JP2003082606A - Aggregate for asphalt pavement, its manufacturing method and asphalt pavement - Google Patents

Aggregate for asphalt pavement, its manufacturing method and asphalt pavement

Info

Publication number
JP2003082606A
JP2003082606A JP2001273158A JP2001273158A JP2003082606A JP 2003082606 A JP2003082606 A JP 2003082606A JP 2001273158 A JP2001273158 A JP 2001273158A JP 2001273158 A JP2001273158 A JP 2001273158A JP 2003082606 A JP2003082606 A JP 2003082606A
Authority
JP
Japan
Prior art keywords
slag
aggregate
pores
blast furnace
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001273158A
Other languages
Japanese (ja)
Other versions
JP3855706B2 (en
Inventor
Hiroyuki Toubou
博幸 當房
Yoko Miyamoto
陽子 宮本
Sadakimi Kiyota
禎公 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001273158A priority Critical patent/JP3855706B2/en
Publication of JP2003082606A publication Critical patent/JP2003082606A/en
Application granted granted Critical
Publication of JP3855706B2 publication Critical patent/JP3855706B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00301Non-porous materials, e.g. macro-defect free [MDF] products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Road Paving Structures (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide aggregate for minute asphalt pavement effectively inhibiting a foaming phenomenon at a time when blast-furnace slag solidifies, largely reducing the quantity of pores in the slag and having excellent abrasion resistance. SOLUTION: Blast-furnace slag under a melted state is made to flow on a mold made of a metal by a single layer so as to be formed in a tabular shape in layer thickness of 10 to 30 mm, and cooled and solidified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高炉スラグを原料
とするアスファルト舗装用の骨材およびその製造方法な
らびにかような高炉スラグの破砕石を骨材として使用し
たアスファルト舗装に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aggregate for asphalt pavement made of blast furnace slag, a method for producing the same, and an asphalt pavement using such crushed stone of blast furnace slag as an aggregate.

【0002】[0002]

【従来の技術】我が国の道路舗装は、アスファルト舗装
が主流となっている。これは、セメントを使用するコン
クリート舗装と比較して、施工速度が速く、かつ養生が
不要なため、交通に開放する時期が早いという利点を有
しているからである。特に既設道路を補修する際は、交
通遮断時間が短くて済むことからより有利とされてい
る。
2. Description of the Related Art Asphalt pavement is the mainstream of road pavement in Japan. This is because, compared with concrete pavement using cement, the construction speed is high and there is no need for curing, so there is an advantage that the time to open to traffic is early. Especially when repairing existing roads, it is considered to be more advantageous because the traffic cutoff time is shorter.

【0003】かようなアスファルト舗装の表層に使用さ
れるアスファルト・コンクリートは、骨材とアスファル
トからなっており、骨材の比率が90%以上を占める。道
路舗装の場合、道路上を車両が通行するため、継続的に
荷重下に置かれると同時に、舗装表層とタイヤとの摩擦
が生じる。アスファルト・コンクリートでは、可塑性の
あるアスファルトをバインダーに用いているため、荷重
に対する施工体の形状維持とタイヤによる磨耗防止の役
割は骨材が担っている。そのため、アスファルト・コン
クリート用の骨材としては、一般の建築用コンクリート
の骨材よりも強度が高く、硬質で耐磨耗性に優れたもの
が要求される。
The asphalt concrete used for the surface layer of such asphalt pavement is composed of aggregate and asphalt, and the proportion of aggregate is 90% or more. In the case of road pavement, a vehicle passes over the road, so that the road is continuously placed under load, and at the same time, friction occurs between the pavement surface layer and the tire. In asphalt / concrete, since plastic asphalt is used as a binder, the aggregate plays the role of maintaining the shape of the construction body against load and preventing wear by the tire. Therefore, as an aggregate for asphalt / concrete, it is required to have higher strength, hardness, and abrasion resistance than aggregates for general building concrete.

【0004】通常、かようなアスファルト・コンクリー
ト用骨材としては、耐磨耗性の低い石灰石等は使用され
ず、硬質砂岩等の硬い石が使用されている。しかしなが
ら、硬い骨材の産地は限定されているため、道路を施工
する地域によっては、骨材を遠方から輸送しなければな
らず、輸送コストの増加により、施工費用の増大を招
く。
Usually, as such aggregate for asphalt / concrete, limestone or the like having low wear resistance is not used, but hard stone such as hard sandstone is used. However, since the production area of hard aggregate is limited, it is necessary to transport the aggregate from a distance depending on the area where the road is constructed, which increases the construction cost due to the increased transportation cost.

【0005】アスファルト舗装要綱では、アスファルト
・コンクリート用骨材に利用できるものとして、鉄鋼ス
ラグを規定している。鉄鋼スラグのうち、製鋼スラグに
ついては、加熱アスファルト混合用に単粒度製鋼スラグ
(SS)とクラッシャラン製鋼スラグ(CSS)が規定
されている。これらはいずれも、製鋼スラグの硬さを活
かした用途であり、アスファルト・コンクリート骨材に
占める割合は極わずかとはいえ、実際に使用されてい
る。しかしながら、かような製鋼スラグは、天然骨材に
比ベると15〜20%程度比重が大きいため、施工体積当た
りの骨材必要量が増大し、輸送費が余計にかかること
や、金属分を含むといった問題を抱えている。
The asphalt pavement guideline defines steel slag as a material that can be used as an aggregate for asphalt / concrete. Among steel slags, for steelmaking slag, single-grain steelmaking slag (SS) and crusher run steelmaking slag (CSS) are specified for hot asphalt mixing. All of these are applications that make use of the hardness of steelmaking slag, and although they account for only a small percentage of asphalt / concrete aggregate, they are actually used. However, such steelmaking slag has a large specific gravity of about 15 to 20% compared to natural aggregate, which increases the amount of aggregate required per construction volume, resulting in extra transportation costs and metal content. There is a problem such as including.

【0006】鉄鋼スラグのうち、高炉スラグは、徐冷さ
れたものが路盤材として利用されているが、アスファル
ト・コンクリートの骨材としては利用されていない。こ
の理由は、高炉徐冷スラグは耐磨耗性が低いため、アス
ファルト・コンクリート用骨材としては適さないからで
ある。ちなみに、一般にアスファルト・コンクリートに
使用される骨材の耐磨耗性を示すすりへり減量は15%程
度であるが、高炉徐冷スラグは30%程度と高く、耐磨耗
性が石灰石よりも劣っている。
Among iron and steel slag, blast furnace slag is used as a roadbed material after being gradually cooled, but is not used as an aggregate of asphalt concrete. The reason is that the slowly cooled blast furnace slag is not suitable as an aggregate for asphalt / concrete because of its low wear resistance. By the way, the abrasion loss of aggregate used for asphalt / concrete is about 15%, but the blast furnace slowly cooled slag is about 30%, which is lower than that of limestone. There is.

【0007】このように、高炉徐冷スラグは、アスファ
ルト・コンクリート用骨材としては利用されていない
が、コンクリート用の粗骨材としては、JIS 化されてい
る。ただし、徐冷スラグが多孔質であることから、吸水
率が高く、フレッシュコンクリートの流動性が低下する
という問題があるため、一部で使用されるに止まってい
る。
As described above, the slowly cooled blast furnace slag is not used as an aggregate for asphalt / concrete, but is JIS-compliant as a coarse aggregate for concrete. However, since the slow-cooling slag is porous, it has a high water absorption rate and a problem that the fluidity of the fresh concrete is lowered, so that it is used only partially.

【0008】高炉徐冷スラグの弱点である多孔質な点を
改善して緻密化する方法として、薄層多層法と称する方
法が知られている。この方法は、例えば文献「製鉄研究
第301 号. 1980年. P.13355 〜13362 」に詳細が述べ
られているように、緩やかな傾斜を有する平滑な冷却ヤ
ードに溶融スラグを薄く流し、冷却は空冷による自然冷
却で行い、ついで同じように2層、3層と次々に層を重
ねていき、最上層の流し込み終了後さらに空冷あるいは
ごく少量の冷却水を散水して冷却する方法である。
A method called a thin-layer multi-layer method is known as a method for densifying by improving the porosity which is a weak point of the blast furnace slowly cooled slag. This method is described in detail in, for example, the document "Steelmaking Research No. 301. 1980. P. 13355-13362", in which a thin stream of molten slag is poured into a smooth cooling yard having a gentle slope and cooling is performed. This is a method of performing natural cooling by air cooling, then similarly stacking two layers and three layers one after another, and further cooling by air cooling or sprinkling a very small amount of cooling water after completion of pouring of the uppermost layer.

【0009】この方法によれば、少なくとも道床側は、
先に流れたスラグによって予熱されているので、スラグ
温度が高く、しかもスラグ層が薄いので、発生ガスが浮
上分離し易く、その結果、緻密な徐冷スラグとなって、
コンクリート粗骨材向け原料に適した品質となり、特に
層厚を60mm以下にすれば絶乾比重 2.4以上のJIS 粗骨材
規格を満たすとされている。しかしながら、この方法で
は、粗骨材のJIS 規格を満たしているにしても、吸水率
がせいぜい3%以下程度になるにすぎず、外観上もまだ
まだ多孔質であり、天然骨材と同等の品質を有するレベ
ルには達していない。そのため、利用される量もコンク
リート用骨材需要の1%にも満たないほど少ないのが現
状である。
According to this method, at least on the roadbed side,
Since it is preheated by the slag that has flowed earlier, the slag temperature is high, and since the slag layer is thin, the generated gas is easily floated and separated, resulting in a dense slowly cooled slag,
It is said that the quality will be suitable for raw materials for concrete coarse aggregate, and especially if the layer thickness is 60 mm or less, it will meet the JIS coarse aggregate standard with an absolute dry specific gravity of 2.4 or more. However, with this method, even if the JIS standard for coarse aggregate is satisfied, the water absorption rate is at most about 3% or less, and the appearance is still porous, which is equivalent to the quality of natural aggregate. Have not reached the level of having. Therefore, at present, the amount used is less than 1% of the aggregate demand for concrete.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記の実状
に鑑み開発されたもので、高炉スラグが凝固する際の発
泡現象を効果的に抑制することにより、高炉スラグ中の
気孔量を大幅に低減して、吸水率の低減のみならず、耐
磨耗性を格段に向上させた緻密なアスファルト舗装用骨
材を、その有利な製造方法と共に提案することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been developed in view of the above situation, and effectively suppresses the foaming phenomenon when the blast furnace slag is solidified, thereby significantly reducing the amount of pores in the blast furnace slag. Therefore, it is an object of the present invention to propose a dense asphalt pavement aggregate which has not only a reduced water absorption rate but also a significantly improved abrasion resistance together with its advantageous manufacturing method.

【0011】[0011]

【課題を解決するための手段】本発明は、高炉スラグの
気孔量、特に粗大な気孔を低減して緻密化すると、スラ
グの耐磨耗強度が向上するいう知見に基づく。そこで、
発明者らは、スラグ中の気孔量を低減する手段について
種々検討を重ねた。その結果、スラグ内部の気孔量はス
ラグの冷却速度に依存することを見出した。すなわち、
溶融スラグの冷却速度を速くすると、スラグ内部におけ
るガスの発生を効果的に抑制することができ、結果とし
てスラグ内に捕捉される気孔量が大幅に低減され、仮に
捕捉されたとしてもその大きさは極めて小さくなること
の知見を得た。本発明は、上記の知見に立脚するもので
ある。
DISCLOSURE OF THE INVENTION The present invention is based on the finding that the abrasion resistance strength of slag is improved by reducing the amount of pores in blast furnace slag, particularly coarse pores, and densifying. Therefore,
The inventors have made various studies on means for reducing the amount of pores in slag. As a result, it was found that the amount of pores inside the slag depends on the cooling rate of the slag. That is,
By increasing the cooling rate of the molten slag, it is possible to effectively suppress the generation of gas inside the slag, and as a result, the amount of pores trapped in the slag is greatly reduced, and even if it is trapped, the size of Has been found to be extremely small. The present invention is based on the above findings.

【0012】すなわち、本発明は、溶融状態の高炉スラ
グを、冷却凝固後、破砕することにより得た破砕スラグ
であって、その吸水率が 1.5%以下、すりへり減量が20
%以下であることを特徴とするアスファルト舗装用骨材
である。ここに、上記したすりへり減量はロスアンゼル
スすりへり減量で表わすものとする。
That is, the present invention is a crushed slag obtained by crushing molten blast furnace slag after cooling and solidifying, the water absorption of which is 1.5% or less, and the abrasion loss is 20%.
% Or less, it is an aggregate for asphalt pavement. Here, the above-mentioned abrasion loss is represented by Los Angeles abrasion loss.

【0013】また、本発明は、溶融状態の高炉スラグ
を、層厚が10〜30mmの板状になるように金属製の鋳型上
に単層で流して冷却凝固させ、得られた単層板状の凝固
スラグを破砕することを特徴とするアスファルト舗装用
骨材の製造方法である。
Further, according to the present invention, a single layer plate obtained by pouring the molten blast furnace slag in a single layer onto a metal mold so as to form a plate having a layer thickness of 10 to 30 mm and cooling and solidifying the blast furnace slag is obtained. A method for producing an aggregate for asphalt pavement, which comprises crushing a solidified slag.

【0014】さらに、本発明は、吸水率が 1.5%以下、
すりへり減量が20%以下の高炉破砕スラグを骨材として
使用したアスファルト舗装である。
Further, according to the present invention, the water absorption rate is 1.5% or less,
This is an asphalt pavement that uses blast furnace crushed slag with a grinding loss of 20% or less as aggregate.

【0015】[0015]

【発明の実施の形態】以下、本発明の解明経緯について
説明する。さて、発明者らは、コンクリート用粗骨材を
ターゲットとし、吸水率の低下を目的として、高炉スラ
グの気孔率の低減について検討を行った。高炉徐冷スラ
グの内部には、多数の気孔が存在し、吸水率が高い原因
となっている。この吸水率を低下させるためには、気孔
の絶対量を減らし、内部を緻密にしなければならない。
BEST MODE FOR CARRYING OUT THE INVENTION The clarification process of the present invention will be described below. Now, the present inventors have made a study on the reduction of the porosity of the blast furnace slag for the purpose of reducing the water absorption rate by targeting the coarse aggregate for concrete. A large number of pores exist inside the slowly cooled blast furnace slag, which is a cause of high water absorption. In order to reduce this water absorption, the absolute amount of pores must be reduced and the inside must be made dense.

【0016】ところで、気孔の生成原因には2種類あ
る。すなわち、凝固する際に水分がある場合は、発生す
る水蒸気や反応してできたH2Sガスが考えられ、この場
合水分に接する部分は気孔量が多くなって、軽量で脆い
ものとなる。一方、水分が無い場合でも、気孔は生成
し、発明者らがラボ実験で調査したところ、凝固する際
雰囲気中に酸素が存在した場合には SO2ガスの発生と、
スラグ中における気孔の生成が見られた。
By the way, there are two types of causes for the formation of pores. That is, when there is water during solidification, the generated water vapor or H 2 S gas produced by the reaction is considered, and in this case, the portion in contact with water has a large amount of pores and becomes light and brittle. On the other hand, even in the absence of water, pores are generated, and the inventors conducted a laboratory experiment to find that SO 2 gas was generated when oxygen was present in the atmosphere during solidification.
Porosity formation was observed in the slag.

【0017】従って、気孔を減少させる方法としては、
次の2つの方法が考えられる。第1の方法は、溶融スラ
グ内部に発生した気泡が表面から抜けてしまうのに十分
な時間溶融状態で保持したのち、凝固させる方法であ
る。また、第2の方法は、内部にガスが生成するよりも
速く凝固させることにより、気孔の発生を阻止する方法
である。ガスの発生速度が著しく速い場合には、第1の
方法が有効であり、一方、ガスの発生速度が遅く、ガス
の発生速度よりも凝固速度を速くできる場合には、第2
の方法が有効である。
Therefore, as a method of reducing pores,
The following two methods are possible. The first method is a method of holding the molten slag in a molten state for a sufficient time so that the bubbles generated inside the molten slag escape from the surface and then solidifying the molten slag. The second method is a method of preventing the generation of pores by solidifying gas faster than it is generated inside. The first method is effective when the gas generation rate is extremely high, while the second method is effective when the gas generation rate is slow and the solidification rate can be faster than the gas generation rate.
Method is effective.

【0018】ガスの発生速度が著しく速い場合、凝固速
度が遅くなるほど気泡は表面から抜け、気孔量は減少
し、大きな気泡はなくなるため、気孔径の小さなものし
か残らないことになる。一方、ガスの発生速度が比較的
遅い場合は、凝固速度が遅いほど気孔量が増加し、気泡
径が大きくなるものと考えられる。
When the rate of gas generation is extremely high, as the coagulation rate becomes slower, the bubbles escape from the surface, the amount of pores decreases, and the large bubbles disappear, so that only small pores remain. On the other hand, when the gas generation rate is relatively slow, it is considered that the slower the solidification rate, the more the amount of pores and the larger the bubble diameter.

【0019】そこで、高炉スラグは、上記のどちらの場
合になっているのかを確認するために、種々の高炉スラ
グを採取し、その断面について観察した。その結果、気
孔の存在状態は均一ではなく、数mm径の大きな気孔が多
数存在する部分と比較的緻密な部分があることが判明し
た。
Therefore, in order to confirm which of the above cases is the blast furnace slag, various blast furnace slags were sampled and their cross sections were observed. As a result, it was found that the existence state of the pores was not uniform, and there were a part where a large number of large pores with a diameter of several mm exist and a part which was relatively dense.

【0020】そこで、次に、約10mm角にスラグを切り出
し、気孔率を求めた。すなわち、同一サンプルを樹脂に
埋め込み、断面を研磨して顕微鏡写真を撮影し、50μm
以上の孔の面積と数を画像処理により求めた。図1に、
断面積当たりの気孔面積率(気孔の総面積)と平均気孔
面積(気孔の平均面積)との関係を示す。同図に示した
とおり、スラグ内部の気孔率が高いほど、気孔のサイズ
も大きくなっていることが判明した。
Then, next, a slag was cut into a square of about 10 mm and the porosity was obtained. That is, the same sample was embedded in resin, the cross section was polished, and a micrograph was taken.
The area and number of the above holes were obtained by image processing. In Figure 1,
The relationship between the pore area ratio (total area of pores) per cross-sectional area and the average pore area (average area of pores) is shown. As shown in the figure, it was found that the higher the porosity inside the slag, the larger the pore size.

【0021】一方、図2に、断面積当たりの気孔面積率
と単位面積当たりの気孔数との関係を示すが、気孔面積
率が大きくなるほど気孔の数は逆に少なくなることが判
明した。このことは、スラグ中で気孔が生成しはじめた
ときは、微細な気孔が多数発生し、時間が経過するとそ
の気泡がガスの発生により成長し合体するため、一つ一
つの気孔のサイズが大きくなって、気孔体積は増加する
が、数は減少するものと考えられる。
On the other hand, FIG. 2 shows the relationship between the pore area ratio per cross-sectional area and the number of pores per unit area. It was found that the larger the pore area ratio, the smaller the number of pores. This means that when pores start to form in the slag, many fine pores are generated, and over time, the bubbles grow and coalesce due to the generation of gas, so the size of each pore is large. Therefore, it is considered that the pore volume increases, but the number decreases.

【0022】発明者らは、当初、凝固速度が遅いほど、
気泡は上昇し表面から抜け出て、数も量も減少すると考
えていたが、実際の現象は逆であった。従って、凝固し
たスラグの気孔率を低減して緻密化するためには、ガス
の発生および気孔の成長よりも速く、スラグを凝固させ
てしまうことが有効であると考えられる。
The inventors initially found that the slower the solidification rate,
I thought that the bubbles would rise and escape from the surface, and the number and amount would decrease, but the actual phenomenon was the opposite. Therefore, in order to reduce the porosity of the solidified slag and make it dense, it is considered effective to solidify the slag faster than the generation of gas and the growth of pores.

【0023】そこで、実際の高炉から排出された溶融ス
ラグについて、その凝固速度を変更する目的で、スラグ
の層厚を種々に変更して凝固させる実験を試みた。実験
は、縦:3m,横:1.5 mの鉄板を5°の角度に傾斜さ
せたものを冷却鋳型として用い、その上にスラグ鍋から
直接溶融スラグを単層板状に流して冷却凝固させた。ス
ラグの厚みは、傾斜鉄板の周囲に徐冷スラグの土手を作
製し、その高さで調節した。スラグ鍋から排出する際、
放射温度計で測定した溶融スラグの温度は、1365〜1400
℃であった。また、1回当たりのスラグ排出量は 0.4〜
1ton 程度とした。
Therefore, with respect to the molten slag discharged from the actual blast furnace, an experiment was conducted in which the layer thickness of the slag was variously changed for the purpose of changing the solidification rate. In the experiment, an iron plate having a length of 3 m and a width of 1.5 m was tilted at an angle of 5 ° was used as a cooling mold, and molten slag was flowed directly from the slag pot into a single-layer plate to be cooled and solidified. . The thickness of the slag was adjusted by adjusting the height of the bank of the slowly cooled slag prepared around the inclined iron plate. When discharging from the slag pan,
The temperature of the molten slag measured by a radiation thermometer is 1365-1400
It was ℃. Also, the amount of slag discharged per time is 0.4-
It was about 1 ton.

【0024】凝固させた単層板状のスラグは、翌日温度
が低下した後に回収し、実験室のジョークラッシャーで
破砕後、分級した。コンクリート用粗骨材のサイズであ
る5〜20mmの粒について、その絶乾比重、吸水率および
ロサンゼルスすりへり減量を測定した。ここに、絶乾比
重(DD )および吸水率(Q)はそれぞれ、JIS A l110
の規定に従い、次式にて求めた。 DD =mD /(mS −mW ) Q =(mS −mD )/mD × 100(%) ここで、mD :乾燥後の試料の質量(g) mS :試料の質量(g) mW :水中における試料の見掛けの質量(g)
The solidified single-layer plate-like slag was collected the next day after the temperature dropped, crushed with a jaw crusher in a laboratory, and then classified. The absolute dry specific gravity, water absorption rate, and Los Angeles abrasion loss of the coarse aggregate for concrete having a size of 5 to 20 mm were measured. Here, bone dry specific gravity (D D) and water absorption (Q), respectively, JIS A L110
The value was calculated by the following formula in accordance with the rule. D D = m D / (m S −m W ) Q = (m S −m D ) / m D × 100 (%) where m D : mass of sample after drying (g) m S : of sample Mass (g) m W : Apparent mass of sample in water (g)

【0025】また、ロスアンゼルスすりへり減量は、JI
S A l121に規定されるロスアンゼルス試験機を用いて測
定した。試料は、道路用砕石の試験に準じて調整して試
験した。すなわち、篩いの呼び寸法で区分した粒径範
囲:5〜13mmに調整した試料を5000±10g用意し、この
試験前の試料質量m1 を求めた。この試料を、鋼球8個
(鋼球の全質量3300±20g)と共にロスアンゼルス試験
機へ入れ、毎分:30〜33回転程度の回転速度で 500回転
させた。試験後の試料を呼び寸法:1.7 mmの網篩いでふ
るい、篩いに残った試料を水で洗った後に 100〜110 ℃
の温度で一定質量になるまで乾燥し、秤量して試験後の
試料質量m2 を求めた。この結果を基に、ロスアンゼル
スすりへり減量R(%)を下記式によって求めた。 R=(m1 −m2 )/m1 × 100(%)
Also, the Los Angeles abrasion loss is
The measurement was performed using a Los Angeles tester specified by SA 121. The sample was prepared and tested according to the test of crushed stone for road. That is, 5000 ± 10 g of a sample adjusted to have a particle size range of 5 to 13 mm classified by the nominal size of the sieve was prepared, and the sample mass m 1 before this test was determined. This sample was put into a Los Angeles tester together with 8 steel balls (total mass of steel balls: 3300 ± 20 g), and was rotated 500 times at a rotation speed of about 30 to 33 rotations per minute. The sample after the test is sieved with a mesh sieve with a nominal size of 1.7 mm, and the sample remaining on the sieve is washed with water and then 100 to 110 ° C.
It was dried at a temperature of 1 to a constant mass and weighed to determine the sample mass m 2 after the test. Based on this result, Los Angeles abrasion loss R (%) was calculated by the following formula. R = (m 1 −m 2 ) / m 1 × 100 (%)

【0026】図3および図4にそれぞれ、凝固スラグの
層厚と絶乾比重および吸水率との関係を示す。図3,4
に示したとおり、スラグ厚みが薄いほど絶乾比重が高
く、吸水率が低くなっている。この理由は、厚みが薄い
ほどスラグの冷却速度が速くなり、短時間で凝固するた
め、ガスの発生が抑制され、気孔量が少なくなったもの
と考えられる。
3 and 4 show the relationship between the layer thickness of the solidified slag, the absolute dry specific gravity and the water absorption rate, respectively. Figures 3 and 4
As shown in, the thinner the slag, the higher the absolute dry specific gravity and the lower the water absorption. It is considered that the reason for this is that the thinner the thickness, the faster the cooling rate of the slag and solidification in a short time, so that the generation of gas was suppressed and the amount of pores decreased.

【0027】次に、図5に、絶乾比重とすりへり減量と
の関係について調べた結果を示す。同図から明らかなよ
うに、絶乾比重が高くなるほど、すりへり減量は低減し
た。すなわち、気孔量を少なくすることによって、耐磨
耗性が向上することが判明した。
Next, FIG. 5 shows the results of an examination of the relationship between the absolute dry specific gravity and the amount of abrasion loss. As is clear from the figure, the higher the absolute dry density, the lower the abrasion loss. That is, it was found that abrasion resistance is improved by reducing the amount of pores.

【0028】路盤材や粗骨材に利用されている徐冷スラ
グは、すりへり減量が30%前後と耐摩耗性が低いが、板
状に急冷して高絶乾比重とすることで、アスファルト用
の骨材として利用されている硬質砂岩等の天然材料と同
程度のすりへり減量:15%程度の耐磨耗性に優れたスラ
グ骨材にすることができることが究明されたのである。
The slow-cooling slag used for roadbed materials and coarse aggregates has a low abrasion resistance of about 30% in the amount of abrasion loss, but it is rapidly cooled to a plate shape to have a high absolute dry specific gravity, so that it can be used for asphalt bone. It has been clarified that the slag aggregate can be made into a slag aggregate having a wear resistance of about 15%, which is the same as the natural material such as hard sandstone used as a material.

【0029】次に、本発明において、破砕スラグの吸水
率およびすりへり減量を前記の範囲に限定した理由につ
いて説明する。まず、吸水率が 1.5%超では、配合する
際のアスファルト量が増加し、アスファルト合材の材料
費が高くなるため、吸水率は 1.5%以下に限定した。ま
た、すりへり減量が20%を超えると満足いくほどの耐摩
耗性が得られないので、すりへり減量は20%以下に限定
した。より好ましくは15%以下である。なお、破砕後の
スラグの大きさは、6号砕石を対象とした場合には13mm
以下、また5号砕石を対象とした場合には20mm以下とな
る。
Next, the reason why the water absorption of the crushed slag and the amount of abrasion loss are limited to the above ranges in the present invention will be explained. First, if the water absorption rate exceeds 1.5%, the amount of asphalt during compounding will increase and the material cost of the asphalt mixture will increase, so the water absorption rate was limited to 1.5% or less. Also, if the abrasion loss exceeds 20%, satisfactory abrasion resistance cannot be obtained, so the abrasion loss was limited to 20% or less. It is more preferably 15% or less. The size of the slag after crushing is 13 mm when targeting No. 6 crushed stone.
Below, it will be 20mm or less when targeting No. 5 crushed stone.

【0030】次に、本発明に従う製造方法について説明
する。図6に、本発明の実施に用いて好適な板状凝固ス
ラグの製造装置を示し、図中番号1はスラグ鍋、2は溶
融スラグ、3はスラグ樋、4は鋳滓機、5は鋳型、そし
て6が板状凝固スラグである。図1に示したところにお
いて、鋳滓機4を回転させつつ、鋳滓機4に載置した鋳
型5内に溶融スラグを供給することにより、所定厚みの
板状凝固スラグ6を製造することができる。なお、鋳型
5は、鋳滓機4に対して着脱自在であり、必要に応じて
深さの異なるの鋳型と自由に取り替えられる仕組みにな
っている。
Next, the manufacturing method according to the present invention will be described. FIG. 6 shows an apparatus for producing plate-like solidified slag suitable for carrying out the present invention. In the figure, reference numeral 1 is a slag pot, 2 is molten slag, 3 is a slag gutter, 4 is a cast slag machine, and 5 is a mold. , And 6 are plate solidified slags. In the place shown in FIG. 1, it is possible to manufacture the plate-like solidified slag 6 having a predetermined thickness by supplying the molten slag into the mold 5 placed on the slag machine 4 while rotating the slag machine 4. it can. The mold 5 is attachable to and detachable from the cast slag machine 4, and can be freely replaced with a mold having a different depth as required.

【0031】さて、本発明では、上記の装置で板状凝固
スラグを製造するに当たり、該板状凝固スラグの厚みを
10〜30mmの範囲に制御することが重要である。というの
は、この厚みが10mmに満たないと破砕後のスラグの大き
さが10mmよりも小さくなって、骨材としての歩留りが低
下するからであり、一方30mmを超えると冷却中における
気孔の発生を十分に抑制することができず、この発明で
所期したほど低い吸水率の骨材が得難いからである。特
に、好ましい厚みは10〜25mm、さらに好ましくは15〜20
mmの厚みである。
In the present invention, when the plate-like solidified slag is manufactured by the above apparatus, the thickness of the plate-like solidified slag is adjusted.
It is important to control within the range of 10 to 30 mm. This is because if the thickness is less than 10 mm, the size of the slag after crushing will be smaller than 10 mm, and the yield as aggregate will decrease, while if it exceeds 30 mm, pores will be generated during cooling. Is not sufficiently suppressed, and it is difficult to obtain an aggregate having a low water absorption as expected in the present invention. Particularly preferred thickness is 10 to 25 mm, more preferably 15 to 20
The thickness is mm.

【0032】なお、本発明では、従来のように、凝固の
際に溶融スラグ内部に発生した気泡を表面から逃がして
やる必要はないので、上記の鋳造に際し、冷却速度の一
層の向上を図るために、その上方からエアージェットに
よる冷却の促進を図ることは有利である。ただし、ウォ
ータージェットは、蒸気の発生やH2S の発生を伴い、発
泡を助長するようになるため、冷却方法としては不適で
ある。
In the present invention, it is not necessary to escape the air bubbles generated inside the molten slag during solidification from the surface as in the prior art. Therefore, in order to further improve the cooling rate in the above casting. In addition, it is advantageous to promote cooling by an air jet from above. However, the water jet is not suitable as a cooling method because it promotes foaming with generation of steam and generation of H 2 S.

【0033】[0033]

【実施例】図6に示した板状凝固スラグの製造装置を用
いて、連続的に板状の凝固スラグを製造した。この際、
鋳型としては、縦:1m、横:1m、深さ:5,10, 1
5,20, 25, 30,40mmの鋳鉄製鋳型を用いた。高炉で、 5
0tonスラグ鍋に溶融高炉スラグを受滓し、上記の鋳型を
取り付けた製造装置まで移送し、1〜2 ton/min程度の
排出速度でスラグを流出し、スラグ樋で溶融スラグ流を
安定させつつ、移動している鋳型上に供給した。この
時、鋳型の移動速度は6〜30 m/minの範囲で、鍋からの
スラグ流出状況を見ながら調節した。鋳型上での冷却時
間は、深さ:30mmまでの鋳型までは2〜4 min、深さ:
40mmの場合は5〜10 minとし、単層板状に凝固させたス
ラグを鋳滓機の先端で鋳型が反転する時に剥離脱落させ
た。なお、鋳型上には、石灰乳などの塗布は行わず、ス
ラグを受ける前の鋳型表面は乾燥状態に保持した。
EXAMPLE A plate-shaped solidified slag was continuously manufactured using the plate-shaped solidified slag manufacturing apparatus shown in FIG. On this occasion,
As a mold, length: 1m, width: 1m, depth: 5, 10, 1
Cast iron molds of 5, 20, 25, 30, 40 mm were used. In the blast furnace, 5
While receiving the molten blast furnace slag in a 0 ton slag pot and transferring it to the manufacturing equipment equipped with the above mold, the slag is discharged at a discharge rate of about 1 to 2 ton / min, and the molten slag flow is stabilized by the slag gutter. , On the moving mold. At this time, the moving speed of the mold was adjusted within the range of 6 to 30 m / min while observing the slag outflow condition from the pot. The cooling time on the mold is 2 to 4 min for the mold up to the depth of 30 mm, and the depth:
In the case of 40 mm, it was 5 to 10 min, and the slag solidified into a single-layer plate was peeled off when the mold was inverted at the tip of the slag machine. No lime milk was applied onto the mold, and the mold surface before receiving the slag was kept in a dry state.

【0034】各厚みの板状スラグを、それぞれ数回の実
験で1〜2 tonづつ製作した。高炉スラグを板状に凝固
させた場合の特徴は、断面を見ると鉄板に接触していた
下面から約1mm程度がガラス状になっており、それから
上の部分は結晶質になっていた。この板状凝固スラグ
を、100 ton/H の能力のインパクトクラッシャーで破砕
し、5〜13mmに篩い分けて6号砕石サイズの骨材とし
た。この時、破砕した元のスラグのうち大きさが5〜13
mmになったものの歩留りを破砕歩留りとした。かくして
得られた5〜13mmのサイズの骨材について、絶乾比重、
吸水率およびすりへり減量を調査した。得られた結果を
表1に示す。なお、比較のため、ヤードにスラグ鍋から
放流し、大気放冷後、散水冷却することからなる従来法
に従って製造した路盤材用の骨材についても同様な調査
を行い、得られた結果を表1に併記する。
Plate-like slags of various thicknesses were produced by 1-2 ton by several experiments. When the blast furnace slag was solidified into a plate shape, the sectional view showed that about 1 mm from the lower surface that was in contact with the iron plate was glassy, and then the upper part was crystalline. The plate-like solidified slag was crushed with an impact crusher having a capacity of 100 ton / H and sieved to 5 to 13 mm to obtain No. 6 crushed stone size aggregate. At this time, the size of the crushed original slag is 5 to 13
The yield of the products that became mm was used as the crushing yield. About the aggregates thus obtained having a size of 5 to 13 mm, the absolute dry specific gravity,
The water absorption rate and the amount of abrasion loss were investigated. The results obtained are shown in Table 1. For comparison, a similar study was conducted on aggregates for roadbed materials that were manufactured according to the conventional method of discharging from a slag pan to the yard, cooling in the air, and then cooling with water spray. Also described in 1.

【0035】[0035]

【表1】 [Table 1]

【0036】同表に示したとおり、本発明に従い、凝固
スラグ厚みを10〜30mmとして冷却凝固したのち、破砕・
分級することにより、すりへり減量は10〜20%、また吸
水率は 0.5〜1.5 %に低減することができ、特に凝固厚
みが薄いほどすりへり減量および吸水率とも小さくなっ
た。また、絶乾比重は2.65〜2.85と、実験室でジョーク
ラッシャーにより破砕した場合と比べて一層高比重にな
っているが、これは、破砕強度が高いと強度の低い部分
は細粒となって除去されたためと考えられる。
As shown in the table, according to the present invention, the solidified slag is cooled and solidified with a thickness of 10 to 30 mm, and then crushed.
By classifying, the amount of abrasion loss can be reduced to 10 to 20%, and the water absorption rate can be reduced to 0.5 to 1.5%. Especially, the thinner the solidification thickness, the smaller the abrasion loss and water absorption rate. In addition, the absolute dry specific gravity is 2.65 to 2.85, which is even higher than that in the case of crushing with a jaw crusher in the laboratory, but when the crushing strength is high, the low-strength part becomes fine grains. Probably because it was removed.

【0037】また、得られた各破砕スラグの外観につい
て観察したところ、本発明に従った場合には、通常の高
炉徐冷スラグと比べて遥かに緻密なスラグ骨材が得られ
た。すなわち、外観上はほとんど気孔が見られず、天然
砕石と見掛け上区別がつかず、耐磨耗性もアスファルト
舗装に用いられる硬質砂岩と同等であった。
Further, when the appearance of each of the obtained crushed slags was observed, according to the present invention, a much denser slag aggregate was obtained as compared with a normal blast furnace slowly cooled slag. In other words, it had almost no pores in appearance, was virtually indistinguishable from natural crushed stone, and had the same abrasion resistance as hard sandstone used for asphalt pavement.

【0038】さらに、5〜13mmの6号砕石サイズに破砕
した場合の、破砕歩留りは70%以上と高く、凝固層厚が
薄いほど破砕歩留りが高くなった。板状の凝固スラグ
は、歪みを内部に持つためか、比較的軽い衝撃で割れて
しまうが、気孔率の高いスラグと違い、破砕時に粉体の
発生がなく、ちょうど5mm以上の塊に割れ易いという特
徴があった。また、10mm前後になると、それ以下には破
砕され難く、凝固板厚みが13mmに近いほど、余分な破砕
が必要なく、5mm以下の粉および細粒が発生し難くな
り、歩留りが向上した。
Further, the crushing yield when crushed to the size of crushed stone of No. 6 of 5 to 13 mm was as high as 70% or more, and the crushing yield became higher as the solidified layer became thinner. The plate-like solidified slag may be cracked by a relatively light impact, probably because it has strain inside, but unlike slag with a high porosity, no powder is generated during crushing, and it is easy to break into a lump of just 5 mm or more. There was a feature. Further, when it is around 10 mm, it is less likely to be crushed to less than that, and as the thickness of the solidified plate is closer to 13 mm, extra crushing is not necessary and powder and fine particles of 5 mm or less are less likely to be generated and the yield is improved.

【0039】なお、凝固厚さが30mmを超えると、層の中
間部分から上の方に、1mm前後の径の気孔が見られた。
スラグの凝固厚みを増すにつれ、明らかに多孔質に見え
る1mm以上の気孔の存在範囲が増大した。さらに、スラ
グの凝固厚みが50mm以上になると、骨材サイズにした場
合、通常の高炉スラグ路盤材、粗骨材に見られるのと同
様の粗大な孔のある外観の骨材となった。
When the solidified thickness was more than 30 mm, pores having a diameter of about 1 mm were found in the upper part from the middle part of the layer.
As the solidification thickness of the slag was increased, the existence range of pores of 1 mm or more which appeared to be apparently porous increased. Furthermore, when the solidified thickness of the slag was 50 mm or more, when the size of the aggregate was changed, the aggregate had an appearance with coarse pores similar to those found in ordinary blast furnace slag roadbed and coarse aggregate.

【0040】実施例2 次に、本発明に従って得た上記の緻密スラグ骨材を、ア
スファルト合材に配合し、工場内道路に施工して、その
耐久性を調べる実験を行った。また、比較のために、従
来からアスファルト・コンクリート骨材として使用され
ている硬質砂岩を骨材とした舗装および前掲表1に従来
例として示した高炉スラグの路盤材用骨材をアスファル
ト・コンクリート骨材として使用した舗装も、同様にし
て施工した。道路流れ方向に各々3mずつ本発明例およ
び2つの従来例を並べて施工したところ、6ヶ月間の道
路使用後、本発明例の骨材を使用したアスファルト舗装
は、硬質砂岩を骨材とした舗装と同等でほとんど見分け
がつかなかったが、高炉スラグの路盤材用骨材を使用し
た舗装では轍の跡が明瞭に表れ、舗装道路表面に凹凸が
発生していた。
Example 2 Next, an experiment was conducted in which the above-mentioned dense slag aggregate obtained according to the present invention was blended with an asphalt mixture and applied to a road in a factory to examine its durability. For comparison, the pavement made of hard sandstone, which has been conventionally used as an asphalt / concrete aggregate, and the aggregate for roadbed material of blast furnace slag shown in Table 1 above are used as the asphalt / concrete aggregate. The pavement used as a material was also constructed in the same manner. When the example of the present invention and two conventional examples were installed side by side in the direction of road flow, the asphalt pavement using the aggregate of the example of the present invention was used after 6 months of road use. Although it was almost indistinguishable from the above, it was clearly discernible in the pavement using blast furnace slag aggregate for roadbed material, and there were irregularities on the paved road surface.

【0041】[0041]

【発明の効果】かくして、本発明に従い、溶融高炉スラ
グを厚みを制御して単層板状に冷却凝固させることによ
り、結晶質で気孔の少ない緻密なスラグを得ることがで
き、それを破砕して粒度調整することにより、天然に産
出される硬質砂岩と同程度の耐磨耗性の高い、硬い骨材
を得ることができる。そして、かかる緻密なスラグ骨材
を、アスファルト合材として使用することにより、天然
骨材使用と同等の耐久性のある道路舗装を施工すること
ができる。
As described above, according to the present invention, by controlling the thickness of the molten blast furnace slag and cooling and solidifying it into a single-layer plate, it is possible to obtain a dense slag that is crystalline and has few pores, and crush it. By adjusting the particle size by using the above method, it is possible to obtain a hard aggregate that is as high in abrasion resistance as the hard sandstone that is naturally produced. Then, by using such a dense slag aggregate as an asphalt mixture, it is possible to construct a road pavement that is as durable as the use of natural aggregate.

【図面の簡単な説明】[Brief description of drawings]

【図1】 断面積当たりの気孔面積率(気孔の総面積)
と平均気孔面積(気孔の平均面積)との関係を示したグ
ラフである。
Fig. 1 Pore area ratio per cross-sectional area (total area of pores)
It is a graph showing the relationship between the average pore area (average pore area).

【図2】 断面積当たりの気孔面積率と単位面積当たり
の気孔数との関係を示したグラフである。
FIG. 2 is a graph showing the relationship between the pore area ratio per cross-sectional area and the number of pores per unit area.

【図3】 凝固スラグの層厚と絶乾比重との関係を示し
たグラフである。
FIG. 3 is a graph showing the relationship between the layer thickness of solidified slag and the absolute dry specific gravity.

【図4】 凝固スラグの層厚と吸水率との関係を示した
グラフである。
FIG. 4 is a graph showing the relationship between the layer thickness of the solidified slag and the water absorption rate.

【図5】 スラグ骨材または路盤材の絶乾比重とすりへ
り減量との関係を示したグラフである。
FIG. 5 is a graph showing the relationship between the absolute dry specific gravity of slag aggregate or roadbed material and the amount of abrasion loss.

【図6】 本発明の実施に用いて好適な板状凝固スラグ
の製造装置を示した図である。
FIG. 6 is a view showing an apparatus for producing a plate-like solidified slag suitable for use in implementing the present invention.

【符号の説明】[Explanation of symbols]

1 スラグ鍋 2 溶融スラグ 3 スラグ樋 4 鋳滓機 5 鋳型 6 板状凝固スラグ 1 slag pot 2 Molten slag 3 slug gutter 4 slag machine 5 molds 6 Plate-shaped solidified slag

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 18/14 B09B 3/00 ZABZ (72)発明者 清田 禎公 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 2D051 AF05 AG01 EA06 EB04 4D004 AA43 BA02 CA04 CA32 CB13 CB31 DA03 DA20 4G012 JB01 JC06 JD01 JE04 Front page continuation (51) Int.Cl. 7 identification code FI theme code (reference) C04B 18/14 B09B 3/00 ZABZ (72) Inventor Sadako Kiyota 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Technical Research Institute Co., Ltd. F-term (reference) 2D051 AF05 AG01 EA06 EB04 4D004 AA43 BA02 CA04 CA32 CB13 CB31 DA03 DA20 4G012 JB01 JC06 JD01 JE04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶融状態の高炉スラグを、冷却凝固後、
破砕することにより得た破砕スラグであって、その吸水
率が 1.5%以下、すりへり減量が20%以下であることを
特徴とするアスファルト舗装用骨材。
1. The molten blast furnace slag is cooled and solidified,
A crushed slag obtained by crushing, the water absorption of which is 1.5% or less, and the amount of abrasion loss is 20% or less. Asphalt pavement aggregate.
【請求項2】 溶融状態の高炉スラグを、層厚が10〜30
mmの板状になるように金属製の鋳型上に単層で流して冷
却凝固させ、得られた単層板状の凝固スラグを破砕する
ことを特徴とするアスファルト舗装用骨材の製造方法。
2. A molten blast furnace slag having a layer thickness of 10 to 30.
A method for producing an aggregate for asphalt pavement, which comprises pouring a single layer onto a metal mold so as to have a plate shape of mm, cooling and solidifying, and crushing the obtained single layer plate-shaped solidified slag.
【請求項3】 吸水率が 1.5%以下、すりへり減量が20
%以下の高炉破砕スラグを骨材として使用したアスファ
ルト舗装。
3. The water absorption rate is 1.5% or less, and the abrasion loss is 20.
% Asphalt pavement using blast furnace crushed slag of less than% as aggregate.
JP2001273158A 2001-09-10 2001-09-10 Aggregate for asphalt pavement, method for producing the same, and asphalt pavement Expired - Fee Related JP3855706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273158A JP3855706B2 (en) 2001-09-10 2001-09-10 Aggregate for asphalt pavement, method for producing the same, and asphalt pavement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001273158A JP3855706B2 (en) 2001-09-10 2001-09-10 Aggregate for asphalt pavement, method for producing the same, and asphalt pavement

Publications (2)

Publication Number Publication Date
JP2003082606A true JP2003082606A (en) 2003-03-19
JP3855706B2 JP3855706B2 (en) 2006-12-13

Family

ID=19098412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273158A Expired - Fee Related JP3855706B2 (en) 2001-09-10 2001-09-10 Aggregate for asphalt pavement, method for producing the same, and asphalt pavement

Country Status (1)

Country Link
JP (1) JP3855706B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022843A (en) * 2005-07-14 2007-02-01 Sanyo Special Steel Co Ltd Aggregate for flow-resistant asphalt mixture
JP2013044206A (en) * 2011-08-25 2013-03-04 Hanshin Expressway Co Ltd Resin mortar composition and pavement structure
WO2015025501A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
JP2016056089A (en) * 2014-09-10 2016-04-21 Jfeスチール株式会社 Rolling concrete pavement material
JP2022175823A (en) * 2021-05-14 2022-11-25 Jfeスチール株式会社 Method for producing blast furnace annealing slag, method for producing coarse aggregate for concrete, method for producing roadbed material, and blast furnace annealing slag

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022843A (en) * 2005-07-14 2007-02-01 Sanyo Special Steel Co Ltd Aggregate for flow-resistant asphalt mixture
JP2013044206A (en) * 2011-08-25 2013-03-04 Hanshin Expressway Co Ltd Resin mortar composition and pavement structure
WO2015025501A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
CN105452187A (en) * 2013-08-20 2016-03-30 杰富意钢铁株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
JPWO2015025501A1 (en) * 2013-08-20 2017-03-02 Jfeスチール株式会社 Method for producing solidified slag and method for producing coarse aggregate for concrete
TWI613178B (en) * 2013-08-20 2018-02-01 杰富意鋼鐵股份有限公司 Method for manufacturing solidified slag, solidified slag, method for manufacturing coarse aggregate for concrete, and coarse aggregate for concrete
KR101839667B1 (en) * 2013-08-20 2018-03-16 제이에프이 스틸 가부시키가이샤 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
JP2016056089A (en) * 2014-09-10 2016-04-21 Jfeスチール株式会社 Rolling concrete pavement material
JP2022175823A (en) * 2021-05-14 2022-11-25 Jfeスチール株式会社 Method for producing blast furnace annealing slag, method for producing coarse aggregate for concrete, method for producing roadbed material, and blast furnace annealing slag

Also Published As

Publication number Publication date
JP3855706B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
CN101687700B (en) Process for preparing a filler for asphalt or concrete starting from a slag material
RU2434039C2 (en) Abrasive grain based on molten spherical corundum
JP6414047B2 (en) Slag lump and method for producing the same
JP6316626B2 (en) Civil engineering materials and methods for producing the same
ES2227585T3 (en) DEVICE FOR DOWNLOADING METAL FOUNDED IN A COLADA DEVICE AND METHOD OF USE.
JP2003082606A (en) Aggregate for asphalt pavement, its manufacturing method and asphalt pavement
TW201307247A (en) Interlocking block
JP2004277191A (en) Coarse aggregate for concrete
JP3446409B2 (en) Method for producing water-permeable ceramic block
JP3945261B2 (en) Slag casting method and apparatus
WO2001062683A1 (en) Blast furnace granulated slag, fine aggregate prepared therefrom and method for producing them
KR102023075B1 (en) Water permeable block using steel-making slag ball
TWI613178B (en) Method for manufacturing solidified slag, solidified slag, method for manufacturing coarse aggregate for concrete, and coarse aggregate for concrete
Goncharova et al. Refractory materials for steel-making equipment lining
JP3988347B2 (en) Particle size control method for hard granulated slag
JP6766832B2 (en) Manufacturing method of steelmaking slag roadbed material
JP2004204509A (en) Drainage asphalt mixture for use in drainage pavement
KR20160075958A (en) Permeable block and manufacturing method of permeable block
JP3470463B2 (en) Water-permeable ceramic block
JP2004211432A (en) Regenerated asphalt mixture
WO2022270480A1 (en) Granular solidified slag manufacturing method and manufacturing facility
JP2002160958A (en) Water permeable material and water permeable composite material
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
JP2000136501A (en) Permeable ceramic block and manufacture thereof
JP2006083062A (en) Fine aggregate and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Ref document number: 3855706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees