WO2022270480A1 - Granular solidified slag manufacturing method and manufacturing facility - Google Patents
Granular solidified slag manufacturing method and manufacturing facility Download PDFInfo
- Publication number
- WO2022270480A1 WO2022270480A1 PCT/JP2022/024604 JP2022024604W WO2022270480A1 WO 2022270480 A1 WO2022270480 A1 WO 2022270480A1 JP 2022024604 W JP2022024604 W JP 2022024604W WO 2022270480 A1 WO2022270480 A1 WO 2022270480A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- slag
- granular
- solidified
- solidified slag
- plate
- Prior art date
Links
- 239000002893 slag Substances 0.000 title claims abstract description 387
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 238000009826 distribution Methods 0.000 claims abstract description 25
- 239000011343 solid material Substances 0.000 claims abstract description 19
- 239000007787 solid Substances 0.000 claims description 128
- 239000002245 particle Substances 0.000 claims description 88
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 38
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 238000007711 solidification Methods 0.000 claims description 12
- 230000008023 solidification Effects 0.000 claims description 12
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims description 7
- 150000004677 hydrates Chemical class 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000004576 sand Substances 0.000 claims description 5
- 239000004575 stone Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 abstract description 32
- 239000010959 steel Substances 0.000 abstract description 32
- 238000000034 method Methods 0.000 description 29
- 238000011084 recovery Methods 0.000 description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 230000032683 aging Effects 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 7
- 238000009628 steelmaking Methods 0.000 description 6
- 239000002699 waste material Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 241000276425 Xiphophorus maculatus Species 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B5/00—Treatment of metallurgical slag ; Artificial stone from molten metallurgical slag
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Definitions
- the present invention relates to a method and equipment for producing granular solidified slag, which crushes solidified slag obtained by solidifying molten slag to obtain granular solidified slag.
- steelmaking slag is mostly used as steel slag for roads (JIS A 5015-2018).
- the manufacturing process includes pouring molten slag with a partially precipitated solid phase into a cooling yard with a thickness of 100 mm or more, crushing the solidified slag obtained by solidification, and further adjusting the particle size.
- a steam aging treatment is then performed at 100° C. for several days to hydrate the free-CaO contained in the crushed and granulated solidified slag.
- the granular solidified slag thus obtained is shipped as steel slag for roads.
- the molten slag is solidified with a thickness of 100 mm or more, so it takes time to cool the molten slag.
- Patent Document 1 devises a process of solidifying molten blast furnace slag in an iron mold to a thickness of 20 to 40 mm to obtain plate-shaped solidified slag. According to this method, the molten slag can be efficiently cooled and solidified in a short period of time.
- the obtained plate-shaped solidified slag with a thickness of 20 to 40 mm is crushed, and the granular solidified slag in the particle size range of the standard coarse aggregate for concrete (the maximum slag particle diameter is about 20 mm) is obtained.
- the plate-shaped solidified slag consists only of solidified regions formed by solidifying molten slag, it has high compressive strength even at high temperatures and is difficult to be crushed. Therefore, even if an attempt is made to crush plate-shaped solidified slag while it is still at high temperature by a rotating device such as a rotary kiln, the crushing force of such a rotating device is small, so that it can hardly be crushed.
- the plate-shaped solidified slag is cooled to room temperature, it is crushed by a general compression crushing type crusher such as a jaw crusher and/or an impact crusher.
- a general compression crushing type crusher such as a jaw crusher and/or an impact crusher.
- the maximum particle size of the slag after crushing is determined to some extent by the thickness of the plate-shaped solidified slag.
- Granular solidified slag having a maximum particle diameter of about 20 mm can be obtained with a high yield.
- the present invention provides a method and equipment for producing granular solidified slag that can easily produce granular solidified slag having a particle size distribution that falls within the particle size range of steel slag standards for roads. With the goal.
- the hot crushability of the plate-shaped solidified slag is enhanced, and a general compression crushing type crusher This is probably because the plate-shaped solidified slag can be appropriately crushed by using a rotating device with a smaller crushing force than the above.
- a method for producing granular solidified slag A method for producing granular solidified slag.
- the granular solid material includes one or more selected from granular solid slag, granular solid material having one or both of hydrate and carbonate formed on the surface, and granular solid iron.
- the granular solid slag and the granular solid material have a particle size range of 40 to 0 mm, and the nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016) , 53 mm sieve passage rate is 100% by mass, 37.5 mm sieve passage rate is 95 to 100% by mass, 19 mm sieve passage rate is 50 to 80% by mass, 4.75 mm sieve passage rate is 15 to 40% by mass.
- the rotating device crushes the plate-shaped solidified slag to a particle size of 53 mm or less, and at that time, the 19 mm sieve passage rate of the granular solidified slag is 50% by mass or more and 80% by mass or less.
- the particle shape determination using fine-grained slag adjusted to conform to the particle size distribution of crushed sand specified in JIS A 5005; 2020 is 52.0% or more.
- a mold a particulate solid supply device that supplies particulate solids into the mold, and a molten slag supply device that supplies molten slag into the mold, wherein the molten slag is supplied in the mold.
- a slag solidification facility for solidifying together with the granular solid matter to obtain a plate-shaped solidified slag having a thickness of 30 mm or more and 50 mm or less composed of the solidified region formed by solidifying the molten slag and the granular solid matter;
- a rotating device comprising a rotating cylindrical container for crushing the plate-shaped solidified slag charged into the cylindrical container by rotating the cylindrical container to obtain granular solidified slag; Production equipment for granular solidified slag.
- FIG. 1 illustrates a granular solidified slag production facility 100 according to an embodiment of the present invention
- FIG. 1 is a diagram showing a granular solidified slag manufacturing facility 100 according to an embodiment of the present invention as an example of a facility capable of implementing a granular solidified slag manufacturing method according to an embodiment of the present invention.
- a granular solidified slag production facility 100 includes a slag solidification facility having a mold 10, a granular solid supply device 20, and a molten slag supply device 30, and a rotating device 40 as a slag crushing device. have.
- a method for producing granular solidified slag comprises: - Step (I): a step of supplying the particulate solid S1 and the molten slag S2 into the mold 10; - Step (II): The molten slag S2 is solidified together with the granular solids S1 in the mold 10, and the solidified region formed by solidifying the molten slag S2 and the granular solids S1 have a thickness of 30 mm or more and 50 mm.
- a step of obtaining a plate-like solidified slag S below a step of obtaining a plate-like solidified slag S below; - Step (III): a step of removing the plate-shaped solidified slag S from the mold 10; - Step (IV): The plate-shaped solidified slag S is charged into the cylindrical container of a rotating device 40 having a rotating cylindrical container, and the cylindrical container is rotated to crush the plate-shaped solidified slag S. to obtain granular solidified slag Sg; have
- the mold 10 has recesses that accommodate the particulate solid S1 and the molten slag S2.
- the shape of the recess is not particularly limited as long as the plate-shaped solidified slag S can be taken out from the mold 10 by inverting the mold 10. can be mentioned.
- the dimensions of the recess may be set so that the desired dimensions of the plate-like solidified slag S are obtained.
- the shape of the concave portion is a rectangular parallelepiped, the vertical and horizontal lengths can be within the range of 600 to 3000 mm, for example.
- the height of the recess may be set so as to obtain a desired dimension of the plate-shaped solidified slag S, and can be, for example, within the range of 40 to 100 mm.
- the mold 10 is conveyed on the line and sequentially receives the granular solid S1 from the granular solid supply device 20, and then the molten slag S2 from the molten slag supply device 30. receive.
- the granular solid material supply device 20 has a hopper 20A that accommodates the granular solid material S1 and cuts out a predetermined amount, and a gutter 20B that guides the granular solid material S1 cut out by the hopper 20A into the mold 10. Then, a granular solid S1 is supplied into the mold 10. As shown in FIG. A particulate solid feeder 20 is located above the line along which the molds 10 are conveyed.
- the molten slag supply device 30 includes a tilting ladle 30A that accommodates the molten slag S2 and pours out the molten slag S2 by tilting, and a gutter 30B for pouring the molten slag S2 poured out from the tilting ladle 30A into the mold 10. and to feed the molten slag S2 into the mold 10.
- the molten slag feeder 30 is located above the line along which the mold 10 is conveyed and is located downstream of the particulate solids feeder 20 in the line.
- the granular solid material S1 is first supplied into the mold 10 from the granular solid supply device 20, and then the molten slag S2 is supplied into the mold 10 from the molten slag supply device 30.
- the molten slag S2 is supplied into the mold 10 before the solid particles S1 are fed into the mold 10 before the solid particles S1 are fed into the mold 10.
- the temperature of the molten slag S2 drops, the viscosity rises, and the surface of the molten slag S2 begins to solidify. It becomes difficult to create a state in which the and are uniformly mixed.
- the molten slag S2 is fed into the mold 10 after the particulate solid S1 has been fed into the mold 10 .
- the order of supplying the solid particles S1 and the molten slag S2 into the mold 10 is not limited.
- the molten slag supply device 30 is arranged upstream of the granular solids supply device 20 in the line, and the molten slag S2 is first supplied into the mold 10 from the molten slag supply device 30, and then the granular solids S2 are supplied from the granular solids supply device 20.
- An object S1 can also be fed into the mold 10 .
- both the gutter 20B and the gutter 30B are arranged above the mold 10, and the granular solid S1 is supplied from the granular solid supply device 20 into the mold 10, and the molten slag S2 is supplied from the molten slag supply device 30 during the same period. can also be fed into the mold 10. Further, in order to control the thickness of the slag, when the supply of the granular solid slag S1 and the molten slag S2 to the mold 10 is completed, rolling pressure may be applied from above the mold 10 with iron rolls.
- the granular solids S1 and the molten slag S2 are supplied into the mold 10 (step (I)), and the molten slag S2 is solidified together with the granular solids S1 in the mold 10 (step (II)).
- the molten slag S2 is solidified together with the granular solids S1 in the mold 10 (step (II)).
- the "solidified zone” is the solidified portion of the molten slag
- the "platy solidified slag” is the slab in the mold, which consists of the solidified zone and particulate solids.
- the molten slag S2 is solidified together with the solid particles S1 in the mold 10, and the thickness of the obtained plate-like solidified slag S (herein also referred to as "solidified thickness") is set to 30 mm. It is important to make it 50 mm or less.
- solidification of the molten slag S2 proceeds in a state where the gaps between the solid particles S1 are filled with the molten slag S2, thereby introducing cracks into the solidified region.
- the plate-shaped solidified slag S in this embodiment is superior in hot crushability to solidified slag obtained by solidifying only molten slag. Therefore, the plate-shaped solidified slag S can be easily crushed by the rotating device 40 .
- the granular solidified slag Sg obtained by subsequent crushing can have a particle size suitable for steel slag for roads.
- the particle size distribution of steel slag for roads is specified in JIS A 5015-2018, and CS-40 is used in particular.
- CS-40 has a particle size range of 40 to 0 mm, a nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016), and a 53 mm sieve passage rate of 100 mass.
- % 37.5 mm sieve passage rate is 95 to 100% by mass
- 19 mm sieve passage rate is 50 to 80% by mass
- 4.75 mm sieve passage rate is 15 to 40% by mass
- 2.36 mm sieve passage rate is It has a particle size distribution of 5-25% by weight.
- the molten slag S2 contains a liquid phase of 1200°C or higher, and may be iron and steel slag generated as a by-product in the steelmaking process, and may contain one or both of blast furnace slag and steelmaking slag.
- the granular solid S1 preferably contains one or more selected from granular solid slag, granular solid material on the surface of which one or both of hydrates and carbonates are formed, and granular solid iron.
- a granular solid slag can be used as the granular solid S1.
- granular solid slag generated in the same process as the molten slag S2 there is no foreign matter contamination, so the quality of the obtained granular solidified slag Sg can be easily stabilized.
- other steelmaking slag or blast furnace slag may be used.
- the decomposition reaction of the hydrates or the decomposition reaction of the carbonates causes cracks in the plate-shaped solidified slag S. Production can be promoted, and the crushing load can be further reduced.
- a granular solid having one or both of a hydrate and a carbonate formed on its surface can be used as the granular solid S1.
- examples of such substances include waste concrete.
- the decomposition reaction of the hydrates or the decomposition reaction of the carbonates promotes the formation of cracks in the plate-shaped solidified slag S. It is possible to further reduce the crushing load.
- the decomposition of hydrates occurs at 100 to 300 ° C.
- the decomposition of carbonates occurs at 600 ° C. or higher, so these decomposition reactions can easily occur when hot molten slag contacts. .
- waste concrete is construction waste material, such as concrete, which is a specific construction material that is obligated to be sorted, dismantled and recycled according to the Construction Recycling Law.
- the used concrete is crushed and recycled material for concrete conforming to Annex A of JIS A 5023: 2018 recycled aggregate concrete L, JIS A 5023: 2018 recycled aggregate concrete M attached Recycled aggregate M for concrete conforming to Book A, and recycled crusher run and recycled sand described in pavement recycling handbook (Japan Road Association, 2010) are included.
- granular solid iron can be used as the granular solid S1.
- iron balls as the solid iron granules, the temperature difference with the molten slag is increased compared to other solid granules, so the effect of further promoting the formation of cracks can be expected.
- iron has better heat transfer than solid slag. An increase in volume and processing speed can be expected.
- the granular solid slag and the granular solid material used as the granular solid material S1 preferably have a particle size distribution of CS-40. That is, the granular solid slag and the granular solid material have a particle size range of 40 to 0 mm, and the nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016), 53 mm sieve passage rate is 100% by mass, 37.5 mm sieve passage rate is 95 to 100% by mass, 19 mm sieve passage rate is 50 to 80% by mass, 4.75 mm sieve passage rate is 15 to 40% by mass, It preferably has a particle size distribution with a sieve passage rate of 2.36 mm of 5 to 25% by weight. As a result, the granular solidified slag Sg after crushing can more reliably have a particle size suitable for steel slag for roads.
- the granular solid iron used as the granular solid S1 preferably has a particle size range of 10 mm or more and 50 mm or less.
- the granular solid S1 preferably contains one or more selected from the granular solid slag, the granular solid material, and the granular solid iron, and preferably contains two or more selected from these.
- a combination to be selected a combination of granular solid slag and granular solid iron is more preferable.
- Granular solid slag is the raw material for steel slag for roads, so even if it is solidified together with molten slag, there is almost no risk of contamination with impurities. This is because the advantage of being able to reduce the crushing energy of is also obtained.
- the preferred particle size range of the granular solid slag and granular solid iron is 10-50 mm.
- the sieve passage rate is 100%, so the solidified thickness is preferably 50 mm or less, and in order to take advantage of the cooling ability of granular solids, granular solid slag and granular solid iron By making the particle size range of 50 mm or less, a sufficient contact area with the molten slag can be secured.
- the mass of the granular solid S1 is 10% by mass or more and 40% by mass or less with respect to the total mass of the granular solid S1 and the molten slag S2. is preferred. This is because if the ratio is less than 10% by mass, sufficient crack propagation cannot be expected. On the other hand, if the ratio exceeds 40% by mass, the molten slag S2 does not spread sufficiently between the granular solids S1, and the granular solids S1 and molten slag S2 solidify in a substantially separated state. In addition, the processing amount of the molten slag S2 is reduced, and the processing speed of the molten slag becomes slow.
- the granular solids S1 When the granular solids S1 are supplied into the mold 10 before the molten slag S2, the granular solids S1 should be arranged in the mold so that the granular solids S1 form one to three layers. is preferred. By limiting the number of stacked layers of the solid particles S1 to three or less, cracks introduced into the solidified region are easily propagated, and the plate-shaped solidified slag S is sufficiently excellent in hot crushability. From the viewpoint of promoting the propagation of cracks, it is most preferable to set the number of layers of the solid particles S1 to one.
- the maximum particle size of the granular solids S1 supplied into the mold 10 is equal to or less than the thickness of the plate-shaped solidified slag S, and is larger than the thickness of the plate-shaped solidified slag S. It is preferable to make it 1/2 or more (more preferably 3/4 or more).
- the maximum particle diameter (thickness) of the granular solid S1 is too small compared to the thickness of the plate-shaped solidified slag S, there will be a portion where the granular solid S1 and the molten slag S2 do not contact, and the plate-shaped solidified slag S will have This is because there are many regions in which cracks, which are starting points of destruction, do not occur, and it becomes difficult to crush the granular solidified slag Sg.
- the plate-like solidified slag S is removed from the mold 10 following step (II) (step (III)).
- the method of removing the plate-shaped solidified slag S from the mold 10 is not particularly limited, but as shown in FIG. 1, by inverting the mold 10, the plate-shaped solidified slag S can be separated from the mold 10 and dropped.
- the plate-shaped solidified slag S is charged into the cylindrical container of a rotating device 40 having a rotating cylindrical container, and the cylindrical container is is rotated to crush the plate-shaped solidified slag S to obtain granular solidified slag Sg.
- the rotating device 40 is a device, such as a rotary kiln, having a rotating cylindrical container, and crushes the plate-shaped solidified slag S charged into the cylindrical container by rotating the cylindrical container.
- the rotating device 40 preferably has a structure in which projections are provided on the inner peripheral surface of the cylindrical container so that the plate-like solidified slag S is lifted and dropped.
- the plate-shaped solidified slag S preferably has an average temperature of 600°C or higher and 1250°C or lower when charged into the cylindrical container of the rotating device 40 .
- One of the features of this embodiment is that the plate-like solidified slag S can be hot crushed. That is, it is preferable that the average temperature of the plate-like solidified slag S during charging (also referred to as “charging temperature” in this specification) is 600° C. or higher.
- the lower limit of the charging temperature is preferably determined according to the type of post-treatment for the granular solidified slag Sg obtained after crushing.
- the charge temperature is preferably 600° C. or higher.
- the average temperature of the granular solidified slag Sg during the carbonation treatment can be 400° C. or higher.
- the charge temperature is preferably 1100° C. or higher from the viewpoint of enhancing the heat recovery efficiency from the granular solidified slag Sg.
- the average temperature of the granular solidified slag Sg during the heat recovery process can be 900° C. or higher.
- the charging temperature By setting the charging temperature to 1250°C or lower, it is possible to stably produce granular solidified slag Sg having a particle size close to that of steel slag for roads. If the charging temperature is higher than 1250 ° C., a large amount of unsolidified portion remains in the plate-shaped solidified slag S, so that it adheres to the inner wall of the rotating device 40 and solidifies. It becomes difficult to produce a similar granular solidified slag Sg.
- the rotation speed N (circumference/minute) of the cylindrical container is set so that the plate-shaped solidified slag sticks to the wall surface of the cylindrical container due to centrifugal force when the cylindrical container rotates, is lifted up to a certain height, and then falls. preferably.
- Nc turns/minute
- Nb turns/minute
- Nc and Nb differ depending on the filling amount of plate-shaped solidified slag, the diameter of the cylindrical container, etc., the number of revolutions N may be set within the range of Nb ⁇ N ⁇ Nc.
- the treatment time in the rotating device is not particularly limited, and may be appropriately set so that the granular solidified slag Sg after crushing has a particle size suitable for steel slag for roads.
- the rotating device 40 crushes the entire plate-shaped solidified slag S to a particle size of 53 mm or less, and at that time, the 19-mm sieve passage rate of the granular solidified slag Sg is 50% by mass or more and 80% by mass or less. is preferred.
- the granular solidified slag Sg can be prevented from being excessively crushed, and the granular solidified slag Sg can be stably produced within the particle size range of the steel slag standards for roads.
- total crushing to a particle size of 53 mm or less means that the entire amount of granular solidified slag Sg passes through a mesh sieve with a nominal size of 53 mm specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016). means to
- the grain shape determination using coarse grain slag adjusted so as to conform to the grain size distribution of crushed stone 2005 specified in JIS A 5005; 0% or more is preferable.
- the particles of the granular solidified slag Sg have rounded shapes, making the granular solidified slag Sg suitable for steel slag for roads. Since it is preferable that the grain shape determination actual volume ratio of coarse grains is as high as possible, the upper limit is not particularly limited.
- fine grain slag adjusted so as to conform to the grain size distribution of crushed sand specified in JIS A 5005; It is preferably 0% or more.
- the particles of the granular solidified slag Sg have rounded shapes, making the granular solidified slag Sg suitable for steel slag for roads. Since the grain shape determination actual volume ratio of fine grains is preferably as high as possible, the upper limit is not particularly limited.
- the "grain shape determination actual volume rate” referred to here refers to "6.6 grain shape determination actual volume rate for crushed stone and crushed sand for concrete" specified in JIS A 5005:2020.
- the particle shape determination actual volume ratio of the coarse-grained slag is obtained as follows. First, the granular solidified slag is thoroughly dried to an absolute dry state, passed through a sieve with a nominal size of 20 mm, and 24 kg of those remaining on a sieve with a nominal size of 10 mm are passed through a sieve with a nominal size of 5 mm.
- the particle shape determination actual volume ratio of the fine slag is obtained as follows.
- the granular solidified slag Sg can be shipped as steel slag for roads after cooling to room temperature. However, in the present embodiment, granular solidified slag Sg can be obtained in a high temperature state. Therefore, the granular solidified slag Sg may be shipped after being post-treated. Examples of the post-treatment include heat recovery treatment, steam recovery treatment, carbonation treatment, steam aging treatment, and classification treatment.
- the obtained high-temperature granular solidified slag Sg is filled in a slag-filled tank, and in this state, a cooling gas such as air is supplied into the slag-filled tank to remove the inherent heat of the granular solidified slag Sg.
- a cooling gas such as air is supplied into the slag-filled tank to remove the inherent heat of the granular solidified slag Sg.
- the obtained high-temperature gas can be supplied to, for example, each process in a steelworks, thereby effectively utilizing the heat possessed by the molten slag S2.
- the granular solidified slag Sg after heat recovery is discharged from the heat recovery equipment and then shipped as product slag. In this embodiment, highly efficient heat recovery is possible.
- the steam recovery process is a process of generating steam using the slag heat of the obtained high-temperature granular solidified slag Sg and recovering it. This steam can be used to steam age any solidified slag.
- Steam aging is the process of supplying steam to the resulting hot granular solidified slag Sg.
- the steam aging treatment is performed with the following formula (1) as the main reaction.
- the product slag thus obtained has undergone an expansion reaction by steam aging treatment, and can be shipped as steel slag for roads.
- the penetration efficiency of steam into the slag is high, and efficient steam aging treatment is possible.
- Carbonation treatment is a process of supplying carbon dioxide gas (CO 2 ) to the obtained hot granular solidified slag Sg.
- a carbonation treatment is performed with the following formula (2) as the main reaction.
- the product slag thus obtained has undergone an expansion reaction through the carbonation treatment, and can be shipped as steel slag for roads.
- the efficiency of permeation of carbon dioxide gas into the slag is high, and efficient carbonation treatment is possible.
- CO2 can be fixed, contributing to the reduction of CO2 emissions.
- the classification process is a process of classifying the granular solidified slag Sg by a sieving method using sieve mesh, etc., and selecting granular solidified slag of a desired particle size. All or part of the granular solidified slag classified here can be reused as the granular solid S1 in this embodiment.
- two or more selected from heat recovery treatment, steam recovery treatment, carbonation treatment, steam aging treatment, classification treatment, etc. may be combined, and the treatment order in that case is not particularly limited.
- Example 1 Solidification and crushing tests of molten slag were conducted using the production facility shown in FIG.
- Decarburized slag which is a type of steelmaking slag, was used as the molten slag.
- the temperature of the molten slag is shown in Table 1.
- Decarburized slag (granular solid slag) obtained by the same process as the molten slag was used as the granular solid.
- the granular solid slag had a particle size distribution satisfying the CS-40 standard with a 37.5 mm sieve passage rate of 97% and a 19 mm sieve passage rate of 50%. However, No. in Table 1 where the solidified thickness is 27 mm or less.
- granular solid slag classified with a sieve having a maximum particle size or less was used so that the particle size of the granular solid was smaller than the target solidification thickness.
- No. 1 with a solidification thickness of 15 mm. 1 a sieve with a nominal size of 13.2 mm and no. 2 and 3, a sieve with a nominal size of 19 mm and a No. 2 with a solidification thickness of 27 mm;
- No. 4 granular solid slags each passed through a sieve with a nominal size of 26.5 mm were used. A layer of this granular solid slag was laid down in the mold. After that, molten slag was supplied into the mold so that the solidified thickness shown in Table 1 was obtained.
- the mass ratio of the particulate solids to the total mass of the particulate solids and molten slag was 25% as shown in Table 1. In this manner, the molten slag was solidified together with the particulate solid matter in the mold to obtain a plate-like solidified slag.
- thermocouple was set in the mold to measure the time until the plate-shaped solidified slag could be removed from the mold (time until all the molten slag solidified). Table 1 shows the results.
- the plate-shaped solidified slag at the charge temperature shown in Table 1 was placed in a rotary kiln and crushed for 10 minutes to obtain granular solidified slag.
- the charge temperature (average temperature of plate-shaped solidified slag at the time of charging) is calculated by specifying the range corresponding to the plate-shaped solidified slag from the thermal image taken using a thermoviewer and calculating the average temperature of that range. and asked.
- the average temperature of the obtained granular solidified slag is also obtained by using a thermoviewer in the same manner as described above, that is, by specifying the range of the portion corresponding to the granular solidified slag from the photographed thermal image and calculating the average temperature in that range.
- Table 1 shows.
- a sieve test was performed on the granular solidified slag, and whether the total amount passed through a 53 mm sieve with a nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016) The results are shown in Table 1.
- the particle shape determination volume ratio of coarse slag and the particle shape determination volume ratio of fine slag were measured by the method described above, and the results are shown in Table 1.
- Example 2 The same test as in Experimental Example 1 was conducted by pouring only molten slag into the mold without supplying solid particles. Experimental conditions and experimental results are shown in Table 2.
- Example 3 Under the experimental conditions shown in Table 3, the same test as in Experimental Example 1 was conducted. Experimental results are also shown in Table 3. No. In Comparative Examples 15 to 18, the time until solidification was long, and the shape of the granular solidified slag after crushing was not rounded, so the particle shape determination actual volume ratio was low. On the other hand, No. In invention examples 19 to 22, the time until solidification was short, and the shape of the granular solidified slag after crushing was rounded, so the particle shape determination actual volume rate was high.
- Example 4 Under the experimental conditions shown in Table 4, the same test as in Experimental Example 1 was conducted. That is, in addition to the granular solid slag, iron balls and waste concrete were adopted as the granular solids. No. 1 of Experimental Example 1 was used for any of the granular solids. Those having the same particle size distribution as 5-9 were used. For each particulate solid, the mass ratio of particulate solid to the total mass of particulate solid and molten slag was varied. Table 4 shows the experimental results.
- granular solidified slag having a particle size distribution within the standard particle size range for road steel slag can be easily produced.
- the granular solidified slag is subjected to heat recovery treatment, carbonation treatment, or steam aging treatment in the subsequent process, by effectively utilizing the heat of the granular solidified slag, It is possible to improve the efficiency of the post-process. Since this contributes to the reduction of CO2 emissions, the present invention is an industrially very effective process.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Processing Of Solid Wastes (AREA)
- Furnace Details (AREA)
Abstract
Provided is a granular solidified slag manufacturing method with which a granular solidified slag having a grain size distribution which falls within a standard grain size range of steel slag for roads can be easily manufactured. This granular solidified slag manufacturing method comprises: a step for supplying a granular solid material S1 and a molten slag S2 into a mold; a step for solidifying the molten slag S2 together with the granular solid material S1 in the mold 10 to obtain a plate-like solidified slag S comprising a solidified region formed of the molten slag S2 that has solidified and the granular solid material S1 and having a thickness of 30-50 mm; a step for removing the plate-like solidified slag S from the mold 10; and a step for loading the plate-like solidified slag S into a rotating cylindrical container of a rotating device 40 which comprises the cylindrical container, and then rotating the cylindrical container so as to crush the plate-like solidified slag S, thereby obtaining a granular solidified slag Sg.
Description
本発明は、溶融スラグを凝固させて得た凝固スラグを破砕して粒状凝固スラグを得る、粒状凝固スラグの製造方法及び製造設備に関する。
The present invention relates to a method and equipment for producing granular solidified slag, which crushes solidified slag obtained by solidifying molten slag to obtain granular solidified slag.
溶融スラグに関しては、1tの鋼を製造すると、高炉スラグが約300kg発生し、製鋼スラグが約50kg発生する。このため、大量に発生するこれら鉄鋼スラグを有効に利用する技術開発が行われてきた。特に、製鋼スラグは、その大半が道路用鉄鋼スラグ(JIS A 5015-2018)として用いられている。その製造プロセスは、一部固相が析出している溶融スラグを冷却ヤードに100mm以上の厚みで流し込み、凝固して得られた凝固スラグを破砕し、さらに粒度調整を行うことを含む。その後、破砕及び粒度調整された粒状凝固スラグに含まれる遊離石灰(free-CaO)を水和させるために、数日間100℃で蒸気エージング処理が行われる。こうして得られた粒状凝固スラグが道路用鉄鋼スラグとして出荷される。
Regarding molten slag, when 1 ton of steel is produced, approximately 300 kg of blast furnace slag and approximately 50 kg of steelmaking slag are generated. For this reason, technological developments have been made to effectively utilize these iron and steel slags that are generated in large amounts. In particular, steelmaking slag is mostly used as steel slag for roads (JIS A 5015-2018). The manufacturing process includes pouring molten slag with a partially precipitated solid phase into a cooling yard with a thickness of 100 mm or more, crushing the solidified slag obtained by solidification, and further adjusting the particle size. A steam aging treatment is then performed at 100° C. for several days to hydrate the free-CaO contained in the crushed and granulated solidified slag. The granular solidified slag thus obtained is shipped as steel slag for roads.
上記した現状のプロセスでは、溶融スラグを100mm以上の厚みで凝固させるため、溶融スラグを冷却するのに時間がかかる。
In the current process described above, the molten slag is solidified with a thickness of 100 mm or more, so it takes time to cool the molten slag.
この問題を解決するために、例えば、特許文献1では、溶融した高炉スラグを鉄製の鋳型で厚み20~40mmに凝固させて、板状凝固スラグを得るプロセスが考案されている。この方法によれば、溶融スラグを効率的に冷却して、溶融スラグを短時間で凝固させることができる。
In order to solve this problem, for example, Patent Document 1 devises a process of solidifying molten blast furnace slag in an iron mold to a thickness of 20 to 40 mm to obtain plate-shaped solidified slag. According to this method, the molten slag can be efficiently cooled and solidified in a short period of time.
特許文献1の方法では、得られた厚み20~40mmの板状凝固スラグを破砕して、コンクリート用粗骨材の規格の粒度範囲(スラグ粒子径が最大で20mm程度)の粒状凝固スラグを歩留まり良く製造することを志向している。特許文献1では、板状凝固スラグは、溶融スラグが凝固してなる凝固域のみからなるため、高温でも圧縮強度が高く、破砕されにくい。そのため、高温のままの板状凝固スラグをロータリーキルンのような回転装置で破砕しようとしても、このような回転装置の破砕力は小さいことから、ほとんど破砕することができない。そこで、板状凝固スラグを常温まで冷却した後、ジョークラッシャー及び/又はインパクトクラッシャーといった一般的な圧縮破砕タイプの破砕機で破砕することを想定している。その場合、破砕後のスラグの最大粒子径は、板状凝固スラグの厚みである程度決まることになる、厚み20~40mmの板状凝固スラグの場合、コンクリート用粗骨材の規格の粒度範囲(スラグ粒子径が最大で20mm程度)の粒状凝固スラグが高い歩留まりで得られることになる。
In the method of Patent Document 1, the obtained plate-shaped solidified slag with a thickness of 20 to 40 mm is crushed, and the granular solidified slag in the particle size range of the standard coarse aggregate for concrete (the maximum slag particle diameter is about 20 mm) is obtained. We aim to produce well. In Patent Document 1, since the plate-shaped solidified slag consists only of solidified regions formed by solidifying molten slag, it has high compressive strength even at high temperatures and is difficult to be crushed. Therefore, even if an attempt is made to crush plate-shaped solidified slag while it is still at high temperature by a rotating device such as a rotary kiln, the crushing force of such a rotating device is small, so that it can hardly be crushed. Therefore, it is assumed that after the plate-shaped solidified slag is cooled to room temperature, it is crushed by a general compression crushing type crusher such as a jaw crusher and/or an impact crusher. In that case, the maximum particle size of the slag after crushing is determined to some extent by the thickness of the plate-shaped solidified slag. Granular solidified slag having a maximum particle diameter of about 20 mm can be obtained with a high yield.
しかしながら、特許文献1の方法では、道路用鉄鋼スラグの規格の粒度範囲(スラグ粒子径が最大で40mm程度、後述の規格「CS-40」)を高い歩留まりで得ることはできない。板状凝固スラグの厚みが30mm以下の場合には、破砕後の粒状凝固スラグのほとんどは粒子径が20mm以下であるため、CS-40の規格範囲内には収まらない。板状凝固スラグの厚みを40mm程度にすれば、CS-40に近い粒度分布が得られる可能性はあるが、厚みを40mm程度にすると、スラグの冷却速度が大幅に低下することや、鋳型への熱負荷も大きくなることが懸念される。このため、特許文献1を含め従来の考案されているプロセスでは、道路用鉄鋼スラグの規格の粒度範囲に収まる粒度分布を有する粒状凝固スラグを簡易に製造することはできなかった。
However, with the method of Patent Document 1, it is not possible to obtain steel slag for roads in the standard particle size range (slag particle diameter is about 40 mm at maximum, standard "CS-40" described later) with a high yield. When the plate-shaped solidified slag has a thickness of 30 mm or less, most of the granular solidified slag after crushing has a particle diameter of 20 mm or less, and therefore does not fall within the specification range of CS-40. If the plate-shaped solidified slag has a thickness of about 40 mm, it is possible to obtain a particle size distribution close to that of CS-40. There is concern that the heat load on the For this reason, in the conventionally devised processes including Patent Document 1, it was not possible to easily produce granular solidified slag having a particle size distribution that falls within the particle size range of the steel slag standard for roads.
そこで本発明は、上記課題に鑑み、道路用鉄鋼スラグの規格の粒度範囲に収まる粒度分布を有する粒状凝固スラグを簡易に製造することが可能な粒状凝固スラグの製造方法及び製造設備を提供することを目的とする。
Therefore, in view of the above problems, the present invention provides a method and equipment for producing granular solidified slag that can easily produce granular solidified slag having a particle size distribution that falls within the particle size range of steel slag standards for roads. With the goal.
本発明者らが検討したところ、
(A)鋳型内に粒状固形物と溶融スラグとを供給して、当該鋳型内で溶融スラグを粒状固形物とともに凝固させること、
(B)その際、凝固厚みを30mm以上50mm以下とすること、及び
(C)鋳型から取り出した板状凝固スラグを、回転する筒状容器を備える回転装置の前記筒状容器内に装入して、筒状容器を回転させて板状凝固スラグを破砕すること、
の構成を採用することによって、道路用鉄鋼スラグの規格の粒度範囲に収まる粒状凝固スラグを簡易に製造することができるとの知見を得た。これは、溶融スラグを粒状固形物とともに凝固させて、板状凝固スラグ内に亀裂を導入することによって、板状凝固スラグの熱間での破砕性が高まり、一般的な圧縮破砕タイプの破砕機よりも破砕力が小さい回転装置を用いて、板状凝固スラグを適度に破砕することができるためと考えられる。 As a result of examination by the present inventors,
(A) feeding particulate solids and molten slag into a mold and solidifying the molten slag together with the particulate solids in the mold;
(B) At that time, the solidified thickness shall be 30 mm or more and 50 mm or less; and rotating the cylindrical container to crush the plate-shaped solidified slag;
It was found that by adopting the configuration of , it is possible to easily produce granular solidified slag that falls within the standard particle size range for steel slag for roads. By solidifying the molten slag together with the granular solids and introducing cracks into the plate-shaped solidified slag, the hot crushability of the plate-shaped solidified slag is enhanced, and a general compression crushing type crusher This is probably because the plate-shaped solidified slag can be appropriately crushed by using a rotating device with a smaller crushing force than the above.
(A)鋳型内に粒状固形物と溶融スラグとを供給して、当該鋳型内で溶融スラグを粒状固形物とともに凝固させること、
(B)その際、凝固厚みを30mm以上50mm以下とすること、及び
(C)鋳型から取り出した板状凝固スラグを、回転する筒状容器を備える回転装置の前記筒状容器内に装入して、筒状容器を回転させて板状凝固スラグを破砕すること、
の構成を採用することによって、道路用鉄鋼スラグの規格の粒度範囲に収まる粒状凝固スラグを簡易に製造することができるとの知見を得た。これは、溶融スラグを粒状固形物とともに凝固させて、板状凝固スラグ内に亀裂を導入することによって、板状凝固スラグの熱間での破砕性が高まり、一般的な圧縮破砕タイプの破砕機よりも破砕力が小さい回転装置を用いて、板状凝固スラグを適度に破砕することができるためと考えられる。 As a result of examination by the present inventors,
(A) feeding particulate solids and molten slag into a mold and solidifying the molten slag together with the particulate solids in the mold;
(B) At that time, the solidified thickness shall be 30 mm or more and 50 mm or less; and rotating the cylindrical container to crush the plate-shaped solidified slag;
It was found that by adopting the configuration of , it is possible to easily produce granular solidified slag that falls within the standard particle size range for steel slag for roads. By solidifying the molten slag together with the granular solids and introducing cracks into the plate-shaped solidified slag, the hot crushability of the plate-shaped solidified slag is enhanced, and a general compression crushing type crusher This is probably because the plate-shaped solidified slag can be appropriately crushed by using a rotating device with a smaller crushing force than the above.
上記知見に基づき完成された本発明の要旨構成は、以下のとおりである。
[1]鋳型内に粒状固形物と溶融スラグとを供給する工程と、
前記鋳型内で前記溶融スラグを前記粒状固形物とともに凝固させて、前記溶融スラグが凝固してなる凝固域と前記粒状固形物とからなる厚み30mm以上50mm以下の板状凝固スラグを得る工程と、
前記板状凝固スラグを前記鋳型から取り出す工程と、
回転する筒状容器を備える回転装置の前記筒状容器内に前記板状凝固スラグを装入し、前記筒状容器を回転させて前記板状凝固スラグを破砕して、粒状凝固スラグを得る工程と、
を有する粒状凝固スラグの製造方法。 The gist and configuration of the present invention completed based on the above findings are as follows.
[1] A step of supplying particulate solids and molten slag into a mold;
a step of solidifying the molten slag together with the granular solids in the mold to obtain a plate-like solidified slag having a thickness of 30 mm or more and 50 mm or less, which consists of a solidified region formed by solidifying the molten slag and the granular solids;
removing the plate-shaped solidified slag from the mold;
A step of charging the plate-shaped solidified slag into the cylindrical container of a rotating device having a rotating cylindrical container, rotating the cylindrical container to crush the plate-shaped solidified slag, and obtaining granular solidified slag. When,
A method for producing granular solidified slag.
[1]鋳型内に粒状固形物と溶融スラグとを供給する工程と、
前記鋳型内で前記溶融スラグを前記粒状固形物とともに凝固させて、前記溶融スラグが凝固してなる凝固域と前記粒状固形物とからなる厚み30mm以上50mm以下の板状凝固スラグを得る工程と、
前記板状凝固スラグを前記鋳型から取り出す工程と、
回転する筒状容器を備える回転装置の前記筒状容器内に前記板状凝固スラグを装入し、前記筒状容器を回転させて前記板状凝固スラグを破砕して、粒状凝固スラグを得る工程と、
を有する粒状凝固スラグの製造方法。 The gist and configuration of the present invention completed based on the above findings are as follows.
[1] A step of supplying particulate solids and molten slag into a mold;
a step of solidifying the molten slag together with the granular solids in the mold to obtain a plate-like solidified slag having a thickness of 30 mm or more and 50 mm or less, which consists of a solidified region formed by solidifying the molten slag and the granular solids;
removing the plate-shaped solidified slag from the mold;
A step of charging the plate-shaped solidified slag into the cylindrical container of a rotating device having a rotating cylindrical container, rotating the cylindrical container to crush the plate-shaped solidified slag, and obtaining granular solidified slag. When,
A method for producing granular solidified slag.
[2]前記粒状固形物が、粒状固形スラグ、表面に水和物及び炭酸化物の一方又は両方が形成された粒状固形物質、並びに粒状固形鉄から選択される一つ以上を含む、上記[1]に記載の粒状凝固スラグの製造方法。
[2] The above-mentioned [1], wherein the granular solid material includes one or more selected from granular solid slag, granular solid material having one or both of hydrate and carbonate formed on the surface, and granular solid iron. ] The method for producing granular solidified slag according to .
[3]前記粒状固形スラグ及び前記粒状固形物質は、粒度範囲が40~0mmであり、JIS Z 8801-1:2019(ISO 3310-1:2016)に規定する金属製網ふるいの公称目開きで、53mmの篩い通過率が100質量%、37.5mmの篩い通過率が95~100質量%、19mmの篩い通過率が50~80質量%、4.75mmの篩い通過率が15~40質量%、2.36mmの篩い通過率が5~25質量%の粒度分布を有する、上記[2]に記載の粒状凝固スラグの製造方法。
[3] The granular solid slag and the granular solid material have a particle size range of 40 to 0 mm, and the nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016) , 53 mm sieve passage rate is 100% by mass, 37.5 mm sieve passage rate is 95 to 100% by mass, 19 mm sieve passage rate is 50 to 80% by mass, 4.75 mm sieve passage rate is 15 to 40% by mass. , The method for producing granular solidified slag according to the above [2], wherein the sieve passage rate of 2.36 mm has a particle size distribution of 5 to 25% by mass.
[4]前記粒状固形鉄は、粒度範囲が10mm以上50mm以下である、上記[2]に記載の粒状凝固スラグの製造方法。
[4] The method for producing granular solidified slag according to [2] above, wherein the granular solid iron has a particle size range of 10 mm or more and 50 mm or less.
[5]前記粒状固形物の質量が、前記粒状固形物及び前記溶融スラグの合計質量に対して10質量%以上40質量%以下である、上記[1]~[4]のいずれか一項に記載の粒状凝固スラグの製造方法。
[5] Any one of [1] to [4] above, wherein the mass of the particulate solid is 10% by mass or more and 40% by mass or less with respect to the total mass of the particulate solid and the molten slag. A method for producing the described granular solidified slag.
[6]前記板状凝固スラグは、前記回転装置の前記筒状容器内に装入される時に600℃以上1250℃以下の平均温度を有する、上記[1]~[5]のいずれか一項に記載の粒状凝固スラグの製造方法。
[6] Any one of [1] to [5] above, wherein the plate-shaped solidified slag has an average temperature of 600° C. or higher and 1250° C. or lower when charged into the cylindrical container of the rotating device. The method for producing granular solidified slag according to .
[7]前記回転装置で前記板状凝固スラグを粒子径53mm以下に全量破砕し、その際、前記粒状凝固スラグの19mmの篩い通過率が50質量%以上80質量%以下である、上記[1]~[6]のいずれか一項に記載の粒状凝固スラグの製造方法。
[7] The rotating device crushes the plate-shaped solidified slag to a particle size of 53 mm or less, and at that time, the 19 mm sieve passage rate of the granular solidified slag is 50% by mass or more and 80% by mass or less. ] A method for producing a granular solidified slag according to any one of [6].
[8]前記粒状凝固スラグのうち、JIS A 5005;2020規定の砕石2005の粒度分布に適合するように調整した粗粒スラグを用いた粒形判定実積率が50.0%以上である、上記[1]~[7]のいずれか一項に記載の粒状凝固スラグの製造方法。
[8] Among the granular solidified slag, the particle shape determination using coarse slag adjusted to conform to the particle size distribution of crushed stone 2005 specified in JIS A 5005; The method for producing granular solidified slag according to any one of [1] to [7] above.
[9]前記粒状凝固スラグのうち、JIS A 5005;2020規定の砕砂の粒度分布に適合するように調整した細粒スラグを用いた粒形判定実積率が52.0%以上である、上記[1]~[8]のいずれか一項に記載の粒状凝固スラグの製造方法。
[9] Among the granular solidified slag, the particle shape determination using fine-grained slag adjusted to conform to the particle size distribution of crushed sand specified in JIS A 5005; 2020 is 52.0% or more. A method for producing granular solidified slag according to any one of [1] to [8].
[10]鋳型と、前記鋳型内に粒状固形物を供給する粒状固形物供給装置と、前記鋳型内に溶融スラグを供給する溶融スラグ供給装置と、を有し、前記鋳型内で前記溶融スラグを前記粒状固形物とともに凝固させて、前記溶融スラグが凝固してなる凝固域と前記粒状固形物とからなる厚み30mm以上50mm以下の板状凝固スラグを得るスラグ凝固設備と、
回転する筒状容器を備え、前記筒状容器内に装入された前記板状凝固スラグを、前記筒状容器を回転させて破砕して、粒状凝固スラグを得る回転装置と、
を有する粒状凝固スラグの製造設備。 [10] A mold, a particulate solid supply device that supplies particulate solids into the mold, and a molten slag supply device that supplies molten slag into the mold, wherein the molten slag is supplied in the mold. a slag solidification facility for solidifying together with the granular solid matter to obtain a plate-shaped solidified slag having a thickness of 30 mm or more and 50 mm or less composed of the solidified region formed by solidifying the molten slag and the granular solid matter;
a rotating device comprising a rotating cylindrical container for crushing the plate-shaped solidified slag charged into the cylindrical container by rotating the cylindrical container to obtain granular solidified slag;
Production equipment for granular solidified slag.
回転する筒状容器を備え、前記筒状容器内に装入された前記板状凝固スラグを、前記筒状容器を回転させて破砕して、粒状凝固スラグを得る回転装置と、
を有する粒状凝固スラグの製造設備。 [10] A mold, a particulate solid supply device that supplies particulate solids into the mold, and a molten slag supply device that supplies molten slag into the mold, wherein the molten slag is supplied in the mold. a slag solidification facility for solidifying together with the granular solid matter to obtain a plate-shaped solidified slag having a thickness of 30 mm or more and 50 mm or less composed of the solidified region formed by solidifying the molten slag and the granular solid matter;
a rotating device comprising a rotating cylindrical container for crushing the plate-shaped solidified slag charged into the cylindrical container by rotating the cylindrical container to obtain granular solidified slag;
Production equipment for granular solidified slag.
本発明の粒状凝固スラグの製造方法及び製造設備によれば、道路用鉄鋼スラグの規格の粒度範囲に収まる粒度分布を有する粒状凝固スラグを簡易に製造することができる。
According to the method and equipment for producing granular solidified slag of the present invention, it is possible to easily produce granular solidified slag having a particle size distribution that falls within the particle size range of steel slag standards for roads.
(粒状凝固スラグの製造方法及び製造設備)
図1は、本発明の一実施形態による粒状凝固スラグの製造方法を実施することが可能な設備の一例として、本発明の一実施形態による粒状凝固スラグの製造設備100を示す図である。図1を参照して、粒状凝固スラグの製造設備100は、鋳型10、粒状固形物供給装置20、及び溶融スラグ供給装置30を有するスラグ凝固設備と、スラグ破砕装置としての回転装置40と、を有する。 (Manufacturing method and manufacturing equipment for granular solidified slag)
FIG. 1 is a diagram showing a granular solidifiedslag manufacturing facility 100 according to an embodiment of the present invention as an example of a facility capable of implementing a granular solidified slag manufacturing method according to an embodiment of the present invention. Referring to FIG. 1, a granular solidified slag production facility 100 includes a slag solidification facility having a mold 10, a granular solid supply device 20, and a molten slag supply device 30, and a rotating device 40 as a slag crushing device. have.
図1は、本発明の一実施形態による粒状凝固スラグの製造方法を実施することが可能な設備の一例として、本発明の一実施形態による粒状凝固スラグの製造設備100を示す図である。図1を参照して、粒状凝固スラグの製造設備100は、鋳型10、粒状固形物供給装置20、及び溶融スラグ供給装置30を有するスラグ凝固設備と、スラグ破砕装置としての回転装置40と、を有する。 (Manufacturing method and manufacturing equipment for granular solidified slag)
FIG. 1 is a diagram showing a granular solidified
本発明の一実施形態による粒状凝固スラグの製造方法は、
-工程(I):鋳型10内に粒状固形物S1と溶融スラグS2とを供給する工程と、
-工程(II):前記鋳型10内で前記溶融スラグS2を前記粒状固形物S1とともに凝固させて、前記溶融スラグS2が凝固してなる凝固域と前記粒状固形物S1とからなる厚み30mm以上50mm以下の板状凝固スラグSを得る工程と、
-工程(III):前記板状凝固スラグSを前記鋳型10から取り出す工程と、
-工程(IV):回転する筒状容器を備える回転装置40の前記筒状容器内に前記板状凝固スラグSを装入し、前記筒状容器を回転させて前記板状凝固スラグSを破砕して、粒状凝固スラグSgを得る工程と、
を有する。 A method for producing granular solidified slag according to one embodiment of the present invention comprises:
- Step (I): a step of supplying the particulate solid S1 and the molten slag S2 into themold 10;
- Step (II): The molten slag S2 is solidified together with the granular solids S1 in themold 10, and the solidified region formed by solidifying the molten slag S2 and the granular solids S1 have a thickness of 30 mm or more and 50 mm. a step of obtaining a plate-like solidified slag S below;
- Step (III): a step of removing the plate-shaped solidified slag S from themold 10;
- Step (IV): The plate-shaped solidified slag S is charged into the cylindrical container of arotating device 40 having a rotating cylindrical container, and the cylindrical container is rotated to crush the plate-shaped solidified slag S. to obtain granular solidified slag Sg;
have
-工程(I):鋳型10内に粒状固形物S1と溶融スラグS2とを供給する工程と、
-工程(II):前記鋳型10内で前記溶融スラグS2を前記粒状固形物S1とともに凝固させて、前記溶融スラグS2が凝固してなる凝固域と前記粒状固形物S1とからなる厚み30mm以上50mm以下の板状凝固スラグSを得る工程と、
-工程(III):前記板状凝固スラグSを前記鋳型10から取り出す工程と、
-工程(IV):回転する筒状容器を備える回転装置40の前記筒状容器内に前記板状凝固スラグSを装入し、前記筒状容器を回転させて前記板状凝固スラグSを破砕して、粒状凝固スラグSgを得る工程と、
を有する。 A method for producing granular solidified slag according to one embodiment of the present invention comprises:
- Step (I): a step of supplying the particulate solid S1 and the molten slag S2 into the
- Step (II): The molten slag S2 is solidified together with the granular solids S1 in the
- Step (III): a step of removing the plate-shaped solidified slag S from the
- Step (IV): The plate-shaped solidified slag S is charged into the cylindrical container of a
have
[鋳型]
鋳型10は、粒状固形物S1及び溶融スラグS2を収容する凹部を有する。凹部の形状は、鋳型10を反転させることで板状凝固スラグSを鋳型10から取り出せるような形状であれば、特に限定されず、例えば、直方体(四角柱)などの多角柱、及び、円柱を挙げることができる。凹部の寸法は、所望の板状凝固スラグSの寸法が得られるように設定されればよい。凹部の形状が直方体の場合、縦及び横の長さは例えば600~3000mmの範囲内とすることができる。凹部の高さは、所望の板状凝固スラグSの寸法が得られるように設定されればよく、例えば40~100mmの範囲内とすることができる。また、図1に示すように、鋳型10はライン上を搬送されて、順次、粒状固形物供給装置20から粒状固形物S1の供給を受け、次いで溶融スラグ供給装置30から溶融スラグS2の供給を受ける。 [template]
Themold 10 has recesses that accommodate the particulate solid S1 and the molten slag S2. The shape of the recess is not particularly limited as long as the plate-shaped solidified slag S can be taken out from the mold 10 by inverting the mold 10. can be mentioned. The dimensions of the recess may be set so that the desired dimensions of the plate-like solidified slag S are obtained. When the shape of the concave portion is a rectangular parallelepiped, the vertical and horizontal lengths can be within the range of 600 to 3000 mm, for example. The height of the recess may be set so as to obtain a desired dimension of the plate-shaped solidified slag S, and can be, for example, within the range of 40 to 100 mm. Further, as shown in FIG. 1, the mold 10 is conveyed on the line and sequentially receives the granular solid S1 from the granular solid supply device 20, and then the molten slag S2 from the molten slag supply device 30. receive.
鋳型10は、粒状固形物S1及び溶融スラグS2を収容する凹部を有する。凹部の形状は、鋳型10を反転させることで板状凝固スラグSを鋳型10から取り出せるような形状であれば、特に限定されず、例えば、直方体(四角柱)などの多角柱、及び、円柱を挙げることができる。凹部の寸法は、所望の板状凝固スラグSの寸法が得られるように設定されればよい。凹部の形状が直方体の場合、縦及び横の長さは例えば600~3000mmの範囲内とすることができる。凹部の高さは、所望の板状凝固スラグSの寸法が得られるように設定されればよく、例えば40~100mmの範囲内とすることができる。また、図1に示すように、鋳型10はライン上を搬送されて、順次、粒状固形物供給装置20から粒状固形物S1の供給を受け、次いで溶融スラグ供給装置30から溶融スラグS2の供給を受ける。 [template]
The
[粒状固形物供給装置]
粒状固形物供給装置20は、粒状固形物S1を収容し、所定量を切り出すホッパー20Aと、このホッパー20Aで切り出された粒状固形物S1を鋳型10内に誘導するための樋20Bと、を有し、鋳型10内に粒状固形物S1を供給する。粒状固形物供給装置20は、鋳型10が搬送されるラインの上方に位置する。 [Particulate solid supply device]
The granular solidmaterial supply device 20 has a hopper 20A that accommodates the granular solid material S1 and cuts out a predetermined amount, and a gutter 20B that guides the granular solid material S1 cut out by the hopper 20A into the mold 10. Then, a granular solid S1 is supplied into the mold 10. As shown in FIG. A particulate solid feeder 20 is located above the line along which the molds 10 are conveyed.
粒状固形物供給装置20は、粒状固形物S1を収容し、所定量を切り出すホッパー20Aと、このホッパー20Aで切り出された粒状固形物S1を鋳型10内に誘導するための樋20Bと、を有し、鋳型10内に粒状固形物S1を供給する。粒状固形物供給装置20は、鋳型10が搬送されるラインの上方に位置する。 [Particulate solid supply device]
The granular solid
[溶融スラグ供給装置]
溶融スラグ供給装置30は、溶融スラグS2を収容し、傾動することによって溶融スラグS2を流し出す傾動鍋30Aと、この傾動鍋30Aから流し出された溶融スラグS2を鋳型10に注ぐための樋30Bと、を有し、鋳型10内に溶融スラグS2を供給する。溶融スラグ供給装置30は、鋳型10が搬送されるラインの上方に位置し、かつ、粒状固形物供給装置20よりラインの下流に位置する。 [Molten slag supply device]
The moltenslag supply device 30 includes a tilting ladle 30A that accommodates the molten slag S2 and pours out the molten slag S2 by tilting, and a gutter 30B for pouring the molten slag S2 poured out from the tilting ladle 30A into the mold 10. and to feed the molten slag S2 into the mold 10. The molten slag feeder 30 is located above the line along which the mold 10 is conveyed and is located downstream of the particulate solids feeder 20 in the line.
溶融スラグ供給装置30は、溶融スラグS2を収容し、傾動することによって溶融スラグS2を流し出す傾動鍋30Aと、この傾動鍋30Aから流し出された溶融スラグS2を鋳型10に注ぐための樋30Bと、を有し、鋳型10内に溶融スラグS2を供給する。溶融スラグ供給装置30は、鋳型10が搬送されるラインの上方に位置し、かつ、粒状固形物供給装置20よりラインの下流に位置する。 [Molten slag supply device]
The molten
図1に示す例では、まず粒状固形物供給装置20から粒状固形物S1を鋳型10内に供給し、その後、溶融スラグ供給装置30から溶融スラグS2を鋳型10内に供給する。粒状固形物S1よりも先に溶融スラグS2を鋳型10内に供給すると、溶融スラグS2の温度が下がり、粘度が上昇したり表面の固化が始まったりすることにより、粒状固形物S1と溶融スラグS2とが均一に混合された状態を作るのが難しくなる。このため、図1に示すように。粒状固形物S1を鋳型10内に供給した後、溶融スラグS2を鋳型10内に供給することが好ましい。ただし、本発明において、鋳型10内への粒状固形物S1及び溶融スラグS2の供給順序は限定されない。溶融スラグ供給装置30を粒状固形物供給装置20よりラインの上流に配置して、まず溶融スラグ供給装置30から溶融スラグS2を鋳型10内に供給し、その後、粒状固形物供給装置20から粒状固形物S1を鋳型10内に供給することもできる。また、樋20B及び樋30Bを共に鋳型10の上方に配置して、粒状固形物供給装置20から粒状固形物S1を鋳型10内に供給し、同期間に、溶融スラグ供給装置30から溶融スラグS2を鋳型10内に供給することもできる。また、スラグの厚みを制御するために、粒状固形スラグS1と溶融スラグS2の鋳型10への供給が完了した時点で、鉄製のロールで鋳型10の上から転圧してもよい。
In the example shown in FIG. 1, the granular solid material S1 is first supplied into the mold 10 from the granular solid supply device 20, and then the molten slag S2 is supplied into the mold 10 from the molten slag supply device 30. When the molten slag S2 is supplied into the mold 10 before the solid particles S1 are fed into the mold 10, the temperature of the molten slag S2 drops, the viscosity rises, and the surface of the molten slag S2 begins to solidify. It becomes difficult to create a state in which the and are uniformly mixed. For this reason, as shown in FIG. Preferably, the molten slag S2 is fed into the mold 10 after the particulate solid S1 has been fed into the mold 10 . However, in the present invention, the order of supplying the solid particles S1 and the molten slag S2 into the mold 10 is not limited. The molten slag supply device 30 is arranged upstream of the granular solids supply device 20 in the line, and the molten slag S2 is first supplied into the mold 10 from the molten slag supply device 30, and then the granular solids S2 are supplied from the granular solids supply device 20. An object S1 can also be fed into the mold 10 . Further, both the gutter 20B and the gutter 30B are arranged above the mold 10, and the granular solid S1 is supplied from the granular solid supply device 20 into the mold 10, and the molten slag S2 is supplied from the molten slag supply device 30 during the same period. can also be fed into the mold 10. Further, in order to control the thickness of the slag, when the supply of the granular solid slag S1 and the molten slag S2 to the mold 10 is completed, rolling pressure may be applied from above the mold 10 with iron rolls.
[工程(I)及び工程(II)]
本実施形態では、鋳型10内に粒状固形物S1と溶融スラグS2とを供給し(工程(I))、鋳型10内で溶融スラグS2を粒状固形物S1とともに凝固させる(工程(II))。こうして、溶融スラグS2が凝固してなる凝固域と粒状固形物S1とからなる板状凝固スラグSを得ることができる。すなわち、「凝固域」とは溶融スラグが凝固した部分であり、「板状凝固スラグ」とは、凝固域及び粒状固形物からなる、鋳型内の鋳片である。 [Step (I) and Step (II)]
In this embodiment, the granular solids S1 and the molten slag S2 are supplied into the mold 10 (step (I)), and the molten slag S2 is solidified together with the granular solids S1 in the mold 10 (step (II)). In this way, it is possible to obtain a plate-shaped solidified slag S composed of a solidified region formed by solidifying the molten slag S2 and the solid particles S1. That is, the "solidified zone" is the solidified portion of the molten slag, and the "platy solidified slag" is the slab in the mold, which consists of the solidified zone and particulate solids.
本実施形態では、鋳型10内に粒状固形物S1と溶融スラグS2とを供給し(工程(I))、鋳型10内で溶融スラグS2を粒状固形物S1とともに凝固させる(工程(II))。こうして、溶融スラグS2が凝固してなる凝固域と粒状固形物S1とからなる板状凝固スラグSを得ることができる。すなわち、「凝固域」とは溶融スラグが凝固した部分であり、「板状凝固スラグ」とは、凝固域及び粒状固形物からなる、鋳型内の鋳片である。 [Step (I) and Step (II)]
In this embodiment, the granular solids S1 and the molten slag S2 are supplied into the mold 10 (step (I)), and the molten slag S2 is solidified together with the granular solids S1 in the mold 10 (step (II)). In this way, it is possible to obtain a plate-shaped solidified slag S composed of a solidified region formed by solidifying the molten slag S2 and the solid particles S1. That is, the "solidified zone" is the solidified portion of the molten slag, and the "platy solidified slag" is the slab in the mold, which consists of the solidified zone and particulate solids.
ここで、本実施形態では、鋳型10内で溶融スラグS2を粒状固形物S1とともに凝固させることと、得られる板状凝固スラグSの厚み(本明細書において「凝固厚み」とも称する。)を30mm以上50mm以下にすることが重要である。鋳型10内において、粒状固形物S1相互間の隙間を溶融スラグS2で満たした状態で溶融スラグS2の凝固を進行させることで、凝固域に亀裂を導入することができる。
Here, in the present embodiment, the molten slag S2 is solidified together with the solid particles S1 in the mold 10, and the thickness of the obtained plate-like solidified slag S (herein also referred to as "solidified thickness") is set to 30 mm. It is important to make it 50 mm or less. In the mold 10, solidification of the molten slag S2 proceeds in a state where the gaps between the solid particles S1 are filled with the molten slag S2, thereby introducing cracks into the solidified region.
常温に近い粒状固形物S1と1200℃以上の溶融スラグS2とでは温度差が極めて大きいため、溶融スラグS2を粒状固形物S1とともに凝固させると、凝固域の内部に大きな熱応力が発生し、これにより亀裂発生が促進される。また、凝固域は冷却により熱収縮するのに対し、粒状固形物S1は加熱により熱膨張するため、この体積変化によっても亀裂発生が促進される。さらに、凝固域と粒状固形物S1との境界部では結晶界面の不整合が生じるため、当該境界部において亀裂が進展しやすい。以上の相乗効果により、本実施形態における板状凝固スラグSは、溶融スラグのみを凝固させた凝固スラグと比べて熱間での破砕性に優れる。そのため、回転装置40により板状凝固スラグSを簡単に破砕できるようになった。
Since the temperature difference between the granular solid S1 near room temperature and the molten slag S2 at 1200° C. or higher is extremely large, when the molten slag S2 is solidified together with the granular solid S1, a large thermal stress is generated inside the solidified region. promotes crack generation. In addition, since the solidified region thermally shrinks due to cooling, whereas the granular solid S1 thermally expands due to heating, this volume change also promotes crack generation. Furthermore, since mismatching occurs in the crystal interface at the boundary between the solidified region and the granular solid S1, cracks tend to develop at the boundary. Due to the synergistic effect described above, the plate-shaped solidified slag S in this embodiment is superior in hot crushability to solidified slag obtained by solidifying only molten slag. Therefore, the plate-shaped solidified slag S can be easily crushed by the rotating device 40 .
その上で、板状凝固スラグSの厚みを30mm以上50mm以下にすることにより、その後の破砕によって得られる粒状凝固スラグSgを道路用鉄鋼スラグに適した粒度とすることができる。道路用鉄鋼スラグの粒度分布は、JIS A 5015-2018で規定されており、特にCS-40が用いられている。CS-40は、粒度範囲が40~0mmであり、JIS Z 8801-1:2019(ISO 3310-1:2016)に規定する金属製網ふるいの公称目開きで、53mmの篩い通過率が100質量%、37.5mmの篩い通過率が95~100質量%、19mmの篩い通過率が50~80質量%、4.75mmの篩い通過率が15~40質量%、2.36mmの篩い通過率が5~25質量%の粒度分布を有する。高い歩留まりでCS-40の粒度を得るためには、板状凝固スラグSの厚みを40mm程度に制御することが重要となる。板状凝固スラグSの厚みが30mm未満の場合、得られる粒状凝固スラグの最大粒子径が30mm未満となり、粒度が細かくなることから、CS-40の歩留まりが低下する。他方で、板状凝固スラグSの厚みが50mm超えの場合、破砕後のスラグの粒度が大きくなり、CS-40の歩留まりが低下する。
On top of that, by setting the thickness of the plate-shaped solidified slag S to 30 mm or more and 50 mm or less, the granular solidified slag Sg obtained by subsequent crushing can have a particle size suitable for steel slag for roads. The particle size distribution of steel slag for roads is specified in JIS A 5015-2018, and CS-40 is used in particular. CS-40 has a particle size range of 40 to 0 mm, a nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016), and a 53 mm sieve passage rate of 100 mass. %, 37.5 mm sieve passage rate is 95 to 100% by mass, 19 mm sieve passage rate is 50 to 80% by mass, 4.75 mm sieve passage rate is 15 to 40% by mass, 2.36 mm sieve passage rate is It has a particle size distribution of 5-25% by weight. In order to obtain the CS-40 grain size with a high yield, it is important to control the thickness of the plate-like solidified slag S to about 40 mm. If the thickness of the plate-shaped solidified slag S is less than 30 mm, the maximum particle size of the obtained granular solidified slag is less than 30 mm, and the particle size becomes finer, which reduces the yield of CS-40. On the other hand, if the thickness of the plate-like solidified slag S exceeds 50 mm, the particle size of the crushed slag becomes large, and the yield of CS-40 decreases.
溶融スラグS2は、1200℃以上の液相を含み、鉄鋼製造工程において副産物として発生する鉄鋼スラグであればよく、高炉スラグ及び製鋼スラグの一方又は両方を含むことができる。
The molten slag S2 contains a liquid phase of 1200°C or higher, and may be iron and steel slag generated as a by-product in the steelmaking process, and may contain one or both of blast furnace slag and steelmaking slag.
粒状固形物S1は、粒状固形スラグ、表面に水和物及び炭酸化物の一方又は両方が形成された粒状固形物質、並びに粒状固形鉄から選択される一つ以上を含むことが好ましい。第一に、粒状固形物S1として粒状固形スラグを用いることができる。例えば、溶融スラグS2と同じプロセスで発生する粒状固形スラグを用いることで、異物のコンタミがないため、得られる粒状凝固スラグSgの品質を安定化させやすい。また、その他の製鋼スラグ又は高炉スラグであってもよい。また、粒状固形スラグの表面に水和物及び炭酸化物の一方又は両方が形成されている場合には、水和物の分解反応又は炭酸化物の分解反応により、板状凝固スラグSへの亀裂の生成を促進でき、破砕の負荷をより低減できる。
The granular solid S1 preferably contains one or more selected from granular solid slag, granular solid material on the surface of which one or both of hydrates and carbonates are formed, and granular solid iron. First, a granular solid slag can be used as the granular solid S1. For example, by using granular solid slag generated in the same process as the molten slag S2, there is no foreign matter contamination, so the quality of the obtained granular solidified slag Sg can be easily stabilized. Alternatively, other steelmaking slag or blast furnace slag may be used. In addition, when one or both of hydrates and carbonates are formed on the surface of the granular solid slag, the decomposition reaction of the hydrates or the decomposition reaction of the carbonates causes cracks in the plate-shaped solidified slag S. Production can be promoted, and the crushing load can be further reduced.
第二に、粒状固形物S1として、表面に水和物及び炭酸化物の一方又は両方が形成された粒状固形物質を用いることができる。このような物質として、例えば廃コンクリートを挙げることができる。廃コンクリート表面に形成された水和物又は炭酸化物が高温の溶融スラグと接触することで、水和物の分解反応又は炭酸化物の分解反応により、板状凝固スラグSへの亀裂の生成を促進でき、破砕の負荷をより低減できる。一般に、水和物の分解は100~300℃で生じ、炭酸化物の分解は600℃以上で生じるとされているため、高温の溶融スラグが接触することで、これらの分解反応は容易に起こりうる。なお、廃コンクリートとは、建設廃材であって、建設リサイクル法によって分別解体や再資源化が義務付けられている特定建設資材となるコンクリートなどである。これら廃コンクリートには、使用されたコンクリートを破砕して、JIS A 5023:2018 再生骨材コンクリートLの附属書Aに適合させたコンクリート用再生材、JIS A 5023:2018 再生骨材コンクリートMの付属書Aに適合させたコンクリート用再生骨材M、および、舗装再生便覧(日本道路協会、平成22年度)記載の再生クラッシャラン、再生砂などが含まれる。
Secondly, as the granular solid S1, a granular solid having one or both of a hydrate and a carbonate formed on its surface can be used. Examples of such substances include waste concrete. When the hydrates or carbonates formed on the surface of the waste concrete come into contact with the high-temperature molten slag, the decomposition reaction of the hydrates or the decomposition reaction of the carbonates promotes the formation of cracks in the plate-shaped solidified slag S. It is possible to further reduce the crushing load. In general, the decomposition of hydrates occurs at 100 to 300 ° C., and the decomposition of carbonates occurs at 600 ° C. or higher, so these decomposition reactions can easily occur when hot molten slag contacts. . Note that the waste concrete is construction waste material, such as concrete, which is a specific construction material that is obligated to be sorted, dismantled and recycled according to the Construction Recycling Law. For these waste concrete, the used concrete is crushed and recycled material for concrete conforming to Annex A of JIS A 5023: 2018 recycled aggregate concrete L, JIS A 5023: 2018 recycled aggregate concrete M attached Recycled aggregate M for concrete conforming to Book A, and recycled crusher run and recycled sand described in pavement recycling handbook (Japan Road Association, 2010) are included.
第三に、粒状固形物S1として、粒状固形鉄を用いることができる。粒状固形鉄として、例えば鉄球を使用することで、その他の粒状固形物と比べて、溶融スラグとの温度差が大きくなるために、亀裂の生成をより促進できる効果が期待できる。さらに、鉄は固形スラグよりも伝熱に優れるため、粒状固形物を鉄製にすることで、他の粒状固形物と比較して、粒状固形物の投入量を減らすことができ、溶融スラグの処理量及び処理速度を上げることが期待できる。
Thirdly, granular solid iron can be used as the granular solid S1. By using, for example, iron balls as the solid iron granules, the temperature difference with the molten slag is increased compared to other solid granules, so the effect of further promoting the formation of cracks can be expected. In addition, iron has better heat transfer than solid slag. An increase in volume and processing speed can be expected.
粒状固形物S1として用いる前記粒状固形スラグ及び前記粒状固形物質は、CS-40の粒度分布を有するものとすることが好ましい。すなわち、前記粒状固形スラグ及び前記粒状固形物質は、粒度範囲が40~0mmであり、JIS Z 8801-1:2019(ISO 3310-1:2016)に規定する金属製網ふるいの公称目開きで、53mmの篩い通過率が100質量%、37.5mmの篩い通過率が95~100質量%、19mmの篩い通過率が50~80質量%、4.75mmの篩い通過率が15~40質量%、2.36mmの篩い通過率が5~25質量%の粒度分布を有することが好ましい。これにより、より確実に、破砕後の粒状凝固スラグSgを道路用鉄鋼スラグに適した粒度とすることができる。
The granular solid slag and the granular solid material used as the granular solid material S1 preferably have a particle size distribution of CS-40. That is, the granular solid slag and the granular solid material have a particle size range of 40 to 0 mm, and the nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016), 53 mm sieve passage rate is 100% by mass, 37.5 mm sieve passage rate is 95 to 100% by mass, 19 mm sieve passage rate is 50 to 80% by mass, 4.75 mm sieve passage rate is 15 to 40% by mass, It preferably has a particle size distribution with a sieve passage rate of 2.36 mm of 5 to 25% by weight. As a result, the granular solidified slag Sg after crushing can more reliably have a particle size suitable for steel slag for roads.
粒状固形物S1として用いる上記粒状固形鉄は、粒度範囲が10mm以上50mm以下であることが好ましい。
The granular solid iron used as the granular solid S1 preferably has a particle size range of 10 mm or more and 50 mm or less.
粒状固形物S1は、前記粒状固形スラグ、前記粒状固形物質、及び前記粒状固形鉄から選択される一つ以上を含むことが好ましいが、これらから選択される二つ以上を含むことが好ましい。この場合、選択の組み合わせとしては、粒状固形スラグと粒状固形鉄の組み合わせがより好ましい。粒状固形スラグは道路用鉄鋼スラグの原料であるため、溶融スラグとともに凝固させても不純物の混入リスクがほとんどなく、また、粒状固形鉄を用いることで、凝固スラグの亀裂進展を促し、後工程での破砕エネルギーが低減できるという利点も合わせて得られるためである。このとき、粒状固形スラグ及び粒状固形鉄の好ましい粒度範囲は10~50mmである。道路用鉄鋼スラグの粒度の規定が53mmの篩い通過率が100%であるため、凝固厚みは50mm以下にすることが好ましく、粒状固形物の冷却能力を生かすためにも粒状固形スラグ及び粒状固形鉄の粒度範囲を50mm以下にすることで、溶融スラグとの接触面積を十分とることができる。
The granular solid S1 preferably contains one or more selected from the granular solid slag, the granular solid material, and the granular solid iron, and preferably contains two or more selected from these. In this case, as a combination to be selected, a combination of granular solid slag and granular solid iron is more preferable. Granular solid slag is the raw material for steel slag for roads, so even if it is solidified together with molten slag, there is almost no risk of contamination with impurities. This is because the advantage of being able to reduce the crushing energy of is also obtained. At this time, the preferred particle size range of the granular solid slag and granular solid iron is 10-50 mm. Since the regulation of the grain size of steel slag for roads is 53 mm, the sieve passage rate is 100%, so the solidified thickness is preferably 50 mm or less, and in order to take advantage of the cooling ability of granular solids, granular solid slag and granular solid iron By making the particle size range of 50 mm or less, a sufficient contact area with the molten slag can be secured.
鋳型10内への粒状固形物S1及び溶融スラグS2の供給量に関して、粒状固形物S1の質量が、粒状固形物S1及び溶融スラグS2の合計質量に対して10質量%以上40質量%以下であることが好ましい。当該比率が10質量%未満の場合、十分な亀裂の進展が望めないためである。また、当該比率が40質量%を超えると、粒状固形物S1間に溶融スラグS2が十分に行き渡らずに、粒状固形物S1と溶融スラグS2とがほぼ分離した状態で凝固してしまう。また、溶融スラグS2の処理量が減り、溶融スラグの処理速度が遅くなってしまう。
Regarding the amount of the granular solid S1 and the molten slag S2 supplied into the mold 10, the mass of the granular solid S1 is 10% by mass or more and 40% by mass or less with respect to the total mass of the granular solid S1 and the molten slag S2. is preferred. This is because if the ratio is less than 10% by mass, sufficient crack propagation cannot be expected. On the other hand, if the ratio exceeds 40% by mass, the molten slag S2 does not spread sufficiently between the granular solids S1, and the granular solids S1 and molten slag S2 solidify in a substantially separated state. In addition, the processing amount of the molten slag S2 is reduced, and the processing speed of the molten slag becomes slow.
溶融スラグS2よりも先に粒状固形物S1を鋳型10内に供給する場合、粒状固形物S1は、鋳型内で当該粒状固形物S1が1層以上3層以下を形成するように配置されることが好ましい。粒状固形物S1の積層数を3層以下に制限することによって、凝固域に導入された亀裂が進展しやすく、板状凝固スラグSの熱間での破砕性が十分に優れる。亀裂の進展を促進する観点からは、粒状固形物S1の積層数を1層とすることが最も好ましい。
When the granular solids S1 are supplied into the mold 10 before the molten slag S2, the granular solids S1 should be arranged in the mold so that the granular solids S1 form one to three layers. is preferred. By limiting the number of stacked layers of the solid particles S1 to three or less, cracks introduced into the solidified region are easily propagated, and the plate-shaped solidified slag S is sufficiently excellent in hot crushability. From the viewpoint of promoting the propagation of cracks, it is most preferable to set the number of layers of the solid particles S1 to one.
鋳型10内に粒状固形物S1と溶融スラグS2を供給する際、粒状固形物S1と溶融スラグS2とが混合状態になるように粒状固形物S1を鋳型10内に均一に分散することが好ましい。また、粒状固形物S1の積層数を1層とする場合、鋳型10内に供給する粒状固形物S1の最大粒径は、板状凝固スラグSの厚み以下、かつ板状凝固スラグSの厚みの1/2以上(より好ましくは3/4以上)にすることが好ましい。粒状固形物S1の最大粒径(厚み)が板状凝固スラグSの厚みに比べて小さすぎると、粒状固形物S1と溶融スラグS2とが接触しない部分が生じ、板状凝固スラグSの内部に破壊の起点となる亀裂が生じない領域が多くなり、粒状凝固スラグSgへの破砕処理が困難になるためである。
When supplying the solid particles S1 and the molten slag S2 into the mold 10, it is preferable to uniformly disperse the solid particles S1 in the mold 10 so that the solid particles S1 and the molten slag S2 are in a mixed state. Further, when the number of layers of the granular solids S1 is set to one, the maximum particle size of the granular solids S1 supplied into the mold 10 is equal to or less than the thickness of the plate-shaped solidified slag S, and is larger than the thickness of the plate-shaped solidified slag S. It is preferable to make it 1/2 or more (more preferably 3/4 or more). If the maximum particle diameter (thickness) of the granular solid S1 is too small compared to the thickness of the plate-shaped solidified slag S, there will be a portion where the granular solid S1 and the molten slag S2 do not contact, and the plate-shaped solidified slag S will have This is because there are many regions in which cracks, which are starting points of destruction, do not occur, and it becomes difficult to crush the granular solidified slag Sg.
[工程(III)及び工程(IV)]
本実施形態では、工程(II)に引き続き、板状凝固スラグSを鋳型10から取り出す(工程(III))。板状凝固スラグSの鋳型10からの取り出し方は特に限定されないが、図1に示すように、鋳型10を反転させることで、板状凝固スラグSを鋳型10から引き離し落下させることができる。 [Step (III) and Step (IV)]
In this embodiment, the plate-like solidified slag S is removed from themold 10 following step (II) (step (III)). The method of removing the plate-shaped solidified slag S from the mold 10 is not particularly limited, but as shown in FIG. 1, by inverting the mold 10, the plate-shaped solidified slag S can be separated from the mold 10 and dropped.
本実施形態では、工程(II)に引き続き、板状凝固スラグSを鋳型10から取り出す(工程(III))。板状凝固スラグSの鋳型10からの取り出し方は特に限定されないが、図1に示すように、鋳型10を反転させることで、板状凝固スラグSを鋳型10から引き離し落下させることができる。 [Step (III) and Step (IV)]
In this embodiment, the plate-like solidified slag S is removed from the
本実施形態では、図1に示すように、工程(III)に引き続き、回転する筒状容器を備える回転装置40の前記筒状容器内に板状凝固スラグSを装入し、前記筒状容器を回転させて板状凝固スラグSを破砕して、粒状凝固スラグSgを得る。回転装置40は、例えばロータリーキルンのような回転する筒状容器を備える装置であり、前記筒状容器内に装入された板状凝固スラグSを、前記筒状容器を回転させて破砕する。回転装置40は、筒状容器の内周面に突起をつけ、板状凝固スラグSを持ち上げて落下させる構成とすることが好ましい。回転装置40にて板状凝固スラグSの破砕を行うことにより、破砕後の粒状凝固スラグSgは、道路用鉄鋼スラグに適した粒度と粒子形状(丸み)を帯びることができる。
In this embodiment, as shown in FIG. 1, subsequent to step (III), the plate-shaped solidified slag S is charged into the cylindrical container of a rotating device 40 having a rotating cylindrical container, and the cylindrical container is is rotated to crush the plate-shaped solidified slag S to obtain granular solidified slag Sg. The rotating device 40 is a device, such as a rotary kiln, having a rotating cylindrical container, and crushes the plate-shaped solidified slag S charged into the cylindrical container by rotating the cylindrical container. The rotating device 40 preferably has a structure in which projections are provided on the inner peripheral surface of the cylindrical container so that the plate-like solidified slag S is lifted and dropped. By crushing the plate-shaped solidified slag S with the rotating device 40, the crushed granular solidified slag Sg can have a particle size and particle shape (roundness) suitable for steel slag for roads.
ここで、板状凝固スラグSは、回転装置40の筒状容器内に装入される時に600℃以上1250℃以下の平均温度を有することが好ましい。本実施形態は、板状凝固スラグSを熱間で破砕できることが特徴の一つである。すなわち、装入時の板状凝固スラグSの平均温度(本明細書において「装入温度」とも称する。)を600℃以上とすることが好ましい。
Here, the plate-shaped solidified slag S preferably has an average temperature of 600°C or higher and 1250°C or lower when charged into the cylindrical container of the rotating device 40 . One of the features of this embodiment is that the plate-like solidified slag S can be hot crushed. That is, it is preferable that the average temperature of the plate-like solidified slag S during charging (also referred to as “charging temperature” in this specification) is 600° C. or higher.
なお、装入温度の下限は、破砕後に得られる粒状凝固スラグSgに対する後処理の種類に応じて決定することが好ましい。後工程が炭酸化処理の場合、装入温度は600℃以上とすることが好ましい。これにより、炭酸化処理時の粒状凝固スラグSgの平均温度を400℃以上とすることができる。後工程が熱回収処理の場合、粒状凝固スラグSgからの熱回収効率を高める観点から、装入温度は1100℃以上とすることが好ましい。これにより、熱回収処理時の粒状凝固スラグSgの平均温度を900℃以上とすることができる。
The lower limit of the charging temperature is preferably determined according to the type of post-treatment for the granular solidified slag Sg obtained after crushing. When the post-process is a carbonation treatment, the charge temperature is preferably 600° C. or higher. Thereby, the average temperature of the granular solidified slag Sg during the carbonation treatment can be 400° C. or higher. When the post-process is a heat recovery treatment, the charge temperature is preferably 1100° C. or higher from the viewpoint of enhancing the heat recovery efficiency from the granular solidified slag Sg. Thereby, the average temperature of the granular solidified slag Sg during the heat recovery process can be 900° C. or higher.
装入温度を1250℃以下とすることで、安定して道路用鉄鋼スラグの粒度に近い粒状凝固スラグSgを製造することが可能となる。装入温度が1250℃よりも高いと、板状凝固スラグS内に未凝固分が多く残るため、回転装置40の内壁などに付着凝固し、その結果、安定して道路用鉄鋼スラグの粒度に近い粒状凝固スラグSgを製造することが困難となる。
By setting the charging temperature to 1250°C or lower, it is possible to stably produce granular solidified slag Sg having a particle size close to that of steel slag for roads. If the charging temperature is higher than 1250 ° C., a large amount of unsolidified portion remains in the plate-shaped solidified slag S, so that it adheres to the inner wall of the rotating device 40 and solidifies. It becomes difficult to produce a similar granular solidified slag Sg.
筒状容器の回転数N(周/分)は、筒状容器の回転時の遠心力で板状凝固スラグが筒状容器の壁面にくっつき、ある高さまで持ち上げられて、その後落下するように設定することが好ましい。板状凝固スラグが筒状容器の壁面にくっついたまま、筒状容器と同じ回転数で回るときの筒状容器の回転数をNc(周/分)とする。また、板状凝固スラグが持ち上げられない筒状容器の最大の回転数をNb(周/分)とする。Nc及びNbは、板状凝固スラグの充填量や、筒状容器の直径などによって異なるが、回転数Nが、Nb<N<Ncとなる範囲で設定すればよい。
The rotation speed N (circumference/minute) of the cylindrical container is set so that the plate-shaped solidified slag sticks to the wall surface of the cylindrical container due to centrifugal force when the cylindrical container rotates, is lifted up to a certain height, and then falls. preferably. Let Nc (turns/minute) be the number of revolutions of the cylindrical container when the plate-shaped solidified slag sticks to the wall surface of the cylindrical container and rotates at the same number of revolutions as the cylindrical container. Also, the maximum number of rotations of the cylindrical container at which the plate-like solidified slag cannot be lifted is Nb (turns/minute). Although Nc and Nb differ depending on the filling amount of plate-shaped solidified slag, the diameter of the cylindrical container, etc., the number of revolutions N may be set within the range of Nb<N<Nc.
回転装置での処理時間は、特に限定されず、破砕後の粒状凝固スラグSgが道路用鉄鋼スラグに適した粒度となるように適宜設定すればよい。
The treatment time in the rotating device is not particularly limited, and may be appropriately set so that the granular solidified slag Sg after crushing has a particle size suitable for steel slag for roads.
本実施形態では、以上のような工程(I)~(IV)を経て、道路用鉄鋼スラグの粒度に近い粒状凝固スラグSgを簡易に製造することができる。
In this embodiment, through the steps (I) to (IV) described above, it is possible to easily produce granular solidified slag Sg having a particle size close to that of steel slag for roads.
また、本実施形態では、回転装置40で板状凝固スラグSを粒子径53mm以下に全量破砕し、その際、粒状凝固スラグSgの19mmの篩い通過率が50質量%以上80質量%以下であることが好ましい。これにより、粒状凝固スラグSgの過破砕を防ぐことができ、安定して道路用鉄鋼スラグの規格の粒度範囲に収まる粒状凝固スラグSgを製造することができる。なお、「粒子径53mm以下に全量破砕」とは、JIS Z 8801-1:2019(ISO 3310-1:2016)に規定する網篩いの呼び寸法53mmの篩い目を粒状凝固スラグSgの全量が通過することを意味する。
Further, in the present embodiment, the rotating device 40 crushes the entire plate-shaped solidified slag S to a particle size of 53 mm or less, and at that time, the 19-mm sieve passage rate of the granular solidified slag Sg is 50% by mass or more and 80% by mass or less. is preferred. As a result, the granular solidified slag Sg can be prevented from being excessively crushed, and the granular solidified slag Sg can be stably produced within the particle size range of the steel slag standards for roads. It should be noted that "total crushing to a particle size of 53 mm or less" means that the entire amount of granular solidified slag Sg passes through a mesh sieve with a nominal size of 53 mm specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016). means to
また、本実施形態では、得られた粒状凝固スラグSgのうち、JIS A 5005;2020規定の砕石2005の粒度分布に適合するように調整した粗粒スラグを用いた粒形判定実積率が50.0%以上であることが好ましい。これにより、粒状凝固スラグSgの粒子が丸みを帯びた形状となり、粒状凝固スラグSgが道路用鉄鋼スラグに適したものとなる。粗粒の粒形判定実積率は高いほど好ましいため、その上限は特に限定されないが、本実施形態では、粗粒の粒形判定実積率は概ね63.0%以下となる。
In addition, in the present embodiment, of the obtained granular solidified slag Sg, the grain shape determination using coarse grain slag adjusted so as to conform to the grain size distribution of crushed stone 2005 specified in JIS A 5005; 0% or more is preferable. As a result, the particles of the granular solidified slag Sg have rounded shapes, making the granular solidified slag Sg suitable for steel slag for roads. Since it is preferable that the grain shape determination actual volume ratio of coarse grains is as high as possible, the upper limit is not particularly limited.
また、本実施形態では、得られた粒状凝固スラグSgのうち、JIS A 5005;2020規定の砕砂の粒度分布に適合するように調整した細粒スラグを用いた粒形判定実積率が52.0%以上であることが好ましい。これにより、粒状凝固スラグSgの粒子が丸みを帯びた形状となり、粒状凝固スラグSgが道路用鉄鋼スラグに適したものとなる。細粒の粒形判定実積率は高いほど好ましいため、その上限は特に限定されないが、本実施形態では、細粒の粒形判定実積率は概ね63.0%以下となる。
Further, in the present embodiment, of the obtained granular solidified slag Sg, fine grain slag adjusted so as to conform to the grain size distribution of crushed sand specified in JIS A 5005; It is preferably 0% or more. As a result, the particles of the granular solidified slag Sg have rounded shapes, making the granular solidified slag Sg suitable for steel slag for roads. Since the grain shape determination actual volume ratio of fine grains is preferably as high as possible, the upper limit is not particularly limited.
ここでいう「粒形判定実積率」とは、JIS A 5005:2020に規定されている「コンクリート用砕石及び砕砂の6.6粒形判定実積率」を指す。前記粗粒スラグの粒形判定実積率は、以下のように求める。まず、粒状凝固スラグを絶対乾燥状態になるまでよく乾燥し、呼び寸法20mmの篩いを通過し、呼び寸法10mmの篩いに留まるものを24kg、呼び寸法10mmの篩いを通過し、呼び寸法5mmの篩いに留まるものを16kgそれぞれふるい採り、これらを合わせてよく混合して、JIS A 1104:2019(ISO 6782:1982)に規定する方法で単位容積質量を求め、それを試料の絶乾密度で割って、粒形判定実積率とする。前記細粒スラグの粒形判定実積率は、以下のように求める。粒状凝固スラグを十分に水洗いしながら、呼び寸法2.5mmの篩いを通過し、呼び寸法1.2mmの篩いに留まるものをふるい採り、その後絶対乾燥状態になるまでよく乾燥し、JIS A 1104:2019(ISO 6782:1982)に規定する方法で単位容積質量を求め、それを試料の絶乾密度で割って、粒形判定実積率とする。
The "grain shape determination actual volume rate" referred to here refers to "6.6 grain shape determination actual volume rate for crushed stone and crushed sand for concrete" specified in JIS A 5005:2020. The particle shape determination actual volume ratio of the coarse-grained slag is obtained as follows. First, the granular solidified slag is thoroughly dried to an absolute dry state, passed through a sieve with a nominal size of 20 mm, and 24 kg of those remaining on a sieve with a nominal size of 10 mm are passed through a sieve with a nominal size of 5 mm. 16 kg of those remaining in the sample are sieved, mixed well, and the unit volume mass is obtained by the method specified in JIS A 1104: 2019 (ISO 6782: 1982), divided by the absolute dry density of the sample. , the grain shape determination actual volume ratio. The particle shape determination actual volume ratio of the fine slag is obtained as follows. While thoroughly washing the granular solidified slag with water, it passes through a sieve with a nominal size of 2.5 mm, and the slag that remains on a sieve with a nominal size of 1.2 mm is sieved, then dried well until it becomes absolutely dry, JIS A 1104: 2019 (ISO 6782: 1982) to determine the unit volume mass and divide it by the absolute dry density of the sample to obtain the particle shape determination solid volume rate.
[後工程]
粒状凝固スラグSgは常温まで冷却後、道路用鉄鋼スラグとして出荷することができる。ただし、本実施形態では、高温の状態で粒状凝固スラグSgを得ることができる。このため、粒状凝固スラグSgに対して後処理を行ってから、出荷してもよい。後処理としては、熱回収処理、蒸気回収処理、炭酸化処理、蒸気エージング処理、分級処理などを挙げることができる。 [Post-process]
The granular solidified slag Sg can be shipped as steel slag for roads after cooling to room temperature. However, in the present embodiment, granular solidified slag Sg can be obtained in a high temperature state. Therefore, the granular solidified slag Sg may be shipped after being post-treated. Examples of the post-treatment include heat recovery treatment, steam recovery treatment, carbonation treatment, steam aging treatment, and classification treatment.
粒状凝固スラグSgは常温まで冷却後、道路用鉄鋼スラグとして出荷することができる。ただし、本実施形態では、高温の状態で粒状凝固スラグSgを得ることができる。このため、粒状凝固スラグSgに対して後処理を行ってから、出荷してもよい。後処理としては、熱回収処理、蒸気回収処理、炭酸化処理、蒸気エージング処理、分級処理などを挙げることができる。 [Post-process]
The granular solidified slag Sg can be shipped as steel slag for roads after cooling to room temperature. However, in the present embodiment, granular solidified slag Sg can be obtained in a high temperature state. Therefore, the granular solidified slag Sg may be shipped after being post-treated. Examples of the post-treatment include heat recovery treatment, steam recovery treatment, carbonation treatment, steam aging treatment, and classification treatment.
熱回収処理は、得られた高温の粒状凝固スラグSgをスラグ充填槽に充填し、この状態でスラグ充填槽内に空気等の冷却ガスを供給し、粒状凝固スラグSgの保有熱を奪って得られる高温ガスをスラグ充填槽から回収するプロセスである。得られた高温ガスは、例えば製鉄所の各工程へ供給することができ、これにより、溶融スラグS2の保有熱の有効活用が図られる。また、熱回収後の粒状凝固スラグSgは、熱回収設備から排出されたのち、製品スラグとして出荷される。本実施形態では、高効率の熱回収が可能である。
In the heat recovery process, the obtained high-temperature granular solidified slag Sg is filled in a slag-filled tank, and in this state, a cooling gas such as air is supplied into the slag-filled tank to remove the inherent heat of the granular solidified slag Sg. This is the process of recovering hot gas from the slag filling tank. The obtained high-temperature gas can be supplied to, for example, each process in a steelworks, thereby effectively utilizing the heat possessed by the molten slag S2. Further, the granular solidified slag Sg after heat recovery is discharged from the heat recovery equipment and then shipped as product slag. In this embodiment, highly efficient heat recovery is possible.
蒸気回収処理は、得られた高温の粒状凝固スラグSgのスラグ熱を利用して蒸気を発生させ、これを回収するプロセスである。この蒸気を利用して、任意の凝固スラグに対して蒸気エージングを行うことができる。
The steam recovery process is a process of generating steam using the slag heat of the obtained high-temperature granular solidified slag Sg and recovering it. This steam can be used to steam age any solidified slag.
蒸気エージング処理は、得られた高温の粒状凝固スラグSgに水蒸気を供給するプロセスである。これにより、以下の式(1)を主反応とする蒸気エージング処理が行われる。かくして得られる製品スラグは、蒸気エージング処理によって膨張反応済のものとなり、道路用鉄鋼スラグとして出荷することが可能になる。本実施形態では、粒状凝固スラグSgの総表面積が大きいため、スラグ内部への水蒸気の浸透効率が高く、効率的な蒸気エージング処理が可能である。
CaO + H2O → Ca(OH)2 ・・・(1) Steam aging is the process of supplying steam to the resulting hot granular solidified slag Sg. As a result, the steam aging treatment is performed with the following formula (1) as the main reaction. The product slag thus obtained has undergone an expansion reaction by steam aging treatment, and can be shipped as steel slag for roads. In the present embodiment, since the total surface area of the granular solidified slag Sg is large, the penetration efficiency of steam into the slag is high, and efficient steam aging treatment is possible.
CaO + H 2 O → Ca(OH) 2 (1)
CaO + H2O → Ca(OH)2 ・・・(1) Steam aging is the process of supplying steam to the resulting hot granular solidified slag Sg. As a result, the steam aging treatment is performed with the following formula (1) as the main reaction. The product slag thus obtained has undergone an expansion reaction by steam aging treatment, and can be shipped as steel slag for roads. In the present embodiment, since the total surface area of the granular solidified slag Sg is large, the penetration efficiency of steam into the slag is high, and efficient steam aging treatment is possible.
CaO + H 2 O → Ca(OH) 2 (1)
炭酸化処理は、得られた高温の粒状凝固スラグSgに炭酸ガス(CO2)を供給するプロセスである。これにより、以下の式(2)を主反応とする炭酸化処理が行われる。かくして得られる製品スラグは、炭酸化処理によって膨張反応済のものとなり、道路用鉄鋼スラグとして出荷することが可能になる。本実施形態では、粒状凝固スラグSgの総表面積が大きいため、スラグ内部への炭酸ガスの浸透効率が高く、効率的な炭酸化処理が可能である。これにより、CO2を固定できることから、CO2排出量の削減に寄与する。
CaO + CO2 → CaCO3 ・・・(2) Carbonation treatment is a process of supplying carbon dioxide gas (CO 2 ) to the obtained hot granular solidified slag Sg. As a result, a carbonation treatment is performed with the following formula (2) as the main reaction. The product slag thus obtained has undergone an expansion reaction through the carbonation treatment, and can be shipped as steel slag for roads. In this embodiment, since the total surface area of the granular solidified slag Sg is large, the efficiency of permeation of carbon dioxide gas into the slag is high, and efficient carbonation treatment is possible. As a result, CO2 can be fixed, contributing to the reduction of CO2 emissions.
CaO + CO 2 → CaCO 3 (2)
CaO + CO2 → CaCO3 ・・・(2) Carbonation treatment is a process of supplying carbon dioxide gas (CO 2 ) to the obtained hot granular solidified slag Sg. As a result, a carbonation treatment is performed with the following formula (2) as the main reaction. The product slag thus obtained has undergone an expansion reaction through the carbonation treatment, and can be shipped as steel slag for roads. In this embodiment, since the total surface area of the granular solidified slag Sg is large, the efficiency of permeation of carbon dioxide gas into the slag is high, and efficient carbonation treatment is possible. As a result, CO2 can be fixed, contributing to the reduction of CO2 emissions.
CaO + CO 2 → CaCO 3 (2)
分級処理は、篩い目を用いた篩分け法等により粒状凝固スラグSgを分級して、所望の粒度の粒状凝固スラグを選別するプロセスである。ここで分級された粒状凝固スラグの全部又は一部は、本実施形態における粒状固形物S1として再利用することができる。
The classification process is a process of classifying the granular solidified slag Sg by a sieving method using sieve mesh, etc., and selecting granular solidified slag of a desired particle size. All or part of the granular solidified slag classified here can be reused as the granular solid S1 in this embodiment.
後処理としては、熱回収処理、蒸気回収処理、炭酸化処理、蒸気エージング処理、分級処理などから選択された2つ以上を組み合わせて行ってもよく、その場合の処理順序は特に限定されない。
As the post-treatment, two or more selected from heat recovery treatment, steam recovery treatment, carbonation treatment, steam aging treatment, classification treatment, etc. may be combined, and the treatment order in that case is not particularly limited.
(実験例1)
図1に示す製造設備を用いて、溶融スラグの固化及び破砕試験を行った。溶融スラグとしては、製鋼スラグの一種である脱炭スラグを用いた。溶融スラグの温度は、表1に示す。粒状固形物として、溶融スラグと同じプロセスで得られた脱炭スラグ(粒状固形スラグ)を用いた。粒状固形スラグは、37.5mmの篩い通過率が97%であり、19mmの篩い通過率が50%である、CS-40の規格を満たす粒度分布とした。ただし、凝固厚みが27mm以下となる表1のNo.1~4については、狙いの凝固厚みよりも粒状固形物の粒度が小さくなるように、最大粒径以下の篩いで分級した粒状固形スラグを使用した。例えば、凝固厚み15mmのNo.1では、呼び寸法13.2mmの篩い、凝固厚み19mm及び21mmのNo.2,3では、呼び寸法19mmの篩い、凝固厚み27mmのNo.4では、呼び寸法26.5mmの篩いをそれぞれ通過した粒状固形スラグを用いた。この粒状固形スラグを鋳型内に1層敷き詰めた。その後、表1に示す凝固厚みが得られるように、鋳型内に溶融スラグを供給した。粒状固形物及び溶融スラグの合計質量に対する粒状固形物の質量比率は、表1に示すように25%とした。このようにして、鋳型内で溶融スラグを粒状固形物とともに凝固させて、板状凝固スラグを得た。 (Experimental example 1)
Solidification and crushing tests of molten slag were conducted using the production facility shown in FIG. Decarburized slag, which is a type of steelmaking slag, was used as the molten slag. The temperature of the molten slag is shown in Table 1. Decarburized slag (granular solid slag) obtained by the same process as the molten slag was used as the granular solid. The granular solid slag had a particle size distribution satisfying the CS-40 standard with a 37.5 mm sieve passage rate of 97% and a 19 mm sieve passage rate of 50%. However, No. in Table 1 where the solidified thickness is 27 mm or less. For 1 to 4, granular solid slag classified with a sieve having a maximum particle size or less was used so that the particle size of the granular solid was smaller than the target solidification thickness. For example, No. 1 with a solidification thickness of 15 mm. 1, a sieve with a nominal size of 13.2 mm and no. 2 and 3, a sieve with a nominal size of 19 mm and a No. 2 with a solidification thickness of 27 mm; In No. 4, granular solid slags each passed through a sieve with a nominal size of 26.5 mm were used. A layer of this granular solid slag was laid down in the mold. After that, molten slag was supplied into the mold so that the solidified thickness shown in Table 1 was obtained. The mass ratio of the particulate solids to the total mass of the particulate solids and molten slag was 25% as shown in Table 1. In this manner, the molten slag was solidified together with the particulate solid matter in the mold to obtain a plate-like solidified slag.
図1に示す製造設備を用いて、溶融スラグの固化及び破砕試験を行った。溶融スラグとしては、製鋼スラグの一種である脱炭スラグを用いた。溶融スラグの温度は、表1に示す。粒状固形物として、溶融スラグと同じプロセスで得られた脱炭スラグ(粒状固形スラグ)を用いた。粒状固形スラグは、37.5mmの篩い通過率が97%であり、19mmの篩い通過率が50%である、CS-40の規格を満たす粒度分布とした。ただし、凝固厚みが27mm以下となる表1のNo.1~4については、狙いの凝固厚みよりも粒状固形物の粒度が小さくなるように、最大粒径以下の篩いで分級した粒状固形スラグを使用した。例えば、凝固厚み15mmのNo.1では、呼び寸法13.2mmの篩い、凝固厚み19mm及び21mmのNo.2,3では、呼び寸法19mmの篩い、凝固厚み27mmのNo.4では、呼び寸法26.5mmの篩いをそれぞれ通過した粒状固形スラグを用いた。この粒状固形スラグを鋳型内に1層敷き詰めた。その後、表1に示す凝固厚みが得られるように、鋳型内に溶融スラグを供給した。粒状固形物及び溶融スラグの合計質量に対する粒状固形物の質量比率は、表1に示すように25%とした。このようにして、鋳型内で溶融スラグを粒状固形物とともに凝固させて、板状凝固スラグを得た。 (Experimental example 1)
Solidification and crushing tests of molten slag were conducted using the production facility shown in FIG. Decarburized slag, which is a type of steelmaking slag, was used as the molten slag. The temperature of the molten slag is shown in Table 1. Decarburized slag (granular solid slag) obtained by the same process as the molten slag was used as the granular solid. The granular solid slag had a particle size distribution satisfying the CS-40 standard with a 37.5 mm sieve passage rate of 97% and a 19 mm sieve passage rate of 50%. However, No. in Table 1 where the solidified thickness is 27 mm or less. For 1 to 4, granular solid slag classified with a sieve having a maximum particle size or less was used so that the particle size of the granular solid was smaller than the target solidification thickness. For example, No. 1 with a solidification thickness of 15 mm. 1, a sieve with a nominal size of 13.2 mm and no. 2 and 3, a sieve with a nominal size of 19 mm and a No. 2 with a solidification thickness of 27 mm; In No. 4, granular solid slags each passed through a sieve with a nominal size of 26.5 mm were used. A layer of this granular solid slag was laid down in the mold. After that, molten slag was supplied into the mold so that the solidified thickness shown in Table 1 was obtained. The mass ratio of the particulate solids to the total mass of the particulate solids and molten slag was 25% as shown in Table 1. In this manner, the molten slag was solidified together with the particulate solid matter in the mold to obtain a plate-like solidified slag.
この際、鋳型内に熱電対をセットして、鋳型から板状凝固スラグを取り出せるまでの時間(全ての溶融スラグが凝固するまでの時間)を測定した。結果を表1に示す。
At this time, a thermocouple was set in the mold to measure the time until the plate-shaped solidified slag could be removed from the mold (time until all the molten slag solidified). Table 1 shows the results.
その後、表1に示す装入温度の板状凝固スラグをロータリーキルンに入れて、10分間破砕を行い、粒状凝固スラグを得た。なお、装入温度(装入時の板状凝固スラグの平均温度)は、サーモビュアーを用いて撮影した熱画像から板状凝固スラグに相当する部分を範囲指定し、その範囲の平均温度を算出して求めた。
After that, the plate-shaped solidified slag at the charge temperature shown in Table 1 was placed in a rotary kiln and crushed for 10 minutes to obtain granular solidified slag. The charge temperature (average temperature of plate-shaped solidified slag at the time of charging) is calculated by specifying the range corresponding to the plate-shaped solidified slag from the thermal image taken using a thermoviewer and calculating the average temperature of that range. and asked.
得られた粒状凝固スラグの平均温度も、サーモビュアーによって前述と同様の方法で、すなわち撮影した熱画像から粒状凝固スラグに相当する部分を範囲指定し、その範囲の平均温度を算出して求め、表1に示した。また、粒状凝固スラグに対して篩い試験を行い、JIS Z 8801-1:2019(ISO 3310-1:2016)に規定する金属製網ふるいの公称目開きで、全量が53mmの篩いを通過したか否か、及び、19mmの篩い通過率を測定し、結果を表1に示した。また、既述の方法で、粗粒スラグの粒形判定実積率及び細粒スラグの粒形判定実積率を測定し、結果を表1に示した。
The average temperature of the obtained granular solidified slag is also obtained by using a thermoviewer in the same manner as described above, that is, by specifying the range of the portion corresponding to the granular solidified slag from the photographed thermal image and calculating the average temperature in that range. Table 1 shows. In addition, a sieve test was performed on the granular solidified slag, and whether the total amount passed through a 53 mm sieve with a nominal opening of a metal mesh sieve specified in JIS Z 8801-1: 2019 (ISO 3310-1: 2016) The results are shown in Table 1. In addition, the particle shape determination volume ratio of coarse slag and the particle shape determination volume ratio of fine slag were measured by the method described above, and the results are shown in Table 1.
No.1~4の比較例では、得られた板状凝固スラグの厚みが薄いため、破砕後のスラグ平均温度は1000℃よりも低くなった。また、19mmの篩い通過率は80%以上となり、道路用鉄鋼スラグに適した粒度分布よりも細かくなった。No.9の比較例では、粒状固形スラグが鋳型内に流し込んだ溶融スラグの上部に浮かぶため、凝固までの時間が5.4分と長くなった。19mmの篩い通過率は42%と、道路用鉄鋼スラグに適した粒度分布よりも大きくなった。これに対して、No.1~4の発明例では、19mmの篩い通過率が50~80質量%の範囲に収まり、道路用鉄鋼スラグに適した粒度分布が得られた。
No. In Comparative Examples 1 to 4, the thickness of the plate-like solidified slag obtained was thin, so the average slag temperature after crushing was lower than 1000°C. In addition, the 19 mm sieve passage rate was 80% or more, which was finer than the particle size distribution suitable for steel slag for roads. No. In Comparative Example 9, the granular solid slag floated on top of the molten slag poured into the mold, so the time to solidification was as long as 5.4 minutes. The 19 mm sieve passage rate was 42%, which was larger than the particle size distribution suitable for steel slag for roads. On the other hand, No. In invention examples 1 to 4, the 19 mm sieve passage rate fell within the range of 50 to 80% by mass, and a particle size distribution suitable for steel slag for roads was obtained.
(実験例2)
鋳型内に粒状固形物を供給せず、溶融スラグのみを流し込んで、実験例1と同様の試験を行った。実験条件及び実験結果を表2に示す。 (Experimental example 2)
The same test as in Experimental Example 1 was conducted by pouring only molten slag into the mold without supplying solid particles. Experimental conditions and experimental results are shown in Table 2.
鋳型内に粒状固形物を供給せず、溶融スラグのみを流し込んで、実験例1と同様の試験を行った。実験条件及び実験結果を表2に示す。 (Experimental example 2)
The same test as in Experimental Example 1 was conducted by pouring only molten slag into the mold without supplying solid particles. Experimental conditions and experimental results are shown in Table 2.
No.10~14の比較例では、ロータリーキルンで板状凝固スラグを破砕することはほとんどできなかった。このため、回転装置での処理時間が30分になった時点で、破砕を終了した。いずれの比較例でも、19mmの篩い通過率は低く、道路用鉄鋼スラグに適した粒度分布は得られなかった。このため、板状凝固スラグを簡易に破砕するためには、粒状固形物の存在が重要であることがわかった。
No. In comparative examples 10 to 14, it was almost impossible to crush the plate-shaped solidified slag in the rotary kiln. Therefore, the crushing was terminated when the processing time in the rotating device reached 30 minutes. In any of the comparative examples, the 19 mm sieve passage rate was low, and a particle size distribution suitable for steel slag for roads could not be obtained. Therefore, it has been found that the presence of particulate solid matter is important for easily crushing plate-shaped solidified slag.
(実験例3)
表3に示す実験条件で、実験例1と同様の試験を行った。実験結果も表3に示す。No.15~18の比較例では、凝固までの時間が長く、破砕後の粒状凝固スラグの形状が丸みを帯びないため、粒形判定実積率が低くかった。これに対し、No.19~22の発明例では、凝固までの時間が短く、破砕後の粒状凝固スラグの形状が丸みを帯びたため、粒形判定実積率が高かった。 (Experimental example 3)
Under the experimental conditions shown in Table 3, the same test as in Experimental Example 1 was conducted. Experimental results are also shown in Table 3. No. In Comparative Examples 15 to 18, the time until solidification was long, and the shape of the granular solidified slag after crushing was not rounded, so the particle shape determination actual volume ratio was low. On the other hand, No. In invention examples 19 to 22, the time until solidification was short, and the shape of the granular solidified slag after crushing was rounded, so the particle shape determination actual volume rate was high.
表3に示す実験条件で、実験例1と同様の試験を行った。実験結果も表3に示す。No.15~18の比較例では、凝固までの時間が長く、破砕後の粒状凝固スラグの形状が丸みを帯びないため、粒形判定実積率が低くかった。これに対し、No.19~22の発明例では、凝固までの時間が短く、破砕後の粒状凝固スラグの形状が丸みを帯びたため、粒形判定実積率が高かった。 (Experimental example 3)
Under the experimental conditions shown in Table 3, the same test as in Experimental Example 1 was conducted. Experimental results are also shown in Table 3. No. In Comparative Examples 15 to 18, the time until solidification was long, and the shape of the granular solidified slag after crushing was not rounded, so the particle shape determination actual volume ratio was low. On the other hand, No. In invention examples 19 to 22, the time until solidification was short, and the shape of the granular solidified slag after crushing was rounded, so the particle shape determination actual volume rate was high.
(実験例4)
表4に示す実験条件で、実験例1と同様の試験を行った。すなわち、粒状固形物として、粒状固形スラグに加えて、鉄球及び廃コンクリートを採用した。いずれの粒状固形物に関しても、実験例1のNo.5~9と同様の粒度分布を有するものを用いた。それぞれの粒状固形物において、粒状固形物及び溶融スラグの合計質量に対する粒状固形物の質量比率を種々変更した。実験結果を表4に示す。 (Experimental example 4)
Under the experimental conditions shown in Table 4, the same test as in Experimental Example 1 was conducted. That is, in addition to the granular solid slag, iron balls and waste concrete were adopted as the granular solids. No. 1 of Experimental Example 1 was used for any of the granular solids. Those having the same particle size distribution as 5-9 were used. For each particulate solid, the mass ratio of particulate solid to the total mass of particulate solid and molten slag was varied. Table 4 shows the experimental results.
表4に示す実験条件で、実験例1と同様の試験を行った。すなわち、粒状固形物として、粒状固形スラグに加えて、鉄球及び廃コンクリートを採用した。いずれの粒状固形物に関しても、実験例1のNo.5~9と同様の粒度分布を有するものを用いた。それぞれの粒状固形物において、粒状固形物及び溶融スラグの合計質量に対する粒状固形物の質量比率を種々変更した。実験結果を表4に示す。 (Experimental example 4)
Under the experimental conditions shown in Table 4, the same test as in Experimental Example 1 was conducted. That is, in addition to the granular solid slag, iron balls and waste concrete were adopted as the granular solids. No. 1 of Experimental Example 1 was used for any of the granular solids. Those having the same particle size distribution as 5-9 were used. For each particulate solid, the mass ratio of particulate solid to the total mass of particulate solid and molten slag was varied. Table 4 shows the experimental results.
表4から明らかなように、質量比率を10~40質量%の範囲とすることで、19mmの篩い通過率が50~80質量%の範囲に収まり、道路用鉄鋼スラグに適した粒度分布が得られた。
As is clear from Table 4, by setting the mass ratio in the range of 10 to 40% by mass, the sieve passage rate of 19 mm falls within the range of 50 to 80% by mass, and a particle size distribution suitable for steel slag for roads is obtained. was taken.
本発明の粒状凝固スラグの製造方法及び製造設備によれば、道路用鉄鋼スラグの規格の粒度範囲に収まる粒度分布を有する粒状凝固スラグを簡易に製造することができる。また、高温の粒状凝固スラグを得ることができるため、後工程で粒状凝固スラグに熱回収処理、炭酸化処理、又は蒸気エージング処理を施す際に、粒状凝固スラグの熱を有効活用することで、当該後工程の効率を高めることが可能となる。これは、CO2排出量の削減に寄与するため、本発明は工業上極めて有効なプロセスである。
According to the method and equipment for producing granular solidified slag of the present invention, granular solidified slag having a particle size distribution within the standard particle size range for road steel slag can be easily produced. In addition, since it is possible to obtain high-temperature granular solidified slag, when the granular solidified slag is subjected to heat recovery treatment, carbonation treatment, or steam aging treatment in the subsequent process, by effectively utilizing the heat of the granular solidified slag, It is possible to improve the efficiency of the post-process. Since this contributes to the reduction of CO2 emissions, the present invention is an industrially very effective process.
100 粒状凝固スラグの製造設備
10 鋳型
20 粒状固形物供給装置
20A ホッパー
20B 樋
30 溶融スラグ供給装置
30A 傾動鍋
30B 樋
40 回転装置(スラグ破砕装置)
S1 粒状固形物
S2 溶融スラグ
S 板状凝固スラグ
Sg 粒状凝固スラグ 100 granular solidifiedslag manufacturing facility 10 mold 20 granular solid supply device 20A hopper 20B gutter 30 molten slag supply device 30A tilt pan 30B gutter 40 rotating device (slag crushing device)
S1 Granular solid S2 Molten slag S Plate solidified slag Sg Granular solidified slag
10 鋳型
20 粒状固形物供給装置
20A ホッパー
20B 樋
30 溶融スラグ供給装置
30A 傾動鍋
30B 樋
40 回転装置(スラグ破砕装置)
S1 粒状固形物
S2 溶融スラグ
S 板状凝固スラグ
Sg 粒状凝固スラグ 100 granular solidified
S1 Granular solid S2 Molten slag S Plate solidified slag Sg Granular solidified slag
Claims (10)
- 鋳型内に粒状固形物と溶融スラグとを供給する工程と、
前記鋳型内で前記溶融スラグを前記粒状固形物とともに凝固させて、前記溶融スラグが凝固してなる凝固域と前記粒状固形物とからなる厚み30mm以上50mm以下の板状凝固スラグを得る工程と、
前記板状凝固スラグを前記鋳型から取り出す工程と、
回転する筒状容器を備える回転装置の前記筒状容器内に前記板状凝固スラグを装入し、前記筒状容器を回転させて前記板状凝固スラグを破砕して、粒状凝固スラグを得る工程と、
を有する粒状凝固スラグの製造方法。 feeding particulate solids and molten slag into a mold;
a step of solidifying the molten slag together with the granular solids in the mold to obtain a plate-like solidified slag having a thickness of 30 mm or more and 50 mm or less, which consists of a solidified region formed by solidifying the molten slag and the granular solids;
removing the plate-shaped solidified slag from the mold;
A step of charging the plate-shaped solidified slag into the cylindrical container of a rotating device having a rotating cylindrical container, rotating the cylindrical container to crush the plate-shaped solidified slag, and obtaining granular solidified slag. When,
A method for producing granular solidified slag. - 前記粒状固形物が、粒状固形スラグ、表面に水和物及び炭酸化物の一方又は両方が形成された粒状固形物質、並びに粒状固形鉄から選択される一つ以上を含む、請求項1に記載の粒状凝固スラグの製造方法。 2. The particulate solid material of claim 1, wherein the particulate solid material comprises one or more selected from particulate solid slag, particulate solid material having one or both of hydrates and carbonates formed thereon, and particulate solid iron. A method for producing granular solidified slag.
- 前記粒状固形スラグ及び前記粒状固形物質は、粒度範囲が40~0mmであり、JIS Z 8801-1:2019に規定する金属製網ふるいの公称目開きで、53mmの篩い通過率が100質量%、37.5mmの篩い通過率が95~100質量%、19mmの篩い通過率が50~80質量%、4.75mmの篩い通過率が15~40質量%、2.36mmの篩い通過率が5~25質量%の粒度分布を有する、請求項2に記載の粒状凝固スラグの製造方法。 The granular solid slag and the granular solid material have a particle size range of 40 to 0 mm, and a nominal opening of a metal mesh sieve defined in JIS Z 8801-1:2019, and a sieve passage rate of 100% by mass of 53 mm, The sieve passage rate of 37.5 mm is 95 to 100% by mass, the sieve passage rate of 19 mm is 50 to 80% by mass, the sieve passage rate of 4.75 mm is 15 to 40% by mass, and the sieve passage rate of 2.36 mm is 5 to 3. The method for producing granular solidified slag according to claim 2, having a particle size distribution of 25% by mass.
- 前記粒状固形鉄は、粒度範囲が10mm以上50mm以下である、請求項2に記載の粒状凝固スラグの製造方法。 The method for producing granular solidified slag according to claim 2, wherein the granular solid iron has a particle size range of 10 mm or more and 50 mm or less.
- 前記粒状固形物の質量が、前記粒状固形物及び前記溶融スラグの合計質量に対して10質量%以上40質量%以下である、請求項1~4のいずれか一項に記載の粒状凝固スラグの製造方法。 The granular solidified slag according to any one of claims 1 to 4, wherein the mass of the granular solid is 10% by mass or more and 40% by mass or less with respect to the total mass of the granular solid and the molten slag. Production method.
- 前記板状凝固スラグは、前記回転装置の前記筒状容器内に装入される時に600℃以上1250℃以下の平均温度を有する、請求項1~5のいずれか一項に記載の粒状凝固スラグの製造方法。 The granular solidified slag according to any one of claims 1 to 5, wherein the plate-shaped solidified slag has an average temperature of 600 ° C. or higher and 1250 ° C. or lower when charged into the cylindrical container of the rotating device. manufacturing method.
- 前記回転装置で前記板状凝固スラグを粒子径53mm以下に全量破砕し、その際、前記粒状凝固スラグの19mmの篩い通過率が50質量%以上80質量%以下である、請求項1~6のいずれか一項に記載の粒状凝固スラグの製造方法。 The rotating device crushes the plate-shaped solidified slag to a particle size of 53 mm or less, and at that time, the 19 mm sieve passage rate of the granular solidified slag is 50% by mass or more and 80% by mass or less. A method for producing granular solidified slag according to any one of claims 1 to 3.
- 前記粒状凝固スラグのうち、JIS A 5005;2020規定の砕石2005の粒度分布に適合するように調整した粗粒スラグを用いた粒形判定実積率が50.0%以上である、請求項1~7のいずれか一項に記載の粒状凝固スラグの製造方法。 Claim 1, wherein, of the granular solidified slag, a particle shape determination actual volume rate using coarse-grained slag adjusted to conform to the particle size distribution of crushed stone 2005 specified in JIS A 5005; 2020 is 50.0% or more. 8. A method for producing granular solidified slag according to any one of 1 to 7.
- 前記粒状凝固スラグのうち、JIS A 5005;2020規定の砕砂の粒度分布に適合するように調整した細粒スラグを用いた粒形判定実積率が52.0%以上である、請求項1~8のいずれか一項に記載の粒状凝固スラグの製造方法。 Among the granular solidified slag, the particle shape determination using fine-grained slag adjusted so as to conform to the particle size distribution of crushed sand specified in JIS A 5005; 9. The method for producing granular solidified slag according to any one of 8.
- 鋳型と、前記鋳型内に粒状固形物を供給する粒状固形物供給装置と、前記鋳型内に溶融スラグを供給する溶融スラグ供給装置と、を有し、前記鋳型内で前記溶融スラグを前記粒状固形物とともに凝固させて、前記溶融スラグが凝固してなる凝固域と前記粒状固形物とからなる厚み30mm以上50mm以下の板状凝固スラグを得るスラグ凝固設備と、
回転する筒状容器を備え、前記筒状容器内に装入された前記板状凝固スラグを、前記筒状容器を回転させて破砕して、粒状凝固スラグを得る回転装置と、
を有する粒状凝固スラグの製造設備。 a mold, a particulate solid supply device that supplies particulate solids into the mold, and a molten slag supply device that supplies molten slag into the mold; a slag solidification facility for obtaining a plate-shaped solidified slag having a thickness of 30 mm or more and 50 mm or less composed of a solidified region formed by solidifying the molten slag and the granular solid matter by solidifying together with the object;
a rotating device comprising a rotating cylindrical container for crushing the plate-shaped solidified slag charged into the cylindrical container by rotating the cylindrical container to obtain granular solidified slag;
Production equipment for granular solidified slag.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022553000A JP7173425B1 (en) | 2021-06-24 | 2022-06-20 | Granular solidified slag manufacturing method and manufacturing equipment |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021105137 | 2021-06-24 | ||
JP2021-105137 | 2021-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022270480A1 true WO2022270480A1 (en) | 2022-12-29 |
Family
ID=84545725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/024604 WO2022270480A1 (en) | 2021-06-24 | 2022-06-20 | Granular solidified slag manufacturing method and manufacturing facility |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW202317500A (en) |
WO (1) | WO2022270480A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5217388A (en) * | 1975-07-31 | 1977-02-09 | Nippon Steel Corp | Treating apparatus of fused slag |
JPS58221378A (en) * | 1982-06-18 | 1983-12-23 | 住友金属工業株式会社 | Manufacture of fixed grain size metallurgical slag lump |
JPS58221379A (en) * | 1982-06-18 | 1983-12-23 | 住友金属工業株式会社 | Manufacture of metallurgical slag lump |
JP2000143302A (en) * | 1998-11-06 | 2000-05-23 | Kawasaki Steel Corp | Method and apparatus for producing expanded slag |
JP2016047782A (en) * | 2014-08-27 | 2016-04-07 | Jfeスチール株式会社 | Heat recovery method and heat recovery system for coagulation slag |
JP2017114736A (en) * | 2015-12-25 | 2017-06-29 | Jfeスチール株式会社 | Slag lumpy article and manufacturing method therefor |
JP2021116213A (en) * | 2020-01-28 | 2021-08-10 | Jfeスチール株式会社 | Method for producing granular solidified slag and production facility row therefor |
-
2022
- 2022-06-20 WO PCT/JP2022/024604 patent/WO2022270480A1/en active Application Filing
- 2022-06-23 TW TW111123330A patent/TW202317500A/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5217388A (en) * | 1975-07-31 | 1977-02-09 | Nippon Steel Corp | Treating apparatus of fused slag |
JPS58221378A (en) * | 1982-06-18 | 1983-12-23 | 住友金属工業株式会社 | Manufacture of fixed grain size metallurgical slag lump |
JPS58221379A (en) * | 1982-06-18 | 1983-12-23 | 住友金属工業株式会社 | Manufacture of metallurgical slag lump |
JP2000143302A (en) * | 1998-11-06 | 2000-05-23 | Kawasaki Steel Corp | Method and apparatus for producing expanded slag |
JP2016047782A (en) * | 2014-08-27 | 2016-04-07 | Jfeスチール株式会社 | Heat recovery method and heat recovery system for coagulation slag |
JP2017114736A (en) * | 2015-12-25 | 2017-06-29 | Jfeスチール株式会社 | Slag lumpy article and manufacturing method therefor |
JP2021116213A (en) * | 2020-01-28 | 2021-08-10 | Jfeスチール株式会社 | Method for producing granular solidified slag and production facility row therefor |
Also Published As
Publication number | Publication date |
---|---|
TW202317500A (en) | 2023-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2428491C2 (en) | Procedure for metallurgical slag processing | |
CN103261443B (en) | The granulation of metallurgical slag | |
JP4927702B2 (en) | Process for producing mixed raw materials for sintering | |
JP7255504B2 (en) | Method for producing granular solidified slag and its production equipment | |
JP5875523B2 (en) | Silica sand granule and method for producing the same | |
JP2017519707A (en) | Granulated slag products and processes for their production | |
JP7173425B1 (en) | Granular solidified slag manufacturing method and manufacturing equipment | |
GB1584238A (en) | Method and apparatus for manufacturing crushed sand from melted slag from a ferrous blast furnace | |
WO2022270480A1 (en) | Granular solidified slag manufacturing method and manufacturing facility | |
JP7448033B2 (en) | Granular solidified slag manufacturing method and its manufacturing equipment | |
JP5114742B2 (en) | Method for producing carbon-containing unfired pellets for blast furnace | |
KR100665776B1 (en) | Granulated Blast Furnace Slag, Fine Aggregate Obtained Therefrom, And Manufacturing Method Thereof | |
JP6181953B2 (en) | Sand substitute and manufacturing method thereof | |
JP7310745B2 (en) | Method for producing reforming converter slag and method for producing granular material for roadbed material | |
AU2009233017B2 (en) | Process for producing cement-bonded ore agglomerates | |
JP6020840B2 (en) | Sintering raw material manufacturing method | |
TWI852028B (en) | Method and equipment for producing granular solidified slag | |
JP4012344B2 (en) | Method for producing blast furnace slag fine aggregate | |
JP2004277191A (en) | Coarse aggregate for concrete | |
JP4388259B2 (en) | Method for producing blast furnace slag fine aggregate | |
JP2003082606A (en) | Aggregate for asphalt pavement, its manufacturing method and asphalt pavement | |
JP6188022B2 (en) | Slag manufacturing method and slag manufacturing system | |
JP6992734B2 (en) | Method for manufacturing charcoal interior particles and method for manufacturing charcoal interior sintered ore | |
JP7252454B2 (en) | Method for producing non-fired agglomerate ore for blast furnace | |
JP7011266B2 (en) | Method for manufacturing forming inhibitor and forming inhibitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022553000 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22828397 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22828397 Country of ref document: EP Kind code of ref document: A1 |