JP4388259B2 - Method for producing blast furnace slag fine aggregate - Google Patents

Method for producing blast furnace slag fine aggregate Download PDF

Info

Publication number
JP4388259B2
JP4388259B2 JP2002224386A JP2002224386A JP4388259B2 JP 4388259 B2 JP4388259 B2 JP 4388259B2 JP 2002224386 A JP2002224386 A JP 2002224386A JP 2002224386 A JP2002224386 A JP 2002224386A JP 4388259 B2 JP4388259 B2 JP 4388259B2
Authority
JP
Japan
Prior art keywords
blast furnace
slag
crushing
granulated
granulated slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002224386A
Other languages
Japanese (ja)
Other versions
JP2004067396A (en
Inventor
哲治 茨城
正人 真沢
祐治 遠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002224386A priority Critical patent/JP4388259B2/en
Publication of JP2004067396A publication Critical patent/JP2004067396A/en
Application granted granted Critical
Publication of JP4388259B2 publication Critical patent/JP4388259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/0012Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain)
    • B02C19/0018Devices for disintegrating materials by collision of these materials against a breaking surface or breaking body and/or by friction between the material particles (also for grain) using a rotor accelerating the materials centrifugally against a circumferential breaking surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • B02C13/1807Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • B02C13/1807Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate
    • B02C2013/1885Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate of dead bed type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Furnace Details (AREA)
  • Crushing And Pulverization Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉から排出される際に、水を用いて急冷して固化させた粒状の固形スラグである、高炉水砕スラグを粉砕して、コンクリートやモルタル等の製造に用いられる高炉スラグ細骨材の製造する方法に関するものである。
【0002】
【従来の技術】
高炉から排出されるスラグの処理方法は、溶融状態でヤードに流して徐冷する方法と、溶融状態で加圧水を噴出している樋の中で水冷し急速冷却する方法がある。このうち、水で急速冷却する方法で製造された高炉スラグは、高炉水砕スラグと呼ばれる最大粒径が6ミリメートル以下のガラス質の固形スラグであり、その物性は天然砂に似ているとともに、水和反応による固結反応する特質も持っているものである。
この高炉水砕スラグは、微粉砕して、高炉セメント原料とする用途に用いられている。また、水砕スラグを、無加工もしくは、軽破砕して、砂代替の土木建築用の原料としても利用されている。この土木建築用の用途のうちでは、コンクリートやモルタル用の高炉水砕スラグの細骨材(以降、高炉スラグ細骨材と称す)として利用する用途がある。特に、近年は、海砂の採取規制や陸砂開発に伴う環境問題の解決の手段として、リサイクル材料の活用が盛んに行われており、この高炉スラグ細骨材も砂代替品としての需要が高まっている。
【0003】
高炉スラグ細骨材は、高炉セメント原料用の微粉末に用いられる高炉水砕スラグとは異なる物性が要求されている。一般的に言えば、細骨材は生コンクリートの状態での流動性を確保することが重要な性能の一つであり、そのためには、JIS A5012−1981にも規定されているように、比較的比重が大きく、吸水率の少ない高炉水砕スラグが望まれていた。
しかし、従来技術を用いた高炉水砕スラグの製造方法では、ただ単に溶融スラグを冷却して、これを破砕すれば良いとの考えしかった。その結果、水冷の際に溶融スラグから発生する窒素を主体とするガスのため、高炉水砕スラグは粒子内に残留する気泡が多い問題を解決できていなかった。この問題の解決のために、比重が大きい高炉水砕スラグの製造方法として、例えば、特開昭55−136151号公報記載の方法のように、高炉セメント原料用とは異なる冷却の強い条件で凝固させる操業がなされている。このような冷却方法の改善で、絶対乾燥比重(単位:キログラム/リットル、なお、以降、絶乾比重と称す)、単位容積質量(単位:キログラム/リットル、なお、以降、単質と称す)の大きい高炉水砕スラグを製造することは可能である。しかし、この様な冷却方法の改善でも、冷却固化させたままでは、高炉スラグ細骨材としての性能を満足させるために十分な強冷却条件を作ることは困難である。また、冷却を強化するために、冷却水量が過大となり、ポンプ等の設備費が高くなる、電力や水の費用が高くなるといった問題があった。
【0004】
また、無加工の高炉水砕スラグ(以下、原鉱高炉水砕スラグと称す)には、粒状のものに混じって、径が0.1〜0.5ミリメートル程度で長さが1〜4ミリメートル程度の針状のガラス化したスラグが混合している。この針状スラグが混合しているために、高炉水砕スラグ粒が密に詰まった状態になりづらく、また、その結果、生コンクリートに用いた際に、流動性も悪いものであった。特に、この細骨材を使用した生コンクリートでは、生コンクリートの流動性が悪化して、施工用コンクリートポンプの詰まりを起こしやすいといった問題が生じていた。
したがって、この問題点の解決のため、破砕機を用いて、原鉱高炉水砕スラグを粉砕することにより、粒径を小さくするとともに、針状スラグを破壊することが行われていた。破砕処理の結果、高炉水砕スラグの粒径を球に近い形にすること、針状のスラグを破壊すること、また、粒径分布を改善することにより、細骨材としての性能を向上させる効果がある。その結果、高炉水砕スラグの絶乾比重と単質が改善して、コンクリートやモルタルの細骨材としての性能が向上する。なお、要求される対乾燥比重と単質の条件は、各々、2.5以上と1.45キログラム/リットル以上である。また、破砕処理によって、粒径分布をJIS A5012−1981に記載される範囲にして、粒径分布を改善できる。または、他の細骨材、例えば、川砂や石灰砕砂などと混合使用する際には、混合する他の細骨材との合成の粒径分布が、JISの分布の範囲に入るように、粒径の調整も破砕により可能であり、一般的には、平均粒径が0.8〜2ミリメートル程度の範囲になるように、高炉水砕スラグを破砕する。
【0005】
従来の破砕方法では、いずれの方法においても、破砕装置の破砕部と高炉水砕スラグを直接接触させており、接触部分の磨耗が大きく、破砕装置の修繕費用が多くかかる問題が発生していた。衝撃を利用する型式の破砕機、例えば、インパクトクラッシャーでは、1カ月の連続稼働で破砕部の部品交換する必要があり、そのための費用もかかっていた。また、部品の経時的な形状変化で、破砕性能が時間と共に変化して、部品交換の直後と直前では、製品である高炉スラグ細骨材の物性が異なるといった品質管理上の問題も生じていた。次に、剪断力を利用する型式の破砕機では、衝撃を利用する型式の破砕機と比べると、比較的小さい粒や針状の水砕スラグの破砕は十分にできていたものの、付着水分がある場合には、破砕された高炉水砕スラグの粉が破砕部分の機器の狭い間隔に付着しやすい欠点を持っていた。
そこで、本発明者らは、原鉱高炉水砕スラグを経済的に破砕して高炉スラグ細骨材を製造するために、特開2000-192713公報に記載されている破砕方法を発明した。この方法は、高炉水砕スラグ粒が蓄積している層に、高炉水砕スラグ粒を衝突させて、粉砕する方法である。この方法を実施する装置としては、中央回転軸の上部に高炉水砕スラグ粒の供給口を、また、下部円周部分に出口を有する回転部を有し、ここから原鉱高炉水砕スラグ粒を投射し、この回転部の周りに高炉水砕スラグ粒の蓄積している層を保持する固定ケーシング部分を有する装置を用いる。以降、本文中では、この装置を投射式破砕機と呼ぶ。
【0006】
この投射式破砕機を用いて、原鉱高炉水砕スラグを破砕すると、破砕に伴う部品磨耗がないことから、整備に関わる稼働時間ロスがすくなくなり、また、整備費用も大幅に低下する効果がある。この装置は、高炉水砕スラグの粒形状が角張ったものや針状のものから球に近いものにする機能に優れている。また、高炉水砕スラグ層を形成して、これに高炉水砕スラグ粒を衝突させるため、高炉水砕スラグの過度な破砕を防止する効果も発揮できる。このように、本方法は、上記の優れた特徴があることから、最近、高炉水砕スラグの破砕処理に採用されることが増えてきている。
【0007】
【発明が解決しようとする課題】
投射式破砕機は、運用が簡単で、費用も安いが、以下の問題点があり、操業が簡単ではない問題がある。つまり、破砕刃や衝突部の一定形状をした部品での破砕でなく、高炉水砕スラグ蓄積層に原鉱高炉水砕スラグ粒を衝突させるだけの機構であることから、原鉱高炉水砕スラグの物理的状況に合わせた適正な衝突速度でなければ、目的とする粒径分布とすることが困難であった。従来技術では、原鉱高炉水砕スラグ粒の衝突速度を決定する要因の把握が十分でなかった。このため、投射速度を経験で決めていたことから、必ずしも、一定して目標の製品物性を得られていなかった。
また、原鉱高炉スラグの物理的状況は、原鉱高炉水砕スラグの製造バッチ毎に変化することから、原鉱高炉水砕スラグの物理的状況の変化により、製品である高炉スラグ細骨材の粒径や単質などの物性が変化してしまう問題があった。このような物性の変化があると、高炉スラグ細骨材の品質が安定せず、その結果、この細骨材を使用したコンクリートの品質が安定しない問題があった。このように、従来技術では、ただ単に、原鉱高炉水砕スラグ粒を高炉水砕スラグ蓄積層に衝突させれば良いとの知見しかなく、製品粒径等を適切に制御することができていなかった。
【0008】
また、投射式破砕機において、金属面の上に高炉水砕スラグ蓄積層を長期間安定して作れない問題もあった。特開2000-192713公報に記載されているように、この方法では、高炉水砕スラグ蓄積層の20ミリメートル以上で安定して生成させる必要があった。投射式破砕機の金属ケーシングの形状によっては、その内面に、この高炉水砕スラグ蓄積層を生成することは、さほど困難ではないが、長時間、これの脱落を防止することは困難であった。したがって、時によっては、高炉水砕スラグ蓄積層が形成されていないことがあり、この間は、硬質の金属製ケーシングに、投射された高炉水砕スラグ粒が直接衝突して、高炉水砕スラグ粒の破砕度合いが増して、予定よりも細かい製品ができる結果となる。このような現象により、高炉スラグ細骨材の品質が安定しない問題もあった。さらに、この現象により、高炉水砕スラグ粒が金属製ケーシングを磨耗させる問題も生じる。この結果、金属製ケーシングの磨耗が大きくなり、整備費が増加する結果となっていた。
以上に説明したように、投射式破砕機は、破砕特性が優れており、また、整備費も安い利点があった。しかし、従来技術では、破砕度合いが安定しない問題や金属製ケーシングの磨耗が生じる問題が残っており、原理的には優秀な投射式破砕機も、必ずしも、原理通りの性能を発揮できていなかった。この結果、破砕後の製品品質の悪化や整備費の増加の問題があった。
そこで、本発明は、以上のような従来技術の問題点を解決し、水を用いて急冷した高炉水砕スラグを原料として、簡易な設備で、安価かつ大量にコンクリートやモルタル向けの細骨材を製造する方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、(1)から(2)の通りである。
(1)高炉水砕スラグ粒が蓄積している層に、高炉水砕スラグ粒を衝突させて破砕する方法において、高炉水砕スラグ粒の衝突速度(V:メートル/秒)と、破砕後の高炉水砕スラグ粒の平均粒径の比率(Df/Di、なお、Diは破砕前平均粒径で、Dfは破砕後平均粒径である)の関係を決定する要因として、破砕前の高炉水砕スラグ粒の平均粒径、単位容積質量、絶対乾燥比重、および、ガラス化率を変数として用いることを特徴とする高炉スラグ細骨材の製造方法。
ここに、高炉水砕スラグ粒の衝突速度Vとの関係は、
V=A*(Df/Di)
A=44−4*Di+26*Wdi+6Wai+0.7*G
Wdi:原鉱高炉水砕スラグの絶乾比重
Wai:原鉱高炉水砕スラグの単位容積質量
G:原鉱高炉水砕スラグのガラス化率
【0010】
(2)高炉水砕スラグ粒が蓄積している層に、高炉水砕スラグ粒を衝突させて破砕する方法において、高炉水砕スラグ粒の衝突速度(V:メートル/秒)と、破砕前後の高炉水砕スラグ粒の粗粒率の差(Fi−Ff、なお、Fiは破砕前粗粒率で、Ffは破砕後粗粒率である)の関係を決定する要因として、破砕前の高炉水砕スラグ粒の平均粒径、単位容積質量、絶対乾燥比重、および、ガラス化率を変数として用いることを特徴とする高炉スラグ細骨材の製造方法。
ここに、高炉水砕スラグ粒の衝突速度との関係は、
V=B*(Fi−Ff)
B=−6−42*Di+244*Wdi+32Wai−4.2*G
Wdi:原鉱高炉水砕スラグの絶乾比重
Wai:原鉱高炉水砕スラグの単位容積質量
G:原鉱高炉水砕スラグのガラス化率
【0015】
【発明の実施の形態】
本発明において使用する高炉水砕スラグは以下の方法で製造する。まず、図1に示す高炉に付帯する高炉水砕スラグの製造装置にて、原鉱高炉水砕スラグを製造する。その操業では、まず、溶融状態の高炉スラグをスラグ樋1で流して、これを冷却水が流れている水樋4に落とし込む。なお、冷却水は、ポンプ2から冷却水ノズル3を経由して、水樋4に流す。ここで、溶融状態の高炉スラグは、急冷されて固化する。この時の冷却速度は大きいため、高炉スラグはガラス化して、粒状物に針状物が混合した高炉水砕スラグとなる。なお、溶融状態の高炉スラグは、高炉炉内で窒素を過飽和状態まで吸収しており、凝固時にこの窒素ガスを放出し、発泡した状態となる。水樋4で冷却水を混合した状態の高炉水砕スラグは、調整槽5を経由して、フィルター6にて、水と分離される。この後、コンベア7にて、サイロ8に貯蔵される。
高炉スラグ細骨材の製造には、冷却条件を強化した溶融高炉スラグの水冷方法を用いて、緻密な原鉱高炉水砕スラグを製造する。一般的に、細骨材は緻密な粒であることが求められるため、含有窒素起因の発泡現象を抑えることが、良い製造方法である。そのためには、冷却を強くして、気泡が多量に発生する前に凝固を完了させることが望ましい。冷却を強くするための操業条件としては、溶融高炉スラグに対する冷却水量を増加して、かつ、冷却水温度を低くすることが望ましい。この条件を定量的に評価すれば、溶融している高炉スラグに対する冷却水量を15倍以上とすることと、冷却水温度を60℃以下とすることが有効である。
【0016】
この方法で製造された原鉱高炉水砕スラグは、気泡や亀裂を有する、角張った粒が多く、また、針状の粒も含むことから、そのままでは、細骨材としての性能が悪いものである。したがって、これを破砕することにより、細骨材としての性能を向上させる。本発明においての破砕方法では、まず、この原鉱高炉水砕スラグの水分を調整した後に、これを投射して、高炉水砕スラグ蓄積層に衝突させる。この際に、原鉱高炉水砕スラグを破砕することによって、良質な高炉スラグ細骨材を製造する。
この破砕方法を行うために用いる装置は幾種類かあり、いずれの型式の装置でもよいが、図2に示す投射式破砕機が最も良い。この投射式破砕機は、回転軸の中心から遠心力を用いて高炉水砕スラグを金属製外筒の粉体蓄積層に投射する方式の装置である。なお、投射式破砕機の型式は、幾つかあり、高圧空気と噴射する型式のものや、図2に例と同じように、回転子で投射するが、高炉水砕スラグ蓄積層が平面になっているものなどがある。ただし、設備を小さくできることや、電力消費が少ないなどの理由から、図2に示す投射式破砕機はもっとも経済的である。以降、この型式の投射式破砕機を用いて、本発明の方法を説明する。
【0017】
原鉱高炉水砕スラグは、回転子10の上部中心にある水砕スラグ供給口11から供給される。高炉水砕スラグは、回転子10の下部の円周上に存在する射出口12から、固定された外周のケーシング13に形成されているスラグ蓄積層14に向けて投射される。原鉱高炉水砕スラグの投射速度は、回転子10の回転数の変更によって制御する。実際の破砕操業では、破砕操作が始まるとすぐに、スラグ蓄積層14が形成される。その後は、原鉱高炉水砕スラグ粒15は、スラグ蓄積層14と衝突する際に、気泡の周囲の薄い部分や亀裂の部分から破砕される。また、針状の高炉水砕スラグは、衝突の衝撃で折れる。その結果、高炉水砕スラグは細骨材として良好な物性を有する粒となり、排出部16から排出される。なお、投射してから衝突するまでの時間が短いことから、原鉱高炉水砕スラグの衝突速度は投射速度とほぼ同じである。
スラグ蓄積層14を安定して形成するために、従来技術である特開2000-192713公報に記載されている方法では、20ミリメートル以上の厚みのスラグ蓄積層14を形成することが記載されているが、前述したように、安定したスラグ蓄積層14の形成には課題があった。そこで、本発明者らは、曲率半径が2メートル以下であるケーシング13の内面に、スラグ蓄積層14を形成することが有効であることを見出した。つまり、2メートル以下の曲率半径のある内面に高炉水砕スラグ粒を蓄積することにより、アーチ効果が発揮できる。この結果、スラグ蓄積層14の厚みが20ミリメートル以下であっても、容易に薄利しない層が形成される。この条件では、スラグ蓄積層14の厚みは、原鉱高炉水砕スラグ粒の平均粒径の2.5倍以上、かつ、12倍以下であることが必要である。なお、本発明で記されている曲率半径は、その面のある点からの全ての方向で計られた曲率半径のうち、最も小さい値を言う。本発明では、スラグ蓄積層14が形成される、ケーシング13の内面の特殊な位置を除いた点で測定された曲率半径が2メートル以下であることが条件である。特殊な位置とは、接合ボルト留め部、ケーシング13の継ぎ目部などを言う。
【0018】
本発明者らの解析では、スラグ蓄積層14の厚みが原鉱高炉水砕スラグ粒の平均粒径の2.5倍以下の場合は、スラグ蓄積層14での厚み方向での粒子数は、3〜4個であり、これらを粉状の高炉水砕スラグが結合していることが判明した。これよりも、層数が少ない場合は、粒間の結合が悪く、原鉱高炉水砕スラグ粒の衝突時に、スラグ蓄積層14が欠落する場合が多かった。また、一方、層数が12を超える場合は、厚過ぎることにより、スラグ蓄積層14の一部が脱落することもあり、安定した層の形成ができない場合もあった。
ただし、原鉱高炉水砕スラグの水分が、少ない場合は、高炉水砕スラグ粒間の粘着性が低下して、アーチ効果が発揮できないことも解明した。したがって、原鉱高炉水砕スラグの水分は、4質量%以上である必要がある。また、水分が12質量%以上の場合は、水分が多過ぎて、スラグ蓄積層14への過剰な付着が起きることと水砕スラグ供給口11でのつまり現象が生ずることから、原鉱高炉水砕スラグの水分が4〜12質量%の範囲であることが条件である。
破砕の程度は、主として、原鉱高炉水砕スラグ粒の衝突速度によって決まる。
【0019】
しかし、本発明者らは、原鉱高炉水砕スラグの物性等の操業条件が変化することにより、同じ衝突速度でも破砕の程度が異なることを見出した。そこで、本発明者らは、高炉スラグ細骨材の製造に即した破砕方法を確立するために、原鉱高炉水砕スラグの物性や衝突速度が、破砕後の高炉水砕スラグの細骨材としての性能に与える影響を調査した。この結果、原鉱高炉水砕スラグの幾つかの物性値と衝突速度の影響が大きいことを見出した。
本発明者らは、原鉱高炉水砕スラグの物性で、破砕に影響の大きな項目は、粒径分布、ガラス化率、絶乾比重、および、単質であることを解明した。実験結果では、絶乾比重や単質が大きいほど、破砕の度合いが小さかった。このことは、比重が大きく、緻密な原鉱高炉水砕スラグ粒ほど破砕されずらいことが原因である。本発明者らは、破砕の度合いに対して、原鉱高炉水砕スラグ粒の粒径分布の影響もあることを解明した。粒径の小さい原鉱高炉水砕スラグ粒ほど、破砕されずらいことがわかった。これは、小さい粒は緻密になっており、破砕されずらいことが原因である。また、原鉱高炉水砕スラグのガラス化率が高いほど、破砕の度合いが大きいことも判明した。これは、ガラス化率が高く、スラグの結晶化が進んでいない場合は、スラグが軟質であることから、破砕されやすいことが原因である。破砕の度合いの指標として、原鉱高炉水砕スラグ粒の平均値(Di)と破砕後の粒の平均値(Df)の比(Df/Di、また、破砕比として定義する)を用いた場合は、Di値が小さいほど、Df/Diが大きくなる。
【0020】
また、以上に述べた原鉱高炉水砕スラグの物性が一定の場合は、破砕の度合いは、衝突速度で決まることも解明した。この範囲では、Df/Diはほぼ衝突速度(V)に反比例することも判明した。つまり、衝突速度(V)と破砕比の関係は次式で表せる。
V = A*(Df/Di)-1 …… (式1)
ただし、Aは原鉱高炉水砕スラグ粒の物性により決まる定数である。つまり、Aはこれらの物性値の関数であり、ここで、定数Aは、
A=F(Di, Wdi, Wai, G) …… (式2)
と表現することができる。ただし、Wdi:原鉱高炉水砕スラグの絶乾比重、Wai: 原鉱高炉水砕スラグの単質、G:原鉱高炉水砕スラグのガラス化率である。
これらの物性値の変化する範囲は狭い。例えば、原鉱高炉水砕スラグ粒の平均粒径は、1.5〜3.5ミリメートル、絶乾比重は、2.3〜2.6、単質は、1.2〜1,45、ガラス化率は、85〜99%である。したがって、これらの物性値の影響度は、近似的に一次式で表すことができる。そこで、F(Di, Wdi, Wai, G)は簡便に線形関数として、以下に表記できる。
F(Di, Wdi, Wai, G)= a + b*Di + c*Wdi + d*Wai + e*G ……(式3)
なお、これら原鉱高炉水砕スラグ粒の物性値のうち、絶乾比重と単質は相互の関係があるので、(式3)中の変数としては、いずれか一方を用いることでも良い。また、原鉱高炉水砕スラグの物性の変化が少ない場合は、単純に、破砕比だけで経験的に衝突速度を決定することもある。
【0021】
本発明者らは、一般的には、(式3)中のこれらの定数を破砕の経験で決定することが有効であることを見出した。なぜならば、製鉄所毎に、原鉱高炉水砕スラグの製造条件は、少しずつ異なり、物性と粒径の関係の異なることから、どのような製鉄所でも利用できる統一した式とすることは難しい。したがって、基本的には、(式3)を用いた製鉄所毎の衝突速度の決定式を構築することが良い。参考に、本発明者らが行った実験では、(式4)に示される関数が得られる。
F(Di, Wd, Wa, G)= 44 - 4*Di + 26*Wdi + 6*Wai - 0.7*G ……(式4)
これらの式を総合して、原鉱高炉水砕スラグの破砕前の平均粒径と物性値、および、破砕後の平均粒径の目標値から、衝突速度を決定する。なお、本発明者らは、適正な破砕制御であれば、Aの値、つまり、V*(Df / Di)の値が、16〜50の範囲であることを見出した。したがって、目標である破砕後の高炉水砕スラグの平均粒径を決めて、破砕前の高炉水砕スラグの平均粒径、絶乾比重、単質、および、ガラス化率の情報から、高炉水砕スラグ粒がスラグ蓄積層14に衝突する速度を決定する。具体的には、図2に記載される装置の回転子の回転速度を変更して行う。なお、本発明の一般的な破砕処理では、破砕比が0.35〜0.65となる。
【0022】
また、粒の大きさを表す指標として、粗粒率(FM)がある。粗粒率は5ミリメートルの篩目の上に残る粒の比率、その1/2である2.5ミリメートルの篩目の上に残る粒の比率、さらに、この操作を繰り返し、小さい篩を通して、0.15ミリメートルの篩上に上に残る粒の比率の総和で示される値である。一般に、良質な細骨材は2〜3の値を取る。原鉱高炉水砕スラグの衝突速度を決める式で、平均粒径の代わりに粗粒率を変数として利用することも可能である。
この場合も、衝突速度(V)と粗粒率の比の関係は、(式1)に相当する式で表現できるが、粗粒率の性格から、破砕前後の比ではなく、差で評価することが良い。
V = B*(Fi - Ff) …… (式5)
ただし、Fiは破砕前の粗粒率、また、Ffは破砕後の粗粒率である。また、定数Bも、(式2)から(式4)に相当する解析を行って得ることができる。この式をベースとして、目標となる破砕後の粗粒率から衝突速度を決定する。A値と同様に、B値は、高炉水砕スラグ粒の物性と粒径の関係が製鉄所によって異なることから、必ずしも、すべてに統一した関数式ではない。参考に、本発明者らが行った実験では、(式6)に示される関数が得られる。
B = V/(Fi-Ff) = -6 - 42*Di + 244*Wdi + 32*Wai - 4.2*G ……(式6)
ここで、適正な破砕制御であれば、B、つまり、V/(Fi - Ff)の値が40〜160の範囲である。なお、本発明の一般的な破砕処理では、破砕前後の粗粒率の比は0.6〜0.8となる。
【0023】
このように、原鉱高炉水砕スラグを破砕する目的は、平均粒径を小さくすることがあるが、それとともに、細骨材の品質に関わる重要な物性である絶乾比重や単質を向上させる効果がある。したがって、破砕の度合いを決定する判断要因として、これらの物性の目標値を達成することが重要な場合は、このために各変数を考慮して、原鉱高炉水砕スラグ粒の衝突速度を決定する。
破砕後の絶乾比重と単質を目標値にするためには、前述した粒径を目標として作成した(式1)から(式4)と同様の解析を行い、原鉱高炉水砕スラグの絶乾比重または単質の値から目標値の差をベースに衝突速度を決定するための関数を作成する。この関数により、目標にあった衝突速度を決定する。これらの関係式は、各々(式7)と(式8)に記載される通りである。関数の形式は、粗粒率での関数と同様に、破砕前後の値の差で示されるものを使う。
V = C*(Wdf-Wdi) …… (式7)
V = D*(Waf-Wai) …… (式8)
ただし、WdiとWdfは破砕前後の絶乾比重、WaiとWafは破砕前後の単質である。定数C、Dは、各々、破砕後の絶乾比重と単質の目標値から、衝突速度(V)を決定する定数である。本発明者らは、適正な破砕制御であれば、絶乾比重での定数C、つまり、V/(Wdf -Wdi)の値が70〜200の範囲、また、単質での定数D、つまり、V/(Waf-Wai)の値が、120〜350の範囲であることを見出した。
【0024】
図3に簡略的に記載されるように、原鉱高炉水砕スラグ粒17は内部に気泡18や亀裂19を有する。原鉱高炉水砕スラグの破砕処理においては、一般的に、これらの気泡や亀裂を起点として粒が割れる。本発明者らは、毎秒30メートル以下の投射速度の場合は、これらの亀裂や気泡間の狭い部分を完全に破壊できないことを解明した。破砕後の平均粒径が、元の平均粒径の70〜80%程度にしか破砕できなかった。その結果、細骨材として要求される物性が大幅に改善されないことが判明した。
一方、顕微鏡観察の結果では、適度の投射速度である毎秒30〜90メートルの衝突速度での破砕の場合は、亀裂や気泡間の狭い部分を完全に破壊することができることを解明した。この破砕の結果、高炉水砕スラグ粒は球に近い形状となり、また、針状の高炉水砕スラグも破壊される。粒内部に存在している気泡が露出することにより、絶乾比重が向上する。また、角張った粒と針状物が球形となることから、粒の充填密度も高くなる。この結果、単質も向上する。したがって、この速度の範囲では、上記の説明の破砕方法により、高炉水砕スラグを破砕する処理が効率的に実施できる。
【0025】
原鉱高炉水砕スラグ粒の衝突速度が毎秒90メートル以上の場合は、破砕効果が飽和状態となり、投射速度を向上させたにも関わらず、粒子形状の向上代は、毎秒90メートルの投射速度の場合と大差なかった。また、毎秒90メートル以上の場合はスラグ蓄積層14が剥がれ落ちることも頻発して、本発明の破砕条件が必ずしも良好でないことから、衝突速度は30〜90メートル/秒が良好な条件である。
本発明によって製造された高炉スラグ細骨材は、絶乾比重や単質などの細骨材に要求される物性を満足することができる。この高炉スラグ細骨材単独でも、良質なコンクリートを製造できる。また、川砂、石灰石砕砂、陸砂、その他の細骨材と混合することにより、粒度構成の良い良質のコンクリートまたはモルタル用の細骨材として使用できる。
【0026】
【実施例】
本発明を用いて、高炉スラグ細骨材を製造した結果を表1に示す。また、従来法による製造結果も表1に示す。本実施例を行った破砕装置は、図2に示される投射式破砕機を用いた。当該破砕機の処理能力は55トン/時である。射出口12から高炉水砕スラグを投射する速度は25〜100メートル/秒の任意の速度に制御できるものであった。ケーシング13は、樽型をしており、スラグ蓄積層14が形成される内面の曲率半径は、一律であり、1.55メートルであった。実施例では、表1に記載された2種類の原鉱水砕スラグを使用した。原鉱1は、平均粒径が2.4ミリメートル、粗粒率2.88、絶乾比重2.24、単質1.27、また、ガラス化率が98%であった。原鉱2は、平均粒径が3.2ミリメートル、粗粒率3.31、絶乾比重2.41、単質1.33、また、ガラス化率が91%であった。これらの原鉱の絶乾比重と単質はともにJIS規格の下限以下であった。水分は各々8.8質量%と10.3質量%であった。
【0027】
【表1】

Figure 0004388259
実施例1は、原鉱1を平均粒径2.4ミリメートルから1.8ミリメートルまで破砕することを目標とする操業例である。原鉱高炉水砕スラグの投射速度を、式1と式4を組み合わせて計算した。この値は、40メートル/秒であり、この速度で原鉱高炉水砕スラグを投射した。処理結果は、平均粒径が1.76ミリメートル、粗粒率2.33、絶乾比重2.61、単質1.47であった。このように、破砕後の平均粒径はほぼ目標通りであった。
【0028】
実施例2では、原鉱1を平均粒径2.4ミリメートルから1.5ミリメートルまで破砕することを目標とする操業例である。実施例1と同様に、式1と式4を組み合わせて計算した投射速度である50メートル/秒で、原鉱高炉水砕スラグを投射した。処理結果は、平均粒径が1.52ミリメートル、粗粒率2.18、絶乾比重2.69、単質1.55であった。この実施例でも、破砕後の平均粒径はほぼ目標通りであった。
実施例3では、原鉱2を平均粒径3.2ミリメートルから2.7ミリメートルまで破砕することを目標とする操業例である。実施例1と同様に、式1と式4を組み合わせて計算した投射速度である45メートル/秒で、原鉱高炉水砕スラグを投射した結果、平均粒径が2.78ミリメートル、粗粒率2.93、絶乾比重2.71、単質1.50であった。この実施例でも、破砕後の平均粒径はほぼ目標通りであった。
【0029】
実施例4では、原鉱2を平均粒径3.2ミリメートルから1.8ミリメートルまで破砕することを目標とする操業例である。実施例1と同様に、式1と式4を組み合わせて計算した投射速度である70メートル/秒で、原鉱高炉水砕スラグを投射した結果、平均粒径が1.86ミリメートル、粗粒率2.55、絶乾比重2.89、単質1.56であった。この実施例でも、破砕後の平均粒径はほぼ目標通りであった。
【表2】
Figure 0004388259
【0030】
このように、実施例1〜4においては、適正な破砕が行えて、高炉水砕スラグの粒径を小さくするとともに、絶乾比重と単質は、JIS規格の範囲とすることができた。これらの実施例で製造した高炉スラグ細骨材は、コンクリートセメントやモルタル向けの細骨材として優秀な成績であった。
以上の実施例1〜4の結果と衝突速度の関係式である(式4)で計算される定数Aと実績値のAを表2に示す。表2に示されるように、原料である原鉱高炉水砕スラグの物性と破砕後の平均粒径が異なっても、定数Aの実績値と(式4)の計算値は、ほぼ一致した。また、本発明での実験で得ていた、適正な破砕条件である場合の定数Aの範囲に入っていた。
さらに、粗粒率の場合の定数Bにおいても、(式5)と(式6)から計算される値と実績値は、やや誤差はあるが、良い一致を得た。このように、粗粒率を目標として、衝突速度を決定する方法でも良い制御ができる。絶乾比重と単質の定数CとDにおいても、原鉱高炉水砕スラグが同一であれば、ほぼ同じ値となることから、これらをベースとして衝突速度を決定する方法でも良い制御ができた。また、これらの実施例での衝突速度はいずれも本発明の範囲である30〜90メートル/秒であった。
本発明者らは、実施例1〜4の操業を行った後に、投射式破砕機の内部を点検した。この結果、樽型のケーシング13の内面に、スラグ蓄積層14が形成されていることを確認した。この層厚は7〜25ミリメートルであり、破砕前の平均粒径の3〜10倍であり、本発明での適正な層厚の範囲内であった。
【0031】
【発明の効果】
本発明によれば、水を用いて急冷した高炉水砕スラグを原料として、簡易な設備で、安価かつ大量にコンクリートやモルタル向けの細骨材を製造できるなど、産業上有用な著しい効果を奏する。
【図面の簡単な説明】
【図1】溶融した高炉スラグを水冷して、高炉水砕スラグを製造する装置を示す図である。
【図2】本発明に用いた高炉水砕スラグを水砕スラグ層に投射して、高炉スラグ細骨材を製造する装置の例を示した図である。
【図3】破砕前の高炉水砕スラグの構造を表す模式図である。
【符号の説明】
1 :スラグ樋、
2 :ポンプ、
3 :ノズル、
4 :水樋、
5 :調整槽、
6 :フィルター、
7 :コンベア、
8 :サイロ、
9 :トラック、
10:回転子、
11:スラグ供給口、
12:投射口、
13:ケーシング、
14:スラグ蓄積層、
15:原鉱高炉水砕スラグ粒、
16:排出部、
17:原鉱高炉水砕スラグ粒、
18:気泡、
19:亀裂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to granulated blast furnace slag, which is a granular solid slag that is rapidly cooled and solidified with water when discharged from the blast furnace, and is used for the production of concrete, mortar, etc. The present invention relates to a method for manufacturing an aggregate.
[0002]
[Prior art]
There are two methods for treating slag discharged from the blast furnace: a method in which it is poured into a yard in a molten state and gradually cooled, and a method in which water is cooled and rapidly cooled in a squirt where pressurized water is jetted in a molten state. Among these, the blast furnace slag produced by the method of rapid cooling with water is a glassy solid slag whose maximum particle size is 6 mm or less, called blast furnace granulated slag, and its physical properties are similar to natural sand, It also has the property of solidifying by hydration.
This blast furnace granulated slag is used for the purpose of pulverizing to make a blast furnace cement raw material. In addition, granulated slag is used as a raw material for civil engineering construction instead of sand after being processed or lightly crushed. Among the applications for civil engineering and construction, there is an application that is used as fine aggregate of granulated blast furnace slag for concrete and mortar (hereinafter referred to as blast furnace slag fine aggregate). In particular, in recent years, recycling materials have been actively used as a means of solving environmental problems associated with sea sand collection regulations and land sand development, and this blast furnace slag fine aggregate is in demand as a sand substitute. It is growing.
[0003]
Blast furnace slag fine aggregates are required to have different physical properties from blast furnace granulated slag used for fine powder for blast furnace cement raw material. Generally speaking, it is one of the important performances to ensure fluidity in the state of ready-mixed concrete. For that purpose, as defined in JIS A5012-1981, the comparison A blast furnace granulated slag having a large specific gravity and a low water absorption rate has been desired.
However, in the manufacturing method of granulated blast furnace slag using the prior art, it was thought that the molten slag could be simply cooled and crushed. As a result, the blast furnace granulated slag has not been able to solve the problem of many bubbles remaining in the particles because the gas mainly contains nitrogen generated from the molten slag during water cooling. In order to solve this problem, as a method for producing granulated blast furnace slag having a large specific gravity, for example, a method described in JP-A-55-136151, solidified under a strong cooling condition different from that for blast furnace cement raw materials. Operation to make is made. With such an improved cooling method, absolute dry specific gravity (unit: kilogram / liter, hereinafter referred to as absolute dry specific gravity), unit volume mass (unit: kilogram / liter, hereinafter referred to as simple substance) It is possible to produce large blast furnace granulated slag. However, even with such an improvement in the cooling method, it is difficult to create a strong cooling condition sufficient to satisfy the performance as a blast furnace slag fine aggregate if it is cooled and solidified. Moreover, in order to strengthen cooling, there existed a problem that the amount of cooling water became excessive, the equipment costs, such as a pump, became high, and the cost of electric power and water became high.
[0004]
In addition, unprocessed blast furnace granulated slag (hereinafter referred to as ore blast furnace granulated slag) is mixed with granular materials and has a diameter of about 0.1 to 0.5 mm and a length of 1 to 4 mm. About needle-shaped vitrified slag is mixed. Since this acicular slag is mixed, it is difficult for the granulated blast furnace slag particles to be densely packed, and as a result, the fluidity is poor when used for ready-mixed concrete. In particular, in the ready-mixed concrete using this fine aggregate, the fluidity of ready-mixed concrete deteriorates, and there is a problem that the concrete pump for construction is likely to be clogged.
Therefore, in order to solve this problem, the crusher was used to grind the raw blast furnace granulated slag to reduce the particle size and destroy the acicular slag. As a result of crushing treatment, improve the performance as fine aggregate by making the particle size of granulated blast furnace slag close to a sphere, destroying acicular slag, and improving the particle size distribution effective. As a result, the dry specific gravity and simpleness of granulated blast furnace slag are improved, and the performance of concrete and mortar as fine aggregate is improved. The required dry specific gravity and simple conditions are 2.5 or more and 1.45 kg / liter or more, respectively. In addition, the particle size distribution can be improved by crushing the particle size distribution within the range described in JIS A5012-1981. Or, when mixed with other fine aggregates such as river sand or crushed lime sand, the particle size distribution of the composite with other fine aggregates to be mixed is within the range of JIS distribution. The diameter can also be adjusted by crushing. Generally, the blast furnace granulated slag is crushed so that the average particle diameter is in the range of about 0.8 to 2 mm.
[0005]
In any of the conventional crushing methods, the crushing unit of the crushing device and the blast furnace water granulated slag are in direct contact with each other, and there is a problem that the wear of the contact part is large and the repair cost of the crushing device is high. . In a type of crusher that uses impact, for example, an impact crusher, it is necessary to replace parts in the crushing section after one month of continuous operation, which is expensive. In addition, due to the shape change of parts over time, the crushing performance changed with time, and there was a problem in quality control such as the physical properties of the blast furnace slag fine aggregate being the product immediately before and immediately after the part replacement. . Next, in the type of crusher that uses shear force, compared to the type of crusher that uses impact, relatively small grains and needle-shaped granulated slag were sufficiently crushed, but the adhering moisture was In some cases, crushed blast furnace granulated slag powder has the disadvantage that it tends to adhere to narrow spaces in the equipment of the crushed part.
Therefore, the present inventors have invented a crushing method described in JP 2000-192713 A in order to economically crush raw blast furnace granulated slag to produce a blast furnace slag fine aggregate. This method is a method in which blast furnace granulated slag particles collide with a layer in which blast furnace granulated slag particles are accumulated and pulverized. As an apparatus for carrying out this method, a blast furnace granulated slag granule supply port is provided at the upper part of the central rotating shaft, and a rotary part having an outlet at the lower circumferential part is provided. Is used, and an apparatus having a fixed casing portion that holds a layer in which granulated blast furnace granulated slag particles are accumulated around the rotating portion is used. Hereinafter, in the text, this apparatus is called a projection crusher.
[0006]
When this blast crusher is used to crush raw ore blast furnace granulated slag, there is no part wear associated with crushing, so there is no loss of operating time related to maintenance, and maintenance costs are greatly reduced. is there. This device is excellent in the function of making the granulated blast furnace slag into an almost spherical shape from an angular or needle-shaped one. Moreover, since the blast furnace granulated slag layer is formed and the blast furnace granulated slag particles collide with the blast furnace granulated slag layer, the effect of preventing excessive crushing of the blast furnace granulated slag can be exhibited. Thus, since this method has the above-mentioned excellent features, it has recently been increasingly used for crushing blast furnace granulated slag.
[0007]
[Problems to be solved by the invention]
Projection type crushers are easy to operate and inexpensive, but have the following problems and are not easy to operate. In other words, the blast furnace granulated slag is a mechanism that only collides the granulated blast furnace blast furnace slag particles with the blast furnace granulated slag accumulation layer, rather than crushing with a fixed shape of the crushing blade or the collision part. If the collision speed is not suitable for the physical conditions of the above, it is difficult to obtain the intended particle size distribution. In the prior art, the factors that determine the collision speed of the granulated blast furnace granulated slag were not sufficient. For this reason, since the projection speed was determined by experience, the target product physical properties were not always obtained.
In addition, since the physical status of the ore blast furnace slag changes for each batch of production of the ore blast furnace granulated slag, changes in the physical status of the ore blast furnace granulated slag result in changes in the product blast furnace slag fine aggregate. There was a problem that the physical properties such as the particle size and the simpleness of the material changed. If there is such a change in physical properties, the quality of the blast furnace slag fine aggregate is not stable, and as a result, there is a problem that the quality of the concrete using this fine aggregate is not stable. As described above, in the prior art, there is only knowledge that the raw blast furnace granulated slag particles should collide with the blast furnace granulated slag accumulation layer, and the product particle size and the like can be appropriately controlled. There wasn't.
[0008]
In addition, the projection crusher has a problem that a blast furnace granulated slag accumulation layer cannot be stably formed on a metal surface for a long period of time. As described in Japanese Patent Application Laid-Open No. 2000-192713, in this method, it was necessary to stably generate the blast furnace granulated slag accumulation layer at 20 mm or more. Depending on the shape of the metal casing of the projection-type crusher, it is not so difficult to generate this blast furnace granulated slag accumulation layer on the inner surface, but it was difficult to prevent it from falling off for a long time. . Therefore, in some cases, the blast furnace granulated slag accumulation layer may not be formed. During this time, the projected blast furnace granulated slag particles directly collide with the hard metal casing, As a result, the degree of crushing increases, resulting in a product that is finer than planned. Due to such a phenomenon, there is a problem that the quality of the blast furnace slag fine aggregate is not stable. Furthermore, this phenomenon also causes a problem that the granulated blast furnace slag wears the metal casing. As a result, wear of the metal casing is increased, resulting in an increase in maintenance costs.
As described above, the projection type crusher has the advantage of excellent crushing characteristics and low maintenance costs. However, in the prior art, there remains a problem that the degree of crushing is not stable and a problem that the metal casing is worn, and in principle, an excellent projection crusher has not always performed as well in principle. . As a result, there were problems of deterioration of product quality after crushing and increase in maintenance costs.
Therefore, the present invention solves the problems of the prior art as described above, and uses blast furnace granulated slag rapidly cooled with water as a raw material, with simple equipment, at low cost and in large quantities for fine aggregate for concrete and mortar. It is an object of the present invention to provide a method for manufacturing the above.
[0009]
[Means for Solving the Problems]
The present invention starts from (1) (2) It is as follows.
(1) In the method of crushing blast furnace granulated slag particles by colliding them with the layer where granulated blast furnace slag particles are accumulated, the collision speed (V: meter / second) of the blast furnace granulated slag particles and Blast furnace water before crushing as a factor that determines the relationship of the average particle size ratio of blast furnace granulated slag grains (Df / Di, where Di is the average particle size before crushing and Df is the average particle size after crushing) A method for producing a blast furnace slag fine aggregate, wherein the average particle diameter, unit volume mass, absolute dry specific gravity, and vitrification rate of crushed slag grains are used as variables.
Here, the relationship with the collision velocity V of granulated blast furnace slag is
V = A * (Df / Di)
A = 44-4 * Di + 26 * Wdi + 6Wai + 0.7 * G
Wdi: Absolute dry gravity of granulated blast furnace slag
Wai: Unit volume mass of ore blast furnace granulated slag
G: Vitrification rate of raw blast furnace granulated slag
[0010]
(2) In the method of crushing blast furnace granulated slag grains by colliding with the layer where granulated blast furnace slag grains are accumulated, the collision speed (V: meter / second) of blast furnace granulated slag grains and blast furnace granulation before and after crushing Blast furnace granulated slag particles before crushing as a factor that determines the relationship of the difference in the coarse particle ratio of slag particles (Fi-Ff, where Fi is the coarse particle rate before crushing and Ff is the coarse particle rate after crushing) The average particle size, unit volume mass, absolute dry specific gravity, and vitrification rate of the blast furnace slag fine aggregate are used as variables.
Here, the relationship with the collision speed of granulated blast furnace slag is
V = B * (Fi-Ff)
B = -6-42 * Di + 244 * Wdi + 32Wai-4.2 * G
Wdi: Absolute dry gravity of granulated blast furnace slag
Wai: Unit volume mass of ore blast furnace granulated slag
G: Vitrification rate of raw blast furnace granulated slag
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The granulated blast furnace slag used in the present invention is produced by the following method. First, an ore blast furnace granulated slag is manufactured with the blast furnace granulated slag manufacturing apparatus attached to the blast furnace shown in FIG. In the operation, first, the molten blast furnace slag is caused to flow in the slag tank 1 and dropped into the water tank 4 in which cooling water flows. The cooling water flows from the pump 2 to the water tank 4 via the cooling water nozzle 3. Here, the molten blast furnace slag is rapidly cooled and solidified. Since the cooling rate at this time is high, the blast furnace slag is vitrified and becomes granulated blast furnace slag in which needles are mixed with granular materials. The molten blast furnace slag absorbs nitrogen to a supersaturated state in the blast furnace and releases this nitrogen gas during solidification, resulting in a foamed state. The granulated blast furnace slag mixed with cooling water in the water tank 4 is separated from the water by the filter 6 via the adjustment tank 5. Thereafter, it is stored in the silo 8 by the conveyor 7.
For the production of blast furnace slag fine aggregate, a dense ore blast furnace granulated slag is produced using a water cooling method for molten blast furnace slag with enhanced cooling conditions. In general, since fine aggregates are required to be dense particles, it is a good manufacturing method to suppress the foaming phenomenon caused by the contained nitrogen. For this purpose, it is desirable to increase the cooling and complete the solidification before a large amount of bubbles are generated. As operating conditions for strengthening the cooling, it is desirable to increase the amount of cooling water for the molten blast furnace slag and lower the cooling water temperature. If this condition is quantitatively evaluated, it is effective to increase the amount of cooling water with respect to the molten blast furnace slag by 15 times or more and to set the cooling water temperature to 60 ° C. or less.
[0016]
The ore blast furnace granulated slag produced by this method has a lot of square particles with bubbles and cracks, and also contains acicular particles. is there. Therefore, the performance as a fine aggregate is improved by crushing this. In the crushing method in the present invention, first, after adjusting the water content of the ore blast furnace granulated slag, this is projected and collided with the blast furnace granulated slag accumulation layer. At this time, high-quality blast furnace slag fine aggregate is produced by crushing the raw blast furnace granulated slag.
There are several types of devices used to perform this crushing method, and any type of device may be used, but the projection type crusher shown in FIG. 2 is the best. This projection type crusher is an apparatus of a system which projects blast furnace granulated slag from the center of a rotating shaft onto a powder accumulation layer of a metal outer cylinder. There are several types of projection type crushers, such as a type that injects with high-pressure air and a rotor as in the example in FIG. 2, but the blast furnace granulated slag accumulation layer is flat. There are things that are. However, the projection type crusher shown in FIG. 2 is the most economical because the equipment can be made small and the power consumption is low. Hereinafter, the method of the present invention will be described using this type of projection crusher.
[0017]
The ore blast furnace granulated slag is supplied from a granulated slag supply port 11 in the upper center of the rotor 10. The granulated blast furnace slag is projected from the injection port 12 present on the circumference of the lower part of the rotor 10 toward the slag accumulation layer 14 formed in the fixed outer casing 13. The projection speed of the ore blast furnace granulated slag is controlled by changing the rotational speed of the rotor 10. In an actual crushing operation, the slag accumulation layer 14 is formed as soon as the crushing operation starts. After that, when the ore blast furnace granulated slag particles 15 collide with the slag accumulation layer 14, they are crushed from thin portions around the bubbles and cracked portions. The needle-shaped blast furnace granulated slag is broken by the impact of the collision. As a result, the granulated blast furnace slag becomes particles having good physical properties as a fine aggregate, and is discharged from the discharge unit 16. In addition, since the time from the projection to the collision is short, the collision speed of the ore blast furnace granulated slag is almost the same as the projection speed.
In order to form the slag accumulation layer 14 stably, the method described in Japanese Patent Application Laid-Open No. 2000-192713, which is a conventional technique, describes forming the slag accumulation layer 14 having a thickness of 20 millimeters or more. However, as described above, there is a problem in forming the stable slag accumulation layer 14. Therefore, the present inventors have found that it is effective to form the slag accumulation layer 14 on the inner surface of the casing 13 having a radius of curvature of 2 meters or less. That is, the arch effect can be exhibited by accumulating blast furnace granulated slag grains on the inner surface having a radius of curvature of 2 meters or less. As a result, even if the thickness of the slag accumulation layer 14 is 20 millimeters or less, a layer that is not easily thinned is formed. Under this condition, the thickness of the slag accumulation layer 14 needs to be not less than 2.5 times and not more than 12 times the average particle diameter of the ore blast furnace granulated slag grains. The radius of curvature described in the present invention is the smallest value among the radii of curvature measured in all directions from a certain point on the surface. In the present invention, the condition is that the radius of curvature measured at a point excluding a special position on the inner surface of the casing 13 where the slag accumulation layer 14 is formed is 2 meters or less. The special position refers to a joint bolt fastening portion, a joint portion of the casing 13, and the like.
[0018]
In the analysis by the present inventors, when the thickness of the slag accumulation layer 14 is 2.5 times or less of the average particle size of the granulated blast furnace blast furnace slag, the number of particles in the thickness direction of the slag accumulation layer 14 is It was found that the number was 3 to 4, and these were combined with powdered blast furnace granulated slag. When the number of layers is smaller than this, the bonding between the grains is poor, and the slag accumulation layer 14 is often missing at the time of collision of the ore blast furnace granulated slag grains. On the other hand, when the number of layers exceeds 12, a part of the slag accumulation layer 14 may fall off due to being too thick, and a stable layer may not be formed.
However, it was also clarified that when the water in the ore blast furnace granulated slag is small, the adhesiveness between the granulated blast furnace slag particles decreases, and the arch effect cannot be exhibited. Therefore, the water content of the ore blast furnace granulated slag needs to be 4% by mass or more. Further, when the water content is 12% by mass or more, there is too much water and excessive adhesion to the slag accumulation layer 14 and clogging phenomenon at the granulated slag supply port 11 occur. The condition is that the water content of the crushed slag is in the range of 4 to 12% by mass.
The degree of crushing is mainly determined by the collision speed of the granulated blast furnace slag grains.
[0019]
However, the present inventors have found that the degree of crushing is different even at the same collision speed by changing the operating conditions such as the physical properties of the ore blast furnace granulated slag. Therefore, in order to establish a crushing method in line with the production of blast furnace slag fine aggregate, the present inventors have determined that the physical properties and collision speed of the ore blast furnace granulated slag are fine aggregates of blast furnace granulated slag after crushing. The effect on performance was investigated. As a result, it was found that the influence of several physical properties and impact speed of the ore blast furnace granulated slag was large.
The inventors of the present invention have clarified that the physical properties of the ore blast furnace granulated slag, which have a large influence on crushing, are the particle size distribution, vitrification rate, absolute dry specific gravity, and simple substance. In the experimental results, the degree of crushing was smaller as the absolute dry specific gravity and the single substance were larger. This is due to the fact that the denser ore blast furnace granulated slag particles are more difficult to be crushed as the specific gravity is larger. The present inventors have clarified that there is also an influence of the particle size distribution of the ore blast furnace granulated slag grains on the degree of crushing. It was found that the smaller the grain size of the ore blast furnace granulated slag, the more difficult it is to be crushed. This is because small grains are dense and difficult to be crushed. It was also found that the higher the vitrification rate of the ore blast furnace granulated slag, the greater the degree of crushing. This is because, when the vitrification rate is high and the slag is not crystallized, the slag is soft and is easily crushed. When the ratio of the average value (Di) of granulated blast furnace granulated slag grains (Di) and the average value of grains after crushing (Df) (Df / Di, also defined as the crushing ratio) is used as an indicator of the degree of crushing Df / Di increases as the Di value decreases.
[0020]
It was also clarified that when the properties of granulated blast furnace blast furnace slag described above are constant, the degree of crushing is determined by the collision speed. In this range, it was also found that Df / Di is almost inversely proportional to the collision velocity (V). In other words, the relationship between the collision speed (V) and the crushing ratio can be expressed by the following equation.
V = A * (Df / Di) -1 (Formula 1)
However, A is a constant determined by the physical properties of the granulated blast furnace granulated slag. That is, A is a function of these physical property values, where the constant A is
A = F (Di, Wdi, Wai, G) (Formula 2)
It can be expressed as Where Wdi: absolute dry gravity of raw blast furnace granulated slag, Wai: single ore blast furnace granulated slag, G: vitrification rate of raw blast furnace granulated slag.
The range in which these physical property values change is narrow. For example, the average particle size of granulated blast furnace blast furnace slag is 1.5 to 3.5 millimeters, the absolute density is 2.3 to 2.6, the single is 1.2 to 1,45, glass The conversion rate is 85 to 99%. Therefore, the degree of influence of these physical property values can be approximately expressed by a linear expression. Therefore, F (Di, Wdi, Wai, G) can be simply expressed as a linear function below.
F (Di, Wdi, Wai, G) = a + b * Di + c * Wdi + d * Wai + e * G (Equation 3)
In addition, among the physical property values of these ore blast furnace granulated slag grains, the absolute dry density and the single substance have a mutual relationship, so that either one may be used as a variable in (Equation 3). In addition, when there is little change in the physical properties of the ore blast furnace granulated slag, the collision speed may be determined empirically simply by the crushing ratio alone.
[0021]
The inventors of the present invention have found that it is generally effective to determine these constants in (Equation 3) based on crushing experience. This is because the production conditions for granulated blast furnace blast furnace slag differ slightly for each steelworks, and the relationship between physical properties and particle size differs, making it difficult to create a unified formula that can be used at any steelworks. . Therefore, basically, it is preferable to construct a formula for determining the collision speed for each steelworks using (Equation 3). For reference, in the experiment conducted by the present inventors, the function shown in (Equation 4) is obtained.
F (Di, Wd, Wa, G) = 44-4 * Di + 26 * Wdi + 6 * Wai-0.7 * G ...... (Formula 4)
By combining these equations, the collision speed is determined from the average particle size and physical property value before crushing of the ore blast furnace granulated slag and the target value of the average particle size after crushing. The present inventors have found that the value of A, that is, the value of V * (Df / Di) is in the range of 16 to 50 if the crushing control is appropriate. Therefore, the average particle size of blast furnace granulated slag after crushing, which is the target, is determined, and the blast furnace water is obtained from information on the average particle size, absolute dry gravity, single substance, and vitrification rate of blast furnace granulated slag before crushing. The speed at which the crushed slag grains collide with the slag accumulation layer 14 is determined. Specifically, the rotation speed of the rotor of the apparatus described in FIG. 2 is changed. In the general crushing process of the present invention, the crushing ratio is 0.35 to 0.65.
[0022]
Moreover, there exists a coarse grain ratio (FM) as a parameter | index showing the magnitude | size of a grain. The coarse grain ratio is the ratio of the grains remaining on the 5 mm sieve mesh, the ratio of the grains remaining on the 2.5 millimeter sieve mesh being 1/2 of this, and this operation is repeated to pass through a small sieve to 0 This is the value indicated by the sum of the proportions of the grains remaining on the 15 mm sieve. Generally, fine fine aggregates take values of 2-3. It is an equation that determines the collision speed of granulated blast furnace slag, and it is also possible to use the coarse particle ratio as a variable instead of the average particle diameter.
Also in this case, the relationship between the collision speed (V) and the ratio of the coarse particle ratio can be expressed by an expression corresponding to (Expression 1), but from the nature of the coarse particle ratio, it is evaluated by the difference, not the ratio before and after crushing. That is good.
V = B * (Fi-Ff) (Formula 5)
However, Fi is the coarse particle ratio before crushing, and Ff is the coarse particle ratio after crushing. The constant B can also be obtained by performing an analysis corresponding to (Expression 2) to (Expression 4). Based on this formula, the collision speed is determined from the target coarse particle ratio after crushing. Like the A value, the B value is not necessarily a unified function formula because the relationship between the physical properties and particle size of granulated blast furnace slag varies depending on the steelworks. For reference, in an experiment conducted by the present inventors, a function represented by (Equation 6) is obtained.
B = V / (Fi-Ff) = -6-42 * Di + 244 * Wdi + 32 * Wai-4.2 * G (Formula 6)
Here, if it is appropriate crushing control, the value of B, that is, V / (Fi−Ff) is in the range of 40 to 160. In the general crushing process of the present invention, the ratio of the coarse particle ratio before and after crushing is 0.6 to 0.8.
[0023]
In this way, the purpose of crushing ore blast furnace granulated slag may be to reduce the average particle size, but at the same time, to improve the absolute dry density and simpleness, which are important physical properties related to the quality of fine aggregate There is an effect to make. Therefore, when it is important to achieve the target values of these physical properties as a decision factor that determines the degree of crushing, the impact speed of the granulated blast furnace granulated slag grains is determined by considering each variable for this purpose. To do.
In order to set the absolute dry density and single substance after crushing to the target values, the same analysis as in (Equation 1) to (Equation 4) created with the above-mentioned particle size as the target was performed, and the raw blast furnace granulated slag Create a function to determine the collision speed based on the difference between the absolute specific gravity or single value and the target value. This function determines the collision speed that matches the target. These relational expressions are as described in (Expression 7) and (Expression 8), respectively. As the function format, the function indicated by the difference between the values before and after crushing is used as in the case of the function at the coarse grain ratio.
V = C * (Wdf-Wdi) (Equation 7)
V = D * (Waf-Wai) (Equation 8)
However, Wdi and Wdf are absolutely dry specific gravity before and after crushing, and Wai and Waf are simple before and after crushing. The constants C and D are constants for determining the collision velocity (V) from the absolute dry specific gravity after crushing and the single target value, respectively. If the crushing control is appropriate, the present inventors have a constant C in absolute dry gravity, that is, a value of V / (Wdf-Wdi) is in the range of 70 to 200, and a constant D in the simple substance, , V / (Waf-Wai) was found to be in the range of 120-350.
[0024]
As briefly described in FIG. 3, the ore blast furnace granulated slag grains 17 have bubbles 18 and cracks 19 inside. In the crushing treatment of the ore blast furnace granulated slag, grains are generally cracked starting from these bubbles and cracks. The present inventors have clarified that the narrow portion between these cracks and bubbles cannot be completely destroyed at a projection speed of 30 meters or less per second. The average particle size after crushing could only be crushed to about 70 to 80% of the original average particle size. As a result, it was found that the physical properties required for fine aggregates are not significantly improved.
On the other hand, as a result of microscopic observation, it was clarified that in the case of crushing at a collision speed of 30 to 90 meters per second, which is an appropriate projection speed, a narrow portion between cracks and bubbles can be completely destroyed. As a result of this crushing, the granulated blast furnace slag has a shape close to a sphere, and the needle-shaped granulated blast furnace slag is also destroyed. By exposing the air bubbles present inside the grains, the absolute dry specific gravity is improved. In addition, since the angular grains and needles are spherical, the packing density of the grains is also increased. As a result, the quality is improved. Therefore, in this speed range, the blast furnace granulated slag can be efficiently crushed by the crushing method described above.
[0025]
When the collision speed of granulated blast furnace granulated slag grains is 90 meters or more per second, the crushing effect becomes saturated and the projection speed is increased, although the projection speed is improved, the projection speed is 90 meters per second. It was not much different from the case of. Further, in the case of 90 meters or more per second, the slag accumulation layer 14 is frequently peeled off, and the crushing conditions of the present invention are not necessarily good. Therefore, the collision speed is preferably 30 to 90 meters / second.
The blast furnace slag fine aggregate produced by the present invention can satisfy the physical properties required for fine aggregates such as absolute dry specific gravity and simple substance. Even with this blast furnace slag fine aggregate alone, high-quality concrete can be produced. In addition, by mixing with river sand, limestone crushed sand, land sand, and other fine aggregates, it can be used as fine aggregates for good-quality concrete or mortar with good particle size composition.
[0026]
【Example】
Table 1 shows the results of manufacturing the blast furnace slag fine aggregate using the present invention. Table 1 also shows the results of manufacturing by the conventional method. The crushing apparatus that performed this example used a projection crusher shown in FIG. The processing capacity of the crusher is 55 tons / hour. The speed at which the blast furnace granulated slag was projected from the injection port 12 could be controlled to an arbitrary speed of 25 to 100 meters / second. The casing 13 has a barrel shape, and the radius of curvature of the inner surface on which the slag accumulation layer 14 is formed is uniform and is 1.55 meters. In the examples, two types of raw ore granulated slag described in Table 1 were used. The ore 1 had an average particle diameter of 2.4 millimeters, a coarse grain ratio of 2.88, an absolutely dry specific gravity of 2.24, a single substance of 1.27, and a vitrification ratio of 98%. The ore 2 had an average particle diameter of 3.2 millimeters, a coarse grain ratio of 3.31, an absolute dry specific gravity of 2.41, a single substance of 1.33, and a vitrification ratio of 91%. Both the absolute density and the quality of these ores were below the lower limit of JIS standards. The water contents were 8.8% by mass and 10.3% by mass, respectively.
[0027]
[Table 1]
Figure 0004388259
Example 1 is an operation example in which the ore 1 is crushed from an average particle size of 2.4 millimeters to 1.8 millimeters. The projection speed of granulated blast furnace slag was calculated by combining Equation 1 and Equation 4. This value was 40 meters / second, and the ore blast furnace granulated slag was projected at this speed. As a result of the treatment, the average particle diameter was 1.76 millimeters, the coarse particle ratio was 2.33, the absolute dry specific gravity was 2.61, and the quality was 1.47. Thus, the average particle size after crushing was almost as intended.
[0028]
Example 2 is an operation example with the goal of crushing the ore 1 from an average particle size of 2.4 millimeters to 1.5 millimeters. Similarly to Example 1, the ore blast furnace granulated slag was projected at a projection speed of 50 meters / second calculated by combining Formula 1 and Formula 4. As a result of the treatment, the average particle diameter was 1.52 millimeters, the coarse particle ratio was 2.18, the absolute dry specific gravity was 2.69, and the single substance was 1.55. Also in this example, the average particle size after crushing was almost as intended.
Example 3 is an operation example with the goal of crushing the ore 2 from an average particle size of 3.2 millimeters to 2.7 millimeters. As in Example 1, as a result of projecting the ore blast furnace granulated slag at a projection speed of 45 meters / second calculated by combining Formula 1 and Formula 4, the average particle size was 2.78 millimeters, the coarse grain rate It was 2.93, absolute dry specific gravity 2.71, simple 1.50. Also in this example, the average particle size after crushing was almost as intended.
[0029]
Example 4 is an operation example with the goal of crushing the ore 2 from an average particle size of 3.2 millimeters to 1.8 millimeters. As in Example 1, as a result of projecting the ore blast furnace granulated slag at a projection speed of 70 meters / second calculated by combining Formula 1 and Formula 4, the average particle size was 1.86 millimeters, the coarse grain rate It was 2.55, absolute dry specific gravity 2.89, simple 1.56. Also in this example, the average particle size after crushing was almost as intended.
[Table 2]
Figure 0004388259
[0030]
As described above, in Examples 1 to 4, proper crushing was performed, the particle size of the granulated blast furnace slag was reduced, and the absolute dry density and the single substance could be within the range of JIS standards. The blast furnace slag fine aggregates produced in these examples had excellent results as fine aggregates for concrete cement and mortar.
Table 2 shows the constant A and the actual value A calculated by (Expression 4), which is a relational expression between the results of Examples 1 to 4 and the collision speed. As shown in Table 2, even if the physical properties of the raw ore blast furnace granulated slag, which is the raw material, and the average particle size after crushing are different, the actual value of the constant A and the calculated value of (Equation 4) almost coincided. Moreover, it was in the range of the constant A in the case of appropriate crushing conditions obtained in the experiment in the present invention.
Furthermore, even in the constant B in the case of the coarse grain ratio, the value calculated from (Expression 5) and (Expression 6) and the actual value have some errors, but good agreement was obtained. In this way, control can be performed by a method of determining the collision speed with the coarse particle ratio as a target. The absolute dry gravity and simple constants C and D are almost the same if the ore blast furnace granulated slag is the same. . Moreover, the collision speed in these examples was 30 to 90 meters / second, which is the range of the present invention.
The present inventors inspected the inside of the projection crusher after performing the operations of Examples 1 to 4. As a result, it was confirmed that the slag accumulation layer 14 was formed on the inner surface of the barrel-shaped casing 13. This layer thickness was 7 to 25 mm, 3 to 10 times the average particle size before crushing, and was within the range of the appropriate layer thickness in the present invention.
[0031]
【The invention's effect】
According to the present invention, it is possible to produce fine aggregates for concrete and mortar in a large amount at a low cost with a simple facility using blast furnace granulated slag rapidly cooled with water as a raw material. .
[Brief description of the drawings]
FIG. 1 is a view showing an apparatus for producing blast furnace granulated slag by water-cooling molten blast furnace slag.
FIG. 2 is a diagram showing an example of an apparatus for producing a blast furnace slag fine aggregate by projecting the granulated blast furnace slag used in the present invention onto a granulated slag layer.
FIG. 3 is a schematic diagram showing the structure of granulated blast furnace slag before crushing.
[Explanation of symbols]
1: Slag bowl,
2: pump,
3: Nozzle,
4: Minamata,
5: Adjustment tank,
6: Filter,
7: conveyor,
8: Silo,
9: Track,
10: Rotor,
11: Slag supply port,
12: Projection port
13: casing,
14: Slag accumulation layer,
15: Granite blast furnace granulated slag,
16: discharge part,
17: Granite blast furnace granulated slag,
18: Bubbles,
19: Crack

Claims (2)

高炉水砕スラグ粒が蓄積している層に、高炉水砕スラグ粒を衝突させて破砕する方法において、高炉水砕スラグ粒の衝突速度(V:メートル/秒)と、破砕後の高炉水砕スラグ粒の平均粒径の比率(Df/Di、なお、Diは破砕前平均粒径で、Dfは破砕後平均粒径である)の関係を決定する要因として、破砕前の高炉水砕スラグ粒の平均粒径、単位容積質量、絶対乾燥比重、および、ガラス化率を変数として用いることを特徴とする高炉スラグ細骨材の製造方法。
ここに、高炉水砕スラグ粒の衝突速度Vとの関係は、
V=A*(Df/Di)
A=44−4*Di+26*Wdi+6Wai+0.7*G
Wdi:原鉱高炉水砕スラグの絶乾比重
Wai:原鉱高炉水砕スラグの単位容積質量
G:原鉱高炉水砕スラグのガラス化率
In the method of crushing blast furnace granulated slag particles by colliding with the layer where granulated blast furnace slag particles are accumulated, the collision speed of blast furnace granulated slag particles (V: meters / second) and blast furnace granulation after crushing Blast furnace granulated slag particles before crushing as a factor that determines the relationship of the ratio of the average particle size of slag particles (Df / Di, where Di is the average particle size before crushing and Df is the average particle size after crushing) The average particle size, unit volume mass, absolute dry specific gravity, and vitrification rate of the blast furnace slag fine aggregate are used as variables.
Here, the relationship with the collision velocity V of granulated blast furnace slag is
V = A * (Df / Di)
A = 44-4 * Di + 26 * Wdi + 6Wai + 0.7 * G
Wdi: Absolute dry gravity of ore blast furnace granulated slag Wai: Unit volume mass of ore blast furnace granulated slag G: Vitrification rate of ore blast furnace granulated slag
高炉水砕スラグ粒が蓄積している層に、高炉水砕スラグ粒を衝突させて破砕する方法において、高炉水砕スラグ粒の衝突速度(V:メートル/秒)と、破砕前後の高炉水砕スラグ粒の粗粒率の差(Fi−Ff、なお、Fiは破砕前粗粒率で、Ffは破砕後粗粒率である)の関係を決定する要因として、破砕前の高炉水砕スラグ粒の平均粒径、単位容積質量、絶対乾燥比重、および、ガラス化率を変数として用いることを特徴とする高炉スラグ細骨材の製造方法。
ここに、高炉水砕スラグ粒の衝突速度との関係は、
V=B*(Fi−Ff)
B=−6−42*Di+244*Wdi+32Wai−4.2*G
Wdi:原鉱高炉水砕スラグの絶乾比重
Wai:原鉱高炉水砕スラグの単位容積質量
G:原鉱高炉水砕スラグのガラス化率
In the method of crushing blast furnace granulated slag grains by colliding with the layer where granulated blast furnace slag grains are accumulated, the collision speed (V: meter / second) of blast furnace granulated slag grains and blast furnace granulation before and after crushing Blast furnace granulated slag particles before crushing as a factor that determines the relationship of the difference in the coarse particle ratio of slag particles (Fi-Ff, where Fi is the coarse particle rate before crushing and Ff is the coarse particle rate after crushing) The average particle size, unit volume mass, absolute dry specific gravity, and vitrification rate of the blast furnace slag fine aggregate are used as variables.
Here, the relationship with the collision speed of granulated blast furnace slag is
V = B * (Fi-Ff)
B = -6-42 * Di + 244 * Wdi + 32Wai-4.2 * G
Wdi: Absolute dry gravity of ore blast furnace granulated slag Wai: Unit volume mass of ore blast furnace granulated slag G: Vitrification rate of ore blast furnace granulated slag
JP2002224386A 2002-08-01 2002-08-01 Method for producing blast furnace slag fine aggregate Expired - Fee Related JP4388259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002224386A JP4388259B2 (en) 2002-08-01 2002-08-01 Method for producing blast furnace slag fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002224386A JP4388259B2 (en) 2002-08-01 2002-08-01 Method for producing blast furnace slag fine aggregate

Publications (2)

Publication Number Publication Date
JP2004067396A JP2004067396A (en) 2004-03-04
JP4388259B2 true JP4388259B2 (en) 2009-12-24

Family

ID=32012353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002224386A Expired - Fee Related JP4388259B2 (en) 2002-08-01 2002-08-01 Method for producing blast furnace slag fine aggregate

Country Status (1)

Country Link
JP (1) JP4388259B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5144937B2 (en) * 2007-01-29 2013-02-13 株式会社タクマ Method and apparatus for adjusting particle size of granulated slag
KR101250565B1 (en) * 2010-12-22 2013-04-03 재단법인 포항산업과학연구원 Watercrushed blast furnace slag aggregates for concrete or mortar composition and manufacturing method thereof
KR20120100066A (en) * 2011-03-03 2012-09-12 이주홍 Apparatus for destroying the solid matter in the restricted working space
FI13387Y1 (en) * 2023-03-21 2023-05-24 Moviator Oy Mill

Also Published As

Publication number Publication date
JP2004067396A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
TWI390025B (en) Abrasive material made of atomized slag, manufacturing facility and method for the same
CN105722803A (en) Process and apparatus for dry granulation of slag with reduced formation of slag wool
KR100244003B1 (en) Cement clinker grinding method using vertical roller mill and apparatus thereof
KR20140147139A (en) Method for manufacturing granulating raw material for sintering, device for manufacturing same, and method for manufacturing sintered ore for blast furnace
GB1584238A (en) Method and apparatus for manufacturing crushed sand from melted slag from a ferrous blast furnace
CN101362934A (en) Mixed metal abrasives for cleaning stainless steel plate and production technology
JP4388259B2 (en) Method for producing blast furnace slag fine aggregate
TWI509081B (en) Method for producing granulation material for sintering
JP5548045B2 (en) Recycled cement raw material and recycled cement composition using the same
WO2001062683A1 (en) Blast furnace granulated slag, fine aggregate prepared therefrom and method for producing them
CA2450190C (en) Method and device for fine grinding of mineral particles
CN109127011A (en) A kind of superfine powder ball mill
JP2000290049A (en) Fine aggregate for concrete and its production
US4348340A (en) Production of spheroidal granules from molten inorganic materials
JP3619389B2 (en) Method for producing blast furnace slag fine aggregate
JP4012344B2 (en) Method for producing blast furnace slag fine aggregate
JP2896663B2 (en) Method and apparatus for producing fine aggregate for concrete
JP4264288B2 (en) Production method of asphalt aggregate
JP2001192713A (en) Method for manufacturing fine aggregate of blast furnace slag
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
JP2006083062A (en) Fine aggregate and its manufacturing method
JP2005219958A (en) Blast furnace slag fine aggregate, method of producing the same and fine aggregate for cement concrete or mortar
JP3831693B2 (en) Classification method of granulated blast furnace slag
JP5928731B2 (en) Manufacturing method and apparatus for granulating raw material for sintering
JP7489825B2 (en) Cement mixture and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091002

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees