JP2014085064A - Heat recovery system for coagulation slag and heat recovery method - Google Patents

Heat recovery system for coagulation slag and heat recovery method Download PDF

Info

Publication number
JP2014085064A
JP2014085064A JP2012234787A JP2012234787A JP2014085064A JP 2014085064 A JP2014085064 A JP 2014085064A JP 2012234787 A JP2012234787 A JP 2012234787A JP 2012234787 A JP2012234787 A JP 2012234787A JP 2014085064 A JP2014085064 A JP 2014085064A
Authority
JP
Japan
Prior art keywords
slag
heat recovery
solidified
mold
solidified slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012234787A
Other languages
Japanese (ja)
Other versions
JP5998845B2 (en
Inventor
Nobuyuki Shigaki
伸行 紫垣
Kazuhisa Kabeya
和久 壁矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012234787A priority Critical patent/JP5998845B2/en
Publication of JP2014085064A publication Critical patent/JP2014085064A/en
Application granted granted Critical
Publication of JP5998845B2 publication Critical patent/JP5998845B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hot carrier device and a hot carrier method for coagulation slag that can efficiently collect sensible heat of the coagulation slag.SOLUTION: An upper surface of molten slag 3 poured from a feeding device 4 into a casting mold 21 continuously transferred is fabricated at a horizontal transferring part 22a and the casting mold 21 is transferred horizontally while the fabrication is being carried out, the casting mold 21 is transferred up to a loading shoot 72 of a heat recovery device 7 at an oblique transferring part 22b in continuous with the horizontal transferring part 22a, and the formed coagulation slag 6 is loaded into the heat recovery device 7. With this operation, the coagulation slag 6 fabricated against irregularity is transferred to the heat recovery device 7 while being kept at high temperature to restrict reduction in temperature and thus it is possible to perform an efficient recovery of the sensitive heat from the coagulation slag 6.

Description

本発明は、鉄鋼製造プロセスなどで排出されるスラグ(鉱滓)を凝固成形した凝固スラグの顕熱を回収する凝固スラグの熱回収システムおよび熱回収方法に関する。   The present invention relates to a solidified slag heat recovery system and a heat recovery method for recovering sensible heat of solidified slag formed by solidification molding of slag (mineral) discharged in a steel manufacturing process or the like.

近年、地球温暖化防止を目的として、COが多量に発生する鉄鋼製造プロセスなどの製造プロセスに対して省エネルギー化が強く求められている。省エネルギー化対策の1つとしては排熱回収が効果的である。特に鉄鋼製造プロセスのような大量生産プロセスにおける排熱はエネルギー量が大きいため、排熱回収により得られる省エネルギー効果が非常に大きい。 In recent years, for the purpose of preventing global warming, energy saving is strongly demanded for manufacturing processes such as a steel manufacturing process in which a large amount of CO 2 is generated. As one of the energy saving measures, exhaust heat recovery is effective. In particular, the exhaust heat in a mass production process such as a steel manufacturing process has a large amount of energy, so the energy saving effect obtained by exhaust heat recovery is very large.

鉄鋼製造プロセスで排出される溶融スラグの顕熱は、銑鉄1トン当たり0.5GJほどの大きさを有することから、溶融スラグの顕熱を回収できれば、大きな省エネルギー効果が期待できる。しかしながら、溶融スラグの多くは、水砕処理または徐冷処理などを経て、水砕砂やスラグ骨材として利材化されており、溶融スラグの顕熱はほとんど利用されていない。   Since the sensible heat of the molten slag discharged in the steel manufacturing process has a magnitude of about 0.5 GJ per ton of pig iron, a large energy saving effect can be expected if the sensible heat of the molten slag can be recovered. However, most of the molten slag has been used as granulated sand or slag aggregate after undergoing a water granulation process or a slow cooling process, and the sensible heat of the molten slag is hardly utilized.

溶融スラグの顕熱を回収する技術として、特許文献1〜3には、スラグを風砕する技術が記載されている。また、特許文献4〜5には、溶融スラグをロール表面で急冷して凝固成形した後に熱回収装置に供給してスラグ顕熱を回収する技術が記載されている。   As a technique for recovering the sensible heat of molten slag, Patent Documents 1 to 3 describe a technique for crushing slag. Patent Documents 4 to 5 describe techniques for recovering slag sensible heat by rapidly cooling molten slag on the roll surface and solidifying and forming the slag and supplying it to a heat recovery device.

また、特許文献6には、鋳滓機を用いて溶融スラグを比較的肉厚な形状に凝固成形し、熱回収装置に凝固スラグを高温の状態で装入して顕熱を回収する方法が記載されている。このように溶融スラグを肉厚に凝固成形した場合、凝固スラグ単位体積当りの表面積が小さくなるため、凝固スラグが保温されやすく、凝固スラグの温度のばらつきも小さく、搬送等による凝固スラグの温度低下が抑えられ、高温で熱回収装置に供給することができる。また、厚みを有するため、凝固スラグの板厚(凝固厚)の中心が高温のまま保持されやすく、高い顕熱を有する状態で熱回収装置に供給することができる。   Patent Document 6 discloses a method of recovering sensible heat by solidifying and forming molten slag into a relatively thick shape using a caster, and charging the heat recovery device with the solidified slag in a high temperature state. Have been described. When the molten slag is solidified and molded in this way, the surface area per unit volume of the solidified slag becomes small, so the solidified slag is easy to keep warm, the variation in the temperature of the solidified slag is small, and the temperature of the solidified slag decreases due to transportation, etc. And can be supplied to the heat recovery device at a high temperature. Moreover, since it has thickness, it is easy to hold | maintain the center of the board thickness (solidification thickness) of solidification slag with high temperature, and it can supply to a heat recovery apparatus in the state which has high sensible heat.

なお、特許文献7には、凝固スラグを破砕してコンクリート用の骨材などを製造する場合を考慮して、溶融スラグを凝固させる際に凹凸を付与して凝固スラグの表面積を大きくして破砕時に割れ易い形状にする熱間成形技術が記載されている。また、特許文献8には、熱回収装置の凝固スラグ装入口で溶融スラグを粒状化して熱回収装置に装入して凝固スラグの顕熱を回収する熱回収する技術が記載されている。   In addition, in Patent Document 7, in consideration of the case where the solidified slag is crushed to produce aggregate for concrete, etc., when the molten slag is solidified, irregularities are provided to increase the surface area of the solidified slag and crush it. A hot forming technique is described which sometimes makes it easy to break. Patent Document 8 describes a technique of heat recovery in which molten slag is granulated at the inlet of the solidification slag of the heat recovery apparatus and charged into the heat recovery apparatus to recover the sensible heat of the solidification slag.

特開昭54−72204号公報JP 54-72204 A 特開昭62−187146号公報Japanese Patent Laid-Open No. 62-187146 特開2004−238233号公報JP 2004-238233 A 特開昭57−31784号公報JP-A-57-31784 特開2001−180990号公報JP 2001-180990 A 特開昭57−182086号公報JP-A-57-182086 特開昭58−221379号公報JP 58-221379 A 特開2007−284761号公報JP 2007-284761 A

しかしながら、特許文献1〜3に記載の技術では、大きな熱回収率を確保することはできるものの、風砕処理後のスラグは微粒子状あるいは繊維状になり易く、スラグの利材化には課題が残る。すなわち、微粒子状に凝固した風砕スラグは真球に近い形状で安息角が小さいため、ハンドリング性にも乏しい。また、とくに粘度の高いスラグを粒状化するためには多量のガス噴射が必要となるためブロア動力などのコストも高くなる。   However, in the techniques described in Patent Documents 1 to 3, although a large heat recovery rate can be ensured, the slag after the air crushing treatment tends to be in the form of fine particles or fibers, and there is a problem in using the slag as a material. Remain. That is, the pulverized slag solidified into fine particles has a shape close to a true sphere and a small angle of repose, and therefore has poor handling properties. Further, in order to granulate slag having a particularly high viscosity, a large amount of gas injection is required, so that the cost of blower power and the like is increased.

また、特許文献4〜5に記載の技術によれば、溶融スラグが凝固すると厚さが5mm未満の薄片状となるため、この凝固スラグを粒状化すると5mm未満の粒度のスラグが多くなり、スラグの用途が限られる。   Further, according to the techniques described in Patent Documents 4 to 5, when the molten slag solidifies, it becomes a flake shape having a thickness of less than 5 mm. Therefore, when this solidified slag is granulated, the slag having a particle size of less than 5 mm increases. Applications are limited.

また、特許文献6に記載の技術により溶融スラグを比較的肉厚な形状に凝固成形すると、凝固スラグの体積に対する表面積の割合が小さいため、熱回収率を上げることは難しい。また、このような凝固スラグを破砕してコンクリート用の骨材などを製造する場合には、破砕前の凝固スラグの厚みが大きいため破砕に非常に大きな動力が必要となり、コストが高くなる。   Moreover, when the molten slag is solidified and molded into a relatively thick shape by the technique described in Patent Document 6, it is difficult to increase the heat recovery rate because the ratio of the surface area to the volume of the solidified slag is small. Moreover, when manufacturing such aggregate for concrete by crushing such solidified slag, since the thickness of the solidified slag before crushing is large, very large power is required for crushing, and the cost increases.

一方、特許文献7に記載の技術により、凝固スラグの破砕を考慮して凹凸成形された凝固スラグは、表面積が大きくなり冷え易いためできるだけ早く熱回収装置に搬送する必要があるところ、凹凸成形された凝固スラグを破砕して熱回収装置まで搬送する場合には、凝固および破砕後のスラグを搬送容器に充満するまでの時間を考慮すると1時間程度の時間を要し、その間に凝固スラグが冷え、熱回収量が減るうえに熱回収媒体の温度も高くできない。その場合、さらに、凝固スラグを熱回収前に破砕することにより、スラグの表面積が増えて熱回収前の短時間に熱が放散され易くなるため、更に熱回収量が低下してしまう。一方、凝固スラグを破砕せずに搬送して熱回収装置の直前で破砕するには、スラグブロックのサイズが大きく搬送しにくい。すなわち、熱回収効率が低いという問題があった。   On the other hand, the solidified slag formed by concavo-convex molding in consideration of crushing of the solidified slag by the technique described in Patent Document 7 has a large surface area and is easy to cool. When the solidified slag is crushed and transported to the heat recovery device, it takes about 1 hour to take into account the time until the slag after solidification and crushing is filled in the transport container, during which time the solidified slag cools. In addition, the amount of heat recovery is reduced and the temperature of the heat recovery medium cannot be increased. In that case, by further crushing the solidified slag before heat recovery, the surface area of the slag is increased and heat is easily dissipated in a short time before heat recovery, so that the amount of heat recovery is further reduced. On the other hand, in order to convey the solidified slag without crushing and crush it immediately before the heat recovery device, the size of the slag block is large and difficult to convey. That is, there is a problem that the heat recovery efficiency is low.

本発明は、上記に鑑みてなされたものであって、凝固スラグの顕熱を効率よく回収することができる凝固スラグの熱回収システムおよび熱回収方法を提供することを目的とする。   This invention is made | formed in view of the above, Comprising: It aims at providing the heat recovery system and heat recovery method of the solidification slag which can collect | recover the sensible heat of solidification slag efficiently.

上述した課題を解決し、目的を達成するために、本発明に係る凝固スラグの熱回収システムは、連続的に搬送される鋳型に溶融スラグを注ぎ込んで形成された凝固スラグを熱回収装置に装入することにより凝固スラグの顕熱を回収する凝固スラグの熱回収システムであって、前記鋳型に注ぎ込まれたスラグの上面に成形加工を行いつつ前記鋳型を水平方向に搬送する水平搬送部と、前記水平搬送部に連続して前記鋳型を前記熱回収装置の凝固スラグ装入口まで搬送し、前記鋳型を反転することで、形成された凝固スラグを前記熱回収装置に装入する第二の搬送部と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a heat recovery system for solidified slag according to the present invention is provided with a solidified slag formed by pouring molten slag into a continuously conveyed mold. A solidification slag heat recovery system that recovers sensible heat of the solidification slag by entering, a horizontal conveyance unit that conveys the mold in a horizontal direction while performing molding on the upper surface of the slag poured into the mold, and A second transport for continuously transporting the mold to the solidification slag loading inlet of the heat recovery apparatus and charging the formed solidification slag into the heat recovery apparatus by inverting the mold. And a section.

また、本発明に係る凝固スラグの熱回収システムは、上記発明において、前記第二の搬送部は、前記熱回収装置の凝固スラグ装入口の高さまで搬送する、傾斜搬送部および/または垂直搬送部であることを特徴とする。   In the heat recovery system for solidified slag according to the present invention, in the above invention, the second transport unit transports to a height of a solidified slag loading inlet of the heat recovery device, and an inclined transport unit and / or a vertical transport unit. It is characterized by being.

また、本発明に係る凝固スラグの熱回収システムは、上記発明において、前記鋳型に注ぎ込まれたスラグの平均厚さが10〜30mmであることを特徴とする。   The heat recovery system for solidified slag according to the present invention is characterized in that, in the above invention, the average thickness of the slag poured into the mold is 10 to 30 mm.

また、本発明に係る凝固スラグの熱回収システムは、上記発明において、前記熱回収装置は、前記凝固スラグ装入口に、前記第二の搬送部から搬送された凝固スラグを破砕する熱間破砕装置を備えることを特徴とする。   In the heat recovery system for solidified slag according to the present invention, in the above invention, the heat recovery device is a hot crushing device that crushes the solidified slag conveyed from the second conveying unit to the solidified slag loading inlet. It is characterized by providing.

また、本発明に係る凝固スラグの熱回収システムは、上記発明において、前記熱回収装置は、凝固スラグの縦型移動層に気体を送風して前記凝固スラグと前記気体との熱交換を行うことによって前記凝固スラグの顕熱を回収することを特徴とする。   In the heat recovery system for solidified slag according to the present invention, in the above invention, the heat recovery device blows gas to a vertical moving layer of the solidified slag to perform heat exchange between the solidified slag and the gas. The sensible heat of the solidified slag is recovered by the above.

また、本発明に係る凝固スラグの熱回収法は、連続的に搬送される鋳型に溶融スラグを注ぎ込んで形成された凝固スラグを熱回収装置に装入することにより凝固スラグの顕熱を回収する凝固スラグの熱回収方法であって、前記鋳型に注ぎ込まれたスラグの上面に成形加工を行いつつ前記鋳型を水平方向に搬送する水平搬送ステップと、前記水平搬送ステップから連続して前記鋳型を前記熱回収装置の凝固スラグ装入口まで搬送し、前記鋳型を反転することで、形成された凝固スラグを前記熱回収装置に装入する第二の搬送ステップと、を含むことを特徴とする。   The solidified slag heat recovery method according to the present invention recovers the sensible heat of the solidified slag by charging the solidified slag formed by pouring the molten slag into a continuously conveyed mold into a heat recovery device. A heat recovery method for solidified slag, wherein a horizontal conveyance step of conveying the mold in a horizontal direction while performing a molding process on an upper surface of the slag poured into the mold, and the mold continuously from the horizontal conveyance step. And a second transporting step of charging the formed solidified slag into the heat recovery device by reversing the mold and transporting it to the solidification slag loading inlet of the heat recovery device.

本発明によれば、凹凸成形された凝固スラグを温度低下を抑えて高温のまま熱回収装置に搬送して、凝固スラグから顕熱を効率よく回収することができる。   According to the present invention, it is possible to efficiently recover sensible heat from the solidified slag by transporting the solidified slag formed with unevenness to the heat recovery device while maintaining a high temperature while suppressing temperature drop.

図1は、本実施の形態の熱回収システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of the heat recovery system of the present embodiment.

以下、図面を参照して、本発明の一実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment.

図1は、本実施の形態の凝固スラグの熱回収システムの概略構成を示す図である。図1に示すように、熱回収システム1は、移動式の複数の鋳型21を設けた鋳滓機2と、鋳型21に高炉からの溶融スラグ3を供給する供給装置4と、スラグの上面に凹凸形状(板厚差)を付与する熱間成形装置5と、鋳型21から排出された凝固スラグ6を装入して凝固スラグ6の顕熱を回収する熱回収装置7とを備える。   FIG. 1 is a diagram showing a schematic configuration of a heat recovery system for a solidified slag according to the present embodiment. As shown in FIG. 1, a heat recovery system 1 includes a casting machine 2 provided with a plurality of movable molds 21, a supply device 4 for supplying molten slag 3 from a blast furnace to the mold 21, and an upper surface of the slag. The apparatus includes a hot forming device 5 that imparts an uneven shape (plate thickness difference) and a heat recovery device 7 that charges the solidified slag 6 discharged from the mold 21 and collects the sensible heat of the solidified slag 6.

鋳滓機2は、配置された複数の鋳型21を移動させる搬送路22を備え、搬送路22上の所定の凝固スラグ排出場所Bで凹凸成形された凝固スラグ6を排出する。供給装置4は、搬送路22上の溶融スラグ供給場所Aにて、鋳型21に高炉からの溶融スラグ3を供給する。熱間成形装置5は、鋳型21に供給された溶融スラグ3の凝固が完了する前に、スラグの上面に凹凸形状を付与する。搬送路22は、供給装置4による溶融スラグ供給場所Aと鋳滓機2からの凝固スラグ排出場所Bとの間を周回するように、水平搬送部22aと傾斜搬送部22bとが連結して構成されている。   The casting machine 2 includes a conveyance path 22 that moves a plurality of molds 21 arranged, and discharges the solidified slag 6 that is unevenly formed at a predetermined solidification slag discharge location B on the conveyance path 22. The supply device 4 supplies the molten slag 3 from the blast furnace to the mold 21 at the molten slag supply location A on the transport path 22. The hot forming apparatus 5 gives an uneven shape to the upper surface of the slag before the solidification of the molten slag 3 supplied to the mold 21 is completed. The conveyance path 22 is configured by connecting a horizontal conveyance section 22a and an inclined conveyance section 22b so as to circulate between a molten slag supply place A by the supply device 4 and a solidified slag discharge place B from the casting machine 2. Has been.

水平搬送部22aには、熱間成形装置5として、鋳型21の搬送に応じて上下昇降可能な成形ロール5aが備えられ、成形ロール5aは鋳型21内のスラグの上面に機械的に凹凸形状を付与する。なお、この成形ロール5aを水平搬送部22aに設ける理由は、鋳型21と成形ロール5aとの距離を一定に保つ必要があるためである。また、熱間成形装置5は、成形ロール5aに限らず、例えばプレス状に加工する方式のものでもよい。また、鋳型21は、金属製のもの、内面キャスタブル施工など、複層化して耐熱・断熱仕様とした構造のものなどが適用可能である。   As the hot forming device 5, the horizontal conveying unit 22 a is provided with a forming roll 5 a that can be moved up and down according to the conveyance of the mold 21, and the forming roll 5 a is mechanically uneven on the upper surface of the slag in the mold 21. Give. The reason why the forming roll 5a is provided in the horizontal conveyance portion 22a is that the distance between the mold 21 and the forming roll 5a needs to be kept constant. Further, the hot forming apparatus 5 is not limited to the forming roll 5a, and may be of a type that processes into a press shape, for example. In addition, the mold 21 can be made of a metal, a structure having a heat resistant and heat insulating structure with multiple layers such as inner surface castable construction, and the like.

傾斜搬送部22bは、所定の高さHにある凝固スラグ排出場所Bまで鋳型21内のスラグを搬送するように構成されている。なお、傾斜搬送部22bは、鋳型21を垂直方向に昇降する垂直搬送部であってもよい。あるいは、傾斜搬送部22bは、鋳型21を垂直方向に昇降する垂直搬送部を含むものでもよい。また、搬送路22におけるスラグの搬送速度や搬送距離は、鋳型21内のスラグが凝固スラグ排出場所Bに到達する直前に凝固完了するような適切な空冷時間を確保するように調整されている。また、凝固スラグ排出場所Bには適宜な凝固スラグ排出器が備えられ、凝固スラグ排出場所Bで鋳型21の反転にともなって凝固スラグ6が順次排出される。   The inclined conveyance unit 22b is configured to convey the slag in the mold 21 to the solidified slag discharge location B at a predetermined height H. The inclined conveyance unit 22b may be a vertical conveyance unit that raises and lowers the mold 21 in the vertical direction. Alternatively, the inclined conveyance unit 22b may include a vertical conveyance unit that raises and lowers the mold 21 in the vertical direction. Further, the slag conveyance speed and conveyance distance in the conveyance path 22 are adjusted so as to ensure an appropriate air cooling time such that solidification is completed immediately before the slag in the mold 21 reaches the solidification slag discharge location B. The solidified slag discharge place B is provided with an appropriate solidified slag discharger, and the solidified slag 6 is sequentially discharged at the solidified slag discharge place B as the mold 21 is reversed.

なお、供給装置4は、平均厚さが10〜30mmになるように溶融スラグ3を鋳型21に供給している。スラグの平均厚さが10mm未満では、破砕後の凝固スラグの粒度が10mm未満となり、スラグ骨材の歩留まりが低下する。一方、スラグの平均厚みが30mmを超えると、冷却中に気孔の発生を抑制できずスラグ骨材の品質が低下する。   The supply device 4 supplies the molten slag 3 to the mold 21 so that the average thickness is 10 to 30 mm. When the average thickness of the slag is less than 10 mm, the particle size of the solidified slag after crushing becomes less than 10 mm, and the yield of the slag aggregate decreases. On the other hand, if the average thickness of the slag exceeds 30 mm, the generation of pores cannot be suppressed during cooling, and the quality of the slag aggregate deteriorates.

熱回収装置7は、鋳型21から排出された凝固スラグ6を破砕する熱間破砕装置71と、破砕された凝固スラグ6を熱回収装置7に装入する装入シュート72と、略円筒状に形成された縦型移動層73とを備える。縦型移動層73は、上方から装入された凝固スラグ6を下方に搬送する。熱回収装置7は、縦型移動層73の下方から上方に熱回収媒体であるガス(気体)を送風し、凝固スラグ6とガスとの熱交換を行うことによって凝固スラグ6の顕熱を回収する。   The heat recovery device 7 includes a hot crushing device 71 for crushing the solidified slag 6 discharged from the mold 21, a charging chute 72 for charging the crushed solidified slag 6 into the heat recovery device 7, and a substantially cylindrical shape. And a vertical moving layer 73 formed. The vertical moving layer 73 conveys the solidified slag 6 charged from above to below. The heat recovery device 7 collects sensible heat of the solidified slag 6 by blowing gas (gas) as a heat recovery medium from below to above the vertical moving bed 73 and exchanging heat between the solidified slag 6 and the gas. To do.

装入シュート72は、熱回収装置7への凝固スラグ6の入口である凝固スラグ装入口として機能し、凝固スラグ排出場所Bに連結するように配設され、鋳滓機2から排出された凝固スラグ6が排出直後に装入される。すなわち、凝固スラグ排出場所Bの高さHは、装入シュート72の高さに合わせて調整されている。また、熱間破砕装置71が装入シュート72上に配設され、熱間搬送装置1から排出された凹凸成形された凝固スラグ6を破砕して熱回収装置7に装入する。なお、熱回収装置7の真上から凝固スラグ6を装入する場合などには、装入シュート72は不要である。その場合、凝固スラグ装入口としての熱間破砕装置71は縦型移動層73の真上に配設され、凝固スラグ排出場所の高さHは、熱間破砕装置71の高さに合わせて調整される。   The charging chute 72 functions as a solidified slag charging inlet that is an inlet of the solidified slag 6 to the heat recovery device 7, is disposed so as to be connected to the solidified slag discharge place B, and is solidified discharged from the casting machine 2. The slag 6 is charged immediately after discharge. That is, the height H of the solidified slag discharge location B is adjusted according to the height of the charging chute 72. A hot crushing device 71 is disposed on the charging chute 72 and crushes the solidified slag 6 that has been unevenly formed discharged from the hot conveying device 1 and charges the solidified slag 6 into the heat recovery device 7. Note that the charging chute 72 is not necessary when the solidified slag 6 is charged from directly above the heat recovery device 7. In that case, the hot crushing device 71 as the solidification slag loading inlet is disposed directly above the vertical moving bed 73, and the height H of the solidification slag discharge location is adjusted according to the height of the hot crushing device 71. Is done.

以上のように構成された本実施の形態の熱回収システム1によれば、水平搬送部22aで凹凸成形されたスラグに対して傾斜搬送部22bにより最短の空冷時間が確保され、所定高さHの凝固スラグ排出場所Bに到達する直前にスラグが凝固完了するので、凹凸形状が付与され表面積が拡大した凝固スラグ6を凝固完了直後に鋳滓機2から排出して速やかに熱回収装置7に装入することができる。そのため、本実施の形態の熱回収システム1によれば、凹凸成形され温度低下しやすい凝固スラグ6を高温のまま熱回収装置7に搬送して、凝固スラグ6から顕熱を効率よく回収することができる。また、凝固スラグ6を破砕後に熱回収装置7に装入するため、積層した凝固スラグ6間に隙間が生じ、熱回収のガスの流路を確保でき、熱回収率が向上する。また、凝固スラグ6には凹凸形状が付与され容易に適当な大きさに破砕できるため、良好なスラグ骨材が得られ、効率よくスラグを利材化できる。したがって、本実施の形態の熱回収システム1によれば、鉄鋼製造プロセスの省エネルギー化が可能となる。   According to the heat recovery system 1 of the present embodiment configured as described above, the shortest air cooling time is ensured by the inclined conveyance unit 22b with respect to the slag formed uneven by the horizontal conveyance unit 22a, and the predetermined height H Since the slag is completely solidified immediately before reaching the solidified slag discharge location B, the solidified slag 6 having an uneven shape and an increased surface area is discharged from the casting machine 2 immediately after the solidification is completed, and promptly supplied to the heat recovery device 7. Can be charged. For this reason, according to the heat recovery system 1 of the present embodiment, the solidified slag 6 that is unevenly formed and tends to decrease in temperature is conveyed to the heat recovery device 7 at a high temperature, and the sensible heat is efficiently recovered from the solidified slag 6. Can do. In addition, since the solidified slag 6 is charged into the heat recovery device 7 after crushing, a gap is generated between the laminated solidified slags 6, a heat recovery gas flow path can be secured, and the heat recovery rate is improved. Further, since the solidified slag 6 is provided with an uneven shape and can be easily crushed to an appropriate size, a good slag aggregate can be obtained and the slag can be efficiently used. Therefore, according to the heat recovery system 1 of the present embodiment, it is possible to save energy in the steel manufacturing process.

なお、本実施の形態の搬送路22は、熱回収装置7をCDQ(コークス乾式消火設備)に置き換えて、CDQに高温のコークスを装入する際などに適用することもできる。   The conveyance path 22 of the present embodiment can also be applied when the heat recovery device 7 is replaced with CDQ (coke dry fire extinguishing equipment) and high temperature coke is charged into the CDQ.

上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様等に応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these, and various modifications according to the specifications and the like are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the above.

1 熱間搬送装置
2 鋳滓機
21 鋳型
22 搬送路
22a 水平搬送部
22b 傾斜搬送部(第二の搬送部)
3 溶融スラグ
4 供給装置
5 熱間成形装置
5a 成形ロール
6 凝固スラグ
7 熱回収装置
71 熱間破砕装置
72 装入シュート
A 溶融スラグ供給場所
B 凝固スラグ排出場所
H 凝固スラグ排出場所の高さ
DESCRIPTION OF SYMBOLS 1 Hot transfer apparatus 2 Casting machine 21 Mold 22 Transfer path 22a Horizontal transfer part 22b Inclined transfer part (2nd transfer part)
DESCRIPTION OF SYMBOLS 3 Molten slag 4 Supply apparatus 5 Hot forming apparatus 5a Forming roll 6 Solidified slag 7 Heat recovery apparatus 71 Hot crushing apparatus 72 Charging chute A Molten slag supply place B Solidified slag discharge place H Height of solidified slag discharge place

Claims (6)

連続的に搬送される鋳型に溶融スラグを注ぎ込んで形成された凝固スラグを熱回収装置に装入することにより凝固スラグの顕熱を回収する凝固スラグの熱回収システムであって、
前記鋳型に注ぎ込まれたスラグの上面に成形加工を行いつつ前記鋳型を水平方向に搬送する水平搬送部と、
前記水平搬送部に連続して前記鋳型を前記熱回収装置の凝固スラグ装入口まで搬送し、前記鋳型を反転することで、形成された凝固スラグを前記熱回収装置に装入する第二の搬送部と、
を備えることを特徴とする凝固スラグの熱回収システム。
A solidified slag heat recovery system that recovers sensible heat of the solidified slag by charging the solidified slag formed by pouring molten slag into a continuously conveyed mold,
A horizontal transport unit that transports the mold in a horizontal direction while performing molding on the upper surface of the slag poured into the mold;
A second transport for continuously transporting the mold to the solidification slag loading inlet of the heat recovery apparatus and charging the formed solidification slag into the heat recovery apparatus by inverting the mold. And
A heat recovery system for solidified slag, comprising:
前記第二の搬送部は、前記熱回収装置の凝固スラグ装入口の高さまで搬送する、傾斜搬送部および/または垂直搬送部であることを特徴とする請求項1に記載の凝固スラグの熱回収システム。   2. The heat recovery of the solidified slag according to claim 1, wherein the second transfer unit is an inclined transfer unit and / or a vertical transfer unit that transfers to a height of a solidification slag loading inlet of the heat recovery device. system. 前記鋳型に注ぎ込まれたスラグの平均厚さが10〜30mmであることを特徴とする請求項1または請求項2に記載の凝固スラグの熱回収システム。   The heat recovery system for solidified slag according to claim 1 or 2, wherein an average thickness of the slag poured into the mold is 10 to 30 mm. 前記熱回収装置は、前記凝固スラグ装入口に、前記第二の搬送部から搬送された凝固スラグを破砕する熱間破砕装置を備えることを特徴とする請求項1〜3のいずれか1項に記載の凝固スラグの熱回収システム。   The said heat recovery apparatus is equipped with the hot crushing apparatus which crushes the solidification slag conveyed from said 2nd conveyance part in the said solidification slag loading inlet. The heat recovery system for solidified slag as described. 前記熱回収装置は、凝固スラグの縦型移動層に気体を送風して前記凝固スラグと前記気体との熱交換を行うことによって前記凝固スラグの顕熱を回収することを特徴とする請求項1〜4のいずれか1項に記載の凝固スラグの熱回収システム。   The heat recovery device recovers sensible heat of the solidified slag by blowing gas to a vertical moving layer of the solidified slag and performing heat exchange between the solidified slag and the gas. The heat recovery system of the solidification slag of any one of -4. 連続的に搬送される鋳型に溶融スラグを注ぎ込んで形成された凝固スラグを熱回収装置に装入することにより凝固スラグの顕熱を回収する凝固スラグの熱回収方法であって、
前記鋳型に注ぎ込まれたスラグの上面に成形加工を行いつつ前記鋳型を水平方向に搬送する水平搬送ステップと、
前記水平搬送ステップから連続して前記鋳型を前記熱回収装置の凝固スラグ装入口まで搬送し、前記鋳型を反転することで、形成された凝固スラグを前記熱回収装置に装入する第二の搬送ステップと、
を含むことを特徴とする凝固スラグの熱回収方法。
A solidified slag heat recovery method for recovering sensible heat of the solidified slag by charging the solidified slag formed by pouring molten slag into a continuously conveyed mold,
A horizontal conveyance step of conveying the mold in a horizontal direction while performing molding on the upper surface of the slag poured into the mold;
A second transport for continuously transporting the mold to the solidification slag loading inlet of the heat recovery apparatus and charging the formed solidification slag into the heat recovery apparatus by reversing the mold from the horizontal transport step. Steps,
A method for recovering heat of solidified slag, comprising:
JP2012234787A 2012-10-24 2012-10-24 Heat recovery system and heat recovery method for solidified slag Expired - Fee Related JP5998845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234787A JP5998845B2 (en) 2012-10-24 2012-10-24 Heat recovery system and heat recovery method for solidified slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234787A JP5998845B2 (en) 2012-10-24 2012-10-24 Heat recovery system and heat recovery method for solidified slag

Publications (2)

Publication Number Publication Date
JP2014085064A true JP2014085064A (en) 2014-05-12
JP5998845B2 JP5998845B2 (en) 2016-09-28

Family

ID=50788289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234787A Expired - Fee Related JP5998845B2 (en) 2012-10-24 2012-10-24 Heat recovery system and heat recovery method for solidified slag

Country Status (1)

Country Link
JP (1) JP5998845B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047782A (en) * 2014-08-27 2016-04-07 Jfeスチール株式会社 Heat recovery method and heat recovery system for coagulation slag
JP2021116213A (en) * 2020-01-28 2021-08-10 Jfeスチール株式会社 Method for producing granular solidified slag and production facility row therefor
US20220212927A1 (en) * 2021-01-04 2022-07-07 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via autothermal reforming
US20220212925A1 (en) * 2021-01-04 2022-07-07 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via bi-reforming
KR20240019308A (en) 2021-06-23 2024-02-14 제이에프이 스틸 가부시키가이샤 Method for producing granular solidified slag and equipment for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495997A (en) * 1978-01-12 1979-07-28 Mitsubishi Heavy Ind Ltd Molten slag treating method
JPS5524955A (en) * 1978-08-11 1980-02-22 Babcock Hitachi Kk Blast furnace slag treatment equipment
JPS56149581A (en) * 1980-04-21 1981-11-19 Nippon Steel Corp Recovery of slag sensible heat
JPS57182086A (en) * 1981-05-01 1982-11-09 Nisshin Steel Co Ltd Heat recovery method in case of manufacture of ore of shaft furnace ballast
JPH09301750A (en) * 1996-05-08 1997-11-25 Rasa Shoji Kk Production of artificial gravel from fused slag of incineration ash and equipment therefor
JP2003207281A (en) * 2002-01-18 2003-07-25 Jfe Steel Kk Operating method of continuous solidification device of slag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495997A (en) * 1978-01-12 1979-07-28 Mitsubishi Heavy Ind Ltd Molten slag treating method
JPS5524955A (en) * 1978-08-11 1980-02-22 Babcock Hitachi Kk Blast furnace slag treatment equipment
JPS56149581A (en) * 1980-04-21 1981-11-19 Nippon Steel Corp Recovery of slag sensible heat
JPS57182086A (en) * 1981-05-01 1982-11-09 Nisshin Steel Co Ltd Heat recovery method in case of manufacture of ore of shaft furnace ballast
JPH09301750A (en) * 1996-05-08 1997-11-25 Rasa Shoji Kk Production of artificial gravel from fused slag of incineration ash and equipment therefor
JP2003207281A (en) * 2002-01-18 2003-07-25 Jfe Steel Kk Operating method of continuous solidification device of slag

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016047782A (en) * 2014-08-27 2016-04-07 Jfeスチール株式会社 Heat recovery method and heat recovery system for coagulation slag
JP2021116213A (en) * 2020-01-28 2021-08-10 Jfeスチール株式会社 Method for producing granular solidified slag and production facility row therefor
JP7255504B2 (en) 2020-01-28 2023-04-11 Jfeスチール株式会社 Method for producing granular solidified slag and its production equipment
US20220212927A1 (en) * 2021-01-04 2022-07-07 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via autothermal reforming
US20220212925A1 (en) * 2021-01-04 2022-07-07 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via bi-reforming
US11718522B2 (en) * 2021-01-04 2023-08-08 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via bi-reforming
US11820658B2 (en) * 2021-01-04 2023-11-21 Saudi Arabian Oil Company Black powder catalyst for hydrogen production via autothermal reforming
KR20240019308A (en) 2021-06-23 2024-02-14 제이에프이 스틸 가부시키가이샤 Method for producing granular solidified slag and equipment for producing the same

Also Published As

Publication number Publication date
JP5998845B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
EP2616559B1 (en) Dry granulation of metallurgical slag
JP5998845B2 (en) Heat recovery system and heat recovery method for solidified slag
CN101871025B (en) Metallurgical molten slag dry-type processing device and processing method thereof
CN103014201B (en) Device and method for gas-solid ejection and granulation of molten blast furnace slags
TWI512257B (en) Apparatus for manufacturing solidified slag, apparatus for manufacturing coarse aggregate for concrete, method for manufacturing solidified slag, and method for manufacturing coarse aggregate for concrete
CN105081213A (en) Production technology for precoated sand recycling
JP2013139596A (en) Method and system for recovering heat
JP6318982B2 (en) Heat recovery method and heat recovery system for solidified slag
AU2011257264B2 (en) Method and device for manufacturing vitreous
JP2002194412A (en) Method for producing reduced iron, apparatus for cooling reduced iron and method for producing molten iron
JP5797273B2 (en) Method for producing molten metal, and reduction melting furnace for producing molten metal
WO2014045839A1 (en) Reduced iron cooling device and reduced iron cooling method
JP5949575B2 (en) Heat recovery system and heat recovery method for solidified slag
JP5831224B2 (en) Heat recovery method
CN113957265A (en) Process and system for producing high-nickel matte by continuously converting laterite smelting low-nickel matte
JP6060921B2 (en) Slag continuous casting equipment
JP2013139344A (en) Method for recovering heat of molten slag
KR101197695B1 (en) Method for dry cooling of hot compacted iron
JP4893347B2 (en) Operation method of mobile hearth furnace
JP2003221611A (en) Method and apparatus for casting slag
CN108707758A (en) A kind of processing method of copper weld pool slag
KR102156711B1 (en) Equipment for treating slag and Method for treating slag
JP2012012148A (en) Slag conveying device
WO2022270516A1 (en) Method for producing granular solidified slag, and production facility line for same
JP6015593B2 (en) Solidified slag manufacturing apparatus and solidified slag manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees