JP2016047782A - Heat recovery method and heat recovery system for coagulation slag - Google Patents

Heat recovery method and heat recovery system for coagulation slag Download PDF

Info

Publication number
JP2016047782A
JP2016047782A JP2014173036A JP2014173036A JP2016047782A JP 2016047782 A JP2016047782 A JP 2016047782A JP 2014173036 A JP2014173036 A JP 2014173036A JP 2014173036 A JP2014173036 A JP 2014173036A JP 2016047782 A JP2016047782 A JP 2016047782A
Authority
JP
Japan
Prior art keywords
slag
heat recovery
heat
solidified slag
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014173036A
Other languages
Japanese (ja)
Other versions
JP6318982B2 (en
Inventor
伸行 紫垣
Nobuyuki Shigaki
伸行 紫垣
純仁 小澤
Sumihito Ozawa
純仁 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014173036A priority Critical patent/JP6318982B2/en
Publication of JP2016047782A publication Critical patent/JP2016047782A/en
Application granted granted Critical
Publication of JP6318982B2 publication Critical patent/JP6318982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat recovery method and a heat recovery system for coagulation slag which can gain high quality coagulation slag by preventing vitrification of the coagulation slag.SOLUTION: When heat is collected from coagulation slag S in which molten slag M generated in a blast furnace is solidified, the heat is collected from the coagulation slag S after soaking the coagulation slag S at an appointed temperature and crystallizing a glass layer contained in the coagulation slag S.SELECTED DRAWING: Figure 1

Description

本発明は、凝固スラグの熱回収方法および熱回収システムに関し、特に凝固スラグのガラス化を抑制して高品質の凝固スラグを得ることができる凝固スラグの熱回収方法および熱回収システムに関するものである。   The present invention relates to a heat recovery method and a heat recovery system for solidified slag, and more particularly to a heat recovery method and a heat recovery system for solidified slag capable of obtaining a high-quality solidified slag by suppressing vitrification of the solidified slag. .

鉄鋼製造プロセスで排出されるスラグは、水砕処理または徐冷処理などを経て、水砕砂やスラグ骨材として利材化されている。後者のスラグ骨材については、通常はドライピットに排出されたスラグを徐冷して固めた後、破砕処理および篩い分け等を経て所定の粒度分布(例えばJIS A5011−1など)を有するスラグ骨材が製造される。あるいは、特許文献1に開示されるように、金属製の移動鋳型を設けた鋳滓機を用いて溶融スラグを厚さ10mm〜30mmになるように凝固成形し、緻密で強度の高い板状の凝固スラグを作成した後、同様に破砕処理および篩い分け等を行い、骨材を製造する方法もある。   Slag discharged in the steel manufacturing process is used as granulated sand or slag aggregate through granulation or slow cooling. As for the latter slag aggregate, the slag bone having a predetermined particle size distribution (for example, JIS A5011-1) is usually obtained by gradually cooling and solidifying the slag discharged into the dry pit, followed by crushing and sieving. The material is manufactured. Alternatively, as disclosed in Patent Document 1, the molten slag is solidified and formed so as to have a thickness of 10 mm to 30 mm using a casting machine provided with a metal moving mold, and is formed into a dense and high-strength plate shape. There is also a method for producing an aggregate by preparing a solidified slag and then similarly performing crushing treatment and sieving.

一方で、近年、省エネルギー対策としてスラグの保有熱も注目されており、上記のようなスラグ利材化と同時にスラグ保有熱の回収利用もスラグ利用面での目標に掲げられている。溶融スラグの熱量は、銑鉄トン当たり0.5GJほどの大きさを有し、このスラグの熱を回収出来れば大きい省エネルギー効果が期待できる。   On the other hand, in recent years, heat retention of slag has attracted attention as an energy-saving measure, and recovery and use of slag retention heat has been set as a goal in terms of slag utilization as well as the above-mentioned use of slag. The amount of heat of the molten slag has a size of about 0.5 GJ per ton of pig iron. If the heat of this slag can be recovered, a large energy saving effect can be expected.

スラグの熱回収方法として、例えば特許文献2では、鋳滓機を用いて溶融スラグを比較的肉厚な形状に凝固成形し、凝固スラグを熱回収装置に高温状態で装入して熱回収する方法が開示されている。スラグを肉厚に凝固成形した場合、スラグ単位体積当りの表面積が小さくなるため、凝固スラグが保温されやすく、搬送等による凝固スラグの温度低下が抑えられ、高温で熱回収装置に供給することができる。また、厚みを有するため、凝固スラグ板厚中心の温度が高い状態で保持されやすいので、高い熱量を有する状態で熱回収装置に供給することが可能となる。   As a slag heat recovery method, for example, in Patent Document 2, molten slag is solidified and formed into a relatively thick shape using a caster, and the solidified slag is charged into a heat recovery device at a high temperature to recover heat. A method is disclosed. When the slag is solidified and formed into a thick wall, the surface area per unit volume of the slag is reduced, so that the solidified slag is easy to keep warm, the temperature drop of the solidified slag due to transportation etc. is suppressed, and it can be supplied to the heat recovery device at a high temperature. it can. Moreover, since it has thickness, since it is easy to hold | maintain in the state where the temperature of the solidification slag board thickness center is high, it becomes possible to supply to a heat recovery apparatus in the state which has high calorie | heat amount.

特開2003−82606号公報JP 2003-82606 A 特開昭57−182086号公報JP-A-57-182086

しかしながら、先述のような鋳滓機方式で急冷凝固したスラグから熱回収すると、鋳滓機の鋳型に触れる部分と触れない部分とで冷却速度にばらつきが発生し、特に冷却速度の大きい鋳型との接触面近傍のスラグは急冷によりガラス化し、スラグ品質を低下させる。   However, when heat is recovered from the slag that has been rapidly solidified by the casting machine as described above, the cooling rate varies between the part that touches the mold and the part that does not touch the casting machine. The slag in the vicinity of the contact surface is vitrified by rapid cooling, thereby reducing the slag quality.

そこで、本発明の目的は、凝固スラグのガラス化を抑制して高品質の凝固スラグを得ることができる凝固スラグの熱回収方法および熱回収システムを提供することにある。   Then, the objective of this invention is providing the heat recovery method and heat recovery system of the solidification slag which can suppress vitrification of the solidification slag and can obtain high quality solidification slag.

発明者らは、上記課題を解決する方途について鋭意検討した結果、凝固スラグの熱を回収する前に、凝固スラグを所定の温度で均熱保持することによって凝固スラグに含まれるガラス層を結晶化させることが極めて有効であることを見出し、本発明を完成させるに至った。   As a result of intensive investigations on how to solve the above problems, the inventors crystallized the glass layer contained in the solidified slag by holding the solidified slag soaking at a predetermined temperature before recovering the heat of the solidified slag. It has been found that it is extremely effective to complete the present invention.

すなわち、本発明の要旨構成は以下の通りである。
(1)高炉において発生する溶融スラグを凝固した凝固スラグから熱を回収するに当たり、前記凝固スラグを所定の温度で均熱保持して前記凝固スラグに含まれるガラス層を結晶化した後に前記凝固スラグから熱を回収することを特徴とする凝固スラグの熱回収方法。
That is, the gist of the present invention is as follows.
(1) In recovering heat from the solidified slag obtained by solidifying the molten slag generated in the blast furnace, the solidified slag is crystallized after the glass layer contained in the solidified slag is crystallized by keeping the solidified slag soaked at a predetermined temperature. A method for recovering heat of solidified slag, wherein heat is recovered from the slag.

(2)前記凝固スラグの均熱保持は前記凝固スラグを加熱して行う、前記(1)に記載の凝固スラグの熱回収方法。 (2) The heat recovery method for solidified slag according to (1), wherein the soaking of the solidified slag is performed by heating the solidified slag.

(3)前記所定の温度は900℃以上である、前記(1)または(2)に記載の凝固スラグの熱回収方法。 (3) The heat recovery method for solidified slag according to (1) or (2), wherein the predetermined temperature is 900 ° C. or higher.

(4)前記凝固スラグからの熱回収は前記凝固スラグから放出される硫黄分を除去した後に行う、前記(1)〜(3)のいずれか一項に記載の凝固スラグの熱回収方法。 (4) The heat recovery method for solidified slag according to any one of (1) to (3), wherein the heat recovery from the solidified slag is performed after removing sulfur released from the solidified slag.

(5)前記凝固スラグからの熱回収は前記凝固スラグを破砕した後に行う、前記(1)〜(4)のいずれか一項に記載の凝固スラグの熱回収方法。 (5) The heat recovery method for solidified slag according to any one of (1) to (4), wherein heat recovery from the solidified slag is performed after the solidified slag is crushed.

(6)高炉において発生する溶融スラグを受滓する鋳型を有し、該受滓された溶融スラグを板状に鋳造する鋳滓機と、熱回収ガスを供給し、該ガスを介して前記板状凝固スラグの熱を回収する熱回収装置とを備える溶融スラグの熱回収システムにおいて、前記鋳滓機の下流直下に、前記凝固スラグを所定の温度で均熱保持して前記凝固スラグに含まれるガラス層を結晶化させる保温槽を設けたことを特徴とする凝固スラグの熱回収システム。 (6) A casting machine having a mold for receiving molten slag generated in a blast furnace, casting the received molten slag into a plate shape, supplying heat recovery gas, and supplying the plate through the gas A molten slag heat recovery system comprising a heat recovery device that recovers heat of the solidified slag, and is included in the solidified slag by holding the solidified slag soaking at a predetermined temperature immediately below the casting machine. A heat recovery system for solidified slag, characterized in that a heat insulation tank for crystallizing the glass layer is provided.

(7)前記保温槽は前記保温槽内に収容された凝固スラグを加熱する手段を有する、前記(6)に記載の凝固スラグの熱回収システム。 (7) The heat recovery system for solidified slag according to (6), wherein the heat retaining tank includes means for heating the solidified slag accommodated in the heat retaining tank.

(8)前記所定の温度は900℃以上である、前記(6)または(7)に記載の凝固スラグの熱回収システム。 (8) The heat recovery system for solidified slag according to (6) or (7), wherein the predetermined temperature is 900 ° C. or higher.

(9)前記保温槽と前記熱回収装置との間に前記凝固スラグから放出される硫黄分を除去する脱硫装置をさらに備える、前記(6)〜(8)のいずれか一項に記載の凝固スラグの熱回収システム。 (9) The solidification according to any one of (6) to (8), further including a desulfurization device that removes a sulfur content released from the solidification slag between the heat retaining tank and the heat recovery device. Slag heat recovery system.

(10)前記保温槽と前記熱回収装置との間に前記凝固スラグを破砕する破砕機をさらに備える、前記(6)〜(9)のいずれか一項に記載の凝固スラグの熱回収システム。 (10) The heat recovery system for solidified slag according to any one of (6) to (9), further including a crusher that crushes the solidified slag between the heat retaining tank and the heat recovery device.

本発明によれば、凝固スラグを所定の温度で均熱保持して凝固スラグに含まれるガラス層を結晶化した後に凝固スラグから熱を回収するようにしたため、凝固スラグのガラス化を抑制して高品質の凝固スラグを得つつ、凝固スラグから熱回収することができる。   According to the present invention, the solidified slag is soaked at a predetermined temperature so that heat is recovered from the solidified slag after crystallization of the glass layer contained in the solidified slag. While obtaining high quality solidified slag, heat can be recovered from the solidified slag.

本発明に係る熱回収システムの好適な一例を示す図である。It is a figure showing a suitable example of a heat recovery system concerning the present invention. 板状凝固スラグの鋳造に用いる鋳型の一例を示す図である。It is a figure which shows an example of the casting_mold | template used for casting of plate-shaped solidification slag. 高炉スラグの結晶化に関する等温変態線図である。It is an isothermal transformation diagram regarding crystallization of blast furnace slag. 板状凝固スラグの板厚方向の温度分布を示す図である。It is a figure which shows the temperature distribution of the plate | board thickness direction of plate-shaped solidification slag. 結晶化前の凝固スラグから熱回収した際の等温変態線図上でのスラグ温度履歴を示す図である。It is a figure which shows the slag temperature history on the isothermal transformation diagram at the time of heat-recovering from the solidification slag before crystallization. 凝固スラグの粉砕サンプルに対して示差熱−熱重量同時測定分析を行った際の二酸化硫黄の放散挙動を示す図である。It is a figure which shows the diffusion behavior of sulfur dioxide at the time of performing differential thermal-thermogravimetric simultaneous measurement analysis with respect to the grinding | pulverization sample of solidification slag. 凝固スラグのサンプルに含まれる硫黄分の濃度を示す図である。It is a figure which shows the density | concentration of the sulfur content contained in the sample of solidification slag. 実施例に用いた鉄製の鋳型を示す図である。It is a figure which shows the iron casting_mold | templates used for the Example.

以下、図面を参照して本発明の実施形態について説明する。本発明に係る凝固スラグの熱回収方法は、高炉において発生する溶融スラグを鋳型に供給して板状に鋳造された凝固スラグから熱を回収する。ここで、凝固スラグを所定の温度で均熱保持して凝固スラグに含まれるガラス層を結晶化した後に凝固スラグから熱を回収することが肝要である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The heat recovery method for solidified slag according to the present invention supplies molten slag generated in a blast furnace to a mold and recovers heat from the solidified slag cast into a plate shape. Here, it is important to recover heat from the solidified slag after the solidified slag is maintained at a predetermined temperature so as to crystallize the glass layer contained in the solidified slag.

図1は、本発明に係る熱回収システムの好適な一例を示す図である。この熱回収システム1は、高炉において発生する溶融スラグMを受滓する鋳型11を有し、受滓された溶融スラグMを板状に凝固させる鋳滓機12と、鋳滓機12の下流直下に設けられた、凝固スラグSを均熱保持して凝固スラグSに含まれるガラス層を結晶化させるための保温槽16と、該保温槽16に設けられた、凝固スラグSに含まれる酸化硫黄(SOx)ガスを除去する脱硫装置17と、保温槽16から排出された凝固スラグSを破砕する破砕機18と、破砕された凝固スラグS’の熱を回収する熱回収装置19とを備える。以下、この熱回収システム1を用いた本発明に係る熱回収方法を説明するが、この実施形態に限定されない。   FIG. 1 is a diagram showing a preferred example of a heat recovery system according to the present invention. This heat recovery system 1 has a mold 11 that receives molten slag M generated in a blast furnace, a caster 12 that solidifies the received molten slag M into a plate shape, and a direct downstream of the caster 12. A heat insulating tank 16 for keeping the solidified slag S soaked and crystallizing the glass layer contained in the solidified slag S, and a sulfur oxide contained in the solidified slag S provided in the heat insulating tank 16. (SOx) The desulfurization apparatus 17 which removes gas, the crusher 18 which crushes the solidification slag S discharged | emitted from the heat retention tank 16, and the heat recovery apparatus 19 which collect | recovers the heat | fever of the crushing solidification slag S 'are provided. Hereinafter, although the heat recovery method according to the present invention using this heat recovery system 1 will be described, it is not limited to this embodiment.

まず、高炉において発生する溶融スラグMを鋳型11に供給し、板状に鋳造して凝固スラグSを得る。上述のように、高炉においては大量の溶融スラグMが発生するが、この溶融スラグMの顕熱を回収することにより、非常に大きな省エネルギー効果が期待できる。しかし、液体状の溶融スラグMから熱を直接回収することは困難である。そこでまず、溶融スラグMを鋳型11に供給して凝固スラグSを鋳造する。   First, molten slag M generated in a blast furnace is supplied to the mold 11 and cast into a plate shape to obtain a solidified slag S. As described above, a large amount of molten slag M is generated in the blast furnace. By recovering the sensible heat of the molten slag M, a very large energy saving effect can be expected. However, it is difficult to directly recover heat from the liquid molten slag M. Therefore, first, the molten slag M is supplied to the mold 11 to cast the solidified slag S.

ここで、凝固スラグの形状は例えば板状であり、凝固スラグSが「板状」であるとは、溶融スラグMの凝固に用いる鋳型の深さ方向に対応する方向を厚み方向とする板であって、板厚が厚み方向に互いに直交する2方向の寸法よりも小さいことを意味している。   Here, the shape of the solidified slag is, for example, a plate shape, and the solidified slag S is “plate-shaped” means that the thickness direction is a direction corresponding to the depth direction of the mold used for solidification of the molten slag M. Therefore, it means that the plate thickness is smaller than the dimension in two directions perpendicular to each other in the thickness direction.

板状の凝固スラグSの鋳造は、図1に例示した鋳滓機12を用いて行うことができる。この鋳滓機12は、連続して搬送される複数の鋳型11を有しており、スラグ鍋14から溶融スラグMがスラグ樋15を介して鋳型11に供給されると、コンベアにより搬送され、この搬送の際に鋳型11中の溶融スラグが冷却されて板状の凝固スラグSが鋳造される。こうして鋳造された凝固スラグSは、鋳滓機12の末端で鋳型11を反転させることにより、鋳型11から剥離させて地面や容器内等に落下させて回収する。   Casting of the plate-shaped solidified slag S can be performed using the cast iron machine 12 illustrated in FIG. This casting machine 12 has a plurality of molds 11 that are continuously conveyed, and when molten slag M is supplied from the slag pan 14 to the mold 11 via the slag bar 15, it is conveyed by a conveyor, During this conveyance, the molten slag in the mold 11 is cooled and a plate-like solidified slag S is cast. The solidified slag S thus cast is recovered by dropping it from the mold 11 by dropping the mold 11 at the end of the casting machine 12 and dropping it into the ground or a container.

凝固スラグSが剥離した鋳型11は、その後溶融スラグMの供給位置へと戻されて再び反転し、スラグ鍋14から溶融スラグMを再び受滓して、凝固スラグSが連続的に鋳造されることになる。こうして、溶融スラグMから板状の凝固スラグSを連続的に鋳造することができる。なお、上記鋳滓機12は用途や目的に応じて適切に変更することができ、図1に示された構成に限定されない。   The mold 11 from which the solidified slag S has been peeled is then returned to the supply position of the molten slag M and reversed again, receiving the molten slag M from the slag pan 14 again, and the solidified slag S is continuously cast. It will be. Thus, the plate-shaped solidified slag S can be continuously cast from the molten slag M. In addition, the said casting machine 12 can be changed suitably according to a use and the objective, and is not limited to the structure shown by FIG.

図2は、板状凝固スラグSの鋳造に用いる鋳型11の一例を示す図である。この鋳型11内部の形状は、板状の凝固スラグSが得られれば特に限定されない。鋳型11に供給された溶融スラグMは、鋳型内で一様に冷却されて、厚みtを有する板状の凝固スラグSとなる。   FIG. 2 is a view showing an example of a mold 11 used for casting the plate-shaped solidified slag S. As shown in FIG. The shape inside the mold 11 is not particularly limited as long as a plate-shaped solidified slag S is obtained. The molten slag M supplied to the mold 11 is uniformly cooled in the mold to become a plate-shaped solidified slag S having a thickness t.

凝固スラグSの厚みtは、5mm以上30mm以下とすることが好ましい。ここで、厚みtを5mm以上とすることにより、溶融スラグMを板状に鋳造する際に、冷却速度のばらつきや搬送時の温度低下を抑制し、ひいては熱回収装置19に供給される凝固スラグSの温度のばらつきを抑制することができる。また、厚みtを30mm以下とすることにより、溶融スラグMを鋳造させる際の冷却速度の低下を抑制し、凝固スラグS内における気泡の発生を抑制して気孔率を抑えた緻密で強度の高い凝固スラグを得ることができる。
このように、スラグ凝固厚みを5mm以上30mm以下に制御することにより、熱回収装置に凝固スラグを供給する際、高温で温度ばらつきが小さく、更に強度も高い状態でスラグを供給でき、結果として、凝固スラグSから熱を回収する際の熱回収率および熱回収ガスの圧力の低下、すなわち圧力損失のばらつきを抑制することができる。
The thickness t of the solidified slag S is preferably 5 mm or more and 30 mm or less. Here, when the thickness t is 5 mm or more, when the molten slag M is cast into a plate shape, the variation in the cooling rate and the temperature drop during the conveyance are suppressed, and as a result, the solidified slag supplied to the heat recovery device 19. Variation in the temperature of S can be suppressed. In addition, by setting the thickness t to 30 mm or less, a decrease in the cooling rate when casting the molten slag M is suppressed, and the generation of bubbles in the solidified slag S is suppressed and the porosity is suppressed and the strength is high. Solidified slag can be obtained.
In this way, by controlling the slag solidification thickness to 5 mm or more and 30 mm or less, when supplying the solidification slag to the heat recovery device, the slag can be supplied in a state where the temperature variation is small at high temperature and the strength is high. A reduction in the heat recovery rate and the pressure of the heat recovery gas when recovering heat from the solidified slag S, that is, variations in pressure loss can be suppressed.

なお、連続的に搬送される鋳型11を用いて、凝固スラグSの鋳造を繰り返し行うと、鋳型11の温度が徐々に上昇し、ある一定の温度を超えると、溶融スラグMが冷却されにくくなるばかりでなく、鋳型11自身の強度が低下する場合や、スラグと鋳型11とが焼付いて凝固スラグSが剥離できなくなる場合がある。そこで、鋳型11の過剰な温度上昇を防止するために、例えば凝固スラグSを排滓した際の鋳型11を水で洗浄する等により、鋳型11を冷却することが好ましい。   When the casting of the solidified slag S is repeatedly performed using the continuously conveyed mold 11, the temperature of the mold 11 gradually increases, and when the temperature exceeds a certain temperature, the molten slag M becomes difficult to be cooled. In addition, the strength of the mold 11 itself may decrease, or the slag and the mold 11 may be seized and the solidified slag S may not be peeled off. Therefore, in order to prevent an excessive temperature rise of the mold 11, it is preferable to cool the mold 11 by washing the mold 11 with water when the solidified slag S is discharged, for example.

次いで、鋳滓機12により鋳造された板状凝固スラグSを保温槽16に装入し、所定の温度で均熱保持して、凝固スラグSに含まれるガラス層を結晶化する。上述のように、本発明においては、凝固スラグSを所定の温度で均熱保持して凝固スラグSに含まれるガラス層を結晶化した後に凝固スラグSから熱を回収することが肝要である。そこで、凝固スラグSを一旦保温槽16に装入し、凝固スラグSに含まれるガラス層が結晶化する所定の温度で均熱保持する。   Next, the plate-like solidified slag S cast by the casting machine 12 is charged into the heat retaining tank 16 and kept soaked at a predetermined temperature to crystallize the glass layer contained in the solidified slag S. As described above, in the present invention, it is important to recover heat from the solidified slag S after the solidified slag S is soaked at a predetermined temperature to crystallize the glass layer contained in the solidified slag S. Therefore, the solidified slag S is once charged in the heat insulation tank 16 and is kept soaked at a predetermined temperature at which the glass layer contained in the solidified slag S crystallizes.

図3は、結晶化に関する等温変態(Time−Temperature−Transformation、TTT)線図である(Yoshiaki KASHIWAYA, Toshiki NAKAUCHI, Khanh Son PHAM, Seitarou AKIYAMA and Kuniyoshi ISHII, ISIJ Internatinal, Vol. 47 (2007), No. 1, pp.44-52参照)。この図から、凝固スラグSに含まれるガラス層は、融点未満の特定の温度、具体的には、900℃程度以上の温度で均熱保持すれば結晶化することが分かる。そこで、保温槽16において凝固スラグSを均熱保持する温度は900℃以上であることが好ましい。ここで、溶融スラグMが凝固する際には、鋳型11との接触する部分がガラス化するため、上記温度は、凝固スラグの表面温度を指すものとする。   FIG. 3 is an isothermal transformation (Time-Temperature-Transformation, TTT) diagram (Yoshiaki KASHIWAYA, Toshiki NAKAUCHI, Khanh Son PHAM, Seitarou AKIYAMA and Kuniyoshi ISHII, ISIJ Internatinal, Vol. 47 (2007), No. 1, see pp. 44-52). From this figure, it can be seen that the glass layer contained in the solidified slag S is crystallized if it is kept soaked at a specific temperature below the melting point, specifically, at a temperature of about 900 ° C. or higher. Therefore, the temperature at which the solidified slag S is kept soaked in the heat insulating tank 16 is preferably 900 ° C. or higher. Here, when the molten slag M solidifies, the portion that comes into contact with the mold 11 is vitrified, and thus the above temperature refers to the surface temperature of the solidified slag.

図4は、板状凝固スラグSの板厚方向の温度分布を示す図である。この図に示すように、凝固スラグSは、板厚方向の中心部に1000℃以上の高い温度領域を有している。よって、凝固直後に保温槽16において均熱保持することにより、凝固スラグS自身が保有する熱により、凝固スラグSに含まれるガラス層を結晶化させることができる。しかしながら、このようなスラグ自己保有熱による結晶化が完了する前に凝固スラグSの熱回収を開始した場合には、スラグ温度がTTT線図から予想される結晶化限界線を下回って、凝固スラグS中にガラス層が残存する懸念がある。   FIG. 4 is a view showing a temperature distribution in the plate thickness direction of the plate-like solidified slag S. As shown in FIG. As shown in this figure, the solidified slag S has a high temperature region of 1000 ° C. or more at the center in the thickness direction. Therefore, the glass layer contained in the solidified slag S can be crystallized by the heat held by the solidified slag S itself by maintaining the temperature in the heat retaining tank 16 immediately after solidification. However, if the heat recovery of the solidified slag S is started before the crystallization by such slag self-contained heat is completed, the slag temperature falls below the crystallization limit line expected from the TTT diagram, and the solidified slag S There is a concern that the glass layer remains in S.

図5は、結晶化前の凝固スラグSから熱回収した際のTTT線図上でのスラグ温度履歴を示す図であり、板厚:25mm、温度:1000℃の凝固スラグSを直径:5m、高さ:5mの熱回収装置としての充填層に、60t/hの処理ピッチで装入/排出しながらガス流量10万Nm3/hで熱回収を行った際の、スラグ表面温度の時間変化の計算結果を示している。この図から明らかなように、熱回収時の凝固スラグS表面の温度は、TTT線図における結晶化温度の下限近傍まで低下している。 FIG. 5 is a diagram showing a slag temperature history on a TTT diagram when heat is recovered from the solidified slag S before crystallization, and the solidified slag S having a plate thickness of 25 mm and a temperature of 1000 ° C. has a diameter of 5 m, Height: Temporal change in slag surface temperature when heat recovery was performed at a gas flow rate of 100,000 Nm 3 / h while charging / discharging into a packed bed as a heat recovery device of 5 m at a processing pitch of 60 t / h The calculation result is shown. As is apparent from this figure, the temperature of the solidified slag S surface during heat recovery is reduced to near the lower limit of the crystallization temperature in the TTT diagram.

つまり、凝固直後の凝固スラグSから熱回収をした場合には、凝固スラグS中にガラス層が残存するリスクがあることが分かる。そこで、本発明においては、凝固直後の凝固スラグSを保温槽16に装入し、保温槽16においてガラス層が結晶化できる所定の温度にて均熱保持することにより凝固スラグSに含まれるガラス層を結晶化させ、ガラス層の結晶化が完了した後に凝固スラグSから熱を回収するようにする。これにより、凝固スラグSの品質を低下させることなく凝固スラグSの熱を回収することができるのである。   That is, it can be seen that when heat is recovered from the solidified slag S immediately after solidification, there is a risk that the glass layer remains in the solidified slag S. Therefore, in the present invention, the glass contained in the solidified slag S is charged by charging the solidified slag S immediately after solidification into the heat insulating tank 16 and holding it at a predetermined temperature at which the glass layer can be crystallized in the heat insulating tank 16. The layer is crystallized and heat is recovered from the solidified slag S after the crystallization of the glass layer is complete. As a result, the heat of the solidified slag S can be recovered without degrading the quality of the solidified slag S.

凝固スラグSを均熱保持する保温槽16は、ガラス層を結晶化できる温度で凝固スラグSを均熱保持できさえすれば、その構成は特に限定されない。例えば、耐火煉瓦等による断熱壁で囲う構造や保温に十分な厚みを有する耐熱鋼を用いたスラグ運搬鍋などで構成することができる。   The heat insulation tank 16 that holds the solidified slag S soaked is not particularly limited as long as the solidified slag S can be kept soaked at a temperature at which the glass layer can be crystallized. For example, it can be comprised with the structure enclosed with the heat insulation wall, such as a refractory brick, the slag conveyance pot using the heat resistant steel which has sufficient thickness for heat retention.

凝固スラグSを均熱保持する時間は、均熱保持する温度に応じた適切な時間だけ行うようにする。図3から明らかなように、均熱保持温度が例えば950℃の場合、均熱保持時間は50秒程度で十分であることが分かる。   The soaking time of the solidified slag S is set to an appropriate time according to the temperature at which the soaking is maintained. As is apparent from FIG. 3, when the soaking temperature is 950 ° C., for example, it can be seen that about 50 seconds is sufficient for the soaking time.

また、上記した凝固スラグSの均熱保持は、凝固スラグSを加熱して行うことが好ましい。これにより、短時間でガラス層を結晶化することができる。このような凝固スラグSの加熱は、熱風発生器やラジアントチューブバーナー等の加熱手段を保温槽16に設けることにより行うことができる   Further, it is preferable that the soaking of the solidified slag S is performed by heating the solidified slag S. Thereby, a glass layer can be crystallized in a short time. Such heating of the solidified slag S can be performed by providing heating means such as a hot air generator or a radiant tube burner in the heat insulating tank 16.

さらに、凝固スラグSからの熱回収は、凝固スラグSから放出される硫黄分を除去した後に行うことが好ましい。図6は、高炉スラグ(溶融スラグM)を鋳滓機12により25mm厚に凝固させたサンプルの粉砕試料を用いて示差熱−熱重量同時測定(Thermogravimetry−Differential Thermal Analysis、TG−DTA)を行った結果を示している。この図から明らかなように、硫黄分である二酸化硫黄(SO2)ガスが900℃以上の温度で大量に発生することが分かる。すなわち、凝固スラグSに含まれるガラス層を結晶化させるために必要な900℃以上の温度域では、凝固スラグSから硫黄分の放出も同時に起こることが分かる。 Furthermore, it is preferable that the heat recovery from the solidified slag S is performed after the sulfur component released from the solidified slag S is removed. FIG. 6 shows a simultaneous differential thermo-thermogravimetric measurement (TG-DTA) using a pulverized sample of a blast furnace slag (molten slag M) solidified to a thickness of 25 mm by a cast iron 12. The results are shown. As is apparent from this figure, it can be seen that a large amount of sulfur dioxide (SO 2 ) gas, which is a sulfur component, is generated at a temperature of 900 ° C. or higher. That is, it can be seen that in the temperature range of 900 ° C. or higher necessary for crystallizing the glass layer contained in the solidified slag S, the sulfur content is simultaneously released from the solidified slag S.

図7は、上記の25mm厚の凝固スラグのサンプルに含まれる硫黄分の濃度を測定した結果を示しており、サンプルを粉砕せずに全厚のまま1000℃にて5分、10分および20分間等温保持した後の残存硫黄分の濃度を示している。この図から、硫黄放散温度域での等温保持により、約0.3%の硫黄分が減少することが分かる。また、保持時間の増加による影響は少ないことも分かる。これは、スラグ中の硫黄分は外気中の酸素と結合してガス化するため、外気と触れている凝固スラグSの表面および表面近傍の硫黄分のみが放散に寄与することが原因と推定される。   FIG. 7 shows the result of measuring the concentration of sulfur contained in the above-mentioned 25 mm thick solidified slag sample, and the sample is not crushed but remains at the full thickness at 1000 ° C. for 5 minutes, 10 minutes and 20 minutes. It shows the concentration of residual sulfur after being kept isothermal for 1 minute. From this figure, it can be seen that approximately 0.3% of the sulfur content is reduced by isothermal holding in the sulfur emission temperature range. It can also be seen that the effect of increasing the holding time is small. This is presumed to be because the sulfur content in the slag is combined with oxygen in the outside air and gasified, so only the surface of the solidified slag S in contact with the outside air and the sulfur content in the vicinity of the surface contribute to the emission. The

熱回収装置19において得られる高温の熱回収ガスGは、ボイラ等の熱交換設備へと供給される。そのため、硫黄分が熱回収ガス中にSOxとして混入すると、熱交換器の部品の腐食を促進させるおそれがある。熱交換器の部品が腐食すると、エアリークが発生して熱利用効率が低下する。熱交換器は一般的に長期使用を前提とした設備設計をされるため、部品の腐食頻度が高い場合にはメンテナンス費用が高額となり、投資に見合わない設備になってしまう。 The high-temperature heat recovery gas G obtained in the heat recovery device 19 is supplied to a heat exchange facility such as a boiler. Therefore, if sulfur content is mixed in the heat recovery gas as SO x , corrosion of heat exchanger components may be accelerated. When the heat exchanger components are corroded, air leakage occurs and heat utilization efficiency decreases. Since heat exchangers are generally designed on the premise of long-term use, if the corrosion frequency of parts is high, maintenance costs are high, and the equipment becomes unfit for investment.

そこで、凝固スラグSから熱回収する前に、凝固スラグSから放出される硫黄分を予め除去しておくことにより、上記した熱交換器の部品の腐食を防止することができる。凝固スラグSから放出される硫黄分の除去は、例えば、図1に示すように、保温槽16の出側に脱硫装置17を設けることにより行うことができる。   Therefore, by removing in advance the sulfur content released from the solidified slag S before recovering heat from the solidified slag S, corrosion of the components of the heat exchanger described above can be prevented. For example, as shown in FIG. 1, the sulfur content released from the solidified slag S can be removed by providing a desulfurization device 17 on the outlet side of the heat insulating tank 16.

続いて、凝固スラグSを破砕機18に導入して破砕し、破砕した凝固スラグS’から熱回収するようにすることが好ましい。これにより、凝固スラグSの表面積が増加して、凝固スラグSからの熱回収を効率的に行うことができる。   Subsequently, the solidified slag S is preferably introduced into the crusher 18 and crushed, and heat is recovered from the crushed solidified slag S ′. Thereby, the surface area of the solidification slag S increases, and the heat recovery from the solidification slag S can be performed efficiently.

その後、破砕した凝固スラグS’を熱回収装置19に導入し、装置19内に熱回収ガスGを供給することにより、凝固スラグS’の熱を回収する。熱回収装置19の装置構成は特に限定されるものではなく、例えば、スラグ充填槽、スラグ装入装置、スラグ排出装置、送風機からなる、向流型の充填層方式のものを用いることができる。この熱回収装置19の上部から凝固スラグS’を装入して凝固スラグS’の充填層を形成した後、装置19の下部から熱回収ガスGを供給して充填層内で熱交換を行って凝固スラグS’の熱を回収し、加熱された熱回収ガスGが熱回収装置19から排出される。なお、本発明において、スラグの熱とは、顕熱を意味している。   Thereafter, the crushed solidified slag S ′ is introduced into the heat recovery device 19, and the heat recovery gas G is supplied into the device 19 to recover the heat of the solidified slag S ′. The apparatus configuration of the heat recovery apparatus 19 is not particularly limited, and for example, a countercurrent packed bed system composed of a slag filling tank, a slag charging apparatus, a slag discharge apparatus, and a blower can be used. After the solidified slag S ′ is charged from the upper part of the heat recovery device 19 to form a packed layer of the solidified slag S ′, the heat recovery gas G is supplied from the lower part of the device 19 to exchange heat in the packed bed. Then, the heat of the solidified slag S ′ is recovered, and the heated heat recovery gas G is discharged from the heat recovery device 19. In the present invention, the heat of slag means sensible heat.

ここで、熱回収ガスGとしては、空気等の常温ガスや、熱風炉から排出された燃焼排ガス等を用いることができる。   Here, as the heat recovery gas G, room temperature gas such as air, combustion exhaust gas discharged from a hot stove, or the like can be used.

こうして、凝固スラグのガラス化を抑制して高品質の凝固スラグを得つつ、凝固スラグから熱回収を行うことができる。   Thus, it is possible to recover heat from the solidified slag while suppressing the vitrification of the solidified slag to obtain a high-quality solidified slag.

(発明例)
以下、本発明の実施例について説明する。
まず、高周波溶解炉を用いて溶融して得られた溶融スラグを、図8に示す鉄製の鋳型(内寸:120×120mm)に注いで厚さ:25mmに凝固成形し、上面から放射温度計により測定した凝固スラグの温度が1000℃になった時点で鋳型を反転して凝固スラグを取り出した。次に、取り出した凝固スラグを、断熱材(キャスタブル)で構成した保温槽(250mm×250mm×50mm)に装入し、10分間均熱保持した後、破砕機により凝固スラグを破砕した。その後、破砕した凝固スラグを熱回収装置に導入して熱回収を行った。
(Invention example)
Examples of the present invention will be described below.
First, molten slag obtained by melting using a high-frequency melting furnace is poured into an iron mold (inner dimensions: 120 × 120 mm) shown in FIG. 8 and solidified to a thickness of 25 mm. When the temperature of the solidified slag measured by (1) reached 1000 ° C., the mold was inverted and the solidified slag was taken out. Next, the solidified slag taken out was charged into a heat insulating tank (250 mm × 250 mm × 50 mm) constituted by a heat insulating material (castable), and kept soaked for 10 minutes, and then the solidified slag was crushed by a crusher. Thereafter, the crushed solidified slag was introduced into a heat recovery apparatus to perform heat recovery.

(比較例)
発明例と同様に熱回収を行った。ただし、凝固スラグを保温槽に装入せず、破砕機に供給した。その他の条件は発明例と全て同じである。
(Comparative example)
Heat recovery was performed in the same manner as in the inventive examples. However, the solidified slag was supplied to the crusher without charging the heat insulation tank. Other conditions are the same as those of the invention examples.

熱回収後にサンプルをハンマーで破砕して、凝固スラグに付着しているガラス層の厚さの平均値を測定した。その結果、発明例についてはガラス層が残存しなかったのに対して、比較例については、ガラス層が残存し、その平均厚さは1.5mmであった。このように、熱回収を行う前に凝固スラグを均熱保持することにより、凝固スラグに含まれるガラス層を結晶化してスラグ品質を向上させることができる。   After heat recovery, the sample was crushed with a hammer, and the average value of the thickness of the glass layer adhering to the solidified slag was measured. As a result, the glass layer did not remain for the inventive example, whereas the glass layer remained for the comparative example, and the average thickness was 1.5 mm. As described above, by maintaining the soaked solid slag before heat recovery, the glass layer contained in the solidified slag can be crystallized to improve the slag quality.

本発明によれば、凝固スラグを所定の温度で均熱保持して凝固スラグに含まれるガラス層を結晶化した後に凝固スラグから熱を回収するようにし、凝固スラグのガラス化を抑制して高品質の凝固スラグを得つつ熱回収を行うことができるため、製鉄業において有用である。   According to the present invention, the solidified slag is soaked at a predetermined temperature so that the glass layer contained in the solidified slag is crystallized, and then heat is recovered from the solidified slag. Since heat recovery can be performed while obtaining solidified slag of quality, it is useful in the steel industry.

1 熱回収システム
11 鋳型
12 鋳滓機
14 スラグ鍋
15 スラグ樋
16 保温槽
17 脱硫装置
18 破砕機
19 熱回収装置
M 溶融スラグ
S,S’ 凝固スラグ
G 熱回収ガス
DESCRIPTION OF SYMBOLS 1 Heat recovery system 11 Mold 12 Casting machine 14 Slag pan 15 Slag pot 16 Thermal insulation tank 17 Desulfurization apparatus 18 Crusher 19 Heat recovery apparatus M Molten slag S, S 'Solidification slag G Heat recovery gas

Claims (10)

高炉において発生する溶融スラグを凝固した凝固スラグから熱を回収するに当たり、
前記凝固スラグを所定の温度で均熱保持して前記凝固スラグに含まれるガラス層を結晶化した後に前記凝固スラグから熱を回収することを特徴とする凝固スラグの熱回収方法。
In recovering heat from the solidified slag that solidifies the molten slag generated in the blast furnace,
A method for recovering heat of solidified slag, characterized in that the solidified slag is maintained at a predetermined temperature so as to crystallize a glass layer contained in the solidified slag, and then heat is recovered from the solidified slag.
前記凝固スラグの均熱保持は前記凝固スラグを加熱して行う、請求項1に記載の凝固スラグの熱回収方法。   The heat recovery method for solidified slag according to claim 1, wherein the soaking of the solidified slag is performed by heating the solidified slag. 前記所定の温度は900℃以上である、請求項1または2に記載の凝固スラグの熱回収方法。   The heat recovery method for solidified slag according to claim 1 or 2, wherein the predetermined temperature is 900 ° C or higher. 前記凝固スラグからの熱回収は、前記凝固スラグから放出される硫黄分を除去した後に行う、請求項1〜3のいずれか一項に記載の凝固スラグの熱回収方法。   The heat recovery method of the solidification slag as described in any one of Claims 1-3 performed after removing the sulfur content discharge | released from the said solidification slag. 前記凝固スラグからの熱回収は前記凝固スラグを破砕した後に行う、請求項1〜4のいずれか一項に記載の凝固スラグの熱回収方法。   The heat recovery method of the solidified slag according to any one of claims 1 to 4, wherein the heat recovery from the solidified slag is performed after the solidified slag is crushed. 高炉において発生する溶融スラグを受滓する鋳型を有し、該受滓された溶融スラグを板状に鋳造する鋳滓機と、熱回収ガスを供給し、該ガスを介して前記板状凝固スラグの熱を回収する熱回収装置とを備える溶融スラグの熱回収システムにおいて、
前記鋳滓機の下流直下に、前記凝固スラグを所定の温度で均熱保持して前記凝固スラグに含まれるガラス層を結晶化させる保温槽を設けたことを特徴とする凝固スラグの熱回収システム。
A casting machine having a mold for receiving molten slag generated in a blast furnace, casting the received molten slag into a plate shape, supplying heat recovery gas, and the plate-like solidified slag through the gas; In a heat recovery system for molten slag, comprising a heat recovery device that recovers the heat of
A heat recovery system for solidified slag, characterized in that a heat retention tank is provided immediately below the casting machine to keep the solidified slag soaked at a predetermined temperature to crystallize the glass layer contained in the solidified slag. .
前記保温槽は前記保温槽内に収容された凝固スラグを加熱する手段を有する、請求項6に記載の凝固スラグの熱回収システム。   The said heat retention tank is a heat recovery system of the solidification slag of Claim 6 which has a means to heat the solidification slag accommodated in the said heat retention tank. 前記所定の温度は900℃以上である、請求項6または7に記載の凝固スラグの熱回収システム。   The heat recovery system for solidified slag according to claim 6 or 7, wherein the predetermined temperature is 900 ° C or higher. 前記保温槽と前記熱回収装置との間に前記凝固スラグから放出される硫黄分を除去する脱硫装置をさらに備える、請求項6〜8のいずれか一項に記載の凝固スラグの熱回収システム。   The heat recovery system for solidified slag according to any one of claims 6 to 8, further comprising a desulfurization device that removes a sulfur content released from the solidified slag between the heat retaining tank and the heat recovery device. 前記保温槽と前記熱回収装置との間に前記凝固スラグを破砕する破砕機をさらに備える、請求項6〜9のいずれか一項に記載の凝固スラグの熱回収システム。   The heat recovery system of the solidification slag as described in any one of Claims 6-9 further provided with the crusher which crushes the said solidification slag between the said heat retention tank and the said heat recovery apparatus.
JP2014173036A 2014-08-27 2014-08-27 Heat recovery method and heat recovery system for solidified slag Active JP6318982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173036A JP6318982B2 (en) 2014-08-27 2014-08-27 Heat recovery method and heat recovery system for solidified slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014173036A JP6318982B2 (en) 2014-08-27 2014-08-27 Heat recovery method and heat recovery system for solidified slag

Publications (2)

Publication Number Publication Date
JP2016047782A true JP2016047782A (en) 2016-04-07
JP6318982B2 JP6318982B2 (en) 2018-05-09

Family

ID=55648922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173036A Active JP6318982B2 (en) 2014-08-27 2014-08-27 Heat recovery method and heat recovery system for solidified slag

Country Status (1)

Country Link
JP (1) JP6318982B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977599A (en) * 2018-10-12 2018-12-11 中冶节能环保有限责任公司 A kind of casting residue melt handles and recycles the device and process of metallic iron
KR102221329B1 (en) * 2020-08-07 2021-02-26 공주대학교 산학협력단 Supplimentary cementitious material manufactured by using the secondary slag generated from valuable metal recovery process for Cupper slag and Zinc slag
JP7173425B1 (en) * 2021-06-24 2022-11-16 Jfeスチール株式会社 Granular solidified slag manufacturing method and manufacturing equipment
JPWO2022270516A1 (en) * 2021-06-23 2022-12-29
WO2022270480A1 (en) * 2021-06-24 2022-12-29 Jfeスチール株式会社 Granular solidified slag manufacturing method and manufacturing facility

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118066A (en) * 1981-01-13 1982-07-22 Nippon Steel Corp Manufacture of aggregate from blast furnace slag
US4350326A (en) * 1981-02-02 1982-09-21 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for heat recovery from molten slag
JPS5837104A (en) * 1981-08-26 1983-03-04 Sumitomo Metal Ind Ltd Recovering method for heat from blast furnace slag
JPS5895188A (en) * 1981-12-01 1983-06-06 住友金属工業株式会社 Method of recovering heat of shaft furnace slag
JPH11189440A (en) * 1997-12-26 1999-07-13 Ebara Corp Production of granulated slag
JPH11236609A (en) * 1998-02-23 1999-08-31 Nippon Steel Corp Treatment of blast furnace slag and apparatus thereof
JPH11246244A (en) * 1997-12-03 1999-09-14 Ebara Corp Apparatus for recovering slag from waste
JP2008308754A (en) * 2007-06-18 2008-12-25 Daido Steel Co Ltd Sulfer removal method for used slag
JP2013139596A (en) * 2011-12-28 2013-07-18 Jfe Steel Corp Method and system for recovering heat
JP2014085064A (en) * 2012-10-24 2014-05-12 Jfe Steel Corp Heat recovery system for coagulation slag and heat recovery method
WO2015025501A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118066A (en) * 1981-01-13 1982-07-22 Nippon Steel Corp Manufacture of aggregate from blast furnace slag
US4350326A (en) * 1981-02-02 1982-09-21 Kawasaki Jukogyo Kabushiki Kaisha Apparatus for heat recovery from molten slag
JPS5837104A (en) * 1981-08-26 1983-03-04 Sumitomo Metal Ind Ltd Recovering method for heat from blast furnace slag
JPS5895188A (en) * 1981-12-01 1983-06-06 住友金属工業株式会社 Method of recovering heat of shaft furnace slag
JPH11246244A (en) * 1997-12-03 1999-09-14 Ebara Corp Apparatus for recovering slag from waste
JPH11189440A (en) * 1997-12-26 1999-07-13 Ebara Corp Production of granulated slag
JPH11236609A (en) * 1998-02-23 1999-08-31 Nippon Steel Corp Treatment of blast furnace slag and apparatus thereof
JP2008308754A (en) * 2007-06-18 2008-12-25 Daido Steel Co Ltd Sulfer removal method for used slag
JP2013139596A (en) * 2011-12-28 2013-07-18 Jfe Steel Corp Method and system for recovering heat
JP2014085064A (en) * 2012-10-24 2014-05-12 Jfe Steel Corp Heat recovery system for coagulation slag and heat recovery method
WO2015025501A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108977599A (en) * 2018-10-12 2018-12-11 中冶节能环保有限责任公司 A kind of casting residue melt handles and recycles the device and process of metallic iron
CN108977599B (en) * 2018-10-12 2023-05-05 中冶节能环保有限责任公司 Device and process method for molten state treatment and recovery of metallic iron from casting residues
KR102221329B1 (en) * 2020-08-07 2021-02-26 공주대학교 산학협력단 Supplimentary cementitious material manufactured by using the secondary slag generated from valuable metal recovery process for Cupper slag and Zinc slag
JPWO2022270516A1 (en) * 2021-06-23 2022-12-29
JP7448033B2 (en) 2021-06-23 2024-03-12 Jfeスチール株式会社 Granular solidified slag manufacturing method and its manufacturing equipment
JP7173425B1 (en) * 2021-06-24 2022-11-16 Jfeスチール株式会社 Granular solidified slag manufacturing method and manufacturing equipment
WO2022270480A1 (en) * 2021-06-24 2022-12-29 Jfeスチール株式会社 Granular solidified slag manufacturing method and manufacturing facility

Also Published As

Publication number Publication date
JP6318982B2 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
JP6318982B2 (en) Heat recovery method and heat recovery system for solidified slag
JP5541423B1 (en) Steelmaking slag reduction treatment device and steelmaking slag reduction treatment system
JP5544684B2 (en) Molten slag cooling processing apparatus and cooling processing method
Sun et al. Experimental investigation and modeling of cooling processes of high temperature slags
CN101476000A (en) Thermal state steel slag waste heat recovery system and recovery method
CN201670844U (en) Treatment device for crushing melting steel slag in rolling manner under air-cooling condition
TW201403015A (en) Apparatus for manufacturing solidified slag, apparatus for manufacturing coarse aggregate for concrete, method for manufacturing solidified slag, and method for manufacturing coarse aggregate for concrete
JP5338095B2 (en) Slag cooling method
JP4932308B2 (en) Method and apparatus for processing molten blast furnace slag
JP2013139596A (en) Method and system for recovering heat
JP5998845B2 (en) Heat recovery system and heat recovery method for solidified slag
JP2010235389A (en) Method of recovering heat energy of slag
JP2010235323A (en) Method of recovering heat energy of slag
JP4711735B2 (en) Method of melting fly ash mixed powder into molten slag
CN203559060U (en) Steel slag granulating device
CN105499268A (en) High-alloy super-thick steel plate rolling method
JP6031818B2 (en) Cooling method for stainless steel slag
JP6274184B2 (en) Slag heat recovery method and heat recovery system
CN107686867A (en) Cooling treatment method and its slag basin for titanium slag of coming out of the stove
JP5942427B2 (en) Heat recovery method for molten slag
JP5953919B2 (en) Cooling method for stainless steel slag
KR101298728B1 (en) Sensible heat collecting apparatus of furnace slag
JP4357981B2 (en) Slag processing method and processing apparatus
JP5130487B2 (en) Steelmaking slag treatment method
JP5517063B2 (en) Slag processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R150 Certificate of patent or registration of utility model

Ref document number: 6318982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250