 mm, and the alignment accuracy is 0.1 mm. Due to the limit of precision and accuracy, the distance between the p + type region and the n + type region formed on the back surface is about 0.5 mm when this alignment accuracy is assumed. However, if the interval between the pn electrodes is so long, the probability that carriers are recombined in the middle increases, and the conversion efficiency decreases. In order to increase the conversion efficiency, an FZ substrate having a long carrier diffusion distance (a substrate manufactured by a floating zone melting method) can be used, but this substrate is a conventional Cz substrate (Czochralski ( Compared with the substrate manufactured by the Czochralski method). Therefore, efficiency is improved, but the problem of high cost remains. In order to increase the efficiency of the conventional Cz substrate, it is necessary to devise a method for narrowing the interval between the pn comb electrodes.

続いて製造コストを下げる観点から言えば、基板を薄くすることで使用材料を減らすことができる。しかし基板を150μm以下にすれば、現在のスクリーン印刷法による電極の形成工程では、基板が割れやすくなり、結局歩留まりが下がってコスト増になってしまう。150μm以下の基板を扱うには、すべてのプロセスを真空堆積法により太陽電池を作製する方法が望まれている。Subsequently, from the viewpoint of lowering the manufacturing cost, the material used can be reduced by making the substrate thinner. However, if the substrate is made 150 μm or less, in the current electrode forming process by the screen printing method, the substrate is likely to be cracked, resulting in a decrease in yield and an increase in cost. In order to handle a substrate of 150 μm or less, a method of manufacturing a solar cell by vacuum deposition is desired for all processes.

また、従来の太陽電池作製プロセスでは900℃に近い熱拡散方式を使ってp型シリコン領域とn型シリコン領域を形成させている。この高温プロセスではシリコン基板に熱による応力がかかって、キャリアライフタイムが下がってしまい、結果として効率が下がるという問題があった。In the conventional solar cell manufacturing process, the p + type silicon region and the n + type silicon region are formed using a thermal diffusion method close to 900 ° C. In this high-temperature process, there is a problem that stress due to heat is applied to the silicon substrate and the carrier lifetime is lowered, resulting in a reduction in efficiency.

発明が解決しようとする課題Problems to be solved by the invention

これまで裏面接合型太陽電池のpn櫛型電極高解像度化、基板薄型化への対応、低温作製プロセス化、を低い製造コストで実現できる裏面接合型太陽電池の製造方法がなかった。Until now, there has been no method for manufacturing a back-junction solar cell that can realize high resolution of the pn comb-shaped electrode of the back-junction solar cell, support for substrate thinning, and low-temperature fabrication process at a low manufacturing cost.

本発明の目的は、低温スパッタエピタキシャル堆積法と遮蔽マスクの組み合わせによって、フォトリソグラフィ工程または印刷工程を用いない低コストで且つ高効率の裏面接合型太陽電池の製造方法を提供することにある。An object of the present invention is to provide a low-cost and high-efficiency manufacturing method of a back-junction solar cell that does not use a photolithography process or a printing process by combining a low-temperature sputter epitaxial deposition method and a shielding mask.

課題を解決するための手段Means for solving the problem

本発明はシリコン基板上の受光面ではない方の裏面に第一導電型シリコン領域と第二導電型シリコン領域と第一電極と第二電極を形成した裏面接合型太陽電池の製造方法において、前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法を用いて形成することを特徴とする、太陽電池の製造方法である。The present invention provides a method for manufacturing a back junction solar cell in which a first conductivity type silicon region, a second conductivity type silicon region, a first electrode, and a second electrode are formed on the back surface of the silicon substrate that is not the light receiving surface. At least one of the first conductivity type silicon region and the second conductivity type silicon region is formed using a sputter epitaxial deposition method.

スパッタエピタキシャル堆積法では堆積温度が300℃以下であるので(非特許文献1参照)、従来の拡散法による接合形成温度の900℃よりも600℃も低く、長いキャリアライフタイムが維持できる。Since the deposition temperature is 300 ° C. or lower in the sputter epitaxial deposition method (see Non-Patent Document 1), the junction formation temperature by the conventional diffusion method is lower by 600 ° C., and a long carrier lifetime can be maintained.

Electrochem.Solid−State Lett.,12,p.H67(2009)。Electrochem. Solid-State Lett. , 12, p. H67 (2009).

本発明のもうひとつの特徴として前記スパッタエピタキシャル堆積法を用いて形成する第一導電型シリコン領域とは、シリコン基板上に固定された遮蔽マスクを通して第一導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して第一電極を真空堆積する工程とを備えることを特徴とする。As another feature of the present invention, the first conductivity type silicon region formed using the sputter epitaxial deposition method is a step of sputter epitaxial depositing the first conductivity type silicon region through a shielding mask fixed on a silicon substrate; And vacuum depositing the first electrode through a shielding mask fixed on the silicon substrate.

前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法で形成する太陽電池の製造方法とは、シリコン基板上に固定された遮蔽マスクを通して第一導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して第一電極を真空堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程と、遮蔽マスクを外す工程と、露出しているシリコン基板に第二導電型シリコン領域をスパッタエピタキシャル堆積する工程と、第二導電型シリコン領域上に第二電極を形成する工程と、を備えることを特徴とする太陽電池の製造方法である。A method of manufacturing a solar cell in which at least one of the first conductivity type silicon region and the second conductivity type silicon region is formed by a sputter epitaxial deposition method is the first conductivity type silicon region through a shielding mask fixed on a silicon substrate. Sputter epitaxial depositing, vacuum depositing the first electrode through a shielding mask fixed on the silicon substrate, vacuum depositing an insulating film through the shielding mask fixed on the silicon substrate, shielding A step of removing the mask, a step of sputter epitaxially depositing a second conductivity type silicon region on the exposed silicon substrate, and a step of forming a second electrode on the second conductivity type silicon region. This is a method for manufacturing a solar cell.

前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法で形成する太陽電池の製造方法とは、シリコン基板上に固定された遮蔽マスクを通して第一電極としてのアルミ膜を真空堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程と、前記遮蔽マスクを外す工程と、露出している前記シリコン基板に第二導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記第二導電型シリコン領域上に第二電極を形成する工程と、熱処理することにより前記アルミ膜と前記シリコン基板の界面に第一導電型シリコン領域としてのp型シリコン領域を形成する工程と、を備えることを特徴とする太陽電池の製造方法である。A method of manufacturing a solar cell in which at least one of the first conductivity type silicon region and the second conductivity type silicon region is formed by a sputter epitaxial deposition method includes: an aluminum as a first electrode through a shielding mask fixed on a silicon substrate; A step of vacuum-depositing a film, a step of vacuum-depositing an insulating film through a shielding mask fixed on the silicon substrate, a step of removing the shielding mask, and a second conductivity type silicon region on the exposed silicon substrate. And a step of forming a second electrode on the second conductivity type silicon region, and p + as a first conductivity type silicon region at the interface between the aluminum film and the silicon substrate by heat treatment. And a step of forming a mold-type silicon region.

また第一導電型シリコン領域をスパッタエピタキシャル成長してから第一電極を堆積する代わりに、シリコン基板上に固定された遮蔽マスクを通して第一電極としてのアルミ膜を真空堆積してから熱処理することによりアルミ膜とシリコン基板の界面に第一導電型シリコン領域としてのp型領域を形成する方法にしてもよい。Also, instead of depositing the first electrode after sputter epitaxial growth of the first conductivity type silicon region, the aluminum film as the first electrode is vacuum deposited through a shielding mask fixed on the silicon substrate and then heat-treated. A method of forming a p + type region as a first conductivity type silicon region at the interface between the film and the silicon substrate may be employed.

第一電極と第一電極外部接続電極は電気的に接触する必要があるが、そのためには第一電極上に絶縁膜を形成する工程で第一電極の一部を露出させる必要がある。これは前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程で、前記第一電極の一部を遮蔽する第一遮蔽板を通して絶縁膜を真空堆積することで第一遮蔽板で遮蔽された部分に第一電極は露出する。The first electrode and the first electrode external connection electrode need to be in electrical contact. For this purpose, it is necessary to expose a part of the first electrode in the step of forming an insulating film on the first electrode. This is a step of vacuum-depositing an insulating film through a shielding mask fixed on the silicon substrate. The first shielding plate is formed by vacuum-depositing an insulating film through a first shielding plate that shields a part of the first electrode. The first electrode is exposed at the shielded portion.

露出しているシリコン基板の一部に第二導電型シリコン領域をスパッタエピタキシャル堆積する工程においては、堆積する前記第二導電型シリコン領域と前記第一電極の露出部の短絡を避けるために、前記第一電極の露出部分を完全に遮蔽できる第二遮蔽板を通してなされる。In the step of sputter epitaxial depositing the second conductivity type silicon region on a part of the exposed silicon substrate, in order to avoid short circuit between the second conductivity type silicon region to be deposited and the exposed portion of the first electrode, This is done through a second shielding plate that can completely shield the exposed portion of the first electrode.

前記第二導電型シリコン領域上に第二電極を形成する工程では、前記第二遮蔽板により形成された第二導電型シリコン膜の境目を完全に遮蔽する第三遮蔽板を通して電極材料を真空堆積することで、第二導電型シリコン領域上に第二電極を形成すると同時に第一電極の外部接続電極を形成する。In the step of forming the second electrode on the second conductivity type silicon region, the electrode material is vacuum deposited through the third shield plate that completely shields the boundary of the second conductivity type silicon film formed by the second shield plate. As a result, the second electrode is formed on the second conductivity type silicon region, and at the same time, the external connection electrode of the first electrode is formed.

また前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法で形成する太陽電池の製造方法とは、シリコン基板上に固定された遮蔽マスクを通して第一導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して第一電極を真空堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程と、遮蔽マスクを外す工程と、露出しているシリコン基板に第二電極としてアルミ膜を真空堆積する工程と、第一電極の外部接続電極を形成する工程と、熱処理することでアルミ膜とシリコン基板の界面に第二導電型シリコンとしてのp型領域を形成する工程からなる太陽電池の製造方法である。Further, a method for manufacturing a solar cell in which at least one of the first conductivity type silicon region and the second conductivity type silicon region is formed by a sputter epitaxial deposition method includes: a first conductivity type silicon through a shielding mask fixed on a silicon substrate; Sputter epitaxial depositing the region; vacuum depositing the first electrode through a shielding mask fixed on the silicon substrate; vacuum depositing an insulating film through the shielding mask fixed on the silicon substrate; Removing the shielding mask; vacuum depositing an aluminum film as a second electrode on the exposed silicon substrate; forming an external connection electrode of the first electrode; and heat-treating the aluminum film and the silicon substrate. This is a method for manufacturing a solar cell comprising a step of forming a p + type region as second conductivity type silicon at the interface.

ここでも第一電極と第一電極外部接続電極は電気的に接触する必要があるが、そのためには第一電極上に絶縁膜を形成する工程で第一電極の一部を露出させる必要がある。これは前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程で、前記第一電極の一部を遮蔽する第一遮蔽板を通して絶縁膜を真空堆積する。Here again, the first electrode and the first electrode external connection electrode need to be in electrical contact. For this purpose, it is necessary to expose a part of the first electrode in the step of forming an insulating film on the first electrode. . This is a process of vacuum-depositing an insulating film through a shielding mask fixed on the silicon substrate. The insulating film is vacuum-deposited through a first shielding plate that shields a part of the first electrode.

露出しているシリコン基板の一部に第二電極としてアルミ膜を真空堆積する工程では、第一電極と第二電極の短絡を避けるために、前記第一電極の露出する部分を完全に遮蔽する第二遮蔽板を通してアルミを真空堆積する。In the step of vacuum depositing an aluminum film as a second electrode on a part of the exposed silicon substrate, the exposed portion of the first electrode is completely shielded in order to avoid a short circuit between the first electrode and the second electrode. Aluminum is vacuum deposited through the second shielding plate.

第一電極の外部接続電極を形成する工程では、前記第二遮蔽板により形成されたアルミ電極の境目を完全に遮蔽する第三遮蔽板を通して電極材料を真空堆積することで、第一電極外部接続電極を形成すると同時に第二電極上に第二電極外部接続電極を形成する。In the step of forming the external connection electrode of the first electrode, the electrode material is vacuum-deposited through the third shield plate that completely shields the boundary of the aluminum electrode formed by the second shield plate, thereby the first electrode external connection Simultaneously with the formation of the electrode, the second electrode external connection electrode is formed on the second electrode.

前記遮蔽マスクとは、直線的に延びかつお互いが平行にある開口部を備えることを特徴とする。The shielding mask includes openings that extend linearly and are parallel to each other.

遮蔽マスクを、直線的に延びかつお互いが平行にある開口部を備えるとしたことで、直径が0.01ミリから0.1ミリの細線を0.01ミリから0.1ミリの間隔で並べただけで低コスト且つ高精度な遮蔽マスクを実現する。Since the shielding mask is provided with openings that extend linearly and are parallel to each other, fine wires having a diameter of 0.01 mm to 0.1 mm are arranged at intervals of 0.01 mm to 0.1 mm. A simple and cost-effective shielding mask is realized.

前記電極材料とは、銀である。The electrode material is silver.

前記第一電極上に前記絶縁膜を堆積する際、前記絶縁膜は前記第一電極の表と側面を被覆する必要があるため、前記絶縁膜の堆積圧力を前記第一電極の堆積圧力よりも高くして、絶縁膜を遮蔽マスク開口部の少し横側へ周り込ませて堆積させる。When depositing the insulating film on the first electrode, the insulating film needs to cover the front and side surfaces of the first electrode, so that the deposition pressure of the insulating film is higher than the deposition pressure of the first electrode. The insulating film is deposited slightly around the side of the opening of the shielding mask.

シリコン基板上の受光面では、凹凸加工と反射防止膜の形成が必要である。すべての工程を真空工程にするために、本発明では反応性イオンエッチング法により凹凸を形成する工程し、スパッタ堆積法または化学気相堆積法により反射防止膜を形成する。On the light receiving surface on the silicon substrate, it is necessary to process the unevenness and form an antireflection film. In order to make all the steps vacuum, in the present invention, the step of forming irregularities is performed by reactive ion etching, and the antireflection film is formed by sputter deposition or chemical vapor deposition.

以下に本発明の形態として実施例1から3を示す。実施例1から3の違いは、一導電型シリコン領域の形成の仕方にあり、実施例1では第一導電型シリコン領域及び第二導電型シリコン領域が共にスパッタエピタキシャル堆積法で形成したところに特徴がある。実施例2では第一導電型シリコン領域は第一電極としてのアルミ電極を形成してから熱処理することで、アルミ電極とシリコン基板の界面に第一導電型シリコン領域としてのp型領域を形成し、第二導電型シリコン領域としてのn型領域はスパッタエピタキシャル堆積法で形成したところに特徴がある。そして実施例3では第一導電型シリコン領域としてのn型領域はスパッタエピタキシャル堆積法で形成したが、第二導電型シリコン領域は第二電極としてのアルミ電極を形成してから熱処理することで、アルミ電極とシリコン基板の界面に第二導電型シリコン領域としてのp型領域を形成したところに特徴がある。Examples 1 to 3 are shown below as modes of the present invention. The difference between the first to third embodiments lies in the formation of one conductivity type silicon region. In the first embodiment, the first conductivity type silicon region and the second conductivity type silicon region are both formed by the sputter epitaxial deposition method. There is. In Example 2, the first conductivity type silicon region is formed by forming an aluminum electrode as the first electrode and then heat-treating to form a p + type region as the first conductivity type silicon region at the interface between the aluminum electrode and the silicon substrate. The n + type region as the second conductivity type silicon region is characterized by being formed by a sputter epitaxial deposition method. In Example 3, the n + -type region as the first conductivity type silicon region was formed by the sputter epitaxial deposition method, but the second conductivity type silicon region was heat-treated after forming the aluminum electrode as the second electrode. The p + type region as the second conductivity type silicon region is formed at the interface between the aluminum electrode and the silicon substrate.

まず、図2(a)に示すように、p型の(100)面の単結晶シリコン基板1を用意する。本実施例ではシリコン基板の大きさは2cmx2cmのものを用いた。また、シリコン基板1はn型であってもよく、シリコン基板1がn型である場合にはシリコン基板1の裏面のp層とn型のシリコン基板1とによって裏面にpn接合が形成される。基板の厚さは220μmの物を用いた。First, as shown in FIG. 2A , a p-type (100) plane single crystal silicon substrate 1 is prepared. In this embodiment, a silicon substrate having a size of 2 cm × 2 cm was used. The silicon substrate 1 may be n-type. When the silicon substrate 1 is n-type, a pn junction is formed on the back surface by the p + layer on the back surface of the silicon substrate 1 and the n-type silicon substrate 1. The A substrate having a thickness of 220 μm was used.

次にシリコン基板1の表面をHF:HNO:CHCOOH=3:5:3のフッ硝酸溶液で鏡面エッチングする。次に、シリコン基板を取り出し、表面の酸化膜をフッ化水素水溶液などにより除去する。ここでフッ化水素水溶液以外にも例えば触媒CVD法により生成した活性水素により真空中で除去することも可能である。Next, the surface of the silicon substrate 1 is mirror-etched with a hydrofluoric acid solution of HF: HNO 3 : CH 3 COOH = 3: 5: 3. Next, the silicon substrate is taken out, and the oxide film on the surface is removed with a hydrogen fluoride aqueous solution or the like. Here, in addition to the aqueous hydrogen fluoride solution, it can be removed in vacuum by active hydrogen generated by, for example, catalytic CVD.

次に遮蔽マスクをシリコン基板の受光面と反対面となる裏面に被せ、遮蔽マスクとシリコン基板の相対位置が変化しないように両者を固定した。遮蔽マスクとシリコン基板間の距離は本実施例では密着させたが実際には遮蔽マスクの表面粗さにより十数μm以内の間隙が生じる。図1(a)に本実施例で使用する遮蔽マスク210を示す。遮蔽マスクには開口部210aがあり、真空堆積ではこの遮蔽マスク210を一基板上に設置することで、一基板上にはこの開口部210aと同じパターンの膜がシリコン基板100に堆積される。したがって遮蔽マスク210の開口部のパターンは一般的な櫛型裏面電極のフィンガー部分となるようなパターンを有している。本実施例では遮蔽マスク210の加工のしやすさから開口部210aは直線状で互いに平行となっているが、例えば図1(b)の遮蔽マスク210のような彎曲したフィンガー形状を開口部210aに使うこともできる。また図1(c)に示すように細線250を張って遮蔽マスク210とすることもできる。この方法では断面径の小さい細線250を間隔を空けながら密に張ることで高精細な遮蔽マスク210を簡単に作ることができる。Next, the shielding mask was put on the back surface opposite to the light receiving surface of the silicon substrate, and both were fixed so that the relative position between the shielding mask and the silicon substrate did not change. In the present embodiment, the distance between the shielding mask and the silicon substrate is in close contact, but in reality, a gap of 10 μm or less is generated due to the surface roughness of the shielding mask. FIG. 1A shows a shielding mask 210 used in this embodiment. The shielding mask has an opening 210a. In vacuum deposition, the shielding mask 210 is placed on one substrate, and a film having the same pattern as the opening 210a is deposited on the silicon substrate 100 on the one substrate. Therefore, the pattern of the opening of the shielding mask 210 has a pattern that becomes a finger portion of a general comb-shaped back electrode. In this embodiment, the openings 210a are linear and parallel to each other for ease of processing of the shielding mask 210. For example, a curved finger shape like the shielding mask 210 of FIG. It can also be used. Further, as shown in FIG. 1C, a thin line 250 can be provided to form the shielding mask 210. In this method, the high-definition shielding mask 210 can be easily made by densely stretching the thin wires 250 having a small cross-sectional diameter with a space therebetween.

本実施例で用いた遮蔽マスクは、図1(a)に示すような形状であり、開口部210aの実際の開口幅は0.1mm、開口部間の間隔は0.1mm、長さは25mmであった。The shielding mask used in this example has a shape as shown in FIG. 1A. The actual opening width of the opening 210a is 0.1 mm, the interval between the openings is 0.1 mm, and the length is 25 mm. Met.

続く各工程後のシリコン基板100の模式的な断面図と受光面と反対面である裏面から見た平面図を、それぞれ図2(a)〜(f)と図3(a)〜(e)に示した。図2(a)〜(e)のそれぞれ断面図は図3(a)〜(e)のおのおのに示されたI−I線に沿った断面図である。唯、図2(f)に対応する平面図は図3(e)と同様なので表示を省略した。また図2の断面図では受光面となる表面は下向きで、裏面は上向きで表示した。FIGS. 2A to 2F and FIGS. 3A to 3E are schematic cross-sectional views of the silicon substrate 100 after each subsequent process and plan views viewed from the back surface opposite to the light receiving surface, respectively. It was shown to. 2A to 2E are cross-sectional views taken along line I-I shown in FIGS. 3A to 3E, respectively. However, the plan view corresponding to FIG. 2F is the same as FIG. Further, in the cross-sectional view of FIG. 2, the front surface as the light receiving surface is displayed downward and the back surface is displayed upward.

続いてシリコン基板100をシリコン堆積用スパッタ装置へ導入した。このスパッタ装置は抵抗率が0.001Ωcm以下のp型シリコンをターゲットにしており、ターゲットの直径は75mmであった。電源には直流電源を用い、スパッタガスはArであった。堆積条件は、基板温度175℃、Ar圧力2.5mTorr、電源パワー300Wである。この条件で図2(a)と図3(a)に示すようにシリコン基板100の裏面に遮蔽マスク210を通してp型シリコンを300nm堆積した。この結果第一導電型シリコン領域としてp領域110が形成された。ここで前記非特許文献1に示すように、スパッタ膜はシリコン基板上でエピタキシャル成長するので、シリコン基板100とp領域110は結晶的に連続している。Subsequently, the silicon substrate 100 was introduced into a silicon deposition sputtering apparatus. This sputtering apparatus targeted p + type silicon having a resistivity of 0.001 Ωcm or less, and the target diameter was 75 mm. A DC power source was used as the power source, and the sputtering gas was Ar. The deposition conditions are a substrate temperature of 175 ° C., an Ar pressure of 2.5 mTorr, and a power supply power of 300 W. Under these conditions, 300 nm of p + type silicon was deposited on the back surface of the silicon substrate 100 through the shielding mask 210 as shown in FIGS. As a result, ap + region 110 was formed as the first conductivity type silicon region. Here, as shown in Non-Patent Document 1, since the sputtered film is epitaxially grown on the silicon substrate, the silicon substrate 100 and the p + region 110 are crystallographically continuous.

次にシリコン基板100を熱蒸着チャンバへ搬送し、1mTorr以下の条件で、図2(b)と図3(b)に示されるように、p型領域110上に第一電極でp型電極120となる、アルミ膜を200nm堆積した。Next, the silicon substrate 100 is transferred to the thermal evaporation chamber, and under the condition of 1 mTorr or less, as shown in FIGS. 2B and 3B, the p-type electrode is the first electrode on the p + -type region 110. An aluminum film having a thickness of 120 was deposited to 200 nm.

次に遮蔽マスク210の上から第一遮蔽板220を重ね、p型電極120の各フィンガーの一部分を第一遮蔽板220によって遮蔽するようにした。図3(c)に点線で囲まれた領域が第一遮蔽板220である。次に絶縁膜130としてSiO膜をパルス直流反応性スパッタ堆積法(非特許文献2)により150Wの条件で、遮蔽マスク210を通して400nm堆積した。堆積圧力は2.5〜10mTorrでp型領域110とp電極120を堆積した圧力よりも高いので、堆積された絶縁膜130は図2(c)に示すように遮蔽マスク開口部210aの側面に数μmから十数μm程度回りこみ、p型領域110とp電極120を完全に包み込むように堆積される。ここでp型電極120の第一遮蔽板220で遮蔽された部分は図3(c)に示すように絶縁膜130から露出した。
戴漢昇,台湾科技大学修士論文,葉文昌指導,2008年6月。
Next, the first shielding plate 220 was overlapped on the shielding mask 210, and a part of each finger of the p-type electrode 120 was shielded by the first shielding plate 220. A region surrounded by a dotted line in FIG. Next, as the insulating film 130, a SiO 2 film was deposited to 400 nm through the shielding mask 210 under the condition of 150 W by a pulsed DC reactive sputter deposition method (Non-patent Document 2). Since the deposition pressure is higher than the pressure which is deposited a p + -type region 110 and p electrode 120 in 2.5~10MTorr, deposited insulating film 130 side of the shielding mask openings 210a as shown in FIG. 2 (c) And deposited so as to completely enclose the p + -type region 110 and the p-electrode 120. Here, the portion of the p-type electrode 120 shielded by the first shielding plate 220 was exposed from the insulating film 130 as shown in FIG.
Norihan Sung, Master's thesis of Taiwan University of Science and Technology, Teaching Hafumasa, June 2008.

続いて遮蔽マスク210と第一遮蔽板220をシリコン基板100から外し、図3(d)に示すように前記第一遮蔽板220で遮蔽された領域を完全に遮蔽する第二遮蔽板230を通して、第二導電型シリコン領域としてのn型領域をスパッタ堆積した。堆積条件はターゲットを0.001Ωcm以下のn型シリコンに換えた以外は前記p型シリコンを堆積した条件と同じである。図2(d)と図3(d)に示すように、シリコン基板100が露出している部分に堆積されたシリコンはエピタキシャル成長してn型領域140aが形成されるが、絶縁膜上に堆積された部分ではアモルファスシリコン化したn型領域140bとなる。しかしこのアモルファスシリコン化したn型領域140bは太陽電池の特性にはほとんど影響しない。Subsequently, the shielding mask 210 and the first shielding plate 220 are removed from the silicon substrate 100, and the second shielding plate 230 that completely shields the area shielded by the first shielding plate 220 as shown in FIG. the n + -type region serving as a second conductivity type silicon region sputter deposition. The deposition conditions are the same as those for depositing the p + type silicon except that the target is changed to n + type silicon of 0.001 Ωcm or less. As shown in FIGS. 2D and 3D, the silicon deposited on the portion where the silicon substrate 100 is exposed is epitaxially grown to form an n + -type region 140a, which is deposited on the insulating film. The portion thus formed becomes an n + -type region 140b that is turned into amorphous silicon. However, the amorphous siliconized n + -type region 140b hardly affects the characteristics of the solar cell.

続いて第二遮蔽板230をシリコン基板100から外し、図3(e)に示すように前記第二遮蔽板230により形成されたn型シリコン膜140の境目を完全に遮蔽する第三遮蔽板240を設置して、電極材料としての銀膜をスパッタ堆積した。この工程により第二電極としてのn型電極150とp型電極外部接続電極160が形成される。これでシリコン基板100の裏面の工程は完成する。Subsequently, the second shielding plate 230 is removed from the silicon substrate 100, and the third shielding plate that completely shields the boundary of the n + type silicon film 140 formed by the second shielding plate 230 as shown in FIG. 240 was installed, and a silver film as an electrode material was sputter deposited. By this step, the n-type electrode 150 and the p-type electrode external connection electrode 160 as the second electrode are formed. Thus, the process on the back surface of the silicon substrate 100 is completed.

次に図2(f)の受光面反射防止のための凹凸構造170形成に関してはCFガスとOガスを原料にしたマグネトロン平行平板型反応性イオンエッチングで形成した。電源パワーは10Wで、CF:O流量比は1:1、エッチング圧力は15mTorrであった。この結果2%以下の可視光反射率が得られた。
次に反応性スパッタ法によりSiOを堆積して反射防止膜180とした。堆積した膜厚は特に限定されないが、たとえば60nm以上140nm以下の厚さとすることができる。
Next, regarding the formation of the concavo-convex structure 170 for preventing the reflection of the light receiving surface in FIG. 2F, it was formed by magnetron parallel plate type reactive ion etching using CF 4 gas and O 2 gas as raw materials. The power source power was 10 W, the CF 4 : O 2 flow ratio was 1: 1, and the etching pressure was 15 mTorr. As a result, a visible light reflectance of 2% or less was obtained.
Next, SiO 2 was deposited by reactive sputtering to form an antireflection film 180. Although the deposited film thickness is not particularly limited, for example, the thickness can be 60 nm or more and 140 nm or less.

最後に試料を300℃から450℃の温度に維持され、水素を5%程度含む窒素を流した管状炉で熱処理をした。Finally, the sample was heat-treated in a tube furnace maintained at a temperature of 300 ° C. to 450 ° C. and flowing nitrogen containing about 5% of hydrogen.

そして、実施例1の裏面接合型太陽電池の特性をソーラシミュレータにより評価した。And the characteristic of the back junction solar cell of Example 1 was evaluated with the solar simulator.

この結果実施例1の裏面接合型太陽電池のJsc(短絡電流密度)は38.2mA/cmであり、Voc(開放電圧)は0.612Vであり、F.F(フィルファクタ)は0.680であり、Eff(変換効率)は15.7%であった。As a result, Jsc (short circuit current density) of the back junction solar cell of Example 1 is 38.2 mA / cm 2 , Voc (open voltage) is 0.612 V, and F.I. F (fill factor) was 0.680 and Eff (conversion efficiency) was 15.7%.

使用シリコン基板の種類、大きさと前処理はすべて実施例1と同様であるので説明を省略する。使用する遮蔽マスクも実施例1と全く同様であり、また遮蔽マスクをシリコン基板へ固定するまでの工程も全く変わらないので説明を省略する。Since the type, size, and pretreatment of the silicon substrate used are all the same as those in the first embodiment, description thereof is omitted. The shielding mask to be used is exactly the same as that of the first embodiment, and the process until the shielding mask is fixed to the silicon substrate is not changed at all, so that the description thereof is omitted.

続く各工程後のシリコン基板100の模式的な断面図と受光面と反対面である裏面から見た平面図を、それぞれ図4(a)〜(e)と図5(a)〜(d)に示した。図4(a)〜(d)のおのおのの断面図は図5(a)〜(d)のおのおのに示されたI−I線に沿った断面図である。唯、図4(e)に対応する平面図は図5(d)と同様なので表示を省略した。また図4の断面図では受光面となる表面は下向きで、裏面は上向きで表示した。FIGS. 4A to 5E and FIGS. 5A to 5D are a schematic cross-sectional view of the silicon substrate 100 after each subsequent process and a plan view viewed from the back surface opposite to the light receiving surface, respectively. It was shown to. 4A to 4D are cross-sectional views taken along the line I-I shown in FIGS. 5A to 5D. However, the plan view corresponding to FIG. 4E is the same as FIG. Further, in the cross-sectional view of FIG. 4, the front surface as the light receiving surface is displayed downward and the back surface is displayed upward.

遮蔽マスク210をシリコン基板100に固定した後、シリコン基板100を熱蒸着チャンバへ搬送し、1mTorr以下の条件で、図4(a)と図5(a)に示されるように、遮蔽マスク210を通して、第一電極でp型電極120となる、アルミ電極を500nm堆積した。After the shielding mask 210 is fixed to the silicon substrate 100, the silicon substrate 100 is transferred to the thermal evaporation chamber, and passes through the shielding mask 210 as shown in FIGS. 4A and 5A under the condition of 1 mTorr or less. The aluminum electrode which becomes the p-type electrode 120 as the first electrode was deposited to 500 nm.

次に遮蔽マスク210の上から図5(b)の点線で囲まれる領域に示される第一遮蔽板220を重ね、p型電極120の各フィンガーの一部分を第一遮蔽板220によって遮蔽するようにした。次に絶縁膜130としてSiO膜をパルス直流反応性スパッタ堆積法(非特許文献2)により150Wの条件で、遮蔽マスク210を通して400nm堆積した。堆積圧力は2.5〜10mTorrでp電極120を堆積した圧力よりも高いので、堆積された絶縁膜130は図4(b)に示すように遮蔽マスク開口部210aの側面に数μmから十数μm程度回りこみ、p型電極120を完全に包み込むように堆積される。ここでp型電極120の第一遮蔽板220で遮蔽された部分は図5(b)に示すように絶縁膜130から露出した。Next, the first shielding plate 220 shown in the region surrounded by the dotted line in FIG. 5B is overlaid from above the shielding mask 210 so that a part of each finger of the p-type electrode 120 is shielded by the first shielding plate 220. did. Next, as the insulating film 130, a SiO 2 film was deposited to 400 nm through the shielding mask 210 under the condition of 150 W by a pulsed DC reactive sputter deposition method (Non-patent Document 2). Since the deposition pressure is higher than the pressure at which the p-electrode 120 is deposited at 2.5 to 10 mTorr, the deposited insulating film 130 is on the side surface of the shielding mask opening 210a as shown in FIG. The p-type electrode 120 is deposited so as to completely surround the p-type electrode 120. Here, the portion of the p-type electrode 120 shielded by the first shielding plate 220 was exposed from the insulating film 130 as shown in FIG.

続いて遮蔽マスク210と第一遮蔽板220をシリコン基板100から外し、図5(c)に示すように前記第一遮蔽板220で遮蔽された領域を完全に遮蔽する第二遮蔽板230を通して、第二導電型シリコン領域としてのn型領域をスパッタ堆積した。n領域のスパッタ堆積に使ったスパッタ装置は抵抗率が0.001Ωcm以下のn型シリコンをターゲットにしており、直径は75mmであった。電源には直流電源を用い、スパッタガスはArであった。堆積条件は、基板温度175℃、Ar圧力2.5mTorr、電源パワー300Wである。ここで図4(c)と図5(c)に示すように、シリコン基板100が露出している部分に堆積されたシリコンはエピタキシャル成長してn型領域140aが形成されるが、絶縁膜上に堆積された部分ではアモルファスシリコン化したn型領域140bとなる。しかしこのアモルファスシリコン化したn型領域140bは太陽電池の特性にはほとんど影響しない。Subsequently, the shielding mask 210 and the first shielding plate 220 are removed from the silicon substrate 100, and through the second shielding plate 230 that completely shields the area shielded by the first shielding plate 220 as shown in FIG. An n + type region as a second conductivity type silicon region was sputter deposited. The sputtering apparatus used for sputter deposition in the n + region targeted n + type silicon having a resistivity of 0.001 Ωcm or less, and had a diameter of 75 mm. A DC power source was used as the power source, and the sputtering gas was Ar. The deposition conditions are a substrate temperature of 175 ° C., an Ar pressure of 2.5 mTorr, and a power supply power of 300 W. Here, as shown in FIGS. 4C and 5C, the silicon deposited on the portion where the silicon substrate 100 is exposed is epitaxially grown to form an n + -type region 140a. The portion deposited in the region becomes an n + -type region 140b that is turned into amorphous silicon. However, the amorphous siliconized n + -type region 140b hardly affects the characteristics of the solar cell.

続いて第二遮蔽板230をシリコン基板100から外し、図5(d)に示すように前記第二遮蔽板230により形成されたn型シリコン膜140の境目を完全に遮蔽する第三遮蔽板240を設置して、電極材料としての銀膜をスパッタ堆積した。この工程により第二電極としてのn型電極150とp型電極外部接続電極160が形成される。Subsequently, the second shielding plate 230 is removed from the silicon substrate 100, and the third shielding plate that completely shields the boundary of the n + -type silicon film 140 formed by the second shielding plate 230 as shown in FIG. 240 was installed, and a silver film as an electrode material was sputter deposited. By this step, the n-type electrode 150 and the p-type electrode external connection electrode 160 as the second electrode are formed.

次に図4(e)の受光面反射防止のための凹凸構造170を形成した。方法はCFガスとOガスを原料にしたマグネトロン平行平板型反応性イオンエッチングを用いた。電源パワーは10Wで、CF:O流量比は1:1、エッチング圧力は15mTorrであった。この結果2%以下の可視光反射率が得られた。Next, the concavo-convex structure 170 for preventing reflection on the light receiving surface in FIG. The method used was a magnetron parallel plate type reactive ion etching using CF 4 gas and O 2 gas as raw materials. The power source power was 10 W, the CF 4 : O 2 flow ratio was 1: 1, and the etching pressure was 15 mTorr. As a result, a visible light reflectance of 2% or less was obtained.

次に反応性スパッタ法によりSiOを堆積して反射防止膜180とした。堆積した膜厚は特に限定されないが、たとえば60nm以上140nm以下の厚さとすることができる。Next, SiO 2 was deposited by reactive sputtering to form an antireflection film 180. Although the deposited film thickness is not particularly limited, for example, the thickness can be 60 nm or more and 140 nm or less.

次に試料を550℃〜650℃のオーブンに入れて熱処理し、p型電極としてのアルミ電極120とシリコン基板100の界面に第一導電型シリコンとしてのp型領域を形成した。この熱処理工程は図4(c)〜図4(d)の工程後に行ってもよい。また図4(a)〜図4(b)の工程後に行ってもよいが、しかし表面に形成される薄い酸化シリコン膜が図4(c)のスパッタエピタキシャル堆積を妨げるので、スパッタエピタキシャル堆積前にフッ酸溶液か水素プラズマで酸化膜を除去する必要がある。Next, the sample was put in an oven at 550 ° C. to 650 ° C. and heat-treated to form a p + type region as the first conductivity type silicon at the interface between the aluminum electrode 120 as the p type electrode and the silicon substrate 100. This heat treatment step may be performed after the steps of FIGS. 4C to 4D. Further, it may be performed after the steps of FIGS. 4A to 4B, but the thin silicon oxide film formed on the surface hinders the sputter epitaxial deposition of FIG. It is necessary to remove the oxide film with a hydrofluoric acid solution or hydrogen plasma.

最後に試料を、300℃から450℃の温度に維持され、水素を5%程度含む窒素を流した管状炉で熱処理をした。Finally, the sample was heat-treated in a tubular furnace maintained at a temperature of 300 ° C. to 450 ° C. and flowing nitrogen containing about 5% of hydrogen.

そして、実施例2の裏面接合型太陽電池の特性をソーラシミュレータにより評価した。And the characteristic of the back junction solar cell of Example 2 was evaluated with the solar simulator.

この結果実施例2の裏面接合型太陽電池のJsc(短絡電流密度)は38.0mA/cmであり、Voc(開放電圧)は0.62Vであり、F.F(フィルファクタ)は0.71であり、Eff(変換効率)は16.5%であった。As a result, Jsc (short circuit current density) of the back junction solar cell of Example 2 is 38.0 mA / cm 2 , Voc (open voltage) is 0.62 V, and F.I. F (fill factor) was 0.71, and Eff (conversion efficiency) was 16.5%.

使用シリコン基板の種類、大きさと前処理はすべて実施例1と同様であるので説明を省略する。使用する遮蔽マスクも実施例1と全く同様であり、また遮蔽マスクをシリコン基板へ固定するまでの工程も全く変わらないので説明を省略する。Since the type, size, and pretreatment of the silicon substrate used are all the same as those in the first embodiment, description thereof is omitted. The shielding mask to be used is exactly the same as that of the first embodiment, and the process until the shielding mask is fixed to the silicon substrate is not changed at all, so that the description thereof is omitted.

続く各工程後のシリコン基板100の模式的な断面図と受光面と反対面である裏面から見た平面図を、それぞれ図6(a)〜(f)と図7(a)〜(e)に示した。図6(a)〜(e)のそれぞれ断面図は図7(a)〜(e)のおのおのに示されたI−1線に沿った断面図である。唯、図6(f)に対応する平面図は図7(e)と同様なので表示を省略した。また図6の断面図では受光面となる表面は下向きで、裏面は上向きで表示した。FIGS. 6A to 6F and FIGS. 7A to 7E are schematic cross-sectional views of the silicon substrate 100 after each subsequent process and plan views viewed from the back surface opposite to the light receiving surface, respectively. It was shown to. 6A to 6E are cross-sectional views taken along line I-1 shown in FIGS. 7A to 7E, respectively. However, the plan view corresponding to FIG. 6F is the same as FIG. In the cross-sectional view of FIG. 6, the front surface as the light receiving surface is displayed downward and the back surface is displayed upward.

続いてシリコン基板100をシリコン堆積用スパッタ装置へ導入した。このスパッタ装置は抵抗率が0.001Ωcm以下のn型シリコンをターゲットにしており、ターゲットの直径は75mmであった。電源には直流電源を用い、スパッタガスはArであった。堆積条件は、基板温度175℃、Ar圧力2.5mTorr、電源パワー300Wである。この条件で図6(a)と図7(a)に示すようにシリコン基板100の裏面に遮蔽マスク210を通してn型シリコンを300nm堆積した。この結果第一導電型シリコン領域としてn型領域140aが形成された。ここで前記非特許文献1に示すように、スパッタ膜はシリコン基板上でエピタキシャル成長するので、シリコン基板100とn領域140aは結晶的に連続している。Subsequently, the silicon substrate 100 was introduced into a silicon deposition sputtering apparatus. This sputtering apparatus targeted n + type silicon having a resistivity of 0.001 Ωcm or less, and the diameter of the target was 75 mm. A DC power source was used as the power source, and the sputtering gas was Ar. The deposition conditions are a substrate temperature of 175 ° C., an Ar pressure of 2.5 mTorr, and a power supply power of 300 W. Under these conditions, as shown in FIGS. 6A and 7A, 300 nm of n + -type silicon was deposited on the back surface of the silicon substrate 100 through the shielding mask 210. As a result, an n + type region 140a was formed as the first conductivity type silicon region. Here, as shown in Non-Patent Document 1, since the sputtered film is epitaxially grown on the silicon substrate, the silicon substrate 100 and the n + region 140a are crystallographically continuous.

次にシリコン基板100をスパッタ装置へ搬送し、2mTorr以下の条件で、図6(b)と図7(b)に示されるように、n型領域140a上に第一電極でn型電極150となる銀電極を、遮蔽マスク210を通して200nm堆積した。Next, the silicon substrate 100 is transported to the sputtering apparatus, and under the condition of 2 mTorr or less, as shown in FIGS. 6B and 7B, the n-type electrode 150 is the first electrode on the n + -type region 140a. A silver electrode was deposited to 200 nm through the shielding mask 210.

次に遮蔽マスク210の上から図7(c)の点線で囲まれた第一遮蔽板220を重ね、n型電極150の各フィンガーの一部分を第一遮蔽板220によって遮蔽するようにした。次に絶縁膜130としてSiO膜をパルス直流反応性スパッタ堆積法(非特許文献2)により150Wの条件で、遮蔽マスク210を通して400nm堆積した。堆積圧力は2.5〜10mTorrでn型領域140aとn電極150を堆積した圧力よりも高いので、堆積された絶縁膜130は図6(c)に示すように遮蔽マスク開口部210aの側面に数μmから十数μm程度回りこみ、n型領域140aとn電極150を完全に包み込むように堆積される。ここでn型電極150の第一遮蔽板220で遮蔽された部分は図7(c)に示すように絶縁膜130から露出した。Next, a first shielding plate 220 surrounded by a dotted line in FIG. 7C is overlapped on the shielding mask 210 so that a part of each finger of the n-type electrode 150 is shielded by the first shielding plate 220. Then pulsed DC reactive sputtering deposition of the SiO 2 film as the insulating film 130 under the condition of 150W by (non-patent document 2), and 400nm deposited through a shielding mask 210. Since the deposition pressure is higher than the pressure at which the n + -type region 140a and the n-electrode 150 are deposited at 2.5 to 10 mTorr, the deposited insulating film 130 has a side surface of the shielding mask opening 210a as shown in FIG. The n + -type region 140a and the n-electrode 150 are deposited so as to completely surround the n + -type region 140a. Here, the portion of the n-type electrode 150 shielded by the first shielding plate 220 was exposed from the insulating film 130 as shown in FIG.

続いて遮蔽マスク210と第一遮蔽板220をシリコン基板100から外し、図6(d)と図7(d)に示すように前記第一遮蔽板220で遮蔽された領域を完全に遮蔽する第二遮蔽板230を通して、第二電極としてp型電極120となるアルミ膜を200nm堆積した。アルミ膜は熱蒸着で行った。Subsequently, the shielding mask 210 and the first shielding plate 220 are removed from the silicon substrate 100, and the region shielded by the first shielding plate 220 is completely shielded as shown in FIGS. 6 (d) and 7 (d). Through the two shielding plates 230, an aluminum film serving as the p-type electrode 120 was deposited to a thickness of 200 nm as the second electrode. The aluminum film was formed by thermal evaporation.

続いて第二遮蔽板230をシリコン基板100から外し、図7(e)に示すように前記第二遮蔽板230により形成されたp型電極120の境目を完全に遮蔽する第三遮蔽板240を設置して、電極材料としての銀膜をスパッタ堆積した。この工程によりn型電極150のn型電極外部接続電極160とp型電極120のp型電極外部接続電極190が同時に形成される。Subsequently, the second shielding plate 230 is removed from the silicon substrate 100, and a third shielding plate 240 that completely shields the boundary of the p-type electrode 120 formed by the second shielding plate 230 as shown in FIG. Then, a silver film as an electrode material was deposited by sputtering. By this step, the n-type electrode external connection electrode 160 of the n-type electrode 150 and the p-type electrode external connection electrode 190 of the p-type electrode 120 are formed simultaneously.

次に図6(f)の受光面反射防止のための凹凸構造170形成に関してはCFガスとOガスを原料にしたマグネトロン平行平板型反応性イオンエッチングで形成した。電源パワーは10Wで、CF:O流量比は1:1、エッチング圧力は15mTorrであった。この結果2%以下の可視光反射率が得られた。
次に反応性スパッタ法によりSiOを堆積して反射防止膜180とした。堆積した膜厚は特に限定されないが、たとえば60nm以上140nm以下の厚さとすることができる。
Next, regarding the formation of the concavo-convex structure 170 for preventing the reflection of the light receiving surface in FIG. 6 (f), it was formed by magnetron parallel plate type reactive ion etching using CF 4 gas and O 2 gas as raw materials. The power source power was 10 W, the CF 4 : O 2 flow ratio was 1: 1, and the etching pressure was 15 mTorr. As a result, a visible light reflectance of 2% or less was obtained.
Next, SiO 2 was deposited by reactive sputtering to form an antireflection film 180. Although the deposited film thickness is not particularly limited, for example, the thickness can be 60 nm or more and 140 nm or less.

次に試料を550℃〜650℃のオーブンに入れて熱処理し、図6(f)に示すように、アルミp型電極120とシリコン基板100の界面に第二導電型シリコンとしてのp型領域を形成した。この熱処理工程は図6(d)の工程後でも図6(e)の工程後にでもよい。Then cured, or placed in the sample to 550 ° C. to 650 ° C. oven, as shown in FIG. 6 (f), p + -type region serving as a second conductivity type silicon at the interface of the aluminum p-type electrode 120 and the silicon substrate 100 Formed. This heat treatment step may be performed after the step shown in FIG. 6D or after the step shown in FIG.

最後に試料を300℃から450℃の温度に維持され、水素を5%程度含む窒素を流した管状炉で熱処理をした。Finally, the sample was heat-treated in a tube furnace maintained at a temperature of 300 ° C. to 450 ° C. and flowing nitrogen containing about 5% of hydrogen.

そして、実施例3の裏面接合型太陽電池の特性をソーラシミュレータにより評価した。And the characteristic of the back junction type solar cell of Example 3 was evaluated with the solar simulator.

この結果実施例3の裏面接合型太陽電池のJsc(短絡電流密度)は38.0mA/cmであり、Voc(開放電圧)は0.63Vであり、F.F(フィルファクタ)は0.72であり、Eff(変換効率)は16.8%であった。As a result, Jsc (short circuit current density) of the back junction solar cell of Example 3 is 38.0 mA / cm 2 , Voc (open voltage) is 0.63 V, and F.I. F (fill factor) was 0.72, and Eff (conversion efficiency) was 16.8%.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種種の変更を加えることが可能である。The technical scope of the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the spirit of the present invention.

発明の効果The invention's effect

本発明は、スパッタエピタキシャル堆積法による低温接合形成と遮蔽マスクによる一導電型領域の形成により、これまでの課題であった裏面接合型太陽電池のpn電極の高解像度化、製造プロセスの低温化、全真空薄膜工程による基板の薄型化、を同時に解決したことで、発電効率が高く且つ低コストな太陽電池の製造方法を実現した。The present invention provides a high-resolution pn electrode for a back-junction solar cell, which has been a problem, and a low-temperature manufacturing process by forming a low-temperature junction by a sputter epitaxial deposition method and forming a one-conductivity type region by a shielding mask. By simultaneously solving the thinning of the substrate by the all vacuum thin film process, a solar cell manufacturing method with high power generation efficiency and low cost was realized.

(a)〜(c)は本発明における遮蔽マスクのパターンの例を説明する模式的な平面図である。特に(a)は実施例で用いた遮蔽マスクの模式的な平面図である。(A)-(c) is a typical top view explaining the example of the pattern of the shielding mask in this invention. In particular, (a) is a schematic plan view of the shielding mask used in the examples. (a)〜(f)は本発明の裏面接合型太陽電池の製造方法の製造工程の一例を示す模式的な断面図である。(A)-(f) is typical sectional drawing which shows an example of the manufacturing process of the manufacturing method of the back junction type solar cell of this invention. (a)〜(e)は本発明の裏面接合型太陽電池の製造方法の製造工程の一例を示す模式的な平面図であり、図2(a)〜(e)に示す断面構造にそれぞれ対応する。(A)-(e) is typical top view which shows an example of the manufacturing process of the manufacturing method of the back junction type solar cell of this invention, and respond | corresponds to the cross-sectional structure shown to Fig.2 (a)-(e), respectively. To do. (a)〜(e)は本発明の裏面接合型太陽電池の製造方法の製造工程の一例を示す模式的な断面図である。(A)-(e) is typical sectional drawing which shows an example of the manufacturing process of the manufacturing method of the back junction type solar cell of this invention. (a)〜(d)は本発明の裏面接合型太陽電池の製造方法の製造工程の一例を示す模式的な平面図であり、図2(a)〜(d)に示す断面構造にそれぞれ対応する。(A)-(d) is typical top view which shows an example of the manufacturing process of the manufacturing method of the back junction type solar cell of this invention, and respond | corresponds to the cross-sectional structure shown to Fig.2 (a)-(d), respectively. To do. (a)〜(f)は本発明の裏面接合型太陽電池の製造方法の製造工程の一例を示す模式的な断面図である。(A)-(f) is typical sectional drawing which shows an example of the manufacturing process of the manufacturing method of the back junction type solar cell of this invention. (a)〜(e)は本発明の裏面接合型太陽電池の製造方法の製造工程の一例を示す模式的な平面図であり、図2(a)〜(e)に示す断面構造にそれぞれ対応する。(A)-(e) is typical top view which shows an example of the manufacturing process of the manufacturing method of the back junction type solar cell of this invention, and respond | corresponds to the cross-sectional structure shown to Fig.2 (a)-(e), respectively. To do.

100 シリコン基板、
110 p型領域
120 p型電極
130 絶縁膜
140 nシリコン膜
140a エピタキシャル成長したn型領域
140b アモルファス化したn型領域
150 n型電極
160 p型電極外部接続電極
170 表面凹凸構造
180 反射防止膜
210 遮蔽マスク
210a 遮蔽マスクの開口部
220 第一遮蔽板
230 第二遮蔽板
240 第三遮蔽板
250 細線
100 silicon substrate,
110 p + type region 120 p type electrode 130 Insulating film 140 n + silicon film 140a Epitaxially grown n + type region 140b Amorphized n + type region 150 n type electrode 160 p type electrode external connection electrode 170 Surface uneven structure 180 Antireflection Film 210 Shielding Mask 210a Shielding Mask Opening 220 First Shielding Plate 230 Second Shielding Plate 240 Third Shielding Plate 250 Fine Wire

Claims (16)

シリコン基板上の受光面ではない方の裏面に第一導電型シリコン領域と第二導電型シリコン領域と第一電極と第二電極を形成した裏面接合型太陽電池の製造方法において、前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法で形成することを特徴とする、太陽電池の製造方法。In the method of manufacturing a back junction solar cell in which a first conductivity type silicon region, a second conductivity type silicon region, a first electrode, and a second electrode are formed on the back surface of the silicon substrate that is not the light receiving surface, the first conductivity type A method for manufacturing a solar cell, comprising forming at least one of a type silicon region and the second conductivity type silicon region by a sputter epitaxial deposition method. 前記スパッタエピタキシャル堆積法を用いて形成する第一導電型シリコン領域とは、シリコン基板上に固定された遮蔽マスクを通して第一導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して第一電極を真空堆積する工程と、を備えることを特徴とする請求項1に記載の太陽電池の製造方法。The first conductivity type silicon region formed using the sputter epitaxial deposition method includes a step of performing sputter epitaxial deposition of the first conductivity type silicon region through a shielding mask fixed on the silicon substrate, and the first conductivity type silicon region fixed on the silicon substrate. And vacuum depositing the first electrode through the shielding mask. The method for manufacturing a solar cell according to claim 1. 前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法で形成する太陽電池の製造方法とは、シリコン基板上に固定された遮蔽マスクを通して第一導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して第一電極を真空堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程と、前記遮蔽マスクを外す工程と、露出している前記シリコン基板に第二導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記第二導電型シリコン領域上に第二電極を形成する工程と、を備えることを特徴とする請求項1に記載の太陽電池の製造方法。A method of manufacturing a solar cell in which at least one of the first conductivity type silicon region and the second conductivity type silicon region is formed by a sputter epitaxial deposition method is the first conductivity type silicon region through a shielding mask fixed on a silicon substrate. Sputter epitaxial depositing, vacuum depositing a first electrode through a shielding mask fixed on the silicon substrate, vacuum depositing an insulating film through a shielding mask fixed on the silicon substrate, Removing the shielding mask, sputter epitaxially depositing a second conductivity type silicon region on the exposed silicon substrate, and forming a second electrode on the second conductivity type silicon region. The manufacturing method of the solar cell of Claim 1 characterized by these. 前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法で形成する太陽電池の製造方法とは、シリコン基板上に固定された遮蔽マスクを通して第一電極としてのアルミ膜を真空堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程と、前記遮蔽マスクを外す工程と、露出している前記シリコン基板に第二導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記第二導電型シリコン領域上に第二電極を形成する工程と、熱処理することにより前記アルミ膜と前記シリコン基板の界面に第一導電型シリコン領域としてのp型領域を形成する工程と、を備えることを特徴とする請求項1に記載の太陽電池の製造方法。A method of manufacturing a solar cell in which at least one of the first conductivity type silicon region and the second conductivity type silicon region is formed by a sputter epitaxial deposition method includes: an aluminum as a first electrode through a shielding mask fixed on a silicon substrate; A step of vacuum-depositing a film, a step of vacuum-depositing an insulating film through a shielding mask fixed on the silicon substrate, a step of removing the shielding mask, and a second conductivity type silicon region on the exposed silicon substrate. And a step of forming a second electrode on the second conductivity type silicon region, and p + as a first conductivity type silicon region at the interface between the aluminum film and the silicon substrate by heat treatment. Forming the mold region, and the method for manufacturing a solar cell according to claim 1. 前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程とは、前記第一電極の一部を遮蔽する第一遮蔽板を通して絶縁膜を真空堆積することを特徴とする請求項3または請求項4記載の太陽電池の製造方法。4. The step of vacuum-depositing an insulating film through a shielding mask fixed on the silicon substrate is characterized in that the insulating film is vacuum-deposited through a first shielding plate that shields a part of the first electrode. Or the manufacturing method of the solar cell of Claim 4. 前記露出しているシリコン基板の一部に第二導電型シリコン領域をスパッタエピタキシャル堆積する工程とは、前記第一電極の露出部分を完全に遮蔽する第二遮蔽板を通してなされることを特徴とする請求項3から5に記載の太陽電池の製造方法。The step of sputter epitaxially depositing a second conductivity type silicon region on a part of the exposed silicon substrate is performed through a second shielding plate that completely shields the exposed portion of the first electrode. The manufacturing method of the solar cell of Claim 3 to 5. 前記第二導電型シリコン領域上に第二電極を形成する工程とは、前記第二遮蔽板により形成された前記第二導電型シリコン膜の境目を完全に遮蔽する第三遮蔽板を通して電極材料を真空堆積することで、前記第二導電型シリコン領域上に第二電極を形成すると同時に前記第一電極の外部接続電極を形成することを特徴とする請求項3から6に記載の太陽電池の製造方法。The step of forming the second electrode on the second conductivity type silicon region includes the step of forming an electrode material through a third shield plate that completely shields the boundary of the second conductivity type silicon film formed by the second shield plate. The solar cell manufacturing method according to claim 3, wherein the second electrode is formed on the second conductivity type silicon region and the external connection electrode of the first electrode is simultaneously formed by vacuum deposition. Method. 前記第一導電型シリコン領域と前記第二導電型シリコン領域の少なくとも一方をスパッタエピタキシャル堆積法で形成する太陽電池の製造方法とは、シリコン基板上に固定された遮蔽マスクを通して第一導電型シリコン領域をスパッタエピタキシャル堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して第一電極を真空堆積する工程と、前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程と、前記遮蔽マスクを外す工程と、露出している前記シリコン基板に第二電極としてアルミ膜を真空堆積する工程と、前記第二電極上に外部接続電極を形成する工程と、熱処理することで前記アルミ膜と前記シリコン基板の界面に第二導電型シリコンとしてのp型領域を形成する工程とを備えることを特徴とする請求項1に記載の太陽電池の製造方法。A method of manufacturing a solar cell in which at least one of the first conductivity type silicon region and the second conductivity type silicon region is formed by a sputter epitaxial deposition method includes: a first conductivity type silicon region through a shielding mask fixed on a silicon substrate; Sputter epitaxial depositing, vacuum depositing a first electrode through a shielding mask fixed on the silicon substrate, vacuum depositing an insulating film through a shielding mask fixed on the silicon substrate, Removing the shielding mask; vacuum depositing an aluminum film as a second electrode on the exposed silicon substrate; forming an external connection electrode on the second electrode; and heat treating the aluminum film. And a step of forming a p + type region as the second conductivity type silicon at the interface of the silicon substrate. The manufacturing method of the solar cell of Claim 1. 前記シリコン基板上に固定された遮蔽マスクを通して絶縁膜を真空堆積する工程とは、前記第一電極の一部を遮蔽する第一遮蔽板を通して絶縁膜を真空堆積することを特徴とする請求項8記載の太陽電池の製造方法。9. The step of vacuum-depositing an insulating film through a shielding mask fixed on the silicon substrate comprises vacuum-depositing the insulating film through a first shielding plate that shields a part of the first electrode. The manufacturing method of the solar cell of description. 前記露出しているシリコン基板に第二電極としてアルミ膜を真空堆積する工程とは、前記第一電極の露出する部分を完全に遮蔽する第二遮蔽板を通してアルミを真空堆積することを特徴とする請求項8から9に記載の太陽電池の製造方法。The step of vacuum depositing an aluminum film as a second electrode on the exposed silicon substrate is characterized in that aluminum is vacuum deposited through a second shielding plate that completely shields the exposed portion of the first electrode. The method for manufacturing a solar cell according to claim 8. 前記第二電極上に外部接続電極を形成する工程とは、前記第二遮蔽板により形成された前記アルミ膜の境目を完全に遮蔽する第三遮蔽板を通して電極材料を真空堆積することで、第二電極上に外部接続電極を形成すると同時に前記第一電極上にも外部接続電極を形成することを特徴とする請求項8から10に記載の太陽電池の製造方法。The step of forming an external connection electrode on the second electrode includes vacuum deposition of an electrode material through a third shielding plate that completely shields the boundary of the aluminum film formed by the second shielding plate, The method for manufacturing a solar cell according to claim 8, wherein the external connection electrode is formed on the first electrode simultaneously with the formation of the external connection electrode on the two electrodes. 前記遮蔽マスクとは、直線的に延びかつお互いが平行にある開口部を備えることを特徴とする請求項2から4または請求項8に記載の太陽電池の製造方法。The said shielding mask is provided with the opening part extended linearly and mutually parallel, The manufacturing method of the solar cell of Claim 2 to 4 or Claim 8 characterized by the above-mentioned. 前記遮蔽マスクとは、直径が0.01ミリから0.1ミリの細線を0.01ミリから0.1ミリの間隔で並べて遮蔽マスクとすることを特徴とする請求項12記載の太陽電池の製造方法。The solar cell according to claim 12, wherein the shielding mask is a shielding mask in which thin wires having a diameter of 0.01 mm to 0.1 mm are arranged at intervals of 0.01 mm to 0.1 mm. Production method. 前記電極材料とは、銀であることを特徴とする請求項7または請求項11記載の太陽電池の製造方法。The method for manufacturing a solar cell according to claim 7 or 11, wherein the electrode material is silver. 前記第一電極と前記絶縁膜とは、前記絶縁膜の堆積圧力が前記第一電極の堆積圧力よりも高いことを特徴とする請求項3または請求項4または請求項8に記載の太陽電池の製造方法。The solar cell according to claim 3, wherein the first electrode and the insulating film have a deposition pressure of the insulating film higher than a deposition pressure of the first electrode. Production method. 前記シリコン基板上の受光面とは、反応性イオンエッチング法により凹凸を形成する工程と、スパッタ堆積法または化学気相堆積法により反射防止膜を形成することを特徴とする請求項2から4及び請求項8に記載の太陽電池の製造方法。5. The light-receiving surface on the silicon substrate is formed with a step of forming irregularities by a reactive ion etching method, and an antireflection film is formed by a sputter deposition method or a chemical vapor deposition method. The manufacturing method of the solar cell of Claim 8.
JP2009035855A 2009-01-27 2009-01-27 Method for manufacturing back junction type solar cell Pending JP2010177655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035855A JP2010177655A (en) 2009-01-27 2009-01-27 Method for manufacturing back junction type solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035855A JP2010177655A (en) 2009-01-27 2009-01-27 Method for manufacturing back junction type solar cell

Publications (1)

Publication Number Publication Date
JP2010177655A true JP2010177655A (en) 2010-08-12

Family

ID=42708256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035855A Pending JP2010177655A (en) 2009-01-27 2009-01-27 Method for manufacturing back junction type solar cell

Country Status (1)

Country Link
JP (1) JP2010177655A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527297A (en) * 2011-08-05 2014-10-09 アイメック Method for forming a pattern of differently doped regions
US8889981B2 (en) 2011-10-18 2014-11-18 Samsung Sdi Co., Ltd. Photoelectric device
CN115377232A (en) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 Solar cell and photovoltaic module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527297A (en) * 2011-08-05 2014-10-09 アイメック Method for forming a pattern of differently doped regions
US8889981B2 (en) 2011-10-18 2014-11-18 Samsung Sdi Co., Ltd. Photoelectric device
CN115377232A (en) * 2022-10-24 2022-11-22 浙江晶科能源有限公司 Solar cell and photovoltaic module
CN115377232B (en) * 2022-10-24 2023-10-27 浙江晶科能源有限公司 Solar cell and photovoltaic module

Similar Documents

Publication Publication Date Title
US10461208B2 (en) Solar cell and method for producing same
KR100847741B1 (en) Point-contacted heterojunction silicon solar cell having passivation layer between the interface of p-n junction and method for fabricating the same
JP6125594B2 (en) Method for manufacturing photoelectric conversion device
US20130032206A1 (en) Solar cell
KR20090057205A (en) Thin film solar cell
KR101768907B1 (en) Method of fabricating Solar Cell
JP5734447B2 (en) Photovoltaic device manufacturing method and photovoltaic device
US20110308589A1 (en) Photoelectric conversion device and method for manufacturing the same
JP3201880U (en) Solar cell structure with locally deactivated heterojunction
JP2012023348A (en) Photoelectric conversion device and method of producing the same
JP2010177655A (en) Method for manufacturing back junction type solar cell
JP6502147B2 (en) Method of manufacturing solar cell and method of manufacturing solar cell module
KR102049604B1 (en) Solar cell and Method of manufacturing the same
JP5645734B2 (en) Solar cell element
JP2009295943A (en) Thin-film photoelectric converter, and manufacturing method thereof
JP5029921B2 (en) Method for manufacturing solar battery cell
KR101480924B1 (en) Method for fabricating solar cell using MOMBE and solar cell thereof
JP2004064042A (en) Solar cell device, method of manufacturing the same, metal plate for solar cell device, and power generation plant
KR101101621B1 (en) Front and back contact electric field solar cell and method thereof
KR20100093291A (en) Method of fabricating solar sell
TWM517421U (en) Heterojunction solar cell
JPH07135328A (en) Photovoltyaic power device
KR20120046362A (en) Solar cell and method for fabricating the same
KR20120130493A (en) Solar Cell and Method of Fabricating the same
JP2004253486A (en) Photoelectric converter and its fabricating method