JP3988347B2 - Particle size control method for hard granulated slag - Google Patents

Particle size control method for hard granulated slag Download PDF

Info

Publication number
JP3988347B2
JP3988347B2 JP2000050123A JP2000050123A JP3988347B2 JP 3988347 B2 JP3988347 B2 JP 3988347B2 JP 2000050123 A JP2000050123 A JP 2000050123A JP 2000050123 A JP2000050123 A JP 2000050123A JP 3988347 B2 JP3988347 B2 JP 3988347B2
Authority
JP
Japan
Prior art keywords
slag
granulated slag
particle size
temperature
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000050123A
Other languages
Japanese (ja)
Other versions
JP2001240437A (en
Inventor
滋明 後藤
秀行 鎌野
博幸 當房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000050123A priority Critical patent/JP3988347B2/en
Publication of JP2001240437A publication Critical patent/JP2001240437A/en
Application granted granted Critical
Publication of JP3988347B2 publication Critical patent/JP3988347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/032Separating slag from liquid, e.g. from water, after quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/072Tanks to collect the slag, e.g. water tank
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/074Tower structures for cooling, being confined but not sealed

Landscapes

  • Furnace Details (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硬質水砕スラグの製造方法にかかり、とくにコンクリート施工時の細骨材として用いられる高炉硬質水砕スラグに適合する粒度に制御する方法に関する。
【0002】
【従来の技術】
高炉スラグは、溶融状態のスラグに高圧水を直接吹き付けて急冷することによって製造される、水砕スラグの形で利用されることが多い。この水砕スラグは、その性状により、主にセメント等の原料となる軟質水砕スラグとコンクリート用細骨材向けの硬質水砕スラグとに区別されるが、大部分はセメント原料向けである。一方、コンクリート用スラグ細骨材向けの硬質水砕スラグは、JIS A5011に規定されている。
【0003】
この硬質水砕スラグをコンクリート用細骨材として利用する際は、硬質水砕スラグのみで使用することは少ない。すなわち、天然砂に硬質水砕スラグを一部混合して用いるのが一般的である。なぜなら、硬質水砕スラグは水硬性を有し、保存中に水分と反応し固結してしまうという問題があるためであり、水分を保持したままの硬質水砕スラグは単独で長期保存するのに適していないためである。
【0004】
一般に、細骨材というのは、その粒度分布がJISで規格されている。ところが最近では、天然砂のみではその規格を満足できない場合が多く、砕砂等を混合して粒度分布を調整するのが普通である。ところで、高炉硬質水砕スラグを砕砂等の代替品として利用する場合、混合する天然砂の粒度分布に応じ、混合すべき水砕スラグの粒度が異なってくる。すなわち、天然砂の粒度が細粒のときは粗粒のもの、天然砂の粒度が粗粒のときは細粒のものが求められるのである。
【0005】
例えば、細粒の硬質水砕スラグが求められる場合は、硬質水砕スラグを破砕して粒度調整することにより、要求品質を容易に満足できる。しかし、粗粒の硬質水砕スラグが必要とされる場合は、硬質水砕スラグの粒を粗くしておく必要がある。
【0006】
ここで、硬質水砕スラグの製造方法として現在、溶融スラグを一旦スラグ鍋に受けた後、高炉とは別の場所に設けられた水砕設備で水砕する炉外方式と、高炉に直結した軟質水砕製造設備で製造した水砕スラグの中から高比重の物を選別する炉前方式と、の2方式が実施されている。
【0007】
後者の炉前方式にて通常の軟質水砕スラグを製造する場合、出銑初期のスラグ流量が少ないときは、得られる軟質水砕スラグの粒度が小さく、逆に出銑末期のスラグ流量が多いときは同粒度が大きくなる傾向が知られているが、硬質水砕スラグを粗粒化するための方法に言及した従来技術は知られていない。
【0008】
ただし、水砕スラグ製造時に、その粒度を調整することに関して、例えば特公平6−39340号公報には、スラグ冷却用の吹製水の噴射を4ケ所のノズルから行い、それぞれのノズルの水圧を独立制御できるようにした、硬質水砕スラグと軟質水砕スラグを造り分ける技術が開示され、さらに溶融スラグに最初に当たる冷却水の水圧を低下させると水砕スラグ粒が粗くなるとの記載がある。しかし、この開示の方法は単に水圧調整のみによって粗・細粒化を調整しようとする技術である。
【0009】
【発明が解決しようとする課題】
しかしながら、この技術は設備が複雑となり、また各噴射ノズルの水圧をそれぞれ適切な範囲に制御する必要があるところから、簡易な設備で効率よく硬質水砕スラグを粗粒化する方法の開発が希求されていた。とりわけ、簡易な設備を用いて低コストで粗粒化を達成することが望まれている。
【0010】
そこで本発明は、かかる事情に鑑み、硬質水砕スラグの粒度を、簡易かつ効率よく、しかも低コストにて制御する手法について提案することを目的とする。
【0011】
【課題を解決するための手段】
発明者らは、上記の目的を達成するための手段について鋭意研究を重ねたところ、冷却水の温度または溶融スラグの温度を調整すれば、特に低コストで粗粒のコンクリート用細骨材に適した硬質水砕スラグが得られることを見出し、本発明を完成するに到った。
【0012】
すなわち、本発明は、溶融状態の高炉スラグを一旦鍋に受けた後、その鍋からスラグを排出させる時点で、排出されて流下する該スラグに向けて高圧冷却水をノズルから噴射して水砕を行うに当たり、流下時の溶融スラグの温度を1350〜1420℃に調整し、かつ冷却水温度を65〜90℃、冷却水圧力を25〜49kPaに調整することによって硬質水砕スラグの粒度を粗粒率FM値で3.8以上にすることを特徴とする硬質水砕スラグの粒度制御方法である。
【0014】
なお、硬質水砕スラグは、そのFM値が3.8以上であることが、コンクリートスラグ細骨材として供する場合に、とりわけ有利である。ここで、FM値とは、骨材の粒度を表す一般的指標である、粗粒率(Fineness- Modulas)のことである。この粗粒率は、所定重量のサンプルを80,40,20,10,5,2.5 ,1.2 ,0.6 ,0.3 ,0.15mmの一連の篩を用いて順次篩い分けを行い、粗い篩目側から合計した残留粒子(各篩に残留する粒子)の重量、即ち累計粒子重量を各篩の代表値とし、この各篩の累計粒子重量の前記所定重量に対する百分率を残留累計百分率とし、各篩の残留累計百分率の合計を100で割ったものとして定義される。
【0015】
【発明の実施の形態】
まず、本発明を導くに至った経緯に基づいて、本発明を詳しく説明する。
すなわち、発明者らは、操業条件が水砕スラグの粒度に及ぼす影響を明らかにするために、従来製造されているセメント向け軟質水砕スラグの製造設備において、コスト高となる冷却水圧力の調整は除外した、他の操業条件を種々に変更して実験を行った。その結果、該設備の吹製装置における冷却水の温度、そして溶融スラグの温度を変化したところ、スラグの粗粒化に極めて有効であることが判明した。
【0016】
次に、冷却水の温度または溶融スラグの温度を調整する手法について、具体的に説明する。
図1に、本発明を適用する、炉外方式の水砕スラグ製造設備の概要を示す。
この水砕スラグ製造設備は、高炉1近くに設置した、吹製装置2、水砕槽3および脱水機4から成り、冷却塔5からポンプを介して冷却水を吹製装置2並びに脱水機4に供給し、吹製装置2においてはノズルからの冷却水の噴射に、また脱水機4においては水砕スラグから脱水された水の冷却に、それぞれ用いる。この製造設備では、高炉1からの溶融スラグを一旦鍋6に受け、この鍋6からスラグ樋7を介して吹製装置2へ溶融スラグを流下させる時点にて、ノズルから冷却水を流下スラグに向けて吐出して水砕を行う。かくして得られた水砕スラグは、水砕槽3から脱水機4へ送られ、ここで固液分離してから、製品槽8に溜められる。
【0017】
ここで、冷却水の温度を調整するには、冷却塔5において冷却水の温度を調整し、所定温度の冷却水を吹製装置2に供給すればよい。なお、冷却水の温度は、5〜90℃の範囲に調整する。なぜなら、FM値が3.8以上の粗い粒度の硬質水砕を得るためには、5℃以上が望ましい。水温を高くする程、粗粒率も高くなるが、水温を90℃程度にまで上げると、スラリーポンプでキャビテーションが発生する危険が高くなるため、90℃以下で管理する。
【0018】
また、溶融スラグの温度を調整するには、溶融スラグを鍋6に受けてから吹製装置2へ溶融スラグを流下させるまでの時間を制御すればよい。あるいは、溶融スラグを受ける鍋6を事前に冷却したり、溶融スラグを鍋6に受ける際、鍋6に散水して温度を下げることも可能である。
【0019】
なお、溶融スラグの温度は、1350〜1420℃の範囲に調整する。なぜなら、スラグ温度を下げすぎると、スラグ鍋からの排出性が悪くなり、排出流量の変動が大きくなって、これにともない水比が変動し、成品の性状も変動する問題がある。また、スラグ温度が1420℃以上になると、単位容積重量が低下、すなわち水砕スラグの軟質化が生じるため、硬質水砕スラグの製造ができないからである。
【0020】
【実施例】
実施例1
次に、上記水砕スラグ製造設備を用いた、硬質水砕スラグの粒度制御を具体的に説明する。すなわち、高炉1の下方で鍋6に溶融スラグを受けたのち、ディーゼル車で鍋6を水砕スラグ製造設備に運んだ。次いで、スラグを流す前に鍋6内のスラグ表面の凝固スラグをバックホーで壊し、鍋6を傾動位置まで運んだ。そして、流下するスラグ量が一定となるように、所定の速度で鍋を傾転し、スラグ樋7を介してスラグの流れを安定させて吹製装置2内に流し、該装置のノズルから吐出する冷却水により水砕した。
【0021】
ここで、冷却水の温度は、ノズル吐出口手前で45〜75℃の範囲にて適宜調整した。また、冷却水圧力は25〜49kPa(0.25〜0.50 kgf/cm)と一定にし、鍋6からの1回の排出量は約30ton とした。なお、スラグ温度は鍋6から流出する際に放射温度計で測定したところ、1350〜1420℃であった。
【0022】
かくして冷却水の温度を調整して得られた水砕スラグは、炉前水砕と同様に、鍋毎30tonを製品槽から抜き出し、ダンプカーでヤードまで輸送し、ヤードに一つ一つ山にした。次に、一山毎にサンプルを採取し、その粒度分布を測定した。
【0023】
その結果について、冷却水温度と粒度との関係を図2の示すように、冷却水温度と水砕スラグとの粒度が良く相関していることがわかる。そして、特に65〜90℃に調整することによって、水砕スラグのFM値が3.8以上の粗い硬質水砕スラグが製造でき、コンクリート用スラグ細骨材としての品質を満足できるものができた。
【0024】
ちなみに、吹製水のノズル水圧のみを調整する従来法では、同様の操業条件での水砕スラグ製造中に水温が常温から80℃程度まで変動するため、FM値が2.8〜4.2とばらつき、所望の粒度の水砕スラグを得るために、さらに篩分けが必要であった。
【0025】
実施例2
また、上記と同様に、水砕時の溶融スラグ温度を1350〜1420℃の範囲にて適宜調整する操業を行った。また、冷却水圧力は39〜49kPa(0.4 〜0.5 kgf /cm)と一定にし、鍋6からの1回の排出量は約30ton とした。なお、冷却水の温度は、ノズル吐出口手前で70〜80℃の範囲とした。
【0026】
かくして溶融スラグの温度を調整して得られた水砕スラグは、炉前水砕と同様に、鍋毎30tonを製品槽から抜き出し、ダンプカーでヤードまで輸送し、ヤードに一つ一つ山にした。次に、一山毎にサンプルを採取し、その粒度分布を測定した。
【0027】
その結果について、溶融スラグの温度と粒度との関係を示す図3に明らかなように、溶融スラグ温度と水砕スラグとの粒度が良く相関していることがわかる。そして、溶融スラグ温度を特に1380〜1400℃に調整することによって、水砕スラグのFM値のばらつきが3.8〜4.1の狭い範囲(0.3)に落ちつく操業を実現できた。
【0028】
ちなみに、吹製水のノズル水圧のみを調整する従来法では、出銑口からのスラグの流出速度に応じてスラグ温度が1360〜1450℃位まで変動したため、同様の操業条件において得られた水砕スラグのFM値のばらつきが3.4〜4.2と広範囲になった。このため、所望の粒度の水砕スラグを得るために、篩分けが必要であった。
【0029】
【発明の効果】
本発明によれば,冷却水温度または溶融スラグ温度を調整することにより、硬質水砕スラグの粒度を特に低コストにて制御することができる。
【図面の簡単な説明】
【図1】炉外方式の硬質水砕スラグ製造設備の概要を示す図である。
【図2】水砕スラグの粒度に及ぼす冷却水温度の影響を示す図である。
【図3】水砕スラグの粒度に及ぼす溶融スラグ温度の影響を示す図である。
【符号の説明】
1 高炉
2 吹製装置
3 水砕槽
4 脱水機
5 冷却塔
6 鍋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hard granulated slag, and more particularly to a method for controlling the particle size to match that of a blast furnace hard granulated slag used as a fine aggregate during concrete construction.
[0002]
[Prior art]
Blast furnace slag is often used in the form of granulated slag, which is produced by directly blowing high-pressure water onto molten slag and quenching. This granulated slag is classified into soft granulated slag, which is mainly used as a raw material for cement and the like, and hard granulated slag for fine aggregate for concrete, but most of it is for cement raw material. On the other hand, hard granulated slag for concrete slag fine aggregate is defined in JIS A5011.
[0003]
When this hard granulated slag is used as a fine aggregate for concrete, it is rare to use only the hard granulated slag. That is, it is common to use a mixture of hard granulated slag and natural sand. This is because hard granulated slag has hydraulic properties and reacts with moisture during storage, causing it to solidify, and hard granulated slag that retains moisture can be stored alone for a long period of time. It is because it is not suitable for.
[0004]
In general, fine aggregate is standardized by JIS in its particle size distribution. Recently, however, natural sand alone cannot satisfy the standard in many cases, and it is common to adjust the particle size distribution by mixing crushed sand or the like. By the way, when utilizing blast furnace hard granulated slag as substitutes, such as crushed sand, according to the particle size distribution of the natural sand to mix, the particle size of the granulated slag to mix differs. That is, when the particle size of natural sand is fine, a coarse particle is required, and when the particle size of natural sand is coarse, a fine particle is required.
[0005]
For example, when fine hard granulated slag is required, the required quality can be easily satisfied by crushing the hard granulated slag and adjusting the particle size. However, when coarse hard granulated slag is required, it is necessary to make the grains of hard granulated slag coarse.
[0006]
Here, as a manufacturing method of hard granulated slag, after receiving the molten slag once in the slag pan, it is directly connected to the blast furnace and the out-of-furnace method of granulating with a granulation facility provided in a place different from the blast furnace There are two methods, a pre-furnace method for selecting high specific gravity from the granulated slag produced by the soft granulated production facility.
[0007]
In the case of producing ordinary soft granulated slag by the latter method in the furnace, when the slag flow rate at the beginning of dredging is small, the particle size of the obtained soft granulated slag is small, and conversely, the slag flow rate at the end of dredging is large. It is known that sometimes the same particle size tends to increase, but the prior art referring to a method for coarsening hard granulated slag is not known.
[0008]
However, regarding the adjustment of the particle size at the time of granulated slag production, for example, Japanese Patent Publication No. 6-39340 discloses spraying of blown water for cooling slag from four nozzles, and adjusting the water pressure of each nozzle. There is disclosed a technique for separately producing hard granulated slag and soft granulated slag that can be independently controlled, and further describes that granulated slag grains become coarse when the water pressure of the cooling water first hitting the molten slag is lowered. However, this disclosed method is a technique for adjusting coarse / fine graining only by adjusting the hydraulic pressure.
[0009]
[Problems to be solved by the invention]
However, this technology complicates the equipment, and since it is necessary to control the water pressure of each injection nozzle within an appropriate range, there is a demand for the development of a method for efficiently coarsening granulated hard granulated slag with simple equipment. It had been. In particular, it is desired to achieve coarsening at low cost using simple equipment.
[0010]
Therefore, an object of the present invention is to propose a method for controlling the particle size of hard granulated slag simply and efficiently at a low cost.
[0011]
[Means for Solving the Problems]
The inventors have conducted extensive research on the means for achieving the above-mentioned object, and it is particularly suitable for coarse aggregate fine aggregate for low-cost concrete if the temperature of the cooling water or the temperature of the molten slag is adjusted. It was found that a hard granulated slag was obtained, and the present invention was completed.
[0012]
That is, in the present invention, after the molten blast furnace slag is once received in the pan, when the slag is discharged from the pan, the high pressure cooling water is injected from the nozzle toward the slag which is discharged and flows down. In order to reduce the particle size of the hard granulated slag by adjusting the temperature of the molten slag when flowing down to 1350 to 1420 ° C, adjusting the cooling water temperature to 65 to 90 ° C , and adjusting the cooling water pressure to 25 to 49 kPa. It is the particle size control method of hard granulated slag characterized by setting the particle ratio FM value to 3.8 or more.
[0014]
In addition, it is especially advantageous when the hard granulated slag has an FM value of 3.8 or more as a concrete slag fine aggregate. Here, the FM value is a coarseness rate (Fineness-Modulas), which is a general index representing the aggregate particle size. This coarse grain ratio is obtained by sequentially sieving a sample of a predetermined weight using a series of sieves of 80, 40, 20, 10, 5, 2.5, 1.2, 0.6, 0.3, and 0.15 mm, and totaling from the coarse mesh side. The weight of the residual particles (particles remaining on each sieve), that is, the cumulative particle weight is the representative value of each sieve, and the percentage of the cumulative particle weight of each sieve with respect to the predetermined weight is the residual cumulative percentage. Defined as the percentage total divided by 100.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
First, the present invention will be described in detail based on the circumstances leading to the present invention.
In other words, in order to clarify the influence of operating conditions on the particle size of granulated slag, the inventors have adjusted the cooling water pressure, which increases the cost, in conventional production facilities for soft granulated slag for cement. The experiment was conducted with various other operating conditions excluded. As a result, when the temperature of the cooling water and the temperature of the molten slag in the blowing apparatus of the facility were changed, it was proved that it was extremely effective for slag coarsening.
[0016]
Next, a method for adjusting the temperature of the cooling water or the temperature of the molten slag will be specifically described.
In FIG. 1, the outline | summary of the granulated slag manufacturing equipment of an out-of-core system to which this invention is applied is shown.
This granulated slag production facility comprises a blowing device 2, a granulating tank 3, and a dehydrator 4 installed near the blast furnace 1, and the cooling water is blown from the cooling tower 5 via a pump and the dehydrator 4 The blower 2 is used for spraying the cooling water from the nozzle, and the dehydrator 4 is used for cooling the water dehydrated from the granulated slag. In this production facility, the molten slag from the blast furnace 1 is once received in the pan 6, and when the molten slag flows down from the pan 6 to the blowing device 2 through the slag gutter 7, the cooling water flows from the nozzle into the flowing down slag. Discharge toward and perform water granulation. The granulated slag thus obtained is sent from the granulation tank 3 to the dehydrator 4 where it is solid-liquid separated and then stored in the product tank 8.
[0017]
Here, in order to adjust the temperature of the cooling water, the temperature of the cooling water may be adjusted in the cooling tower 5 and the cooling water having a predetermined temperature may be supplied to the blowing device 2. The temperature of the cooling water, adjust the range of 6 5 to 90 ° C.. This is because, since the FM values to obtain a hard water-granulated 3.8 or more coarse granularity, 6 5 ° C. or more. The higher the water temperature, the higher the coarse particle ratio. However, if the water temperature is increased to about 90 ° C., the risk of cavitation occurring in the slurry pump increases.
[0018]
In order to adjust the temperature of the molten slag, the time from when the molten slag is received in the pan 6 until the molten slag flows down to the blowing device 2 may be controlled. Alternatively, when the pan 6 that receives the molten slag is cooled in advance, or when the molten slag is received by the pan 6, the temperature can be lowered by sprinkling the pan 6.
[0019]
The temperature of the molten slag, adjust the range of 1,350 to 1,420 ° C.. This is because if the slag temperature is lowered too much, the dischargeability from the slag pan will deteriorate, the fluctuation of the discharge flow rate will increase, the water ratio will fluctuate accordingly, and the properties of the product will also fluctuate. Further, when the slag temperature is 1420 ° C. or higher, the unit volume weight is lowered, that is, the granulated slag is softened, so that the hard granulated slag cannot be produced.
[0020]
【Example】
Example 1
Next, the particle size control of hard granulated slag using the above-mentioned granulated slag production facility will be specifically described. That is, after receiving the molten slag in the pan 6 below the blast furnace 1, the pan 6 was carried to a granulated slag production facility by a diesel vehicle. Next, before flowing the slag, the solidified slag on the surface of the slag in the pan 6 was broken with a backhoe, and the pan 6 was carried to the tilting position. Then, the pan is tilted at a predetermined speed so that the amount of slag flowing down is constant, and the slag flow is stabilized through the slag tub 7 and flows into the blowing apparatus 2 and discharged from the nozzle of the apparatus. Crushed with cooling water.
[0021]
Here, the temperature of the cooling water was appropriately adjusted in the range of 45 to 75 ° C. before the nozzle discharge port. The cooling water pressure was kept constant at 25 to 49 kPa (0.25 to 0.50 kgf / cm 2 ), and the amount discharged once from the pan 6 was about 30 tons. In addition, when the slag temperature measured with the radiation thermometer when flowing out from the pan 6, it was 1350-1420 degreeC.
[0022]
Thus, the granulated slag obtained by adjusting the temperature of the cooling water was extracted from the product tank 30 tons per pan, transported to the yard by a dump truck, and piled one by one in the same manner as in the pre-furnace granulation. . Next, a sample was taken for each mountain, and the particle size distribution was measured.
[0023]
About the result, it turns out that the particle size of a cooling water temperature and a granulated slag correlates well as the relationship between a cooling water temperature and a particle size is shown in FIG. And especially by adjusting to 65-90 degreeC, the rough hard granulated slag whose FM value of granulated slag was 3.8 or more could be manufactured, and what could satisfy the quality as a slag fine aggregate for concrete was made. .
[0024]
Incidentally, in the conventional method in which only the nozzle water pressure of blown water is adjusted, the water temperature fluctuates from room temperature to about 80 ° C. during the production of granulated slag under the same operating conditions, so that the FM value is 2.8 to 4.2. In order to obtain a granulated slag having a desired particle size, further sieving was necessary.
[0025]
Example 2
Moreover, the operation which adjusts the molten slag temperature at the time of a water granulation suitably in the range of 1350-1420 degreeC was performed similarly to the above. The cooling water pressure was kept constant at 39 to 49 kPa (0.4 to 0.5 kgf / cm 2 ), and the amount discharged once from the pan 6 was about 30 tons. The temperature of the cooling water was set in the range of 70 to 80 ° C. before the nozzle discharge port.
[0026]
Thus, the granulated slag obtained by adjusting the temperature of the molten slag was extracted from the product tank 30 tons per pan, transported to the yard by a dump truck, and piled one by one in the same manner as in the pre-furnace granulation. . Next, a sample was taken for each mountain, and the particle size distribution was measured.
[0027]
About the result, it turns out that the particle size of molten slag temperature and granulated slag correlates well as it is clear in FIG. 3 which shows the relationship between the temperature and particle size of molten slag. By adjusting the molten slag temperature to 1380 to 1400 ° C. in particular, it was possible to realize an operation in which the dispersion of the FM value of the granulated slag settled in a narrow range (0.3) of 3.8 to 4.1.
[0028]
Incidentally, in the conventional method in which only the nozzle water pressure of blown water is adjusted, the slag temperature fluctuated from about 1360 to 1450 ° C. according to the outflow speed of the slag from the outlet, so that the water granulation obtained under the same operating conditions The variation of the FM value of the slag became a wide range from 3.4 to 4.2. For this reason, sieving was necessary to obtain granulated slag having a desired particle size.
[0029]
【The invention's effect】
According to the present invention, the particle size of the hard granulated slag can be controlled at a particularly low cost by adjusting the cooling water temperature or the molten slag temperature.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of an external furnace type hard granulated slag production facility.
FIG. 2 is a diagram showing the influence of cooling water temperature on the particle size of granulated slag.
FIG. 3 is a diagram showing the influence of molten slag temperature on the particle size of granulated slag.
[Explanation of symbols]
1 Blast Furnace 2 Blowing Equipment 3 Granulation Tank 4 Dehydrator 5 Cooling Tower 6 Pot

Claims (1)

溶融状態の高炉スラグを一旦鍋に受けた後、その鍋からスラグを排出させる時点で、排出されて流下する該スラグに向けて高圧冷却水をノズルから噴射して水砕を行うに当たり、流下時の溶融スラグの温度を1350〜1420℃に調整し、かつ冷却水温度を65〜90℃、冷却水圧力を25〜49kPaに調整することによって硬質水砕スラグの粒度を粗粒率FM値で3.8以上にすることを特徴とする硬質水砕スラグの粒度制御方法。Once the molten blast furnace slag is received in the pan, when the slag is discharged from the pan, high pressure cooling water is sprayed from the nozzle toward the slag that is discharged and flows down. By adjusting the temperature of the molten slag to 1350 to 1420 ° C., adjusting the cooling water temperature to 65 to 90 ° C. , and adjusting the cooling water pressure to 25 to 49 kPa , the particle size of the hard granulated slag is 3 in terms of the coarse particle ratio FM value. A method for controlling the particle size of hard granulated slag, characterized in that it is 8 or more.
JP2000050123A 2000-02-25 2000-02-25 Particle size control method for hard granulated slag Expired - Fee Related JP3988347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000050123A JP3988347B2 (en) 2000-02-25 2000-02-25 Particle size control method for hard granulated slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000050123A JP3988347B2 (en) 2000-02-25 2000-02-25 Particle size control method for hard granulated slag

Publications (2)

Publication Number Publication Date
JP2001240437A JP2001240437A (en) 2001-09-04
JP3988347B2 true JP3988347B2 (en) 2007-10-10

Family

ID=18571951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000050123A Expired - Fee Related JP3988347B2 (en) 2000-02-25 2000-02-25 Particle size control method for hard granulated slag

Country Status (1)

Country Link
JP (1) JP3988347B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002226239A (en) * 2001-01-30 2002-08-14 Kawasaki Steel Corp Method for producing hard granulated slag and apparatus therefor
JP6069976B2 (en) * 2012-09-07 2017-02-01 住友金属鉱山株式会社 Granulated slag and method for producing the same
JP5903404B2 (en) * 2013-05-31 2016-04-13 Jfeスチール株式会社 Arsenic reducing material, arsenic reducing material manufacturing method, and arsenic reducing method
JP5903403B2 (en) * 2013-05-31 2016-04-13 Jfeスチール株式会社 Arsenic reducing material, arsenic reducing material manufacturing method, and arsenic reducing method
JP6315043B2 (en) * 2016-08-31 2018-04-25 住友金属鉱山株式会社 Granulated slag manufacturing method

Also Published As

Publication number Publication date
JP2001240437A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
JP3988347B2 (en) Particle size control method for hard granulated slag
JP3968995B2 (en) Method for producing coarse hard granulated slag
GB1584238A (en) Method and apparatus for manufacturing crushed sand from melted slag from a ferrous blast furnace
US4171965A (en) Method of making granulated slag
JP6181953B2 (en) Sand substitute and manufacturing method thereof
JP2004237288A (en) Artificial sintered sand and its producing method
JP2000290049A (en) Fine aggregate for concrete and its production
JP2004277191A (en) Coarse aggregate for concrete
JPH09182944A (en) Production of mold flux for continuously casting steel and device therefor
JPH11236255A (en) Production of coarse-grained hard watergranulated blast furnace slag
JP2003082606A (en) Aggregate for asphalt pavement, its manufacturing method and asphalt pavement
WO2009011683A1 (en) Method of handling, conditioning and processing steel slags
JP3619389B2 (en) Method for producing blast furnace slag fine aggregate
JP2022021235A (en) Production method of modified converter slag and production method of granular material for road bed material
JP4388259B2 (en) Method for producing blast furnace slag fine aggregate
JP7173425B1 (en) Granular solidified slag manufacturing method and manufacturing equipment
WO2022270480A1 (en) Granular solidified slag manufacturing method and manufacturing facility
JP2006083062A (en) Fine aggregate and its manufacturing method
JP7452489B2 (en) Method for producing slow-cooled blast furnace slag, method for producing coarse aggregate for concrete, method for producing road base material, and slow-cooled blast furnace slag
JP2000226240A (en) Water-granulated blast furnace slag and its production device, production method
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
JPH10182196A (en) Production of rigid granulated blast furnace slag
JP3785331B2 (en) Manufacturing method of hard granulated slag
JPS5839748A (en) Treatment of sintered ore
JP2002249347A (en) Manufacturing method of granulated blast furnace slag and equipment therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3988347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees