WO2015025501A1 - Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete - Google Patents

Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete Download PDF

Info

Publication number
WO2015025501A1
WO2015025501A1 PCT/JP2014/004157 JP2014004157W WO2015025501A1 WO 2015025501 A1 WO2015025501 A1 WO 2015025501A1 JP 2014004157 W JP2014004157 W JP 2014004157W WO 2015025501 A1 WO2015025501 A1 WO 2015025501A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
solidified
mold
solidified slag
coarse aggregate
Prior art date
Application number
PCT/JP2014/004157
Other languages
French (fr)
Japanese (ja)
Inventor
博幸 當房
恵太 田
勇樹 萩尾
渡辺 圭児
桑山 道弘
大輔 今西
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020157036662A priority Critical patent/KR101839667B1/en
Priority to CN201480045258.1A priority patent/CN105452187B/en
Priority to JP2015508916A priority patent/JP6184476B2/en
Publication of WO2015025501A1 publication Critical patent/WO2015025501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/04Specific shape of slag after cooling
    • C21B2400/044Briquettes or moulded bodies other than sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/052Apparatus features including rotating parts
    • C21B2400/058Rotating beds on which slag is cooled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a solidified slag that solidifies molten blast furnace slag (blast ⁇ furnace slag) on a metal mold and drops the solidified slag (solidified slag) from the mold to produce a plate-like solid slag.
  • a solidified slag produced by the method for producing the solidified slag, a method for producing coarse aggregate for concrete (coarse ⁇ aggregate for concrete) using the solidified slag, and a method for producing the coarse aggregate for concrete It relates to coarse aggregate for concrete.
  • blast furnace slow cooling slag has been applied to coarse aggregate for concrete to replace gravel.
  • Solidifying molten slag in a metal mold yields solidified slag that is larger than granulated slag and smaller than slowly cooled slag, and can be easily crushed by crushing it. Compared to slowly cooled slag, the time for crushing can be shortened, and a desired solidified slag having a particle size of about 20 mm can be easily obtained.
  • Examples of solidifying molten slag using a metal mold include, for example, aggregate for asphalt pavement described in Patent Document 1, a manufacturing method thereof, and asphalt pavement.
  • the molten blast furnace slag is cooled and solidified by flowing it in a single layer on a metal moving mold so that the layer thickness is 10 to 30 mm.
  • the solidified slag is crushed to produce an aggregate for asphalt pavement having a water absorption percentage of 1.5% or less and an abrasion loss of 20% or less.
  • the coarse aggregate for concrete made of slag disclosed in Patent Document 2 is made by pouring molten slag into a metal mold to solidify, crushing the slag obtained after solidification, water absorption of 1.5% or less, and particle size Is adjusted to 5 to 20 mm.
  • the method for solidifying molten slag described in Patent Document 1 is to cool and solidify a molten blast furnace slag by pouring it into a metal moving mold in a single layer so that the solidified thickness is 10 to 30 mm.
  • the method for solidifying molten slag described in Patent Document 1 is to cool and solidify a molten blast furnace slag by pouring it into a metal moving mold in a single layer so that the solidified thickness is 10 to 30 mm.
  • a plate-like solidified slag having a glassy surface on one side is generated.
  • an aggregate is produced by crushing such a plate-like solidified slag, a part of the surface is formed.
  • Coarse aggregate that is glassy is produced.
  • a coarse aggregate having a glassy surface is used as a coarse aggregate for concrete, there is a problem that it is likely to be bleeding when the fresh concrete is solidified. Breathing is a phenomenon in which a part of kneaded water is released and rises to the surface due to sedimentation or separation of a solid material in fresh concrete.
  • the coarse aggregate for concrete disclosed in Patent Document 2 uses blast furnace slag solidified on a metal mold as in Patent Document 1, and the blast furnace slag is crushed to obtain a water absorption of 1.5% or less.
  • a coarse aggregate having a particle size of 5 to 20 mm is used.
  • Molten slag is poured into a metal mold and solidified to a thickness of 20 to 30 mm, and the contact surface with the metal mold is likely to be vitrified as in Patent Document 1.
  • the compressive strength of the concrete blended with the coarse aggregate for concrete of Patent Document 2 (mixcurproportion) and curing period (curing period) of 7 days and 28 days is clear, but breathing is not clear.
  • the present invention has been made to solve the above problems, and a method for producing solidified slag that can be a raw material for high-quality concrete coarse aggregate, and a solidified slag produced by the method for producing solidified slag. Another object is to provide a method for producing a coarse aggregate for concrete using the solidified slag and a coarse aggregate for concrete produced by the method for producing the coarse aggregate for concrete.
  • the gist of the present invention for solving the above problems is as follows.
  • a slag solidification step in which molten blast furnace slag is poured into a moving metal mold, cooled and solidified into a plate shape in the mold, and slag solidified to the inside in the mold.
  • the slag surface temperature is maintained at 900 ° C. or more for 5 minutes or more for 80 area% or more of the mold contact surface during solidification among the surfaces of the solidified slag dropped from the mold.
  • the drop strength (Shatter Index) evaluated by the mass ratio of the sample that does not pass through the 40 mm aperture sieve to the sample before the drop test is 70% or more after the drop test in which the slag sample is dropped 4 times from a height of 2 m.
  • a solidified slag production process including the method for producing a solidified slag according to any one of [1] to [5], a solidified slag crushing process for crushing the produced solidified slag, and a crushed solidified slag
  • the vitreous portion formed on the contact surface of the solidified slag with the metal mold is crystalline while the slag surface temperature is maintained at 900 ° C. or higher for 5 minutes or longer. Since it changes, solidified slag with high drop strength can be obtained.
  • the coarse aggregate for concrete produced by further crushing and classifying the solidified slag produced by the method for producing solidified slag according to the present invention has a small proportion of vitreous portions on the surface, High strength can be obtained stably, and a coarse aggregate suitable for producing high-strength concrete can be obtained.
  • FIG. 1 is a schematic view schematically showing a configuration of an embodiment of a solidified slag production apparatus that realizes a solidified slag production method according to the present invention.
  • FIG. 2 is a schematic view schematically showing a solidified slag holding container in the solidified slag manufacturing apparatus shown in FIG.
  • FIG. 3 is a graph showing the temperature transition at each measurement position when the slag is cooled on a metal mold.
  • FIG. 4 is a schematic diagram showing a one-dimensional heat transfer analysis model of a slag and a mold.
  • FIG. 5 is a graph showing the relationship between the holding time of the slag at a surface temperature of 900 ° C. or more and the glassy area ratio in the mold contact surface during solidification.
  • FIG. 1 is a schematic view schematically showing a configuration of an embodiment of a solidified slag production apparatus that realizes a solidified slag production method according to the present invention.
  • FIG. 2 is a schematic view schematically showing a
  • FIG. 6 is a graph showing the calculation result of the temperature distribution in the thickness direction of the solidified slag.
  • FIG. 7 shows the measured surface temperature of the slag below the solidified slag on the surface layer deposited in the solidified slag holding container 3 minutes after slag storage, and immediately after discharge from the mold at the mold contact surface of the solidified slag and It is a graph which shows the relationship between the calculated value of the slag temperature after hold
  • FIG. 8 is a photograph showing the appearance of the slag before and after the drop strength test when the mold contact surface during solidification is crystalline.
  • FIG. 9 is a photograph showing the appearance of the slag before and after the drop strength test when the mold contact surface during solidification is glassy.
  • FIG. 10 is a graph showing the relationship between the drop strength and the vitreous portion ratio in the mold contact surface during solidification.
  • FIG. 11 is a graph showing the product yield at the time of manufacturing a coarse aggregate of 20 to 5 mm by comparing the example of the present invention with the comparative example.
  • FIG. 12 is a graph showing a comparison of the amount of breathing in concrete using the coarse aggregates of the present invention example and the comparative example.
  • the method for producing solidified slag includes a slag solidification step in which molten blast furnace slag is poured into a moving metal mold, cooled, and solidified into a plate shape in the mold, A slag dropping step in which the slag solidified inside the mold is dropped from the mold by reversing the mold, and a slag that holds the surface temperature of a part or the entire surface of the dropped slag at 900 ° C. or more for 5 minutes or more. And a temperature holding step.
  • FIG. 1 shows an example of a solidified slag manufacturing apparatus that can realize the above-described solidified slag manufacturing method.
  • the solidified slag manufacturing apparatus 1 (FIG. 1) shown in FIG. 1 is made of a plurality of metals having recessed portions 5a (recessed rod parts) into which molten blast furnace slag accommodated in a slag pan 23, that is, molten slag 3 is poured.
  • the mold 5 is supported so as to be able to move around, and the molten slag 3 is poured into the recessed portion 5a while the mold 5 goes around to continuously produce the solidified slag 18.
  • the solidified slag manufacturing apparatus 1 that performs such an operation is provided with a revolving mechanism 7 that revolves horizontally in a state where a plurality of molds 5 are brought close to each other and supported.
  • This circular movement mechanism 7 moves the mold 5 in the circular direction while holding the molten slag 3 poured into the recessed portion 5a while the mold makes one round, and air-cools the air by cooling and solidifying the molten slag 3.
  • a re-inversion unit 15 that re-inverts the mold 5 in the inverted state so that the recessed portion 5a faces upward, and a re-inversion moving unit 17 that moves the re-inverted mold 5 to a portion into which the molten slag 3 is poured. And a cooling device 21 for cooling the inverted mold 5.
  • the re-inversion moving unit 17 may be omitted.
  • the solidified slag manufacturing apparatus 1 is provided with a gutter 20 so that the molten slag 3 can be easily poured into the mold 5.
  • the solidified slag manufacturing apparatus 1 has a pit 19 provided below the casting mold 5 that circulates around the reversal discharge unit 11, and the pit 19 has a solidified slag holding container 22 that can accommodate the solidified slag 18 to be discharged. Has been placed.
  • the solidified slag holding container 22 has a capacity capable of holding the solidified slag 18 in an amount corresponding to the molten slag 3 for one cup of the slag pot 23, and solidifies for one cup of the slag pot 23.
  • the slag 18 may be carried out from the slag dropping position and replaced with an empty solidified slag holding container 22. In this way, even if slag is held in the solidified slag holding container 22 for a long time, the molten slag 3 in the next slag pot 23 is continuously added without causing a waiting time and reducing productivity. Can be processed.
  • the solidified slag holding container 22 has a low thermal conductivity fire resistance of about 5 W / (m ⁇ K) or less. It is desirable to be composed of objects. Further, after the solidified slag 18 is accommodated, the solidified slag holding container 22 is provided with a lid, a simple heating source such as a burner is added to the solidified slag holding container 22, or the pit 19 itself at the slag dropping position. Can be used as a solidified slag holding container, and a mode in which a cover is installed and held after the solidified slag is accommodated can be selected.
  • the orbiting moving mechanism 7 is rotated at a predetermined speed, and the molten slag 3 is poured into the circulating mold 5 at the molten slag inflow portion through the gutter 20.
  • the mold 5 into which the molten slag 3 is poured moves through the air-cooling moving part 9, and the molten slag 3 is cooled by air to become a solidified slag 18 (slag solidification step).
  • the thickness of the solidified slag 18 is 20 mm or more and 30 mm or less. If the thickness of the solidified slag is 20 mm or more, by pulverizing the solidified slag 18, a particle size distribution suitable for a coarse aggregate product having a general coarse aggregate size of 5 to 20 mm, which is widely used, is obtained. Can be obtained. If the thickness of the solidified slag 18 is 20 mm or more, as will be described later, when the solidified slag 18 is charged into the solidified slag holding container 22, the average heat content (average (amount of heat) is sufficiently increased. Therefore, it is possible to raise the slag surface temperature of the mold contact surface to 900 ° C. or higher and hold it for 5 minutes or more simply by keeping the solidified slag 18 warm without adding a heating source.
  • the thickness of the solidified slag 18 is 30 mm or less, the cooling rate of the slag is in an appropriate range, and pore generation inside the slag is suppressed, so the water absorption rate of the coarse aggregate product is reduced to 1.5% or less.
  • This is also preferable for obtaining coarse aggregate particles having a high strength such as a compressive strength of 100 N / mm 2 or more.
  • the mold 5 that has arrived at the reverse discharge unit 11 rotates and reverses in the circumferential direction in the reverse discharge unit 11, and the solidified slag 18 is discharged to the pit 19 or the solidified slag holding container 22 in the pit 19 (slag Dropping process).
  • the mold 5 from which the solidified slag 18 has been discharged moves the reversal moving unit 13 in a reversal state, and is cooled by the cooling device 21 during the movement.
  • the mold 5 that has passed through the inversion moving unit 13 rotates in the circumferential direction in the reinversion unit 15 and reinverts so that the recessed portion 5a faces upward.
  • the molten slag 3 is poured into the re-inverted mold 5 immediately after re-inversion or after moving the re-inversion moving part 17 at the slag inflow portion.
  • the solidified slag 18 discharged into the pit 19 and charged into the solidified slag holding container 22 is laminated in the solidified slag holding container 22 and is a mold of the solidified slag 18 that is reduced during solidification due to the amount of heat held by the solidified slag 18 itself.
  • the temperature of the contact surface rises.
  • the glassy surface of the mold contact surface in the solidified slag 18 can be modified to crystalline (slag temperature holding step).
  • the solidified slag 18 is discharged from the solidified slag holding container 22 to the slag cooling bed 24.
  • the method for producing solidified slag of the present invention has three steps of a slag solidification step, a slag dropping step, and a slag temperature holding step, and among these three steps, the slag temperature holding step is particularly characteristic. This will be described in detail below.
  • the surface temperature of the solidified slag 18 on the atmosphere side is measured using a radiation thermometer, and a thermocouple is installed on the back of the mold, and the temperature transition until the molten slag 3 flowing on the mold is cooled and solidified is measured.
  • the measurement was performed for a case where the solidified slag 18 had a thickness of 23 mm.
  • the measurement results are shown in FIG. FIG. 3 also shows the transition of the slag temperature at the central position in the thickness direction of the slag and the position in contact with the mold 5, which was obtained by heat transfer analysis described later.
  • the initial cooling rate of the slag at the position in contact with the mold 5 is remarkably large due to heat transfer to the mold, decreases to 400 ° C.
  • the temperature of the central part of the slag is slow, and after about 2 minutes, the temperature decreases only to about 1150 ° C., and the atmosphere side surface also decreases only to about 900 ° C. after 2 minutes.
  • the mold contact surface is rapidly cooled, but the thermal conductivity of the slag is as small as 2 W / (m ⁇ K) or less, The heat conduction inside the slag is slow, and the cooling rate other than the mold contact surface is small. Therefore, only the slag on the mold contact surface is quenched and vitrified.
  • the solidified slag 18 after the mold 5 is inverted and dropped from the mold 5 is conveyed one by one, the cooling progresses from the surface during the conveyance, so that the glassy surface remains as it is.
  • vitreous remains, as described above, when used as a coarse aggregate for concrete, there are problems that it is easy to breathe and the yield of the coarse aggregate is reduced. It needs to be modified. Therefore, a temperature maintaining step for modifying the vitreous portion to be crystalline is necessary.
  • is the thermal conductivity (W / (m ⁇ K))
  • is the density (kg / m 3 )
  • Cp is the specific heat (J / (kg ⁇ K))
  • T is the slag or mold temperature (K )
  • X is the length (m) in the thickness direction
  • t is the time (s).
  • FIG. 4 shows an analysis model
  • FIG. 4 (a) shows a state where slag is accommodated in the mold
  • FIG. 4 (b) shows solidified slag dropped from the mold.
  • the thickness direction of the slag and mold was calculated by dividing the slag into 10 parts and dividing the mold into 10 parts. Only the solidified slag was calculated after dropping from the mold.
  • the heat transfer coefficient hs at the air-slag interface, the heat transfer coefficient hm at the mold-atmosphere interface, and the thermal resistance R at the slag-mold interface are used as parameters, and the calculated temperature matches the measured value in FIG.
  • the parameter values were determined as follows. Since the air-slag interface has a high temperature difference of 1300 K or more in the initial stage, heat radiation was considered.
  • the ambient temperature Ta was assumed to be constant at 293 K and there was no temperature rise. After dropping from the mold, it was assumed that it was in a heat-insulating state, and there was no heat transfer to the outside of the slag.
  • Cp 1039J / (kg ⁇ K) when T ⁇ 1443K
  • Cp 2242.5J / (kg ⁇ K) when 1443K ⁇ T ⁇ 1673K, 1673K ⁇ T ⁇ 1773K
  • Cp 1326 J / (kg ⁇ K).
  • the surface temperature required to crystallize the vitreous part was investigated.
  • the surface temperature of the solidified slag immediately after the slag dropping process varies depending on the slag solidified thickness and the cooling time of the slag until the slag is peeled after the mold is reversed. Therefore, the solidified slag surface temperature is changed by variously changing the solidified slag thickness and the cooling time, and the solidified slag having variously changed surface temperatures is held in the solidified slag holding container for 24 hours, and the solidified slag mold contact surface
  • the relationship between the maximum temperature of the glass and the area ratio of the vitreous part was investigated. As a result, it was confirmed that it is effective to raise the surface temperature to 900 ° C. or higher in order to crystallize the vitreous portion.
  • the solidification slag mold was changed by changing the holding time in the solidification slag holding container under the condition that the solidification thickness of the slag and the cooling time of the slag until the slag was peeled after reversing the mold were fixed.
  • the metal mold 5 is repeatedly wound twice to continuously process 12 tons of molten slag 3 in 6 minutes, and the mold 5 is inverted.
  • the solidified slag 18 is held in the solidified slag holding container 22 disposed at the slag dropping position at that time, and then held for a predetermined time.
  • the solidified slag 18 is immediately discharged to the slag cooling floor 24. Spread and cooled in the atmosphere.
  • the holding time at 900 ° C. or higher it is necessary to specify the time point when the surface temperature on the mold contact surface side of the slag rises to 900 ° C. and the time point when the surface temperature falls below 900 ° C. Therefore, when the surface temperature on the mold contact surface side of the slag rises to 900 ° C., the last solidification slag is stored in the solidified slag holding container, and the surface temperature of the slag on the mold contact surface side reaches 900 ° C. This time was determined by assuming that the surface of the slag is adiabatic boundary condition in the solidified slag holding container in the heat transfer analysis. Moreover, the time when the surface temperature decreased to less than 900 ° C.
  • FIG. 5 is a graph showing the relationship between the glassy area ratio (%) and the time (min) held at 900 ° C. or higher. As shown in the graph of FIG. 5, by holding at 900 ° C. or higher for 5 minutes, the area ratio of the glassy portion of the mold contact surface decreases to about 10%, and even if the holding time is increased, It can be seen that the area ratio does not change greatly. From this, in order to crystallize the vitreous part of the mold contact surface, it was confirmed that it was effective to maintain the surface temperature of the solidified slag at 900 ° C. or more for 5 minutes or more.
  • the reason why the area ratio of the vitreous portion does not greatly decrease from about 10% even if the holding time at 900 ° C. or higher is extended beyond 5 minutes is the solidification that is laminated and deposited in the slag holding container. It is considered that the solidified slag having the mold contact surface facing upward at the outermost layer portion of the slag was not crystallized because the temperature did not rise to 900 ° C. or higher even when the holding time was increased. Therefore, the area ratio of the vitreous portion can be further reduced by installing a lid after the slag is accommodated in the slag holding container or by reheating using a simple heating source such as a burner.
  • the reason why some vitreous slag is crystallized even when the calculated value of the retention time at 900 ° C. or higher is zero is that the lower part of the deposited layer contained in the slag holding container at the initial stage of the slag treatment.
  • the rise in surface temperature progressed within the time until the final solidified slag was accommodated, and the temperature was maintained at 900 ° C. or higher for 5 minutes or longer.
  • the solidified slag accommodated in the slag holding container at the initial stage of the slag treatment has been crystallized by satisfying the crystallization conditions.
  • FIG. 6 shows a calculation result of the temperature distribution inside the solidified slag 18 120 seconds after the molten slag 3 is injected into the mold.
  • the temperature distribution inside the solidified slag is, for example, as shown by a solid line graph in FIG. Since the temperature of the solidified slag immediately after being discharged from the mold is considered to be substantially the same as the temperature of the solidified slag immediately before dropping from the mold, it is indicated as “immediately after being discharged from the mold” in FIG.
  • the temperature of the mold contact surface and the air surface is lowered, but the internal temperature is high. If the solidified slag is dropped into the holding container in this state and stacked one after another, the slag inside the deposited layer becomes a heat-retaining state. Conducted to the air side and the atmosphere side, the entire slag approaches a uniform temperature distribution. The temperature distribution calculation result after 3 minutes is shown by a broken line in FIG. Under these conditions, the temperature of the mold contact surface once lowered also rises to about 1000 ° C.
  • the surface temperature of a part or the whole surface of the solidified slag including the mold contact surface is raised to 900 ° C. or higher. It is essential to hold for more than a minute. This can be performed without using a new heating source by setting the average temperature in the slag thickness direction of the solidified slag discharged from the mold to be over 900 ° C. and laminating the solidified slag in the pit 19 or the solidified slag holding container. I confirmed that there was.
  • ⁇ Temperature by slag lamination> Increasing the surface temperature of the slag to 900 ° C or higher due to the heat content of the solidified slag itself means that the solidified thickness of the solidified slag, the cooling time of the slag until the solidified slag is dropped after inverting the mold, and the solidified slag holding container This is realized by appropriately selecting conditions such as the holding time at. This point will be specifically described below.
  • the slag FIG. 7 shows the relationship between the average thickness and the slag surface temperature in the slag deposit layer in the solidified slag holding container.
  • the surface temperature of “sometimes referred to as subsurface solidified slag” is plotted in FIG.
  • the surface temperature of the solidified slag having an average thickness of 22 mm or more existing under this surface layer was over 900 ° C. in all measured values.
  • the slag thickness on the horizontal axis in FIG. 7 is an average value of values measured after cooling the slag thickness near the surface layer.
  • the solid line shows the calculated value of the temperature of the solidified slag at the mold contact surface, and the temperature immediately after discharge from the mold and the solidified slag under the surface layer in the solidified slag holding container for 3 minutes (180 seconds) It is the temperature after holding.
  • the calculated temperature at the mold contact surface of the solidified slag after being held for 3 minutes exceeds 900 ° C. if the average thickness is 20 mm or more, and the mold contact increases as the average thickness increases. It was found that the temperature at the surface was high.
  • the measured value of the surface temperature of the solidified slag under the surface layer laminated in the holding container tends to be higher as the slag thickness is larger as in the calculation result, and all the solidified slag having an average thickness of 22 mm or more tested After 3 minutes, it was 900 ° C or higher. That is, the surface temperature measurement value of the solidified slag under the surface layer is in good agreement with the calculation result. From the calculation result and the actual measurement value, the solidified slag having an average thickness of 20 mm or more is laminated, and the solidified slag after 3 minutes. It was confirmed that the surface temperature of can be made 900 ° C. or higher.
  • the heat source for raising the surface temperature of the solidified slag is limited to the heat content of the solidified slag itself, it is stored in a solidified slag holding container in order to reduce the influence of heat radiation to the outside. It is necessary to secure a certain amount of solidified slag. Specifically, it is preferable that the solidified slag of 5 tons or more, more desirably 10 tons or more is stacked and accommodated with a thickness of 1 m or more.
  • Plate-shaped solidified slag cast with a metal mold has a larger average solidification rate than slow-cooled slag, and therefore tends to have smaller crystal grains. By relieving and eliminating the residual stress, a material superior in strength characteristics to that of slowly cooled slag can be obtained.
  • the solidified slag produced by the method for producing solidified slag according to the present invention has a drop strength (Shatter Index) defined later which is 70% or more, and the method for producing solidified slag according to the present invention provides a drop strength (Shatter A high-strength plate-like solidified slag having an index of 70% or more is obtained.
  • a drop strength Shatter A high-strength plate-like solidified slag having an index of 70% or more is obtained.
  • plate-shaped solidified slag cast with a metal mold having a drop strength of 70% or more this is crushed and classified to produce slag products such as coarse aggregate for concrete. The yield is improved.
  • the coarse aggregate for concrete having an average compressive strength measured by the method described later of 100 N / mm 2 or more. And is suitable as a raw material for coarse aggregate when producing high-strength concrete.
  • solidified slag was manufactured using the apparatus shown in FIG.
  • the mold 5 is made of cast steel having a trapezoidal shape in plan view, the thickness thereof is 45 mm, the outer dimension of the mold corresponding to the upper base of the trapezoid is 0.7 m, and the outer method of the mold corresponding to the lower base of the trapezoid.
  • the dimension was 1.0 m, and the outer dimension of the mold corresponding to the height of the trapezoid was 2.7 m.
  • template 5 which pours molten slag was 100 mm.
  • the mold 5 was circulated and conveyed by the circulatory movement mechanism 7, and the conveying speed of the circulatory conveyance was 14 m / min at the mold center.
  • molten blast furnace slag 1360 ° C. or higher and 1410 ° C. or lower was flowed into the mold 5 at about 2 ton / min.
  • the mold 5 into which the molten slag 3 has been poured conveys the air-cooled moving part 9 for about 120 seconds ⁇ the length of the air-cooled moving part is 2/3 (240 degrees) of the entire circumference ⁇ . did.
  • the mold 5 was inverted and the solidified slag 18 peeled off from the mold was dropped into the solidified slag holding container 22 arranged in the pit 19.
  • the casting mold 5 from which the solidified slag 18 was discharged was moved while the inversion moving unit 13 was in the inverted state, and was rapidly cooled by injecting cooling water from the upper and lower surfaces at the site where the cooling device 21 was installed.
  • the mold 5 in the inverted state was re-inverted by the re-inversion part 15 and returned to the state in which the original recessed part 5a was directed upward again. Thereafter, molten slag was poured again into the returned mold. The above process was repeated 5 times for one slag pan, and 30 tons of molten slag was continuously processed in 15 minutes.
  • the solidified slag was held in the solidified slag holding container for a predetermined time, and then the solidified slag was discharged from the solidified slag holding container to the slag cooling bed and spread and cooled in the atmosphere.
  • the molten slag temperature is 1385 ° C.
  • the holding time after completion of slag storage in the solidified slag holding container is 10 minutes
  • the average thickness of the solidified slag is 25 mm
  • the solidified slag is held immediately after a predetermined holding time.
  • the solidified slag was discharged from the container to the slag cooling bed, spread and cooled in the atmosphere.
  • the molten slag temperature is 1380 ° C.
  • the average thickness of the solidified slag is 23 mm
  • the solidified slag is dropped from the mold into the pit, and after all the solidified slag has fallen from the mold, the solidified slag is immediately removed with a shovel car. It was taken out from the pit and cooled in the slag cooling bed, and prepared for the treatment of the molten slag in the next slag pan.
  • the solidification thickness of the solidified slag was measured after cooling, it was 20 to 26 mm, and the average thickness was 23 mm. The influence of the solidification thickness on the glassy abundance ratio on the mold contact surface was not in the range of 20 to 26 mm.
  • the ratio of the vitreous portion of the mold contact surface during solidification was evaluated, and the drop strength of the slag was evaluated.
  • the glass contact surface (crystalline) is visually selected from the solidified slag, and on the other hand, the solidified slag produced according to the comparative example is contacted with the mold.
  • a drop test was performed by visually selecting glassy surfaces.
  • FIG. 8A shows the state before the test of the example of the present invention
  • FIG. 8B shows the state after the drop test of the example of the present invention.
  • FIG. 9B shows a state after the drop test of the comparative example.
  • the drop strength (Shatter Index) was measured by the method described below.
  • the apparatus described in JIS M8711 Iron Ore Sinter-Drop Strength Test Method was used as the apparatus for the drop strength test. Using a sample of plate-like solidified slag of 40 to 100 mm (a sample of plate-like solidified slag whose sieve opening passes through a 100-mm sieve and does not pass through a sieve of 40 mm; about 3 kg) Then, a drop test was performed in which the sample was dropped four times. After the drop test, a ratio that was not crushed to 40 mm or less (mass ratio of the sample that does not pass through a sieve having an opening of 40 mm) was obtained, and this ratio was defined as drop strength (Shatter index).
  • Other test conditions were in accordance with the JIS M8711 iron ore sinter ore drop strength measurement method, which is a test method for sintered ore.
  • FIG. 10 shows the result of comparing the relationship between the ratio of the vitreous portion on the mold contact surface and the drop strength S between the inventive example and the comparative example.
  • the ratio of the vitreous portion was reduced from 52 area% in the comparative example to 9 area%, and the drop strength S was improved from 46% in the comparative example to 89%.
  • the area ratio of the vitreous portion of the mold contact surface of the solidified slag is It is preferable that the content be less than 20 area%, more desirably less than 10 area%.
  • the results of the yield of coarse aggregate products of 20 to 5 mm with respect to the solidified slag used as a raw material are shown in FIG.
  • the yield of the coarse aggregate product of the present invention example was 71%, and the comparative example was 65%. That is, the inventive example was 6% higher than the yield of the comparative coarse aggregate product.
  • the water absorption rate of the coarse aggregate of the example of the present invention is 0.9%, which is significantly smaller than the water absorption rate of 3 to 4% of the conventional blast furnace slow-cooled slag coarse aggregate, which is equivalent to that of natural aggregate. Things were obtained.
  • the compressive strengths of the slag coarse aggregates of the present invention and the comparative examples were compared.
  • Samples for compressive strength measurement were cut from large coarse aggregate particles including a flat surface to a size of 10 mm ⁇ 10 mm ⁇ 10 mm using a diamond cutter with the flat surface as the bottom, and an Amsler compression testing machine (universal testing machine) Compressive strength was measured for each of the six samples.
  • the compressive strength of the sample collected from the coarse aggregate of the comparative example has an average value of 50 N / mm 2 and a minimum value of 10 N / mm 2. did.
  • the compressive strength of the samples taken from the coarse aggregate of the present invention example the average value of 167N / mm 2, a minimum value is 80 N / mm 2, a high compressive strength stably is obtained .
  • the concrete was compounded using the slag coarse aggregates of the present invention example and the comparative example, and the characteristics were evaluated.
  • the amount of breathing was compared between the fresh concrete blended with the coarse aggregate of the present invention and the fresh concrete blended with the coarse aggregate of the comparative example.
  • the survey results are shown in FIG. In the present invention example having a small glassy surface, the amount of breathing was smaller than in the comparative example having a large glassy surface.
  • the 28-day strength was 53 N / mm 2
  • the concrete using the coarse aggregate of the present invention example it was 75 N / mm 2
  • the 28-day strength of the concrete using natural limestone coarse aggregate is 72 N / mm 2
  • the concrete using the coarse aggregate of the example of the present invention is compressed higher than the concrete using the natural limestone coarse aggregate. Strength was obtained. Therefore, it can be said that the coarse aggregate of the example of the present invention is a material suitable as a coarse aggregate for high-strength concrete.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Manufacture Of Iron (AREA)

Abstract

Provided are a method for producing solidified slag capable of serving as a raw material for a good-quality coarse aggregate for concrete, solidified slag produced by the method for producing solidified slag, a method for producing coarse aggregate for concrete using the solidified slag, and a coarse aggregate for concrete produced by the method for producing coarse aggregate for concrete. This method for producing solidified slag comprises a slag solidification step wherein blast furnace slag (3) in a molten state is poured into a moving metal template (5) and cooled so as to solidify in a plate-shape inside the template, a slag dropping step wherein the slag solidified to the interior while inside the template is dropped from the template by inverting the template, and a slag temperature holding step wherein the surface temperature is held at 900°C or higher for 5 minutes or longer for a portion of the slag surfaces or all the surfaces of the dropped slag.

Description

凝固スラグの製造方法、凝固スラグ、コンクリート用粗骨材の製造方法、コンクリート用粗骨材Solidified slag manufacturing method, solidified slag, concrete coarse aggregate manufacturing method, concrete coarse aggregate
 本発明は、溶融状態の高炉スラグ(blast furnace slag)を金属製の鋳型上で凝固させ、凝固させた凝固スラグ(solidified slag)を鋳型から落下させて板状の凝固スラグを製造する凝固スラグの製造方法、該凝固スラグの製造方法で製造される凝固スラグ、該凝固スラグを用いたコンクリート用粗骨材(coarse aggregate for concrete)の製造方法、該コンクリート用粗骨材の製造方法によって製造されるコンクリート用粗骨材に関する。 The present invention relates to a solidified slag that solidifies molten blast furnace slag (blast 炉 furnace slag) on a metal mold and drops the solidified slag (solidified slag) from the mold to produce a plate-like solid slag. Produced by a production method, a solidified slag produced by the method for producing the solidified slag, a method for producing coarse aggregate for concrete (coarse 該 aggregate for concrete) using the solidified slag, and a method for producing the coarse aggregate for concrete It relates to coarse aggregate for concrete.
 金属の精錬工程などで発生する溶融スラグ(molten slag)を凝固させる方法としては、高圧の冷却水を溶融スラグに吹き付けて急冷する方法、あるいは、溶融スラグをドライピット(dry pit)やスラグ冷却ヤード(slag cooling yard)に排出して大気中で徐冷する方法が広く用いられている。 As a method of solidifying molten slag generated in a metal refining process, etc., high-pressure cooling water is sprayed onto the molten slag to quench it, or the molten slag is dried into a dry pit or slag cooling yard. A method of discharging to (slag cooling yard) and gradually cooling in the atmosphere is widely used.
 溶融スラグを急冷する方法においては、高圧の冷却水を大量に吹き付けるので、多数の気孔(pore)を有する粒径5mm以下の砂状の凝固スラグ(いわゆる水砕スラグ(water granulated slag))となる。一方、溶融スラグをドライピットやスラグ冷却ヤードなどに流して凝固させ、徐冷する方法では、数mの大きさの塊となり、これを破砕して塊状の凝固スラグ(いわゆる徐冷スラグ(air-cooled slag))としている。 In the method of rapidly cooling the molten slag, a large amount of high-pressure cooling water is blown, resulting in a sand-like solidified slag having a large particle size of 5 mm or less (so-called water granulated slag). . On the other hand, in a method in which molten slag is solidified by flowing it into a dry pit or slag cooling yard, etc., and gradually cooled, it becomes a lump of a size of several meters, which is crushed into a solidified slag (so-called gradually cooled slag (air-cooled slag) cooled slag)).
 最近、砂利(gravel)などに代わるコンクリート用粗骨材に高炉徐冷スラグの適用が図られている。高炉スラグをコンクリート用粗骨材に適用するには、スラグ中の気孔を低減し、かつスラグ粒径の最大値を20mm程度に調整する必要がある。 Recently, blast furnace slow cooling slag has been applied to coarse aggregate for concrete to replace gravel. In order to apply blast furnace slag to coarse aggregate for concrete, it is necessary to reduce pores in the slag and adjust the maximum value of the slag particle size to about 20 mm.
 したがって、水砕スラグは、そのままでは、気孔が多く、かつ粒径が小さいことから、コンクリート用粗骨材には適用できない。一方、徐冷スラグは、気孔の問題はないものの、数mの大きさの塊を20mm程度の粒径に破砕する必要があり、この破砕に膨大な時間を要し、効率的でない。 Therefore, granulated slag cannot be applied to coarse aggregate for concrete because it has many pores and small particle size. On the other hand, although slow cooling slag does not have a problem of pores, it is necessary to crush a mass of several meters to a particle size of about 20 mm, and this crushing requires a huge amount of time and is not efficient.
 そこで、コンクリート用粗骨材として、気孔が少なく破砕が容易な凝固スラグを得るために、金属製の鋳型を用いて溶融スラグを凝固させる技術が種々提案されている。金属製鋳型のなかで溶融スラグを凝固させると、水砕スラグよりも大きくて、かつ、徐冷スラグよりも小さいサイズの凝固スラグが得られ、これを破砕することで所望するサイズのスラグを容易に得ることができ、徐冷スラグに比較して破砕の時間を短縮でき、粒径20mm程度の所望の凝固スラグを容易に得ることができる。 Therefore, as a coarse aggregate for concrete, various techniques for solidifying molten slag using a metal mold have been proposed in order to obtain solidified slag with few pores and easy to crush. Solidifying molten slag in a metal mold yields solidified slag that is larger than granulated slag and smaller than slowly cooled slag, and can be easily crushed by crushing it. Compared to slowly cooled slag, the time for crushing can be shortened, and a desired solidified slag having a particle size of about 20 mm can be easily obtained.
 金属製鋳型を用いて溶融スラグを凝固する例として、例えば特許文献1に記載されたアスファルト舗装用骨材(aggregate for asphalt pavement)及びその製造方法ならびにアスファルト舗装がある。特許文献1の溶融スラグの凝固方法は、溶融状態の高炉スラグを層厚が10~30mmの板状になるように金属製の移動鋳型上に単層で流して冷却凝固させ、単層板状の凝固スラグにするものである。この単層板状のスラグを破砕して、吸水率(water absorption percentage)が1.5%以下、すりへり減量(abrasion loss percentage)が20%以下のアスファルト舗装用骨材を製造するものである。 Examples of solidifying molten slag using a metal mold include, for example, aggregate for asphalt pavement described in Patent Document 1, a manufacturing method thereof, and asphalt pavement. In the solidification method of molten slag of Patent Document 1, the molten blast furnace slag is cooled and solidified by flowing it in a single layer on a metal moving mold so that the layer thickness is 10 to 30 mm. The solidified slag. This single-layer plate-like slag is crushed to produce an aggregate for asphalt pavement having a water absorption percentage of 1.5% or less and an abrasion loss of 20% or less.
 また、金属製の鋳型を用いて高炉スラグを凝固させてコンクリート用粗骨材を製造する方法としては、特許文献2に開示されたコンクリート用粗骨材がある。特許文献2に開示されたスラグからなるコンクリート用粗骨材は、金属製鋳型に溶融スラグを流し込んで凝固させて、凝固後得られたスラグを破砕し、吸水率1.5%以下及び粒径が5~20mmに調整するというものである。 Further, as a method for producing a coarse aggregate for concrete by solidifying blast furnace slag using a metal mold, there is a coarse aggregate for concrete disclosed in Patent Document 2. The coarse aggregate for concrete made of slag disclosed in Patent Document 2 is made by pouring molten slag into a metal mold to solidify, crushing the slag obtained after solidification, water absorption of 1.5% or less, and particle size Is adjusted to 5 to 20 mm.
特許第3855706号公報Japanese Patent No. 3855706 特開2004-277191号公報JP 2004-277191 A
 特許文献1に記載の溶融スラグの凝固方法は、溶融状態の高炉スラグを凝固厚みが10~30mmの板状になるように金属製の移動鋳型上に単層で流し込んで冷却凝固するものであり、急速に冷却凝固することで、凝固スラグ内部で生成する気孔の成長を抑制し、低気孔率で吸水率が低く、耐摩耗性(abrasion resistance)の高い骨材を製造するものである。 The method for solidifying molten slag described in Patent Document 1 is to cool and solidify a molten blast furnace slag by pouring it into a metal moving mold in a single layer so that the solidified thickness is 10 to 30 mm. By rapidly cooling and solidifying, growth of pores generated in the solidified slag is suppressed, and aggregates with low porosity, low water absorption, and high abrasion resistance are produced.
 ただし、特許文献1の実施例にも記載されているように、高炉スラグを金属製鋳型上で板状に凝固させた場合、金属製鋳型に接していた下面から1mm程度はガラス状(glassy state)になってしまう。これは、溶融スラグにおいては、金属製鋳型との接触面が最も急速に冷却されてガラス質(glassy state)になるが、溶融スラグの熱伝導率が非常に小さいので、溶融スラグ内部の冷却速度は大きくならずに結晶質の状態(crystalline state)で凝固することによる。 However, as described in the example of Patent Document 1, when the blast furnace slag is solidified in a plate shape on a metal mold, about 1 mm from the lower surface in contact with the metal mold is glassy (glassy state). )Become. This is because, in molten slag, the contact surface with the metal mold is cooled most rapidly and becomes glassy (glassy state), but since the thermal conductivity of the molten slag is very small, the cooling rate inside the molten slag By solidifying in a crystalline state without becoming large.
 上記のように、特許文献1の方法では、片面がガラス質の板状凝固スラグが生成されるが、このような板状凝固スラグを破砕して骨材を製造した場合、表面の一部がガラス質である粗骨材ができてしまう。表面がガラス質の粗骨材をコンクリート用粗骨材として使用した場合、フレッシュコンクリート(fresh concrete)が固まる際にブリージング(bleeding)しやすいという問題がある。ブリージングとは、フレッシュコンクリートにおいて固体材料の沈降または分離により、練り混ぜ水の一部が遊離して表面まで上昇する現象である。 As described above, in the method of Patent Document 1, a plate-like solidified slag having a glassy surface on one side is generated. When an aggregate is produced by crushing such a plate-like solidified slag, a part of the surface is formed. Coarse aggregate that is glassy is produced. When a coarse aggregate having a glassy surface is used as a coarse aggregate for concrete, there is a problem that it is likely to be bleeding when the fresh concrete is solidified. Breathing is a phenomenon in which a part of kneaded water is released and rises to the surface due to sedimentation or separation of a solid material in fresh concrete.
 また、金属製鋳型と接触していた面から1mm程度のガラス質部分と結晶質部分との境目で割れやすくなる。そのため、破砕して粗骨材粒度に調整する際にガラス質部分は細粒になりやすく、粗骨材の歩留が低下するという問題もある。 Also, it is easy to break at the boundary between the vitreous part and the crystalline part of about 1 mm from the surface that has been in contact with the metal mold. Therefore, when crushing and adjusting to a coarse aggregate particle size, the vitreous portion tends to be fine, and there is also a problem that the yield of the coarse aggregate decreases.
 特許文献2のコンクリート用粗骨材は、特許文献1と同様に、金属製の鋳型上で凝固した高炉スラグを利用するものであり、この高炉スラグを破砕して、吸水率1.5%以下、粒径5~20mmの粗骨材とするものである。溶融スラグを金属製鋳型に流し込んで20~30mmの厚みに凝固しており、特許文献1と同様に金属製鋳型との接触面はガラス化している可能性が高い。特許文献2のコンクリート用粗骨材を配合したコンクリートの配合条件(mix proportion)、養生期間(curing period)が7日、28日の圧縮強度は明らかであるが、ブリージングについては明らかでない。 The coarse aggregate for concrete disclosed in Patent Document 2 uses blast furnace slag solidified on a metal mold as in Patent Document 1, and the blast furnace slag is crushed to obtain a water absorption of 1.5% or less. A coarse aggregate having a particle size of 5 to 20 mm is used. Molten slag is poured into a metal mold and solidified to a thickness of 20 to 30 mm, and the contact surface with the metal mold is likely to be vitrified as in Patent Document 1. The compressive strength of the concrete blended with the coarse aggregate for concrete of Patent Document 2 (mixcurproportion) and curing period (curing period) of 7 days and 28 days is clear, but breathing is not clear.
 本発明は、上記のような問題を解決するためになされたものであり、品質の良いコンクリート用粗骨材の原料となり得る凝固スラグの製造方法、該凝固スラグの製造方法で製造される凝固スラグ、該凝固スラグを用いたコンクリート用粗骨材の製造方法、該コンクリート用粗骨材の製造方法によって製造されるコンクリート用粗骨材を提供することを目的とする。 The present invention has been made to solve the above problems, and a method for producing solidified slag that can be a raw material for high-quality concrete coarse aggregate, and a solidified slag produced by the method for producing solidified slag. Another object is to provide a method for producing a coarse aggregate for concrete using the solidified slag and a coarse aggregate for concrete produced by the method for producing the coarse aggregate for concrete.
 上記課題を解決するための本発明の要旨は以下のとおりである。 The gist of the present invention for solving the above problems is as follows.
 [1]溶融状態の高炉スラグを、移動する金属製の鋳型に流し込んで冷却し、前記鋳型内で板状になるように凝固させるスラグ凝固工程と、前記鋳型内で内部まで凝固したスラグを、前記鋳型を反転して鋳型から落下させるスラグ落下工程と、落下したスラグのスラグ表面の一部または全面の表面温度を900℃以上で5分間以上保持するスラグ温度保持工程と、を有する凝固スラグの製造方法。 [1] A slag solidification step in which molten blast furnace slag is poured into a moving metal mold, cooled and solidified into a plate shape in the mold, and slag solidified to the inside in the mold. A slag dropping step of inverting the mold and dropping from the mold, and a slag temperature holding step of holding the surface temperature of a part or the entire surface of the slag of the dropped slag at 900 ° C. or more for 5 minutes or more. Production method.
 [2]前記鋳型内で板状になるように凝固させた高炉スラグの厚みが20mm以上30mm以下であることを特徴とする上記[1]に記載の凝固スラグの製造方法。 [2] The method for producing a solidified slag according to the above [1], wherein the thickness of the blast furnace slag solidified so as to form a plate in the mold is 20 mm or more and 30 mm or less.
 [3]前記スラグ温度保持工程は、前記鋳型から落下させた凝固スラグの表面のうち、凝固時における鋳型接触面の80面積%以上について、スラグ表面温度を900℃以上で5分間以上保持することを特徴とする上記[1]または上記[2]に記載の凝固スラグの製造方法。 [3] In the slag temperature holding step, the slag surface temperature is maintained at 900 ° C. or more for 5 minutes or more for 80 area% or more of the mold contact surface during solidification among the surfaces of the solidified slag dropped from the mold. The method for producing a solidified slag according to [1] or [2] above, wherein
 [4]前記スラグ温度保持工程は、前記鋳型から落下させた凝固スラグを、スラグ厚み方向平均温度が900℃超で積層させることを特徴とする上記[1]乃至上記[3]の何れか1項に記載の凝固スラグの製造方法。 [4] In any one of [1] to [3], in the slag temperature holding step, the solidified slag dropped from the mold is laminated with an average temperature in the slag thickness direction exceeding 900 ° C. The manufacturing method of solidification slag as described in a term.
 [5]前記スラグ温度保持工程は、前記鋳型から落下させた凝固スラグを、該落下位置から搬出可能な保持容器内に積層させることを特徴とする上記[1]乃至上記[4]の何れか1項に記載の凝固スラグの製造方法。 [5] In any one of the above [1] to [4], in the slag temperature holding step, the solidified slag dropped from the mold is stacked in a holding container that can be carried out from the dropping position. 2. A method for producing a solidified slag according to item 1.
 [6]上記[1]乃至上記[5]の何れか1項に記載の凝固スラグの製造方法で製造した凝固スラグであって、目開き100mmの篩を通過し、目開き40mmの篩を通過しないスラグ試料を、2mの高さから4回落下させる落下試験後に、目開き40mmの篩を通過しない試料の落下試験前の試料に対する質量比率で評価する落下強度(Shatter Index)が70%以上である凝固スラグ。 [6] A solidified slag produced by the method for producing a solidified slag according to any one of [1] to [5] above, passing through a sieve having an opening of 100 mm and passing through a sieve having an opening of 40 mm. The drop strength (Shatter Index) evaluated by the mass ratio of the sample that does not pass through the 40 mm aperture sieve to the sample before the drop test is 70% or more after the drop test in which the slag sample is dropped 4 times from a height of 2 m. Some solidified slag.
 [7]上記[1]乃至上記[5]の何れか1項に記載の凝固スラグの製造方法を含む凝固スラグ製造工程と、製造した凝固スラグを破砕する凝固スラグ破砕工程と、破砕した凝固スラグを分級する分級工程と、を備えるコンクリート用粗骨材の製造方法。 [7] A solidified slag production process including the method for producing a solidified slag according to any one of [1] to [5], a solidified slag crushing process for crushing the produced solidified slag, and a crushed solidified slag A method for producing a coarse aggregate for concrete, comprising a classification step of classifying the material.
 [8]上記[7]に記載のコンクリート用粗骨材の製造方法で製造したコンクリート用粗骨材であって、平均圧縮強度が100N/mm2以上であるコンクリート用粗骨材。 [8] A coarse aggregate for concrete produced by the method for producing a coarse aggregate for concrete according to [7] above, having an average compressive strength of 100 N / mm 2 or more.
 本発明に係る凝固スラグの製造方法によれば、凝固スラグの金属製鋳型への接触面に生成したガラス質の部分が、スラグ表面温度を900℃以上で5分間以上保持する間に結晶質に変化することから、落下強度の高い凝固スラグが得られる。また、本発明に係る凝固スラグの製造方法によって製造した凝固スラグを、さらに破砕、分級(screening)して製造したコンクリート用粗骨材は、表面にガラス質の部分を有する割合が小さいことから、安定して高い強度が得られ、高強度のコンクリートを製造するうえで好適な粗骨材が得られる。 According to the method for producing a solidified slag according to the present invention, the vitreous portion formed on the contact surface of the solidified slag with the metal mold is crystalline while the slag surface temperature is maintained at 900 ° C. or higher for 5 minutes or longer. Since it changes, solidified slag with high drop strength can be obtained. In addition, the coarse aggregate for concrete produced by further crushing and classifying the solidified slag produced by the method for producing solidified slag according to the present invention has a small proportion of vitreous portions on the surface, High strength can be obtained stably, and a coarse aggregate suitable for producing high-strength concrete can be obtained.
図1は、本発明に係る凝固スラグ製造方法を実現する凝固スラグ製造装置の一実施形態の構成を模式的に示す模式図である。FIG. 1 is a schematic view schematically showing a configuration of an embodiment of a solidified slag production apparatus that realizes a solidified slag production method according to the present invention. 図2は、図1に示した凝固スラグ製造装置における凝固スラグ保持容器を模式的に示す模式図である。FIG. 2 is a schematic view schematically showing a solidified slag holding container in the solidified slag manufacturing apparatus shown in FIG. 図3は、金属製の鋳型上でスラグを冷却する場合の各測定位置における温度推移を示すグラフである。FIG. 3 is a graph showing the temperature transition at each measurement position when the slag is cooled on a metal mold. 図4は、スラグ及び鋳型の一次元伝熱解析モデルを示す模式図である。FIG. 4 is a schematic diagram showing a one-dimensional heat transfer analysis model of a slag and a mold. 図5は、スラグの表面温度900℃以上での保持時間と凝固時の鋳型接触面に占めるガラス質面積比率との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the holding time of the slag at a surface temperature of 900 ° C. or more and the glassy area ratio in the mold contact surface during solidification. 図6は、凝固スラグの厚さ方向の温度分布の計算結果を示すグラフである。FIG. 6 is a graph showing the calculation result of the temperature distribution in the thickness direction of the solidified slag. 図7は、スラグ収容3分後の、凝固スラグ保持容器内に堆積した、表層の凝固スラグの下のスラグの表面温度測定値、及び、凝固スラグの鋳型接触面での、鋳型から排出直後及び凝固スラグ保持容器内で表層下の凝固スラグとして3分保持した後のスラグ温度の計算値と、スラグ厚さとの関係を示すグラフである。FIG. 7 shows the measured surface temperature of the slag below the solidified slag on the surface layer deposited in the solidified slag holding container 3 minutes after slag storage, and immediately after discharge from the mold at the mold contact surface of the solidified slag and It is a graph which shows the relationship between the calculated value of the slag temperature after hold | maintaining as solidified slag under a surface layer for 3 minutes within a solidified slag holding container, and slag thickness. 図8は、凝固時の鋳型接触面が結晶質の場合における落下強度試験前後のスラグの外観を示す写真である。FIG. 8 is a photograph showing the appearance of the slag before and after the drop strength test when the mold contact surface during solidification is crystalline. 図9は、凝固時の鋳型接触面がガラス質の場合における落下強度試験前後のスラグの外観を示す写真である。FIG. 9 is a photograph showing the appearance of the slag before and after the drop strength test when the mold contact surface during solidification is glassy. 図10は、落下強度と凝固時の鋳型接触面に占めるガラス質部分比率との関係を示すグラフである。FIG. 10 is a graph showing the relationship between the drop strength and the vitreous portion ratio in the mold contact surface during solidification. 図11は、20~5mm粗骨材製造時の製品歩留を本発明例と比較例とで比較して示すグラフである。FIG. 11 is a graph showing the product yield at the time of manufacturing a coarse aggregate of 20 to 5 mm by comparing the example of the present invention with the comparative example. 図12は、本発明例及び比較例のそれぞれの粗骨材を用いたコンクリートでのブリージング量を比較して示すグラフである。FIG. 12 is a graph showing a comparison of the amount of breathing in concrete using the coarse aggregates of the present invention example and the comparative example.
 以下、本発明について具体的に説明する。 Hereinafter, the present invention will be specifically described.
 本実施の形態に係る凝固スラグの製造方法は、溶融状態の高炉スラグを、移動する金属製の鋳型に流し込んで冷却し、前記鋳型内で板状になるように凝固させるスラグ凝固工程と、前記鋳型内で内部まで凝固したスラグを、前記鋳型を反転して鋳型から落下させるスラグ落下工程と、落下したスラグのスラグ表面の一部または全面の表面温度を900℃以上で5分間以上保持するスラグ温度保持工程と、を有する。 The method for producing solidified slag according to the present embodiment includes a slag solidification step in which molten blast furnace slag is poured into a moving metal mold, cooled, and solidified into a plate shape in the mold, A slag dropping step in which the slag solidified inside the mold is dropped from the mold by reversing the mold, and a slag that holds the surface temperature of a part or the entire surface of the dropped slag at 900 ° C. or more for 5 minutes or more. And a temperature holding step.
 上記のような凝固スラグの製造方法を実現できる凝固スラグ製造装置の一例を図1に示す。図1に示した凝固スラグ製造装置1(図1)は、スラグ鍋23に収容された溶融状態の高炉スラグ、つまり、溶融スラグ3が流し込まれる凹陥部5a(recessed part)を有する複数の金属製の鋳型5を周回移動可能に支持し、鋳型5が周回する間に凹陥部5aに溶融スラグ3を流し込んで凝固スラグ18を連続的に製造する。 FIG. 1 shows an example of a solidified slag manufacturing apparatus that can realize the above-described solidified slag manufacturing method. The solidified slag manufacturing apparatus 1 (FIG. 1) shown in FIG. 1 is made of a plurality of metals having recessed portions 5a (recessed rod parts) into which molten blast furnace slag accommodated in a slag pan 23, that is, molten slag 3 is poured. The mold 5 is supported so as to be able to move around, and the molten slag 3 is poured into the recessed portion 5a while the mold 5 goes around to continuously produce the solidified slag 18.
 このような動作を行う凝固スラグ製造装置1は、複数の鋳型5を近接させ支持した状態で水平方向に周回移動させる周回移動機構7を備えている。この周回移動機構7は、鋳型が1周回する間に、流し込まれた溶融スラグ3を前記凹陥部5aに保持した状態で鋳型5を周回方向に移動させ、溶融スラグ3を空冷して凝固させる空冷移動部9と、鋳型5をその凹陥部5aが下方に向くように反転させて凝固スラグ18を排出する反転排出部11と、反転した鋳型5を反転した状態のままで移動させる反転移動部13と、反転状態にある鋳型5を凹陥部5aが上方に向くように再反転させる再反転部15と、再反転させた鋳型5を溶融スラグ3が流し込まれる部位まで移動させる再反転移動部17と、反転した鋳型5を冷却する冷却装置21と、を備えている。再反転移動部17は省略してもよい。なお、凝固スラグ製造装置1は、鋳型5に溶融スラグ3を流し込みやすいようにするために、樋20が設置されている。 The solidified slag manufacturing apparatus 1 that performs such an operation is provided with a revolving mechanism 7 that revolves horizontally in a state where a plurality of molds 5 are brought close to each other and supported. This circular movement mechanism 7 moves the mold 5 in the circular direction while holding the molten slag 3 poured into the recessed portion 5a while the mold makes one round, and air-cools the air by cooling and solidifying the molten slag 3. The moving part 9, the reversing discharge part 11 for reversing the casting mold 5 so that the recessed part 5a faces downward and discharging the solidified slag 18, and the reversing moving part 13 for moving the reversed casting mold 5 in the reversed state. A re-inversion unit 15 that re-inverts the mold 5 in the inverted state so that the recessed portion 5a faces upward, and a re-inversion moving unit 17 that moves the re-inverted mold 5 to a portion into which the molten slag 3 is poured. And a cooling device 21 for cooling the inverted mold 5. The re-inversion moving unit 17 may be omitted. The solidified slag manufacturing apparatus 1 is provided with a gutter 20 so that the molten slag 3 can be easily poured into the mold 5.
 また、凝固スラグ製造装置1は、反転排出部11の周回する鋳型5の下方に設けられたピット19を有し、ピット19には排出される凝固スラグ18を収容可能な凝固スラグ保持容器22が配置されている。 Further, the solidified slag manufacturing apparatus 1 has a pit 19 provided below the casting mold 5 that circulates around the reversal discharge unit 11, and the pit 19 has a solidified slag holding container 22 that can accommodate the solidified slag 18 to be discharged. Has been placed.
 凝固スラグ保持容器22は、図2に示すように、スラグ鍋23の1杯分の溶融スラグ3に相当する量の凝固スラグ18を保持できる容量を有し、スラグ鍋23の1杯分の凝固スラグ18を収容した後、スラグ落下位置から搬出して、空の凝固スラグ保持容器22と交換するようにしてもよい。このようにすれば、凝固スラグ保持容器22内で或る程度長時間スラグを保持しても、待ち時間が生じて生産性を低下させることなく、続けて次のスラグ鍋23の溶融スラグ3を処理することができる。 As shown in FIG. 2, the solidified slag holding container 22 has a capacity capable of holding the solidified slag 18 in an amount corresponding to the molten slag 3 for one cup of the slag pot 23, and solidifies for one cup of the slag pot 23. After the slag 18 is accommodated, it may be carried out from the slag dropping position and replaced with an empty solidified slag holding container 22. In this way, even if slag is held in the solidified slag holding container 22 for a long time, the molten slag 3 in the next slag pot 23 is continuously added without causing a waiting time and reducing productivity. Can be processed.
 凝固スラグ保持容器22の底面及び側面は、保温性の観点から、各面の法線方向に沿って少なくとも一部が、熱伝導率が5W/(m・K)程度以下といった低熱伝導率の耐火物で構成されることが望ましい。また、凝固スラグ18を収容した後に凝固スラグ保持容器22に蓋を設置する態様や、バーナーなどの簡易な加熱源を凝固スラグ保持容器22に付加して備える態様、あるいはスラグ落下位置のピット19そのものを凝固スラグ保持容器として用い、凝固スラグを収容した後にカバーを設置して保持する態様などを選択することもできる。 From the viewpoint of heat retention, at least a part of the bottom and side surfaces of the solidified slag holding container 22 along the normal direction of each surface has a low thermal conductivity fire resistance of about 5 W / (m · K) or less. It is desirable to be composed of objects. Further, after the solidified slag 18 is accommodated, the solidified slag holding container 22 is provided with a lid, a simple heating source such as a burner is added to the solidified slag holding container 22, or the pit 19 itself at the slag dropping position. Can be used as a solidified slag holding container, and a mode in which a cover is installed and held after the solidified slag is accommodated can be selected.
 以上のように構成された本実施の形態の凝固スラグ製造装置1を用いて凝固スラグ18を製造する方法の一例を、凝固スラグ製造装置1の動作と共に説明する。 An example of a method for manufacturing the solidified slag 18 using the solidified slag manufacturing apparatus 1 of the present embodiment configured as described above will be described together with the operation of the solidified slag manufacturing apparatus 1.
 周回移動機構7を所定の速度で回転させ、溶融スラグ流入部位にて、周回している鋳型5に、樋20を介して溶融スラグ3を流し込む。溶融スラグ3が流し込まれた鋳型5は空冷移動部9を移動し、溶融スラグ3は空冷されて凝固スラグ18になる(スラグ凝固工程)。 The orbiting moving mechanism 7 is rotated at a predetermined speed, and the molten slag 3 is poured into the circulating mold 5 at the molten slag inflow portion through the gutter 20. The mold 5 into which the molten slag 3 is poured moves through the air-cooling moving part 9, and the molten slag 3 is cooled by air to become a solidified slag 18 (slag solidification step).
 ここで、凝固スラグ18の厚みが20mm以上30mm以下となるように、鋳型5の周回移動速度及び/または溶融スラグ3の流し込み速度を制御することが好ましい。凝固スラグの厚みが20mm以上であれば、この凝固スラグ18を粉砕することによって、広く用いられている、一般的な粗骨材サイズである5~20mmの粗骨材製品に適した粒度分布を得ることが可能となる。また、凝固スラグ18の厚みが20mm以上であれば、後述するように、凝固スラグ18が凝固スラグ保持容器22内に装入される際に、平均含熱量(average amount of heat)を十分大きくすることができるので、加熱源を追加することなく凝固スラグ18を保温するだけで、鋳型接触面のスラグ表面温度を900℃以上まで上昇させて5分間以上保持することが可能となる。 Here, it is preferable to control the rotational speed of the mold 5 and / or the flow rate of the molten slag 3 so that the thickness of the solidified slag 18 is 20 mm or more and 30 mm or less. If the thickness of the solidified slag is 20 mm or more, by pulverizing the solidified slag 18, a particle size distribution suitable for a coarse aggregate product having a general coarse aggregate size of 5 to 20 mm, which is widely used, is obtained. Can be obtained. If the thickness of the solidified slag 18 is 20 mm or more, as will be described later, when the solidified slag 18 is charged into the solidified slag holding container 22, the average heat content (average (amount of heat) is sufficiently increased. Therefore, it is possible to raise the slag surface temperature of the mold contact surface to 900 ° C. or higher and hold it for 5 minutes or more simply by keeping the solidified slag 18 warm without adding a heating source.
 一方、凝固スラグ18の厚みが30mm以下であれば、スラグの冷却速度が適正な範囲となり、スラグ内部の気孔生成が抑制されるので、粗骨材製品の吸水率を1.5%以下に低減することが可能になると共に、例えば圧縮強度が100N/mm2以上といった高強度の粗骨材粒子を得るうえでも好ましい。 On the other hand, if the thickness of the solidified slag 18 is 30 mm or less, the cooling rate of the slag is in an appropriate range, and pore generation inside the slag is suppressed, so the water absorption rate of the coarse aggregate product is reduced to 1.5% or less. This is also preferable for obtaining coarse aggregate particles having a high strength such as a compressive strength of 100 N / mm 2 or more.
 反転排出部11に到着した鋳型5は、反転排出部11において周回方向に向けて回転して反転し、凝固スラグ18は、ピット19またはピット19内の凝固スラグ保持容器22に排出される(スラグ落下工程)。 The mold 5 that has arrived at the reverse discharge unit 11 rotates and reverses in the circumferential direction in the reverse discharge unit 11, and the solidified slag 18 is discharged to the pit 19 or the solidified slag holding container 22 in the pit 19 (slag Dropping process).
 凝固スラグ18を排出した鋳型5は反転状態で反転移動部13を移動し、該移動途中において冷却装置21によって冷却される。 The mold 5 from which the solidified slag 18 has been discharged moves the reversal moving unit 13 in a reversal state, and is cooled by the cooling device 21 during the movement.
 反転移動部13を通過した鋳型5は再反転部15において周方向に向けて回転して凹陥部5aが上方に向くように再反転する。再反転した鋳型5には再反転直後または再反転移動部17を移動した後、再びスラグ流入部位で溶融スラグ3が流し込まれる。 The mold 5 that has passed through the inversion moving unit 13 rotates in the circumferential direction in the reinversion unit 15 and reinverts so that the recessed portion 5a faces upward. The molten slag 3 is poured into the re-inverted mold 5 immediately after re-inversion or after moving the re-inversion moving part 17 at the slag inflow portion.
 ピット19に排出されて凝固スラグ保持容器22に装入された凝固スラグ18は、凝固スラグ保持容器22内に積層され、凝固スラグ18自身の保有する熱量によって、凝固時に低下した凝固スラグ18の鋳型接触面の温度が上昇する。このとき、落下した凝固スラグ18のスラグ表面温度を900℃以上で5分間以上保持することで、凝固スラグ18における鋳型接触面のガラス質を結晶質に改質することができる(スラグ温度保持工程)。このようにして、ガラス質が結晶質に改質された後、凝固スラグ保持容器22から凝固スラグ18をスラグ冷却床24に排出する。 The solidified slag 18 discharged into the pit 19 and charged into the solidified slag holding container 22 is laminated in the solidified slag holding container 22 and is a mold of the solidified slag 18 that is reduced during solidification due to the amount of heat held by the solidified slag 18 itself. The temperature of the contact surface rises. At this time, by maintaining the slag surface temperature of the dropped solidified slag 18 at 900 ° C. or more for 5 minutes or longer, the glassy surface of the mold contact surface in the solidified slag 18 can be modified to crystalline (slag temperature holding step). ). In this way, after the vitreous is modified into crystalline, the solidified slag 18 is discharged from the solidified slag holding container 22 to the slag cooling bed 24.
 以上のように、本発明の凝固スラグ製造方法は、スラグ凝固工程、スラグ落下工程及びスラグ温度保持工程という3工程を有しているが、これら3工程のなかで、特にスラグ温度保持工程に特徴があるので、これについて以下詳細に説明する。 As described above, the method for producing solidified slag of the present invention has three steps of a slag solidification step, a slag dropping step, and a slag temperature holding step, and among these three steps, the slag temperature holding step is particularly characteristic. This will be described in detail below.
 <スラグ温度保持工程が必要な理由>
 鋳型5から落下した板状の凝固スラグ18の断面を観察すると、鋳型接触面から約1mm程度までの範囲がガラス化している。鋳型接触面から1mm程度の範囲のみガラス化している理由は、冷却速度がこの部分だけ速いためである。凝固スラグ18の凝固厚みが変化しても、ガラス質の部分は鋳型接触面から約1mmと変わらなかった。
<Reason why slag temperature holding process is necessary>
When the cross section of the plate-shaped solidified slag 18 dropped from the mold 5 is observed, the range from the mold contact surface to about 1 mm is vitrified. The reason for vitrification only in the range of about 1 mm from the mold contact surface is that the cooling rate is faster only in this part. Even if the solidification thickness of the solidification slag 18 changed, the vitreous portion did not change from the mold contact surface to about 1 mm.
 凝固スラグ18の大気側の表面温度を放射温度計を用いて測定すると共に、鋳型背面に熱電対を設置して、鋳型上に流した溶融スラグ3が冷却されて凝固する過程までの温度推移を、凝固スラグ18の厚み23mmの場合について測定した。測定結果を、図3に示す。図3には後述する伝熱解析により求めた、スラグの厚み方向中心位置及び鋳型5に接する位置でのスラグ温度の推移も合わせて示した。鋳型5に接する位置のスラグは、鋳型への熱伝達によって初期の冷却速度が著しく大きく、約15秒で400℃まで低下し、その後ほぼ一定の温度になる。スラグの中心部は温度の低下が遅く、2分後で1150℃程度、大気側の表面も2分後で900℃程度までしか低下しない。 The surface temperature of the solidified slag 18 on the atmosphere side is measured using a radiation thermometer, and a thermocouple is installed on the back of the mold, and the temperature transition until the molten slag 3 flowing on the mold is cooled and solidified is measured. The measurement was performed for a case where the solidified slag 18 had a thickness of 23 mm. The measurement results are shown in FIG. FIG. 3 also shows the transition of the slag temperature at the central position in the thickness direction of the slag and the position in contact with the mold 5, which was obtained by heat transfer analysis described later. The initial cooling rate of the slag at the position in contact with the mold 5 is remarkably large due to heat transfer to the mold, decreases to 400 ° C. in about 15 seconds, and then reaches a substantially constant temperature. The temperature of the central part of the slag is slow, and after about 2 minutes, the temperature decreases only to about 1150 ° C., and the atmosphere side surface also decreases only to about 900 ° C. after 2 minutes.
 このように、主として鋳型5への熱伝達によって溶融スラグ3を冷却する本方式では、鋳型接触面は急冷却されるが、スラグの熱伝導率が2W/(m・K)以下と小さいため、スラグ内部の熱伝導が遅く、鋳型接触面以外の冷却速度は小さい。そのため、鋳型接触面のスラグのみが急冷されてガラス化する。鋳型5を反転して、鋳型5から落下した後の凝固スラグ18は、1枚1枚ばらばらで搬送されると搬送中に表面から冷却が進むため、表面のガラス質がそのまま残留する。 Thus, in the present system in which the molten slag 3 is cooled mainly by heat transfer to the mold 5, the mold contact surface is rapidly cooled, but the thermal conductivity of the slag is as small as 2 W / (m · K) or less, The heat conduction inside the slag is slow, and the cooling rate other than the mold contact surface is small. Therefore, only the slag on the mold contact surface is quenched and vitrified. When the solidified slag 18 after the mold 5 is inverted and dropped from the mold 5 is conveyed one by one, the cooling progresses from the surface during the conveyance, so that the glassy surface remains as it is.
 ガラス質が残留すると、前述したように、コンクリート用粗骨材として使用した場合にブリージングしやすいという問題や粗骨材の歩留が低下するという問題が生じることから、ガラス質部分を結晶質に改質する必要がある。そこで、ガラス質部分を結晶質に改質する温度保持工程が必要となる。 If the vitreous remains, as described above, when used as a coarse aggregate for concrete, there are problems that it is easy to breathe and the yield of the coarse aggregate is reduced. It needs to be modified. Therefore, a temperature maintaining step for modifying the vitreous portion to be crystalline is necessary.
 <解析による冷却速度の検討>
 ガラス質部分を結晶質に改質するには如何にすべきかについて検討した。検討に際して、伝熱解析によりスラグ内部の冷却速度を検討した。本プロセスはスラグを板状に凝固するので、冷却・凝固過程での温度推移は単純な平板の非定常一次元熱伝導(unsteady one-dimension heat conduction)と考えてよい。この基礎式は下記の(1)式となる。
<Examination of cooling rate by analysis>
We examined how to modify the vitreous part to be crystalline. During the study, the cooling rate inside the slag was examined by heat transfer analysis. Since this process solidifies the slag into a plate shape, the temperature transition during the cooling and solidification process can be thought of as a simple flat plate unsteady one-dimension heat conduction. This basic formula is the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、λは熱伝導度(W/(m・K))、ρは密度(kg/m3)、Cpは比熱(J/(kg・K))、Tはスラグまたは鋳型の温度(K)、Xは厚み方向の長さ(m)、tは時間(s)である。 Where λ is the thermal conductivity (W / (m · K)), ρ is the density (kg / m 3 ), Cp is the specific heat (J / (kg · K)), and T is the slag or mold temperature (K ), X is the length (m) in the thickness direction, and t is the time (s).
 図4は解析モデルを示すものであり、図4(a)は鋳型にスラグが収容されている状態であり、図4(b)は鋳型から落下した凝固スラグを示している。図4に示すように、スラグ、鋳型の厚み方向を、スラグを10分割、鋳型を10分割して計算を行った。鋳型から落下後については凝固スラグのみを計算した。 FIG. 4 shows an analysis model, FIG. 4 (a) shows a state where slag is accommodated in the mold, and FIG. 4 (b) shows solidified slag dropped from the mold. As shown in FIG. 4, the thickness direction of the slag and mold was calculated by dividing the slag into 10 parts and dividing the mold into 10 parts. Only the solidified slag was calculated after dropping from the mold.
 ここで、大気-スラグの界面(interface)の熱伝達係数hs、鋳型-大気界面の熱伝達係数hm、スラグ-鋳型界面の熱抵抗Rをパラメーターとし、温度計算値が図3の実測値に合うようにパラメーターの値を決定した。大気-スラグ界面は、初期には1300K以上の高温の温度差であるため、熱放射を考慮した。雰囲気温度Taは293Kで一定とし、温度上昇はないものとした。鋳型から落下後は、断熱状態と仮定し、スラグ外部との熱移動はないものとした。Δt=0.5secとして、陽解法(explicit solution technique)により計算した。 Here, the heat transfer coefficient hs at the air-slag interface, the heat transfer coefficient hm at the mold-atmosphere interface, and the thermal resistance R at the slag-mold interface are used as parameters, and the calculated temperature matches the measured value in FIG. The parameter values were determined as follows. Since the air-slag interface has a high temperature difference of 1300 K or more in the initial stage, heat radiation was considered. The ambient temperature Ta was assumed to be constant at 293 K and there was no temperature rise. After dropping from the mold, it was assumed that it was in a heat-insulating state, and there was no heat transfer to the outside of the slag. The calculation was performed by explicit solution (technique) with Δt = 0.5 sec.
 スラグの熱伝導率λ(W/(m・K))は、下記の(2)式、(3)式から計算した値を用いた。
T>1400Kのとき、
 λ=-5.0×10-3T+9.20 ・・・(2)
T≦1400Kのとき、
 λ=7.78×10-4T+1.11 ・・・(3)
 スラグの比熱Cpは、Oginoらの高炉スラグの熱容量測定結果(K.Ogino and J.Nishiwaki、鉄鋼物性値便覧 製鉄編 (2006)p.350、(社)日本鉄鋼協会、(独)日本学術振興会 製銑第54委員会)に基づき、T<1443KのときCp=1039J/(kg・K)、1443K≦T<1673KのときCp=2242.5J/(kg・K)、1673K≦T<1773KのときCp=1326J/(kg・K)とした。
As the thermal conductivity λ (W / (m · K)) of the slag, the value calculated from the following formulas (2) and (3) was used.
When T> 1400K
λ = −5.0 × 10 −3 T + 9.20 (2)
When T ≦ 1400K
λ = 7.78 × 10 −4 T + 1.11 (3)
The specific heat Cp of the slag is the heat capacity measurement result of the blast furnace slag by Ogino et al. Based on the 54th Committee), Cp = 1039J / (kg · K) when T <1443K, Cp = 2242.5J / (kg · K) when 1443K ≦ T <1673K, 1673K ≦ T <1773K In this case, Cp = 1326 J / (kg · K).
 スラグ表面の熱伝達率及び鋳型背面の熱伝達率をそれぞれhs=30W/(m2・K)、hm=10W/(m2・K)、スラグ-鋳型界面の熱抵抗をR=9×10-42・K/Wと設定することにより、図3の温度の実測値とほぼ一致させることができた。 The heat transfer coefficient of the slag surface and the heat transfer coefficient of the mold back are hs = 30 W / (m 2 · K) and hm = 10 W / (m 2 · K), respectively, and the heat resistance of the slag-mold interface is R = 9 × 10 By setting -4 m 2 · K / W, it was possible to substantially match the measured temperature value in FIG.
 これにより、スラグの温度変化を計算可能となり、これに基づいてスラグ温度保持工程における温度条件及び保持時間について検討した。 This makes it possible to calculate the temperature change of the slag, and based on this, the temperature condition and the holding time in the slag temperature holding process were examined.
 <温度条件>
 ガラス質部分を結晶化するために必要な表面温度について検討した。スラグ落下工程直後の凝固スラグの表面温度は、スラグ凝固厚さと、鋳型を反転してスラグを剥離するまでのスラグの冷却時間とによって変化する。そこで、スラグ凝固厚さと前記冷却時間とを種々変更することで凝固スラグ表面温度を変化させ、表面温度を種々変化させた凝固スラグを凝固スラグ保持容器に24時間保持し、凝固スラグの鋳型接触面の最高温度とガラス質部分の面積比率との関係を調べた。その結果、ガラス質部分を結晶化するためには表面温度を900℃以上に上昇することが有効であることを確認した。
<Temperature conditions>
The surface temperature required to crystallize the vitreous part was investigated. The surface temperature of the solidified slag immediately after the slag dropping process varies depending on the slag solidified thickness and the cooling time of the slag until the slag is peeled after the mold is reversed. Therefore, the solidified slag surface temperature is changed by variously changing the solidified slag thickness and the cooling time, and the solidified slag having variously changed surface temperatures is held in the solidified slag holding container for 24 hours, and the solidified slag mold contact surface The relationship between the maximum temperature of the glass and the area ratio of the vitreous part was investigated. As a result, it was confirmed that it is effective to raise the surface temperature to 900 ° C. or higher in order to crystallize the vitreous portion.
 <保持時間>
 次に、スラグの凝固厚さと、鋳型を反転してスラグを剥離するまでのスラグの冷却時間とを一定とした条件で、凝固スラグ保持容器内での保持時間を変更して、凝固スラグの鋳型接触面側の表面温度が900℃に上昇した時点からの保持時間、即ち、スラグ表面温度を900℃以上で保持した時間と、凝固スラグの鋳型接触面のガラス質部分の面積比率との関係を調査した。
<Retention time>
Next, the solidification slag mold was changed by changing the holding time in the solidification slag holding container under the condition that the solidification thickness of the slag and the cooling time of the slag until the slag was peeled after reversing the mold were fixed. The relationship between the holding time from the time when the surface temperature on the contact surface side rose to 900 ° C., that is, the time for holding the slag surface temperature at 900 ° C. or higher, and the area ratio of the vitreous portion of the mold contact surface of the solidified slag investigated.
 具体的には、後述する実施例に示した凝固スラグ製造装置において、金属製鋳型5の周回を2周繰り返して6分間で12トンの溶融スラグ3を連続して処理し、鋳型5を反転する際のスラグ落下位置に配した凝固スラグ保持容器22への凝固スラグ18の収容を完了した後に所定時間保持し、所定の保持時間となった時点で直ちに凝固スラグ18をスラグ冷却床24に排出して広げ、大気中で冷却した。 Specifically, in the solidified slag manufacturing apparatus shown in the examples described later, the metal mold 5 is repeatedly wound twice to continuously process 12 tons of molten slag 3 in 6 minutes, and the mold 5 is inverted. The solidified slag 18 is held in the solidified slag holding container 22 disposed at the slag dropping position at that time, and then held for a predetermined time. When the predetermined holding time is reached, the solidified slag 18 is immediately discharged to the slag cooling floor 24. Spread and cooled in the atmosphere.
 900℃以上での保持時間を計算するには、スラグの鋳型接触面側の表面温度が900℃に上昇した時点と、900℃未満に低下した時点とを特定する必要がある。そこで、スラグの鋳型接触面側の表面温度が900℃に上昇した時点は、最後の凝固スラグの凝固スラグ保持容器への収容が終了し、当該スラグの鋳型接触面側の表面温度が900℃に達する時点とし、この時点を前記の伝熱解析で凝固スラグ保持容器内ではスラグ表面が断熱境界条件(adiabatic boundary condition)であると仮定して求めた。また、表面温度が900℃未満に低下した時点は、凝固スラグを凝固スラグ保持容器からスラグ冷却床に排出して広げた時点とした。これは、凝固スラグを凝固スラグ保持容器からスラグ冷却床に排出して広げた時点で直ちに凝固スラグの表面温度は900℃未満に低下するとの仮定に基づくものである。 In order to calculate the holding time at 900 ° C. or higher, it is necessary to specify the time point when the surface temperature on the mold contact surface side of the slag rises to 900 ° C. and the time point when the surface temperature falls below 900 ° C. Therefore, when the surface temperature on the mold contact surface side of the slag rises to 900 ° C., the last solidification slag is stored in the solidified slag holding container, and the surface temperature of the slag on the mold contact surface side reaches 900 ° C. This time was determined by assuming that the surface of the slag is adiabatic boundary condition in the solidified slag holding container in the heat transfer analysis. Moreover, the time when the surface temperature decreased to less than 900 ° C. was the time when the solidified slag was discharged from the solidified slag holding container to the slag cooling bed and spread. This is based on the assumption that as soon as the solidified slag is discharged from the solidified slag holding container to the slag cooling bed and spread, the surface temperature of the solidified slag drops below 900 ° C.
 図5は、ガラス質面積比率(%)と、900℃以上で保持した時間(min)との関係を示すグラフである。図5のグラフに示されるように、900℃以上で5分間保持することによって鋳型接触面のガラス質部分の面積比率はほぼ10%程度まで低下し、さらに保持時間を増してもガラス質部分の面積比率は大きく変化しないことが分かる。このことから、鋳型接触面のガラス質部分を結晶化するためには、凝固スラグの表面温度を900℃以上で5分間以上保持することが有効であることを確認した。 FIG. 5 is a graph showing the relationship between the glassy area ratio (%) and the time (min) held at 900 ° C. or higher. As shown in the graph of FIG. 5, by holding at 900 ° C. or higher for 5 minutes, the area ratio of the glassy portion of the mold contact surface decreases to about 10%, and even if the holding time is increased, It can be seen that the area ratio does not change greatly. From this, in order to crystallize the vitreous part of the mold contact surface, it was confirmed that it was effective to maintain the surface temperature of the solidified slag at 900 ° C. or more for 5 minutes or more.
 なお、図5で900℃以上での保持時間を5分間よりも延長してもガラス質部分の面積比率が10%程度から大きく低下しない理由は、スラグ保持容器内に積層して堆積させた凝固スラグの最表層部分で鋳型接触面が上を向いた凝固スラグについては、保持時間を長くしても900℃以上に温度が上がらず結晶化しなかったことによると考えられる。したがって、スラグ保持容器にスラグ収容後に蓋を設置したり、バーナーなどの簡易な加熱源を用いて再加熱したりするようにすれば、さらにガラス質部分の面積比率を低下することができる。 In FIG. 5, the reason why the area ratio of the vitreous portion does not greatly decrease from about 10% even if the holding time at 900 ° C. or higher is extended beyond 5 minutes is the solidification that is laminated and deposited in the slag holding container. It is considered that the solidified slag having the mold contact surface facing upward at the outermost layer portion of the slag was not crystallized because the temperature did not rise to 900 ° C. or higher even when the holding time was increased. Therefore, the area ratio of the vitreous portion can be further reduced by installing a lid after the slag is accommodated in the slag holding container or by reheating using a simple heating source such as a burner.
 また、図5で900℃以上での保持時間の計算値がゼロでも一部のガラス質スラグが結晶化している理由は、スラグ処理の初期にスラグ保持容器内に収容された堆積層内下部の凝固スラグでは、最終の凝固スラグが収容されるまでの時間内に表面温度の上昇が進行し、900℃以上で5分間以上保持されていたことによると考えられる。つまり、スラグ処理の初期にスラグ保持容器内に収容された凝固スラグは、結晶化の条件が満たされて結晶化が進行したものと考えられる。 Further, in FIG. 5, the reason why some vitreous slag is crystallized even when the calculated value of the retention time at 900 ° C. or higher is zero is that the lower part of the deposited layer contained in the slag holding container at the initial stage of the slag treatment. In the solidified slag, it is considered that the rise in surface temperature progressed within the time until the final solidified slag was accommodated, and the temperature was maintained at 900 ° C. or higher for 5 minutes or longer. In other words, it is considered that the solidified slag accommodated in the slag holding container at the initial stage of the slag treatment has been crystallized by satisfying the crystallization conditions.
 次に、スラグ落下工程によって落下した凝固スラグを積層させることによって上記の温度条件と保持時間とを確保できるかについて検討した。 Next, it was examined whether the above temperature condition and holding time could be secured by laminating the solidified slag dropped in the slag dropping process.
 <保温状態のスラグ温度>
 スラグ厚み25mmの凝固スラグについて、鋳型から落下する直前の温度分布を計算した。一例として、溶融スラグ3を鋳型に注入してから120秒後の凝固スラグ18内部の温度分布の計算結果を図6に示す。凝固スラグ内部の温度分布は、例えば、図6の実線のグラフのようになる。鋳型から排出直後の凝固スラグの温度は、鋳型から落下する直前の凝固スラグの温度とほぼ同一と考えられるので、図6中においては「鋳型から排出直後」と表記している。
<Insulated slag temperature>
For the solidified slag having a slag thickness of 25 mm, the temperature distribution immediately before dropping from the mold was calculated. As an example, FIG. 6 shows a calculation result of the temperature distribution inside the solidified slag 18 120 seconds after the molten slag 3 is injected into the mold. The temperature distribution inside the solidified slag is, for example, as shown by a solid line graph in FIG. Since the temperature of the solidified slag immediately after being discharged from the mold is considered to be substantially the same as the temperature of the solidified slag immediately before dropping from the mold, it is indicated as “immediately after being discharged from the mold” in FIG.
 鋳型から排出直後の凝固スラグでは、鋳型接触面、大気面の温度は低下するが、内部の温度は高い状態になっている。この状態で凝固スラグを保持容器内に落下させ、次々に積層して堆積させると、堆積層内部のスラグは保温状態になるので、時間経過に伴ってスラグ内部の熱が凝固時の鋳型接触面側及び大気側に伝導して、スラグ全体が均一な温度分布に近づく。3分後の温度分布計算結果を図6の破線で示した。本条件では、一度低下した鋳型接触面の温度も上昇して1000℃程度の温度になっている。 ¡In the solidified slag immediately after being discharged from the mold, the temperature of the mold contact surface and the air surface is lowered, but the internal temperature is high. If the solidified slag is dropped into the holding container in this state and stacked one after another, the slag inside the deposited layer becomes a heat-retaining state. Conducted to the air side and the atmosphere side, the entire slag approaches a uniform temperature distribution. The temperature distribution calculation result after 3 minutes is shown by a broken line in FIG. Under these conditions, the temperature of the mold contact surface once lowered also rises to about 1000 ° C.
 本発明に係る凝固スラグの製造方法では、凝固スラグを鋳型から落下・排出させた後に、鋳型接触面を含む凝固スラグのスラグ表面の一部または全面の表面温度を900℃以上に上昇させて5分間以上保持することを必須とする。これは、鋳型から排出させる凝固スラグのスラグ厚み方向平均温度を900℃超とし、この凝固スラグをピット19または凝固スラグ保持容器内で積層させることによって、新たな加熱源を用いることなく実施可能であることを確認した。 In the method for producing a solidified slag according to the present invention, after the solidified slag is dropped and discharged from the mold, the surface temperature of a part or the whole surface of the solidified slag including the mold contact surface is raised to 900 ° C. or higher. It is essential to hold for more than a minute. This can be performed without using a new heating source by setting the average temperature in the slag thickness direction of the solidified slag discharged from the mold to be over 900 ° C. and laminating the solidified slag in the pit 19 or the solidified slag holding container. I confirmed that there was.
 <スラグ積層による温度>
 凝固スラグ自身の含熱量によってスラグ表面温度を900℃以上に上昇させることは、凝固スラグの凝固厚さ、鋳型を反転して凝固スラグを落下させるまでのスラグの冷却時間、及び凝固スラグ保持容器内での保持時間などの条件を適切に選択することにより実現される。この点を以下に具体的に説明する。
<Temperature by slag lamination>
Increasing the surface temperature of the slag to 900 ° C or higher due to the heat content of the solidified slag itself means that the solidified thickness of the solidified slag, the cooling time of the slag until the solidified slag is dropped after inverting the mold, and the solidified slag holding container This is realized by appropriately selecting conditions such as the holding time at. This point will be specifically described below.
 例えば、溶融スラグの鋳型注入後の冷却時間を2分間、最後の凝固スラグが落下して収容されてからの凝固スラグ保持容器内での保持時間を3分間(180秒)とした場合について、スラグ厚さの平均値と凝固スラグ保持容器内のスラグ堆積層内のスラグ表面温度との関係を図7に示す。 For example, when the cooling time after casting the molten slag mold is 2 minutes and the holding time in the solidified slag holding container after the last solidified slag is dropped and stored is 3 minutes (180 seconds), the slag FIG. 7 shows the relationship between the average thickness and the slag surface temperature in the slag deposit layer in the solidified slag holding container.
 赤外線サーモグラフィーを用いて、凝固スラグ保持容器上部から凝固スラグの温度を測定し、表層の凝固スラグではなく、表層の凝固スラグの間隙から測定される、表層の凝固スラグの下にある凝固スラグ(以下、「表層下の凝固スラグ」と称することもある)の表面温度を図7にプロットした。この表層下に存在する、試験した平均厚さが22mm以上の凝固スラグの表面温度は何れの測定値も900℃を超えていた。図7の横軸のスラグ厚さは表層付近のスラグの厚さを冷却後に測定した値の平均値である。 Using infrared thermography, measure the temperature of the solidified slag from the top of the solidified slag holding container, and measure the solidified slag below the solidified slag of the surface layer (hereinafter referred to as the solidified slag of the surface layer, not the solidified slag of the surface layer) The surface temperature of “sometimes referred to as subsurface solidified slag” is plotted in FIG. The surface temperature of the solidified slag having an average thickness of 22 mm or more existing under this surface layer was over 900 ° C. in all measured values. The slag thickness on the horizontal axis in FIG. 7 is an average value of values measured after cooling the slag thickness near the surface layer.
 一方、実線で示したのは、凝固スラグの鋳型接触面での温度の計算値であり、鋳型から排出直後の温度と、凝固スラグ保持容器内で表層下の凝固スラグとして3分(180秒)保持した後の温度である。図7に示すように、3分保持した後の凝固スラグの鋳型接触面での温度計算値は、平均厚みが20mm以上であれば、900℃を超えており、平均厚みが大きくなるほど、鋳型接触面での温度は高くなることが分かった。 On the other hand, the solid line shows the calculated value of the temperature of the solidified slag at the mold contact surface, and the temperature immediately after discharge from the mold and the solidified slag under the surface layer in the solidified slag holding container for 3 minutes (180 seconds) It is the temperature after holding. As shown in FIG. 7, the calculated temperature at the mold contact surface of the solidified slag after being held for 3 minutes exceeds 900 ° C. if the average thickness is 20 mm or more, and the mold contact increases as the average thickness increases. It was found that the temperature at the surface was high.
 保持容器内で積層された表層下の凝固スラグの表面温度の測定値は、計算結果と同様にスラグ厚さが大きいほど高くなる傾向であり、試験した平均厚さが22mm以上の凝固スラグは全て3分後には900℃以上になっていた。即ち、表層下の凝固スラグの表面温度測定値は計算結果と良く一致しており、計算結果及び実測値から、平均厚さが20mm以上の凝固スラグを積層させることで、3分後には凝固スラグの表面温度を900℃以上にできることを確認した。 The measured value of the surface temperature of the solidified slag under the surface layer laminated in the holding container tends to be higher as the slag thickness is larger as in the calculation result, and all the solidified slag having an average thickness of 22 mm or more tested After 3 minutes, it was 900 ° C or higher. That is, the surface temperature measurement value of the solidified slag under the surface layer is in good agreement with the calculation result. From the calculation result and the actual measurement value, the solidified slag having an average thickness of 20 mm or more is laminated, and the solidified slag after 3 minutes. It was confirmed that the surface temperature of can be made 900 ° C. or higher.
 なお、凝固スラグの表面温度を上昇させるための熱源を凝固スラグ自身の含熱量のみとする場合には、外部への放熱の影響を小さくするために、凝固スラグ保持容器内に積層して収容する凝固スラグの量は或る程度の量を確保する必要がある。具体的には、5トン以上、より望ましくは10トン以上の凝固スラグを1m以上の厚みに積層して収容することが好適である。 When the heat source for raising the surface temperature of the solidified slag is limited to the heat content of the solidified slag itself, it is stored in a solidified slag holding container in order to reduce the influence of heat radiation to the outside. It is necessary to secure a certain amount of solidified slag. Specifically, it is preferable that the solidified slag of 5 tons or more, more desirably 10 tons or more is stacked and accommodated with a thickness of 1 m or more.
 金属製の鋳型で鋳造した板状凝固スラグは、徐冷スラグに比べて、平均的な凝固速度が大きいことから、結晶粒が小さい傾向があり、また、後述のように、鋳型接触面近傍の残留応力(residual stress)が緩和・解消されることにより、徐冷スラグよりも強度特性に優れた材質が得られる。 Plate-shaped solidified slag cast with a metal mold has a larger average solidification rate than slow-cooled slag, and therefore tends to have smaller crystal grains. By relieving and eliminating the residual stress, a material superior in strength characteristics to that of slowly cooled slag can be obtained.
 また、本発明に係る凝固スラグの製造方法によって製造した凝固スラグは、後述する定義の落下強度(Shatter Index)が70%以上であり、本発明に係る凝固スラグの製造方法により、落下強度(Shatter Index)が70%以上である高強度の板状の凝固スラグが得られる。また、落下強度が70%以上である、金属製鋳型で鋳造した板状の凝固スラグを用いることにより、これを破砕、分級してコンクリート用粗骨材などのスラグ製品を製造する場合の製品歩留が向上する。 In addition, the solidified slag produced by the method for producing solidified slag according to the present invention has a drop strength (Shatter Index) defined later which is 70% or more, and the method for producing solidified slag according to the present invention provides a drop strength (Shatter A high-strength plate-like solidified slag having an index of 70% or more is obtained. In addition, by using plate-shaped solidified slag cast with a metal mold having a drop strength of 70% or more, this is crushed and classified to produce slag products such as coarse aggregate for concrete. The yield is improved.
 さらに、本発明に係る凝固スラグの製造方法によって製造した凝固スラグを破砕、分級して得た粗骨材では、後述する方法で測定した平均圧縮強度が100N/mm2以上のコンクリート用粗骨材が得られ、高強度コンクリートを製造する場合の粗骨材原料として適している。 Furthermore, in the coarse aggregate obtained by crushing and classifying the solidified slag produced by the method for producing solidified slag according to the present invention, the coarse aggregate for concrete having an average compressive strength measured by the method described later of 100 N / mm 2 or more. And is suitable as a raw material for coarse aggregate when producing high-strength concrete.
 本発明の作用効果について、具体的な実施例に基づいて説明する。 The function and effect of the present invention will be described based on specific examples.
 本実施例においては、図1に示した装置を用いて凝固スラグを製造した。鋳型5は平面視台形形状の鋳鋼製で、その厚みを45mmとし、台形の上底に相当する鋳型の外法寸法(outer dimension)を0.7m、台形の下底に相当する鋳型の外法寸法を1.0mとし、台形の高さに相当する鋳型の外法寸法を2.7mとした。また、溶融スラグを流し込む鋳型5の凹陥部5aの深さを100mmとした。鋳型5を周回移動機構7により周回搬送し、周回搬送する搬送速度は鋳型中心で14m/minとした。 In this example, solidified slag was manufactured using the apparatus shown in FIG. The mold 5 is made of cast steel having a trapezoidal shape in plan view, the thickness thereof is 45 mm, the outer dimension of the mold corresponding to the upper base of the trapezoid is 0.7 m, and the outer method of the mold corresponding to the lower base of the trapezoid. The dimension was 1.0 m, and the outer dimension of the mold corresponding to the height of the trapezoid was 2.7 m. Moreover, the depth of the recessed part 5a of the casting_mold | template 5 which pours molten slag was 100 mm. The mold 5 was circulated and conveyed by the circulatory movement mechanism 7, and the conveying speed of the circulatory conveyance was 14 m / min at the mold center.
 スラグ流入部位において、鋳型5には、1360℃以上1410℃以下の溶融状態の高炉スラグを約2ton/minで流入させた。溶融スラグ3が流し込まれた鋳型5は空冷移動部9を約120秒間{空冷移動部の長さが全周の2/3(240度)}搬送し、溶融スラグ3を空冷によって凝固スラグ18とした。 At the slag inflow site, molten blast furnace slag of 1360 ° C. or higher and 1410 ° C. or lower was flowed into the mold 5 at about 2 ton / min. The mold 5 into which the molten slag 3 has been poured conveys the air-cooled moving part 9 for about 120 seconds {the length of the air-cooled moving part is 2/3 (240 degrees) of the entire circumference}. did.
 反転排出部11では鋳型5を反転して、鋳型から剥離させた凝固スラグ18をピット19に配置した凝固スラグ保持容器22に落下させた。凝固スラグ18が排出された鋳型5を、反転移動部13を反転状態のまま移動させ、冷却装置21が設置されている部位にて上下両面から冷却水を噴射して急冷した。 In the reverse discharge unit 11, the mold 5 was inverted and the solidified slag 18 peeled off from the mold was dropped into the solidified slag holding container 22 arranged in the pit 19. The casting mold 5 from which the solidified slag 18 was discharged was moved while the inversion moving unit 13 was in the inverted state, and was rapidly cooled by injecting cooling water from the upper and lower surfaces at the site where the cooling device 21 was installed.
 続いて、反転状態の鋳型5を、再反転部15によって再反転して、再び元の凹陥部5aが上方を向いた状態に戻した。その後、戻された鋳型に再び溶融スラグを流し込んだ。以上の工程を1回のスラグ鍋に対して5周繰り返し、15分間で30トンの溶融スラグを連続して処理した。 Subsequently, the mold 5 in the inverted state was re-inverted by the re-inversion part 15 and returned to the state in which the original recessed part 5a was directed upward again. Thereafter, molten slag was poured again into the returned mold. The above process was repeated 5 times for one slag pan, and 30 tons of molten slag was continuously processed in 15 minutes.
 全ての凝固スラグが鋳型から落下した後、凝固スラグ保持容器内で所定時間保持し、その後、凝固スラグを凝固スラグ保持容器からスラグ冷却床に排出して広げ、大気中で冷却した。 After all the solidified slag dropped from the mold, the solidified slag was held in the solidified slag holding container for a predetermined time, and then the solidified slag was discharged from the solidified slag holding container to the slag cooling bed and spread and cooled in the atmosphere.
 本発明例では、溶融スラグ温度が1385℃、凝固スラグ保持容器内でのスラグ収容完了後の保持時間が10分、凝固スラグの平均厚みが25mmの条件とし、所定の保持時間後直ちに凝固スラグ保持容器から凝固スラグをスラグ冷却床に排出して広げ、大気中で冷却した。 In the example of the present invention, the molten slag temperature is 1385 ° C., the holding time after completion of slag storage in the solidified slag holding container is 10 minutes, the average thickness of the solidified slag is 25 mm, and the solidified slag is held immediately after a predetermined holding time. The solidified slag was discharged from the container to the slag cooling bed, spread and cooled in the atmosphere.
 比較例では、溶融スラグ温度が1380℃、凝固スラグの平均厚みが23mmの条件とし、鋳型からピットに凝固スラグを落下させ、全ての凝固スラグが鋳型から落下した後、直ちにショベルカーで凝固スラグをピットから搬出してスラグ冷却床で冷却し、次のスラグ鍋内の溶融スラグの処理に備えた。比較例において、冷却後に凝固スラグの凝固厚みを測定すると20~26mmであり、平均厚みは23mmであった。鋳型接触面のガラス質の存在率への凝固厚みの影響は20~26mmの範囲ではなかった。 In the comparative example, the molten slag temperature is 1380 ° C., the average thickness of the solidified slag is 23 mm, the solidified slag is dropped from the mold into the pit, and after all the solidified slag has fallen from the mold, the solidified slag is immediately removed with a shovel car. It was taken out from the pit and cooled in the slag cooling bed, and prepared for the treatment of the molten slag in the next slag pan. In the comparative example, when the solidification thickness of the solidified slag was measured after cooling, it was 20 to 26 mm, and the average thickness was 23 mm. The influence of the solidification thickness on the glassy abundance ratio on the mold contact surface was not in the range of 20 to 26 mm.
 冷却後の凝固スラグにおいて、凝固時の鋳型接触面のガラス質部分の比率を評価すると共に、スラグの落下強度を評価した。 In the solidified slag after cooling, the ratio of the vitreous portion of the mold contact surface during solidification was evaluated, and the drop strength of the slag was evaluated.
 まず、本発明例によって製造された凝固スラグのなかから鋳型接触面にガラス質のないもの(結晶質のもの)を目視によって選別し、他方、比較例によって製造された凝固スラグのなかから鋳型接触面がガラス質のものを目視によって選別して、落下試験を行った。 First, from the solidified slag produced according to the example of the present invention, the glass contact surface (crystalline) is visually selected from the solidified slag, and on the other hand, the solidified slag produced according to the comparative example is contacted with the mold. A drop test was performed by visually selecting glassy surfaces.
 図8、図9が試験結果を示す写真であり、図8(a)は本発明例の試験前、図8(b)は本発明例の落下試験後の状態をそれぞれ示し、図9(a)は比較例の試験前、図9(b)は比較例の落下試験後の状態をそれぞれ示している。 8 and 9 are photographs showing the test results. FIG. 8A shows the state before the test of the example of the present invention, and FIG. 8B shows the state after the drop test of the example of the present invention. ) Shows a state before the test of the comparative example, and FIG. 9B shows a state after the drop test of the comparative example.
 凝固スラグの鋳型接触面部分がガラス質となっている比較例の凝固スラグでは、図9(b)に示すように、落下によって全体が細かく砕けた。これは、凝固時に大きな温度勾配となっている表面近傍に大きな残留応力が生じていることから、1m落下程度の比較的小さな衝撃でも破壊されやすいためである。 In the solidified slag of the comparative example in which the mold contact surface portion of the solidified slag is glassy, as shown in FIG. 9B, the whole was finely broken by dropping. This is because a large residual stress is generated in the vicinity of the surface having a large temperature gradient during solidification, so that even a relatively small impact of about 1 m is easily broken.
 他方、本発明に係る凝固スラグの製造方法によって製造した凝固スラグでは、図8(b)に示すように、落下によって端部が欠ける程度で全体が砕けることはほとんどなく、高強度の板状の凝固スラグとなっていた。これは、鋳型接触面のガラス質部分が結晶化する際に、表面近傍の残留応力が緩和あるいは解消されるためである。 On the other hand, in the solidified slag produced by the method for producing a solidified slag according to the present invention, as shown in FIG. It became solidified slag. This is because the residual stress in the vicinity of the surface is relaxed or eliminated when the glassy portion of the mold contact surface is crystallized.
 落下強度(Shatter Index)は、以下に説明する方法で測定した。落下強度試験の装置は、JIS M8711鉄鉱石焼結鉱-落下強度試験方法に記載される装置を用いた。40~100mmの板状凝固スラグのサンプル(目開き(sieve opening)が100mmの篩を通過し、目開きが40mmの篩を通過しない板状凝固スラグの試料;約3kg)を用い、2mの高さから4回落下させる落下試験を実施した。落下試験後に、40mm以下に砕けなかった比率(目開き40mmの篩を通過しない試料の質量比率)を求め、この比率を落下強度(Shatter Index)とした。その他の試験条件については、焼結鉱の試験方法であるJIS M8711鉄鉱石焼結鉱-落下強度測定方法に準じた。 The drop strength (Shatter Index) was measured by the method described below. As the apparatus for the drop strength test, the apparatus described in JIS M8711 Iron Ore Sinter-Drop Strength Test Method was used. Using a sample of plate-like solidified slag of 40 to 100 mm (a sample of plate-like solidified slag whose sieve opening passes through a 100-mm sieve and does not pass through a sieve of 40 mm; about 3 kg) Then, a drop test was performed in which the sample was dropped four times. After the drop test, a ratio that was not crushed to 40 mm or less (mass ratio of the sample that does not pass through a sieve having an opening of 40 mm) was obtained, and this ratio was defined as drop strength (Shatter index). Other test conditions were in accordance with the JIS M8711 iron ore sinter ore drop strength measurement method, which is a test method for sintered ore.
 板状スラグの落下強度(Shatter Index)は、下記の(4)式により算出した。
S(%)=A/B×100 ・・・(4)
  S;40mm以上で判定した板状スラグの落下強度(Shatter Index)
  A;試験後の40mm以上の質量(kg)
  B;試験前の40~100mmの試料の質量(kg)
 鋳型接触面のガラス質部分の比率と落下強度Sとの関係を、本発明例と比較例とで比較した結果を図10に示した。本発明例では、ガラス質部分の比率が比較例の52面積%から9面積%に低下し、落下強度Sは比較例の46%から89%に向上した。
The drop strength (Shatter Index) of the plate slag was calculated by the following equation (4).
S (%) = A / B × 100 (4)
S: Drop strength (Shatter Index) of plate-like slag judged at 40 mm or more
A: Mass (kg) of 40 mm or more after the test
B: Mass of sample of 40 to 100 mm before test (kg)
FIG. 10 shows the result of comparing the relationship between the ratio of the vitreous portion on the mold contact surface and the drop strength S between the inventive example and the comparative example. In the inventive example, the ratio of the vitreous portion was reduced from 52 area% in the comparative example to 9 area%, and the drop strength S was improved from 46% in the comparative example to 89%.
 上記の結果から、ガラス質部分の結晶化による凝固スラグの強度改善を効果的に行うためには、凝固スラグの表面のうち、凝固時での鋳型接触面の80面積%以上、より望ましくは90面積%以上について、スラグ表面温度を900℃以上で5分間以上保持することが好適であるといえる。即ち、凝固スラグの凝固時での鋳型接触面の80面積%以上、より望ましくは90面積%以上を結晶質とすること、換言すれば、凝固スラグの鋳型接触面のガラス質部分の面積比率を20面積%未満、より望ましくは10面積%未満とすることが好適である。 From the above results, in order to effectively improve the strength of the solidified slag by crystallization of the vitreous portion, 80% by area or more of the mold contact surface during solidification, more desirably 90%, of the surface of the solidified slag. About area% or more, it can be said that it is suitable to hold | maintain slag surface temperature at 900 degreeC or more for 5 minutes or more. That is, 80% by area or more, more desirably 90% by area or more of the mold contact surface at the time of solidification of the solidified slag is made crystalline, in other words, the area ratio of the vitreous portion of the mold contact surface of the solidified slag is It is preferable that the content be less than 20 area%, more desirably less than 10 area%.
 次に、上記のようにして製造された本発明例及び比較例の凝固スラグをコンクリート粗骨材にするために、板状の凝固スラグ10トンを、インパクトクラッシャーを用いて破砕した。そして、破砕したスラグを20mm、5mmの篩で分級した。これにより、20~5mmのコンクリート用粗骨材を製造した。 Next, 10 tons of plate-like solidified slag was crushed using an impact crusher in order to make the solidified slag of the present invention and the comparative example produced as described above into a coarse concrete aggregate. And the crushed slag was classified with a 20 mm and 5 mm sieve. Thereby, a coarse aggregate for concrete having a thickness of 20 to 5 mm was produced.
 原料とした凝固スラグに対する20~5mmの粗骨材製品の歩留の結果を、本発明例と比較例とで比較して図11に示す。本発明例の粗骨材製品の歩留は71%であり、比較例は65%であった。つまり、本発明例は比較例の粗骨材製品の歩留よりも6%高かった。 The results of the yield of coarse aggregate products of 20 to 5 mm with respect to the solidified slag used as a raw material are shown in FIG. The yield of the coarse aggregate product of the present invention example was 71%, and the comparative example was 65%. That is, the inventive example was 6% higher than the yield of the comparative coarse aggregate product.
 本発明例の粗骨材の吸水率を測定すると0.9%であり、従来の高炉徐冷スラグ粗骨材の吸水率である3~4%に比べて著しく小さく、天然骨材と同等のものが得られた。 The water absorption rate of the coarse aggregate of the example of the present invention is 0.9%, which is significantly smaller than the water absorption rate of 3 to 4% of the conventional blast furnace slow-cooled slag coarse aggregate, which is equivalent to that of natural aggregate. Things were obtained.
 また、本発明例及び比較例のスラグ粗骨材の圧縮強度を比較した。圧縮強度測定用のサンプルは、平坦面を含む大きめの粗骨材粒子から、この平坦面を底面にしてダイヤモンドカッターで10mm×10mm×10mmのサイズに切り出し、アムスラー式圧縮試験機(universal testing machine)を用いて各6個の試料について圧縮強度を測定した。 Also, the compressive strengths of the slag coarse aggregates of the present invention and the comparative examples were compared. Samples for compressive strength measurement were cut from large coarse aggregate particles including a flat surface to a size of 10 mm × 10 mm × 10 mm using a diamond cutter with the flat surface as the bottom, and an Amsler compression testing machine (universal testing machine) Compressive strength was measured for each of the six samples.
 比較例の粗骨材から採取した試料の圧縮強度は、平均値が50N/mm2、最低値が10N/mm2であり、非常にばらつきが大きく、非常に強度の低い粗骨材試料が存在した。これに対して、本発明例の粗骨材から採取した試料の圧縮強度は、平均値が167N/mm2、最低値が80N/mm2であり、安定的して高い圧縮強度が得られた。 The compressive strength of the sample collected from the coarse aggregate of the comparative example has an average value of 50 N / mm 2 and a minimum value of 10 N / mm 2. did. In contrast, the compressive strength of the samples taken from the coarse aggregate of the present invention example, the average value of 167N / mm 2, a minimum value is 80 N / mm 2, a high compressive strength stably is obtained .
 本発明例及び比較例のスラグ粗骨材を用いてコンクリートを配合して特性を評価した。本発明例の粗骨材を配合したフレッシュコンクリートと比較例の粗骨材を配合したフレッシュコンクリートとでブリージング量を比較した。調査結果を図12に示す。ガラス質表面が少ない本発明例では、ガラス質表面が多い比較例よりもブリージング量が小さくなった。 The concrete was compounded using the slag coarse aggregates of the present invention example and the comparative example, and the characteristics were evaluated. The amount of breathing was compared between the fresh concrete blended with the coarse aggregate of the present invention and the fresh concrete blended with the coarse aggregate of the comparative example. The survey results are shown in FIG. In the present invention example having a small glassy surface, the amount of breathing was smaller than in the comparative example having a large glassy surface.
 次に、それぞれの粗骨材を用いて、高強度を志向した水セメント比(water-cement ratio)が35%の配合でコンクリートを練り、圧縮強度測定用の供試体を作製して、28日強度を比較した。比較のために、市販の天然の石灰石を粗骨材に用いた供試体も同様に作製して評価した。 Next, using each coarse aggregate, concrete was kneaded with a water-cement ratio of 35% for high strength, and a specimen for compressive strength measurement was prepared on the 28th. The strength was compared. For comparison, a specimen using commercially available natural limestone as a coarse aggregate was also produced and evaluated in the same manner.
 比較例の粗骨材を用いたコンクリートでは28日強度が53N/mm2であったのに対し、本発明例の粗骨材を用いたコンクリートでは75N/mm2であった。天然の石灰石の粗骨材を用いたコンクリートの28日強度が72N/mm2であり、本発明例の粗骨材を用いたコンクリートは天然の石灰石の粗骨材を用いたコンクリートよりも高い圧縮強度が得られた。したがって、本発明例の粗骨材は、高強度コンクリート用の粗骨材として適した材料と言える。 In the concrete using the coarse aggregate of the comparative example, the 28-day strength was 53 N / mm 2 , whereas in the concrete using the coarse aggregate of the present invention example, it was 75 N / mm 2 . The 28-day strength of the concrete using natural limestone coarse aggregate is 72 N / mm 2 , and the concrete using the coarse aggregate of the example of the present invention is compressed higher than the concrete using the natural limestone coarse aggregate. Strength was obtained. Therefore, it can be said that the coarse aggregate of the example of the present invention is a material suitable as a coarse aggregate for high-strength concrete.
 1 凝固スラグ製造装置
 3 溶融スラグ
 5 鋳型
 5a 凹陥部
 7 周回移動機構
 9 空冷移動部
 11 反転排出部
 13 反転移動部
 15 再反転部
 17 再反転移動部
 18 凝固スラグ
 19 ピット
 20 樋
 21 冷却装置
 22 凝固スラグ保持容器
 23 スラグ鍋
 24 スラグ冷却床
DESCRIPTION OF SYMBOLS 1 Solidification slag manufacturing apparatus 3 Molten slag 5 Mold 5a Concave part 7 Circumferential movement mechanism 9 Air-cooling movement part 11 Reverse discharge part 13 Reverse movement part 15 Reinversion part 17 Reinversion movement part 18 Solidification slag 19 Pit 20 樋 21 Cooling device 22 Solidification Slag holding container 23 Slag pot 24 Slag cooling floor

Claims (8)

  1.  溶融状態の高炉スラグを、移動する金属製の鋳型に流し込んで冷却し、前記鋳型内で板状になるように凝固させるスラグ凝固工程と、前記鋳型内で内部まで凝固したスラグを、前記鋳型を反転して鋳型から落下させるスラグ落下工程と、落下したスラグのスラグ表面の一部または全面の表面温度を900℃以上で5分間以上保持するスラグ温度保持工程と、を有する凝固スラグの製造方法。 The molten blast furnace slag is poured into a moving metal mold and cooled to solidify it into a plate shape in the mold, and the slag solidified to the inside in the mold is used as the mold. A method for producing a solidified slag comprising: a slag dropping step of inverting and dropping from a mold; and a slag temperature holding step of holding the surface temperature of a part or the whole surface of the dropped slag at 900 ° C. or more for 5 minutes or more.
  2.  前記鋳型内で板状になるように凝固させた高炉スラグの厚みが20mm以上30mm以下であることを特徴とする請求項1に記載の凝固スラグの製造方法。 The method for producing a solidified slag according to claim 1, wherein the thickness of the blast furnace slag solidified so as to form a plate in the mold is 20 mm or more and 30 mm or less.
  3.  前記スラグ温度保持工程は、前記鋳型から落下させた凝固スラグの表面のうち、凝固時における鋳型接触面の80面積%以上について、スラグ表面温度を900℃以上で5分間以上保持することを特徴とする請求項1または請求項2に記載の凝固スラグの製造方法。 In the slag temperature holding step, the slag surface temperature is maintained at 900 ° C. or more for 5 minutes or more for 80 area% or more of the mold contact surface during solidification among the surfaces of the solidified slag dropped from the mold. The manufacturing method of the solidification slag of Claim 1 or Claim 2 to do.
  4.  前記スラグ温度保持工程は、前記鋳型から落下させた凝固スラグを、スラグ厚み方向平均温度が900℃超で積層させることを特徴とする請求項1乃至請求項3の何れか1項に記載の凝固スラグの製造方法。 4. The solidification according to claim 1, wherein in the slag temperature maintaining step, the solidified slag dropped from the mold is laminated with an average temperature in the slag thickness direction exceeding 900 ° C. 5. A method for producing slag.
  5.  前記スラグ温度保持工程は、前記鋳型から落下させた凝固スラグを、該落下位置から搬出可能な保持容器内に積層させることを特徴とする請求項1乃至請求項4の何れか1項に記載の凝固スラグの製造方法。 The said slag temperature holding process laminates | stacks the solidification slag dropped from the said casting_mold | template in the holding | maintenance container which can be taken out from this dropping position, The one of Claim 1 thru | or 4 characterized by the above-mentioned. A method for producing solidified slag.
  6.  請求項1乃至請求項5の何れか1項に記載の凝固スラグの製造方法で製造した凝固スラグであって、目開き100mmの篩を通過し、目開き40mmの篩を通過しないスラグ試料を、2mの高さから4回落下させる落下試験後に、目開き40mmの篩を通過しない試料の落下試験前の試料に対する質量比率で評価する落下強度(Shatter Index)が70%以上である凝固スラグ。 A solidified slag produced by the method for producing a solidified slag according to any one of claims 1 to 5, wherein a slag sample that passes through a sieve having an opening of 100 mm and does not pass through a sieve having an opening of 40 mm, A solidified slag having a drop strength (Shatter) Index) of 70% or more evaluated by a mass ratio of a sample that does not pass through a sieve having an opening of 40 mm after a drop test that is dropped four times from a height of 2 m to the sample before the drop test.
  7.  請求項1乃至請求項5の何れか1項に記載の凝固スラグの製造方法を含む凝固スラグ製造工程と、製造した凝固スラグを破砕する凝固スラグ破砕工程と、破砕した凝固スラグを分級する分級工程と、を備えるコンクリート用粗骨材の製造方法。 A solidified slag production process including the method for producing a solidified slag according to any one of claims 1 to 5, a solidified slag crushing process for crushing the produced solidified slag, and a classification process for classifying the crushed solidified slag. A method for producing a coarse aggregate for concrete comprising:
  8.  請求項7に記載のコンクリート用粗骨材の製造方法で製造したコンクリート用粗骨材であって、平均圧縮強度が100N/mm2以上であるコンクリート用粗骨材。 The coarse aggregate for concrete manufactured with the manufacturing method of the coarse aggregate for concrete of Claim 7, Comprising: The coarse aggregate for concrete whose average compressive strength is 100 N / mm < 2 > or more.
PCT/JP2014/004157 2013-08-20 2014-08-08 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete WO2015025501A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020157036662A KR101839667B1 (en) 2013-08-20 2014-08-08 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
CN201480045258.1A CN105452187B (en) 2013-08-20 2014-08-08 Solidify the manufacture method of clinker, solidify the manufacture method and concrete coarse aggregate of clinker, concrete with coarse aggregate
JP2015508916A JP6184476B2 (en) 2013-08-20 2014-08-08 Method for producing solidified slag and method for producing coarse aggregate for concrete

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-170043 2013-08-20
JP2013170043 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015025501A1 true WO2015025501A1 (en) 2015-02-26

Family

ID=52483296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/004157 WO2015025501A1 (en) 2013-08-20 2014-08-08 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete

Country Status (5)

Country Link
JP (1) JP6184476B2 (en)
KR (1) KR101839667B1 (en)
CN (1) CN105452187B (en)
TW (2) TWI659005B (en)
WO (1) WO2015025501A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047782A (en) * 2014-08-27 2016-04-07 Jfeスチール株式会社 Heat recovery method and heat recovery system for coagulation slag

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620631B (en) * 2021-07-27 2022-11-01 湖北大学 Be used for even forming device of concrete large aggregate production smelting process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156991A (en) * 1995-09-26 1997-06-17 Rasa Shoji Kk Method for producing artificial rock from molten slag of baked ash and apparatus therefor
JP2003082606A (en) * 2001-09-10 2003-03-19 Kawasaki Steel Corp Aggregate for asphalt pavement, its manufacturing method and asphalt pavement
JP2004277191A (en) * 2003-03-13 2004-10-07 Jfe Steel Kk Coarse aggregate for concrete
JP2009227497A (en) * 2008-03-20 2009-10-08 Jfe Steel Corp Cooling treatment device and cooling processing method of molten slag
US20130175736A1 (en) * 2010-09-27 2013-07-11 Shandong Coking Group Co., Ltd. Method for manufacturing stone material using molten slag
JP2013139358A (en) * 2011-12-30 2013-07-18 Jfe Steel Corp Method of producing water granulated blast-furnace slag aggregate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10120449A (en) * 1996-10-16 1998-05-12 Furukawa Co Ltd Production of product from slag of melting furnace and facility for producing product from slag
JPH11246244A (en) * 1997-12-03 1999-09-14 Ebara Corp Apparatus for recovering slag from waste
JP2008266104A (en) * 2007-04-25 2008-11-06 Nippon Steel Corp Method of manufacturing white blast furnace slag particles
JP5942427B2 (en) * 2011-12-28 2016-06-29 Jfeスチール株式会社 Heat recovery method for molten slag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156991A (en) * 1995-09-26 1997-06-17 Rasa Shoji Kk Method for producing artificial rock from molten slag of baked ash and apparatus therefor
JP2003082606A (en) * 2001-09-10 2003-03-19 Kawasaki Steel Corp Aggregate for asphalt pavement, its manufacturing method and asphalt pavement
JP2004277191A (en) * 2003-03-13 2004-10-07 Jfe Steel Kk Coarse aggregate for concrete
JP2009227497A (en) * 2008-03-20 2009-10-08 Jfe Steel Corp Cooling treatment device and cooling processing method of molten slag
US20130175736A1 (en) * 2010-09-27 2013-07-11 Shandong Coking Group Co., Ltd. Method for manufacturing stone material using molten slag
JP2013139358A (en) * 2011-12-30 2013-07-18 Jfe Steel Corp Method of producing water granulated blast-furnace slag aggregate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047782A (en) * 2014-08-27 2016-04-07 Jfeスチール株式会社 Heat recovery method and heat recovery system for coagulation slag

Also Published As

Publication number Publication date
TW201512147A (en) 2015-04-01
TW201802057A (en) 2018-01-16
TWI659005B (en) 2019-05-11
KR101839667B1 (en) 2018-03-16
CN105452187A (en) 2016-03-30
TWI613178B (en) 2018-02-01
JP6184476B2 (en) 2017-08-23
JPWO2015025501A1 (en) 2017-03-02
CN105452187B (en) 2017-09-12
KR20160013180A (en) 2016-02-03

Similar Documents

Publication Publication Date Title
Cao et al. Sinterability, microstructure and compressive strength of porous glass-ceramics from metallurgical silicon slag and waste glass
JP5413542B1 (en) Solidified slag manufacturing device, concrete coarse aggregate manufacturing device, solidified slag manufacturing method, and concrete coarse aggregate manufacturing method
JP6184476B2 (en) Method for producing solidified slag and method for producing coarse aggregate for concrete
KR20120060157A (en) Method of manufacturing vitreous silica crucible and vitreous silica crucible
Zhang et al. Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning
JP6414047B2 (en) Slag lump and method for producing the same
CA3110518A1 (en) Oxide ore smelting method
TW201809208A (en) Electrofused alumina grains, production method for electrofused alumina grains, grinding stone, and coated abrasive
RU2559964C1 (en) Fluoroflogopite-based mica crystal material and method of its production
RU2410349C1 (en) Method of producing molten-cast comsilite ctc material for lining non-ferrous metallurgy thermal units
CN103726024B (en) A kind of production method of gold target material for sputter coating
CN112499962B (en) Regulator for preparing microcrystalline glass and preparation method of microcrystalline glass
JP2004277191A (en) Coarse aggregate for concrete
JP3855706B2 (en) Aggregate for asphalt pavement, method for producing the same, and asphalt pavement
Zhao et al. Si3N4/fused quartz composite crucible with enhanced thermal conductivity for multicrystalline silicon ingot growth
Tobo et al. Solidification conditions to reduce porosity of air-cooled blast furnace slag for coarse aggregate
JP7173425B1 (en) Granular solidified slag manufacturing method and manufacturing equipment
Ta et al. Behavior of Crack Generation of Slag in Continuous Solidification Process of Blast Furnace Slag
JPS58130157A (en) Manufacture of anti-spalling refractory aggregate
RU2532750C1 (en) Manufacturing method of casts as per molten out models
JP6865424B1 (en) Molten wind crushing method Artificial sand and its manufacturing method
Holt Reclamation of Fused Silica From Investment Shells Used for Casting Steel
JPH10324929A (en) Production of sintered ore
RU2637352C1 (en) Method of producing high density quartz ceramics and articles thereof
TW202317500A (en) Granular solidified slag manufacturing method and manufacturing facility

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480045258.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2015508916

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838261

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157036662

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838261

Country of ref document: EP

Kind code of ref document: A1