JP5949575B2 - Heat recovery system and heat recovery method for solidified slag - Google Patents

Heat recovery system and heat recovery method for solidified slag Download PDF

Info

Publication number
JP5949575B2
JP5949575B2 JP2013009288A JP2013009288A JP5949575B2 JP 5949575 B2 JP5949575 B2 JP 5949575B2 JP 2013009288 A JP2013009288 A JP 2013009288A JP 2013009288 A JP2013009288 A JP 2013009288A JP 5949575 B2 JP5949575 B2 JP 5949575B2
Authority
JP
Japan
Prior art keywords
slag
heat recovery
solidified
shape
solidified slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013009288A
Other languages
Japanese (ja)
Other versions
JP2013177292A (en
Inventor
伸行 紫垣
伸行 紫垣
壁矢 和久
和久 壁矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013009288A priority Critical patent/JP5949575B2/en
Publication of JP2013177292A publication Critical patent/JP2013177292A/en
Application granted granted Critical
Publication of JP5949575B2 publication Critical patent/JP5949575B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)

Description

本発明は、鉄鋼製造プロセス等で排出されるスラグ(鉱滓)を凝固成形した凝固スラグの顕熱を回収する凝固スラグの熱回収システムおよび熱回収方法に関する。   The present invention relates to a solidified slag heat recovery system and a heat recovery method for recovering sensible heat of solidified slag formed by solidification molding of slag (mineral) discharged in a steel manufacturing process or the like.

鉄鋼製造プロセスで排出されるスラグは、水砕処理または徐冷処理などを経て、水砕砂やスラグ骨材として利材化されている。一方、溶融スラグの顕熱は、銑鉄トン当たり0.5GJほどの大きさを有することから、溶融スラグの顕熱を回収できれば、大きな省エネルギー効果が期待できる。このため、スラグの利材化と同時にスラグの顕熱を回収して利用する技術も期待されている。   Slag discharged in the steel manufacturing process is used as granulated sand or slag aggregate through granulation or slow cooling. On the other hand, since the sensible heat of molten slag has a magnitude of about 0.5 GJ per ton of pig iron, a large energy saving effect can be expected if the sensible heat of molten slag can be recovered. For this reason, the technique of collect | recovering and utilizing the slag's sensible heat simultaneously with the use of slag is expected.

スラグの顕熱を回収する方法として、特許文献1には、鋳滓機を用いて溶融スラグを比較的肉厚な形状に凝固成形し、熱回収装置に凝固スラグを高温の状態で挿入して顕熱を回収する方法が記載されている。スラグを肉厚に凝固成形した場合、スラグ単位体積当りの表面積が小さくなるため、凝固スラグが保温されやすく、搬送等による凝固スラグの温度低下が抑えられ、高温で熱回収装置に供給することができる。また、厚みを有するため、凝固スラグの板厚(凝固厚)の中心が高温のまま保持されやすく、高い顕熱を有する状態で熱回収装置に供給することができる。   As a method of recovering the slag heat of slag, Patent Document 1 discloses that a molten slag is solidified and formed into a relatively thick shape using a casting machine, and the solidified slag is inserted into a heat recovery device in a high temperature state. A method for recovering sensible heat is described. When the slag is solidified and formed into a thick wall, the surface area per unit volume of the slag is reduced, so that the solidified slag is easy to keep warm, the temperature drop of the solidified slag due to transportation etc. is suppressed, and it can be supplied to the heat recovery device at a high temperature. it can. Moreover, since it has thickness, it is easy to hold | maintain the center of the board thickness (solidification thickness) of solidification slag with high temperature, and it can supply to a heat recovery apparatus in the state which has high sensible heat.

特開昭57−182086号公報JP-A-57-182086

しかしながら、一般にスラグの熱伝導率が低いため、特許文献1記載の方法のように溶融スラグを比較的肉厚な形状に凝固成形すると、スラグ内部の熱伝導律速から、熱回収装置においてスラグの表面の温度がスラグの内部の温度よりも大幅に低下する。その結果、熱回収の媒体であるガスの温度が低下してしまう。一方、スラグの内部は冷えにくいため、熱回収装置で十分にスラグを冷却することができずにスラグの排出時の温度が高くなり、熱回収率が低下する。   However, since the thermal conductivity of the slag is generally low, when the molten slag is solidified and molded into a relatively thick shape as in the method described in Patent Document 1, the surface of the slag is used in the heat recovery device due to the heat conduction rate control inside the slag. Is significantly lower than the internal temperature of the slag. As a result, the temperature of the gas that is the heat recovery medium is lowered. On the other hand, since the inside of the slag is difficult to cool, the slag cannot be sufficiently cooled by the heat recovery device, the temperature at the time of discharging the slag becomes high, and the heat recovery rate decreases.

なお、このような問題点を解決するために、スラグの凝固厚を薄くすることが考えられる。しかしながら、スラグの凝固厚を薄くした場合、多数の平坦な板状の凝固スラグを熱回収装置に装入、充填した際、互いに密着した積層部分が多数発生し、熱を奪いにくくなる。このため、スラグの凝固厚を薄くしただけでは熱回収率を高めることができない。加えて、スラグの凝固厚を薄くし過ぎると、熱回収後に破砕した凝固スラグに形状不良が生じ、回収するスラグ骨材の歩留まりが悪化する。   In order to solve such problems, it is conceivable to reduce the solidification thickness of the slag. However, when the solidified thickness of the slag is reduced, when a large number of flat plate-shaped solidified slags are charged and filled in the heat recovery device, a large number of laminated portions that are in close contact with each other are generated, making it difficult to remove heat. For this reason, the heat recovery rate cannot be increased only by reducing the solidification thickness of the slag. In addition, if the solidification thickness of the slag is too thin, the solidified slag that has been crushed after heat recovery has a shape defect, which deteriorates the yield of the recovered slag aggregate.

本発明は、上記に鑑みてなされたものであって、凝固スラグから容易に顕熱と良好な形状のスラグ骨材とを回収可能な凝固スラグの熱回収システムおよび熱回収方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a heat recovery system and a heat recovery method for a solidified slag capable of easily recovering sensible heat and slag aggregate having a good shape from the solidified slag. Objective.

上述した課題を解決し、目的を達成するために、本発明に係る凝固スラグの熱回収システムは、連続的に搬送される鋳型に高炉から得られた溶融スラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与する鋳滓機と、前記鋳滓機により凹凸形状を付与された凝固スラグの顕熱を回収する熱回収装置と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, a solidified slag heat recovery system according to the present invention is formed by pouring molten slag obtained from a blast furnace into a continuously conveyed mold. And a heat recovery device that recovers sensible heat of the solidified slag that has been provided with uneven shapes by the caster. To do.

また、本発明に係る凝固スラグの熱回収システムは、上記発明において、前記鋳型の底部に少なくとも1箇所以上設けられた凸状隆起部により、前記凝固スラグの下面に凹凸形状を付与することを特徴とする。   Further, the solidified slag heat recovery system according to the present invention is characterized in that, in the above-mentioned invention, a concave and convex shape is imparted to the lower surface of the solidified slag by a convex raised portion provided at least one place on the bottom of the mold. And

また、本発明に係る凝固スラグの熱回収システムは、上記発明において、前記鋳型内のスラグ上面に対して成形工具を機械的に押し込む操作により前記凝固スラグの上面に凹凸形状を付与することを特徴とする。   Further, the solidified slag heat recovery system according to the present invention is characterized in that, in the above invention, an uneven shape is imparted to the upper surface of the solidified slag by an operation of mechanically pushing a forming tool into the upper surface of the slag in the mold. And

また、本発明に係る凝固スラグの熱回収システムは、上記発明において、前記凝固スラグの表面温度が300℃以上である状態で熱回収装置に凝固スラグを装入することを特徴とする。   The solidified slag heat recovery system according to the present invention is characterized in that, in the above invention, the solidified slag is charged into the heat recovery device in a state where the surface temperature of the solidified slag is 300 ° C. or higher.

また、本発明に係る凝固スラグの熱回収方法は、連続的に搬送される鋳型に高炉から得られた溶融スラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与する形状付与ステップと、前記形状付与ステップにより凹凸形状を付与された凝固スラグの顕熱を回収する熱回収ステップと、を含むことを特徴とする。   Further, the heat recovery method for solidified slag according to the present invention has different uneven shapes with respect to the upper and lower surfaces of the solidified slag formed by pouring molten slag obtained from a blast furnace into a continuously conveyed mold. And a heat recovery step of recovering the sensible heat of the solidified slag to which the concavo-convex shape is provided by the shape applying step.

本発明によれば、スラグの凝固厚を薄くするとともに凝固スラグを熱回収装置に充填した際にガスの流路を確保できるので、凝固スラグから顕熱を容易に回収することができる。また、熱回収後に破砕した凝固スラグから良好な形状のスラグ骨材を回収することができる。   According to the present invention, since the gas flow path can be secured when the solidified slag is thinned and the solidified slag is filled in the heat recovery device, the sensible heat can be easily recovered from the solidified slag. Moreover, the slag aggregate of a favorable shape can be recovered from the solidified slag crushed after heat recovery.

図1は、本発明の一実施形態の熱回収システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a heat recovery system according to an embodiment of the present invention. 図2は、1箇所の凸状隆起部を有する鋳型を示す模式図である。FIG. 2 is a schematic diagram showing a mold having one convex raised portion. 図3は、本実施の形態の凝固スラグを熱回収装置に装入し充填した状態を示す模式図である。FIG. 3 is a schematic view showing a state in which the solidified slag of the present embodiment is charged and filled in a heat recovery device. 図4は、平坦な板状の凝固スラグを熱回収装置に装入し充填した状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which a flat plate-shaped solidified slag is charged and filled in a heat recovery device. 図5は、鋳型内のスラグの上面に機械的に凹凸を成形する成形工具の形状および配置を示す模式図である。FIG. 5 is a schematic diagram showing the shape and arrangement of a forming tool for mechanically forming irregularities on the upper surface of the slag in the mold. 図6は、鋳型内のスラグの上面に機械的に凹凸を成形する成形工具の形状および配置を示す模式図である。FIG. 6 is a schematic diagram showing the shape and arrangement of a forming tool for mechanically forming irregularities on the upper surface of the slag in the mold. 図7は、熱回収率を算出するシミュレーションのモデルを示す図である。FIG. 7 is a diagram showing a simulation model for calculating the heat recovery rate. 図8は、熱回収率を算出するシミュレーションのモデルを示す図である。FIG. 8 is a diagram showing a simulation model for calculating the heat recovery rate. 図9は、熱回収率を算出するシミュレーションの条件を示す図である。FIG. 9 is a diagram showing simulation conditions for calculating the heat recovery rate. 図10は、熱回収率を算出するシミュレーションの結果を示す図である。FIG. 10 is a diagram illustrating a simulation result for calculating the heat recovery rate.

以下、図面を参照して、本発明の一実施の形態を詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. Moreover, in description of drawing, the same code | symbol is attached | subjected and shown to the same part.

まず、図1を参照して本実施の形態の凝固スラグの熱回収システムの概略構成について説明する。図1に示すように、熱回収システム1は、移動式の鋳型21を設けた鋳滓機2と、鋳型21に高炉からの溶融スラグ3を供給する供給装置4と、鋳型21から排出された凝固スラグ5を装入してスラグの顕熱を回収する熱回収装置6とを備える。   First, a schematic configuration of a heat recovery system for solidified slag according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the heat recovery system 1 includes a casting machine 2 provided with a movable mold 21, a supply device 4 for supplying molten slag 3 from a blast furnace to the mold 21, and the mold 21 discharged from the mold 21. And a heat recovery device 6 for charging the solidified slag 5 and recovering the sensible heat of the slag.

鋳型21は、その底部に少なくとも1箇所の凸状隆起部を有する。図2は、1箇所の凸状隆起部を有した鋳型21を示す模式図である。図2に点線で囲んで示す凸状隆起部aにより、凝固スラグ5の下面(底面)に凹凸形状(板厚差)を付与して部分的に凝固厚を薄くすることができる。なお、図2では、鋳型21底部の最小高さ位置(隆起のない部分)からの高さHが3mm超の領域を凸状隆起部aとする。   The mold 21 has at least one convex raised portion at the bottom. FIG. 2 is a schematic view showing a mold 21 having one convex raised portion. The convex raised portion a shown by being surrounded by a dotted line in FIG. 2 can impart a concave / convex shape (plate thickness difference) to the lower surface (bottom surface) of the solidified slag 5 to partially reduce the solidified thickness. In FIG. 2, a region having a height H of more than 3 mm from the minimum height position (the portion having no bulge) at the bottom of the mold 21 is defined as a convex bulge portion a.

このように凹凸形状が付与された凝固スラグ5を熱回収装置6に装入し充填して凝固スラグ5の顕熱を回収する。凝固スラグ5は、その表面温度を300℃以上で装入するものとする。これにより、例えば凝固スラグ5の顕熱を蒸気として回収する場合、工場で使用する10kg/cm低蒸気圧(180℃飽和蒸気)以上の蒸気条件にて回収が可能となる。 The solidified slag 5 thus provided with the uneven shape is charged into the heat recovery device 6 and filled to recover the sensible heat of the solidified slag 5. The solidified slag 5 is charged at a surface temperature of 300 ° C. or higher. Thereby, for example, when recovering the sensible heat of the solidified slag 5 as steam, the recovery can be performed under a steam condition of 10 kg / cm 2 low steam pressure (180 ° C. saturated steam) or more used in a factory.

図3は、凹凸形状が付与された凝固スラグ5を熱回収装置6に装入し充填した状態を示す模式図である。図4は、平坦な板状の凝固スラグを熱回収装置6に装入し充填した状態を示す模式図である。図4に示すように、平坦な板状の凝固スラグを熱回収装置6に充填すると、互いに密着して積層する部分b(斜線部)が多く発生するため、熱回収のガスの流路を確保しづらく、顕熱を回収しにくい。これに対し、凹凸形状が付与された凝固スラグ5を熱回収装置6に充填すると、図3に示すように、積層部分にも隙間が生じ、熱回収のガスの流路を確保できるため、熱回収率が向上する。   FIG. 3 is a schematic view showing a state in which the solidified slag 5 with the uneven shape is charged and charged in the heat recovery device 6. FIG. 4 is a schematic view showing a state in which a flat plate-shaped solidified slag is charged into the heat recovery device 6 and filled. As shown in FIG. 4, when the flat plate-shaped solidified slag is filled in the heat recovery device 6, a large number of portions b (shaded portions) that are in close contact with each other are generated, so a heat recovery gas flow path is secured. Difficult to collect sensible heat. On the other hand, when the heat recovery device 6 is filled with the solidified slag 5 to which the uneven shape is imparted, a gap is also generated in the laminated portion as shown in FIG. Recovery rate is improved.

なお、図2に、この鋳型21で成形される凝固スラグ5から採取できる粒子Bを模式的に示す。このように部分的に凝固厚を薄くすることで、凝固スラグ5から破砕処理および篩い分け等を行なってスラグ骨材を製造する際に、凝固厚の厚い部分から粗粒を採取でき、凝固厚の薄い部分から細粒を採取できる。   FIG. 2 schematically shows the particles B that can be collected from the solidified slag 5 formed by the mold 21. By partially reducing the solidification thickness in this way, when producing slag aggregate by performing crushing treatment and sieving from the solidified slag 5, coarse particles can be collected from the thickened portion, Fine particles can be collected from the thin part of.

また、この鋳型21には、底部の最小高さ位置(隆起のない部分)からの高さHが0〜3mmである低位部の幅Yが、凝固スラグ5の最大凝固厚の目標値Tmax以下になるように、鋳型21の側壁部D(および、複数の凸状隆起部aがある場合には凸状隆起部a)に近接して配置されている。したがって、図2に示す鋳型21によれば、鋳型21周辺部で冷却が促進されるため、鋳型21周辺部に隣接した位置を最も凝固しにくい粗粒Bを採取する位置として設定することにより、凝固厚の違いによる凝固・冷却時間のばらつきが緩和され、スラグ骨材の材質の均一化を図ることができる。   Further, in this mold 21, the width Y of the lower portion where the height H from the minimum height position (the portion without the bulge) of the bottom portion is 0 to 3 mm is equal to or less than the target value Tmax of the maximum solidification thickness of the solidification slag 5. As shown, the side wall D of the mold 21 (and the convex ridges a when there are a plurality of convex ridges a) are arranged close to each other. Therefore, according to the mold 21 shown in FIG. 2, since cooling is promoted in the periphery of the mold 21, by setting the position adjacent to the periphery of the mold 21 as the position for collecting the coarse particles B that are most difficult to solidify, The variation in solidification / cooling time due to the difference in solidification thickness is alleviated, and the slag aggregate material can be made uniform.

なお、鋳型21の低位部(最小高さ位置からの高さHが0〜3mm位置)の幅Yが凝固スラグの最大凝固厚の目標値Tmaxより大きくなると、採取される粗粒Bのサイズが要求される粒度の上限より大きくなるので、2次破砕が必要となるため、2次破砕後の粗粒比率を高位に制御できず、破砕コストもかさむ。   Note that when the width Y of the lower portion of the mold 21 (the height H from the minimum height position is 0 to 3 mm position) is larger than the target value Tmax of the maximum solidification thickness of the solidified slag, the size of the collected coarse particles B is Since it becomes larger than the upper limit of the required particle size, secondary crushing is required, so that the coarse particle ratio after the secondary crushing cannot be controlled to a high level, and the crushing cost is also increased.

JIS_A5011−1で規定される粗骨材2005の粒径分布によれば、粒径20〜25mmの粗粒の必要量は10mass%以下と小さく、粒径15〜25mmの粗粒の必要量は15〜45mass%程度とされる。上記の鋳型21により成形される凝固スラグ5の凝固厚の厚い部分と凝固厚の薄い部分との比率が、必要とされる粒度分布に合うように鋳型21の凹凸形状を設計すれば、必要量の粗粒と細粒とを採取できる。その結果、この凝固スラグ5から適正な形状および粒度分布のスラグ骨材を製造することができる。   According to the particle size distribution of the coarse aggregate 2005 defined by JIS_A5011-1, the required amount of coarse particles having a particle size of 20 to 25 mm is as small as 10 mass% or less, and the required amount of coarse particles having a particle size of 15 to 25 mm is 15 It is supposed to be about ~ 45 mass%. If the uneven shape of the mold 21 is designed so that the ratio of the solidified thickness portion and the thinned thickness portion of the solidified slag 5 formed by the mold 21 matches the required particle size distribution, the required amount Coarse and fine grains can be collected. As a result, a slag aggregate having an appropriate shape and particle size distribution can be produced from the solidified slag 5.

なお、粒径20〜25mmの粗粒の必要量は、個数比に換算すると全体の個数に対して10分の1程度と小さく、質量比でも50%に満たない程度なので、部分的に凝固スラグ5の凝固厚を薄くして粗粒の採取可能な部分を減らしても特に問題は無い。   The required amount of coarse particles having a particle diameter of 20 to 25 mm is as small as about 1/10 of the total number when converted to the number ratio, and the mass ratio is less than 50%. There is no particular problem even if the solidified thickness of 5 is reduced to reduce the portion where coarse particles can be collected.

ところで、上記のように底部に凸状隆起部を有する鋳型21には、熱応力による鋳型21の破損を起こり難くするため、凝固スラグ5の下面には曲線からなる比較的緩やかな凸形状とすることが望ましい。そこで、スラグとの接触時間が長く熱負荷が大きい鋳型21を緩やかな凸形状として、凝固スラグ5の下面に板厚分布のみを付与する。一方、スラグとの接触時間が短く熱負荷が小さい成形ロール22に配置した成形工具の先端を鋭角のノッチ形状として、凝固スラグ5の上面に急峻な凹凸を付与する。   By the way, as described above, the mold 21 having the convex bulge at the bottom has a relatively gentle convex shape with a curved surface on the bottom surface of the solidified slag 5 in order to prevent the mold 21 from being damaged by thermal stress. It is desirable. Therefore, the mold 21 having a long contact time with the slag and a large heat load is formed to have a gentle convex shape, and only the plate thickness distribution is given to the lower surface of the solidified slag 5. On the other hand, the tip of the forming tool disposed on the forming roll 22 having a short contact time with the slag and a small thermal load is formed into an acute notch shape, and steep irregularities are given to the upper surface of the solidified slag 5.

そこで、本実施の形態の熱回収システム1は、鋳型21の搬送に応じて上下昇降可能な成形ロール22を備え、鋳型21内のスラグの上面に機械的に凹凸を成形する。図5および図6に成形ロール22のスラグに接する部分(押し込み面)の断面図を例示するように、本実施の形態の成形ロール22には、凝固スラグ5に機械的な押し込みにより凹凸形状を付与する凸形状の成形工具7を複数並列配置させて、山−谷の繰り返し形状が設けられている。凝固スラグの上面に凹凸形状を付与する成形工具7の幅Wと、凝固スラグの下面に凹凸形状を付与する鋳型21底部の凸状隆起部aの幅(鋳型21底部の最小高さ位置からの高さHが3mm超の領域の幅)Cとの関係を、C>Wとするとともに、成形工具7の先端が鋭角のノッチ形状を有し、鋳型21の底部が曲線からなる形状を有することが好ましい。なお、押し込み面に配置する複数の成形工具7は、図5に示すように連続して配置してもよいし、図6に例示するように間隔をおいて配置してもよい。そして、これらの組み合わせ効果により、凝固スラグ5を破砕した場合に必要とされる粒度分布のスラグ骨材を採取できるように、凹凸形状を凝固スラグ5に付与することができる。   Therefore, the heat recovery system 1 according to the present embodiment includes a forming roll 22 that can be moved up and down according to the conveyance of the mold 21, and mechanically forms unevenness on the upper surface of the slag in the mold 21. As illustrated in FIGS. 5 and 6, which are cross-sectional views of a portion (pushing surface) in contact with the slag of the forming roll 22, the forming roll 22 of the present embodiment has a concavo-convex shape by mechanical pressing into the solidified slag 5. A plurality of convex forming tools 7 to be imparted are arranged in parallel, and a repetitive shape of mountains and valleys is provided. The width W of the forming tool 7 that gives the uneven shape to the upper surface of the solidified slag, and the width of the convex raised portion a at the bottom of the mold 21 that gives the uneven shape to the lower surface of the solidified slag (from the minimum height position of the bottom of the mold 21). The relationship between the height H and the width of the region where the height H exceeds 3 mm is C> W, the tip of the forming tool 7 has an acute notch shape, and the bottom of the mold 21 has a curved shape. Is preferred. The plurality of forming tools 7 arranged on the pushing surface may be arranged continuously as shown in FIG. 5, or may be arranged at intervals as illustrated in FIG. And the uneven | corrugated shape can be provided to the solidification slag 5 by these combined effects so that the slag aggregate of the particle size distribution required when the solidification slag 5 is crushed can be extract | collected.

本実施の形態の成形ロール22は、鋳型21の凸状隆起部aの形状から粗粒を採取する鋳型21の水平方向の位置と細粒を採取する鋳型21の水平方向の位置とを予め決めておき、凸状隆起部aの直上のスラグの上面に対して、細粒を採取するように成形ロール22で凹凸を成形する。すなわち、鋳型21でのスラグの凝固厚が薄くなる位置ほど成形ロール22により付与する凹凸形状の間隔を小さくするよう、成形工具7の間隔(隣合う成形工具7の山と山との間隔)X(X,X,X,・・・)を小さくする。これにより、凝固スラグ5から得られるスラグ骨材の粗粒から細粒までの粒径分布の制御を上下両面から行うことができる。 The forming roll 22 of the present embodiment determines in advance the horizontal position of the mold 21 for collecting coarse grains and the horizontal position of the mold 21 for collecting fine grains from the shape of the convex ridges a of the mold 21. The unevenness is formed by the forming roll 22 so as to collect fine particles on the upper surface of the slag immediately above the convex ridge a. That is, the distance between the forming tools 7 (the distance between the crests of adjacent forming tools 7) X so as to reduce the interval between the uneven shapes provided by the forming roll 22 as the solidified thickness of the slag in the mold 21 decreases. (X 1 , X 2 , X 3 ,...) Is reduced. Thereby, control of the particle size distribution from the coarse grain of the slag aggregate obtained from the solidification slag 5 to a fine grain can be performed from both upper and lower sides.

このような鋳型21および成形ロール22によれば、凝固スラグ5に凹凸形状が付与されることで凝固スラグ5の表面積が拡大し、凝固スラグ5から顕熱を回収し易くなる。また、熱回収装置6のスラグ充填槽内に凝固スラグ5が積層した際にも、ガスが充填槽内を流れ易くなるので、熱回収効率が大幅に向上する。また、凝固スラグ5の上面および下面に対してそれぞれ異なる形状の凹凸形状を付与することで、鋳型21の熱負荷を抑えながら、スラグ骨材の形状および粒度分布を直接的に造り込むことができるので、2次破砕が不要となり、スラグの凝固厚を必要以上に厚くすることなく低コストでスラグ骨材を得ることができる。   According to such a mold 21 and the molding roll 22, the surface area of the solidified slag 5 is increased by providing the solidified slag 5 with an uneven shape, and it becomes easy to recover sensible heat from the solidified slag 5. Also, when the solidified slag 5 is stacked in the slag filling tank of the heat recovery apparatus 6, the gas easily flows through the filling tank, so that the heat recovery efficiency is greatly improved. Further, by providing uneven shapes having different shapes on the upper surface and the lower surface of the solidified slag 5, it is possible to directly build the shape and particle size distribution of the slag aggregate while suppressing the thermal load of the mold 21. Therefore, secondary crushing becomes unnecessary, and the slag aggregate can be obtained at a low cost without increasing the solidification thickness of the slag more than necessary.

以上、説明したように、本実施の形態の熱回収システム1によれば、スラグの凝固厚を薄くするとともに凝固スラグ5を熱回収装置6に充填した際にもガスの流路を確保できるので、凝固スラグ5から顕熱を容易に回収することができる。加えて、顕熱を回収した後の凝固スラグから形状および粒度分布が良好なスラグ骨材が得られるので、スラグを効率よく利材化できる。   As described above, according to the heat recovery system 1 of the present embodiment, it is possible to secure a gas flow path even when the solidified slag 5 is filled in the heat recovery device 6 while reducing the solidified thickness of the slag. The sensible heat can be easily recovered from the solidified slag 5. In addition, since a slag aggregate having a good shape and particle size distribution can be obtained from the solidified slag after recovering sensible heat, the slag can be efficiently used.

なお、鋳型21は、金属製のもの、内面キャスタブル施工など、複層化して耐熱・断熱仕様とした構造のものなどが適用可能である。また、スラグの上面に凹凸形状を付与する成形手段は、成形ロール22に限らず、例えばプレス状に上下昇降する加工方式や、自重で押し付け成形を行う方式の成形工具などでもよい。その場合、成形手段の凹凸形状は、鋳型21でのスラグの凝固厚が薄くなる位置ほど凹凸形状の間隔Xが小さくなるように配置される。   The mold 21 can be made of a metal or a structure having a multi-layered structure with heat resistance and heat insulation, such as inner surface castable construction. Moreover, the shaping | molding means which provides uneven | corrugated shape to the upper surface of a slag is not restricted to the shaping | molding roll 22, For example, the shaping | molding tool etc. of the processing system which raises / lowers up and down to a press shape, and the method of pressing-molding with dead weight may be sufficient. In that case, the uneven shape of the forming means is arranged so that the interval X of the uneven shape becomes smaller as the solidified thickness of the slag in the mold 21 becomes thinner.

上記実施の形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、仕様等に応じて種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施の形態が可能であることは上記記載から自明である。   The above-described embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these, and various modifications according to the specifications and the like are within the scope of the present invention. It is obvious from the above description that various other embodiments are possible within the scope of the above.

(実施例)
本発明の実施例として以下のような計算を行った。先ず、凹凸成形を行わないケースとして、凝固厚25mm×幅150mm×長さ150mmの板状の凝固スラグA0を熱回収装置に装入して顕熱を回収し、熱回収のガスの温度および熱回収率を算出するシミュレーションを行なった。シミュレーションにあたり、凝固スラグA0を1000℃で熱回収装置に装入して5mの高さに積層させ、1t/minのピッチでスラグの装入および排出を繰り返しながら25℃の空気(ガス)10万Nm/hを向流方式で送風して熱交換を行なうものと仮定した。
(Example)
As an example of the present invention, the following calculation was performed. First, as a case in which concavo-convex forming is not performed, a solidified slag A0 having a solidified thickness of 25 mm, a width of 150 mm, and a length of 150 mm is inserted into a heat recovery device to recover sensible heat, and the temperature and heat of the heat recovery gas A simulation for calculating the recovery rate was performed. In the simulation, the solidified slag A0 was charged into a heat recovery device at 1000 ° C. and stacked at a height of 5 m, and the air (gas) at 25 ° C. was 100,000 while repeatedly charging and discharging the slag at a pitch of 1 t / min. It was assumed that heat exchange was performed by blowing Nm 3 / h in a countercurrent manner.

次に、凹凸成形を行ったケースを示す。凝固スラグA0に付与する凹凸形状は、モデルの簡易化のため、2次元の凹凸形状のみとした。また、スラグ骨材の粒径分布として粗骨材2005(粒径範囲20mm〜5mm)を想定し、上面に凹凸形状を付与した凝固スラグA1、および下面に凹凸形状を付与した凝固スラグA2としてそれぞれ計算した。この計算のベースとなる凝固厚は、凹凸付与をした場合には2次破砕が不要になるため、骨材粒径範囲の最大値である20mmとし、上記の凹凸成形を行わないケースより薄くした。   Next, the case where unevenness molding was performed is shown. The uneven shape imparted to the solidified slag A0 is only a two-dimensional uneven shape for simplification of the model. Assuming coarse aggregate 2005 (particle size range 20 mm to 5 mm) as the particle size distribution of the slag aggregate, solidified slag A1 having an uneven shape on the upper surface and solidified slag A2 having an uneven shape on the lower surface, respectively. Calculated. The solidification thickness that is the basis of this calculation is 20 mm, which is the maximum value of the aggregate particle size range, because the secondary crushing is not required when unevenness is given, and is thinner than the case where the above unevenness forming is not performed. .

図7は、上面に凹凸形状を付与した凝固スラグA1のシミュレーションモデルを示す図である。このモデルの上面には、図7に示すように、10mmの正三角形状のノッチが7箇所付与されている。このように上面に凹凸形状が付与された凝固スラグ(凝固厚の平均は14.5mm)A1の熱回収率は、計算を簡略化するため、凹凸形状が付与された凝固スラグと表面積が一致する凝固厚14.5mmの平板形状の凝固スラグA1’と等価と仮定する。   FIG. 7 is a diagram illustrating a simulation model of the solidified slag A1 having an uneven shape on the upper surface. On the upper surface of this model, as shown in FIG. 7, seven 10 mm regular triangular notches are provided. Thus, the heat recovery rate of the solidified slag having an uneven shape on the upper surface (the average solidified thickness is 14.5 mm) A1 is the same as the solidified slag having the uneven shape in order to simplify the calculation. It is assumed to be equivalent to a flat solid slag A1 ′ having a solidification thickness of 14.5 mm.

図8は下面に凹凸形状が付与された凝固スラグA2のシミュレーションモデルを示す図である。このモデルの下面には、図8に示すように、高さ7mmの緩やかな台形状の鋳型形状が付与されている。このように下面に凹凸形状が付与された凝固スラグ(凝固厚の平均は16mm)A2の熱回収率は、計算を簡略化するため、凹凸形状による表面積の拡大は考慮せず、凝固厚16mmの平板形状の凝固スラグA2’と等価と仮定する。   FIG. 8 is a diagram showing a simulation model of the solidified slag A2 having an uneven shape on the lower surface. As shown in FIG. 8, a gentle trapezoidal mold shape having a height of 7 mm is given to the lower surface of this model. In this way, the heat recovery rate of the solidified slag (solidified thickness average 16 mm) A2 having a concave and convex shape on the lower surface is not considered in order to simplify the calculation. It is assumed that it is equivalent to a flat solidified slag A2 ′.

上記の3つの凝固スラグについて、熱回収率を算出するシミュレーションを行った。図9にシミュレーション条件を示す。図10は、シミュレーション結果を示す。図10に示すように、上面に凹凸形状を付与した凝固スラグA1’(Case2)および下面に凹凸形状を付与した凝固スラグA2’(Case3)の方が、凹凸形状を付与する前の凝固スラグA0(Case1)に比べて顕熱を回収したガスの温度(熱回収ガス温度)が高くなっており、熱回収後の凝固スラグの温度(スラグ排出温度)が十分に低下することで熱回収率も向上している。   A simulation for calculating the heat recovery rate was performed for the three solidified slags. FIG. 9 shows the simulation conditions. FIG. 10 shows the simulation results. As shown in FIG. 10, the solidified slag A1 ′ (Case 2) having a concavo-convex shape on the upper surface and the solidified slag A2 ′ (Case 3) having a concavo-convex shape on the lower surface are the solidified slag A0 before the concavo-convex shape is imparted. The temperature of the gas from which sensible heat has been recovered (heat recovery gas temperature) is higher than (Case 1), and the heat recovery rate is also reduced by sufficiently reducing the temperature of the solidified slag after heat recovery (slag discharge temperature). It has improved.

なお、図10は、上記のとおり、凝固スラグに凹凸形状を付与したモデル(A1,A2)を、凝固厚を一様に低減させた平板形状のモデル(A1’,A2’)に換算して熱回収率を算出している。ただし、実際には凹凸形状を付与した凝固スラグを熱回収装置6に充填した際にガスの流路を確保できることによる効果も得られる。したがって、図10に示す結果より、さらに熱回収ガス温度が上昇し、熱回収率も向上する。   In addition, FIG. 10 converts the model (A1, A2) which gave the uneven | corrugated shape to solidification slag as above-mentioned, and converted into the flat plate-shaped model (A1 ', A2') which reduced the solidification thickness uniformly. The heat recovery rate is calculated. However, actually, when the solidified slag having the irregular shape is filled in the heat recovery device 6, the effect of being able to secure the gas flow path is also obtained. Therefore, from the result shown in FIG. 10, the heat recovery gas temperature further increases, and the heat recovery rate is improved.

1 熱回収システム
2 鋳滓機
21 鋳型
22 成形ロール
3 溶融スラグ
4 供給装置
5 凝固スラグ
6 熱回収装置
7 成形工具
DESCRIPTION OF SYMBOLS 1 Heat recovery system 2 Casting machine 21 Mold 22 Molding roll 3 Molten slag 4 Supply apparatus 5 Solidification slag 6 Heat recovery apparatus 7 Molding tool

Claims (5)

連続的に搬送される鋳型に高炉から得られた溶融スラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与する鋳滓機と、
前記鋳滓機により前記上面と前記下面で異なる凹凸形状を付与された前記凝固スラグの顕熱を回収する熱回収装置と、を備え、
前記鋳型の底部には、曲線からなる形状を有する凸状隆起部が設けられており、
前記凸状隆起部により前記凝固スラグの下面に付与された凹凸形状は、前記凝固スラグの上面の凹凸形状よりも緩やかな凹状である
とを特徴とする凝固スラグの熱回収システム。
A casting machine that gives different uneven shapes to the upper and lower surfaces of the solidified slag formed by pouring molten slag obtained from a blast furnace into a continuously conveyed mold,
E Bei and a heat recovery apparatus for recovering the sensible heat of the coagulation slag granted different concave-convex shape in the lower surface and the upper surface Ri by the cool machine,
At the bottom of the mold, a convex ridge having a curved shape is provided,
The concavo-convex shape imparted to the lower surface of the solidified slag by the convex raised portion is a gentler concave shape than the concavo-convex shape of the upper surface of the solidified slag.
Heat recovery system of the coagulation slag characterized by and this.
前記凸状隆起部は、前記鋳型の底部に少なくとも1箇所以上設けられていることを特徴とする請求項1に記載の凝固スラグの熱回収システム。 The convex ridges heat recovery system of the coagulation slag according to claim 1, wherein the this are found provided at least one or more places at the bottom of the mold. 前記鋳型内のスラグ上面に対して成形工具を機械的に押し込む操作により、前記凝固スラグの上面に凹凸形状を付与し、
前記凸状隆起部は、前記成形工具よりも緩やかな凸形状を有する
ことを特徴とする請求項1または請求項2に記載の凝固スラグの熱回収システム。
By mechanically pushing operation the forming tool against the slug top surface of the inner mold, Grant irregularities on the upper surface of the solidified slag,
The convex ridge has a gentle convex shape than the forming tool.
Heat recovery system of the coagulation slag according to claim 1 or claim 2, characterized in that.
前記凝固スラグの表面温度が300℃以上である状態で熱回収装置に凝固スラグを装入することを特徴とする請求項1〜請求項3のいずれか1項に記載の凝固スラグの熱回収システム。   The solidified slag heat recovery system according to any one of claims 1 to 3, wherein the solidified slag is charged into the heat recovery device in a state where the surface temperature of the solidified slag is 300 ° C or higher. . 連続的に搬送される鋳型に高炉から得られた溶融スラグを注ぎ込むことによって形成される凝固スラグの上面および下面のそれぞれに対して異なる凹凸形状を付与する形状付与ステップと、
前記形状付与ステップにより前記上面と前記下面で異なる凹凸形状を付与された前記凝固スラグの顕熱を回収する熱回収ステップと、を含み、
前記形状付与ステップは、前記鋳型の底部に設けられた曲線からなる形状を有する凸状隆起部により前記凝固スラグの下面に凹凸形状を付与するステップを含み、
前記形状付与ステップにより前記凝固スラグの下面に付与された凹凸形状は、前記凝固スラグの上面の凹凸形状よりも緩やかな凹状である
とを特徴とする凝固スラグの熱回収方法。
A shape imparting step for imparting different uneven shapes to the upper surface and the lower surface of the solidified slag formed by pouring molten slag obtained from a blast furnace into a continuously conveyed mold,
Anda heat recovery step for recovering the sensible heat of the coagulation slag Ri granted different concave-convex shape at the upper surface and the lower surface by the said shaping step,
The shape imparting step includes a step of imparting a concavo-convex shape to the lower surface of the solidified slag by a convex ridge having a curved shape provided at the bottom of the mold,
The concavo-convex shape imparted to the lower surface of the solidified slag by the shape imparting step is a gentler concave shape than the concavo-convex shape of the upper surface of the solidified slag.
Heat recovery method of solidifying slag characterized by and this.
JP2013009288A 2012-01-31 2013-01-22 Heat recovery system and heat recovery method for solidified slag Expired - Fee Related JP5949575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013009288A JP5949575B2 (en) 2012-01-31 2013-01-22 Heat recovery system and heat recovery method for solidified slag

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012018503 2012-01-31
JP2012018503 2012-01-31
JP2013009288A JP5949575B2 (en) 2012-01-31 2013-01-22 Heat recovery system and heat recovery method for solidified slag

Publications (2)

Publication Number Publication Date
JP2013177292A JP2013177292A (en) 2013-09-09
JP5949575B2 true JP5949575B2 (en) 2016-07-06

Family

ID=49269378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013009288A Expired - Fee Related JP5949575B2 (en) 2012-01-31 2013-01-22 Heat recovery system and heat recovery method for solidified slag

Country Status (1)

Country Link
JP (1) JP5949575B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105541137A (en) * 2016-02-26 2016-05-04 天津水泥工业设计研究院有限公司 High-temperature-melting slag treatment process and device
RU2669020C1 (en) * 2017-07-31 2018-10-05 Государственное автономное образовательное учреждение Астраханской области высшего образования Астраханский Государственный Архитектурно-Строительный Университет Method of obtaining construction products from slag glass ceramics

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5169482A (en) * 1974-12-12 1976-06-16 Mitsui Shipbuilding Eng
JPH07305970A (en) * 1994-05-11 1995-11-21 Daido Steel Co Ltd Device for air-cooling solidification of molten slag
JP3135046B2 (en) * 1996-05-08 2001-02-13 ラサ商事株式会社 Method and apparatus for producing artificial gravel from incinerated ash molten slag
EP1083236A1 (en) * 1999-09-09 2001-03-14 Anton Dipl.-Ing. Hulek Process and system for the dry cooling of metallurgical slags with heat recovery
JP5544684B2 (en) * 2008-03-20 2014-07-09 Jfeスチール株式会社 Molten slag cooling processing apparatus and cooling processing method

Also Published As

Publication number Publication date
JP2013177292A (en) 2013-09-09

Similar Documents

Publication Publication Date Title
CN104108717B (en) Calcium carbide cooling molding and waste heat utilization method
CN101871025B (en) Metallurgical molten slag dry-type processing device and processing method thereof
TWI512257B (en) Apparatus for manufacturing solidified slag, apparatus for manufacturing coarse aggregate for concrete, method for manufacturing solidified slag, and method for manufacturing coarse aggregate for concrete
JP5949575B2 (en) Heat recovery system and heat recovery method for solidified slag
JP2013139596A (en) Method and system for recovering heat
JP6318982B2 (en) Heat recovery method and heat recovery system for solidified slag
JP2014085064A (en) Heat recovery system for coagulation slag and heat recovery method
JP2009132546A (en) Method and apparatus for processing molten slag
KR20200037742A (en) Apparatus for casting electrode supports for lead acid batteries
JP5788691B2 (en) Melting furnace for melting metal and method for melting metal using the same
JP5949574B2 (en) Solidified slag shape control device, solidified slag shape control method, and solidified slag manufacturing method
JP2010235323A (en) Method of recovering heat energy of slag
JP5560871B2 (en) Thermal energy recovery method for steel slag
CN207077697U (en) A kind of high temperature plastics mould for having thermal insulation board
CN201825962U (en) Dry-type metallurgical molten slag treating device
JP5942427B2 (en) Heat recovery method for molten slag
CN104108716B (en) Calcium carbide cooling forming equipment
CN103071802B (en) Method and device for producing ferroalloy by mechanical crushing
CN207857470U (en) A kind of hot forming tool with automatic air blowing function
CN112048583A (en) Dry type slag treatment equipment
EP3821042A1 (en) Method to control the cooling of a flat metal product
CN215832243U (en) Box-type quartz sand cooling structure
KR200485687Y1 (en) Metal melting furnace and metal block for use in the metal melting furnace
CN204057972U (en) Calcium carbide cooling forming equipment and calcium carbide cooling forming and bootstrap system
JP5892143B2 (en) Solidified slag manufacturing apparatus, concrete coarse aggregate manufacturing apparatus, solidified slag manufacturing method, concrete coarse aggregate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees