JP2002249347A - Manufacturing method of granulated blast furnace slag and equipment therefor - Google Patents

Manufacturing method of granulated blast furnace slag and equipment therefor

Info

Publication number
JP2002249347A
JP2002249347A JP2001042997A JP2001042997A JP2002249347A JP 2002249347 A JP2002249347 A JP 2002249347A JP 2001042997 A JP2001042997 A JP 2001042997A JP 2001042997 A JP2001042997 A JP 2001042997A JP 2002249347 A JP2002249347 A JP 2002249347A
Authority
JP
Japan
Prior art keywords
slag
water
weir
granulated
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001042997A
Other languages
Japanese (ja)
Inventor
Naoki Hirai
直樹 平井
Kiyoshi Shibata
清 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001042997A priority Critical patent/JP2002249347A/en
Publication of JP2002249347A publication Critical patent/JP2002249347A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method and equipment to manufacture fine aggregate of blast furnace slag for concrete by water granulating, to obtain granulated blast furnace slag having, especially, high rate of coarse grains and high density at the front of furnace. SOLUTION: In water granulating molten blast-furnace slag by cooling water, a gate is installed downstream in a trough to receive granulated slag, where a water reservoir partitioned by the gate is formed by pouring cooling water and leaking it from the lower end of the gate. Molten slag is thrown into the water reservoir and the resulting cooled slag is recovered continuously. By making the gate movable, slag can be granulated by regulating the opening area at the lower end of the gate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水砕によるコンク
リート用高炉スラグ細骨材の製造方法およびその製造装
置に関し、特に粗粒率が高くかつ緻密な高炉水砕スラグ
を製造する方法およびその製造装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing blast furnace slag fine aggregate for concrete by water granulation and an apparatus for producing the same, and more particularly to a method for producing a dense granulated blast furnace slag having a high coarse grain ratio and its production. Related to the device.

【0002】[0002]

【従来の技術】高炉スラグは、セメント原料や路盤材、
コンクリート用骨材などに有効活用されている。スラグ
の処理方法はこれらの用途に対応して選択され、溶融ス
ラグに直接加圧水を噴射して水砕した後更に破砕処理し
て必要粒度に調整する方法、また溶融スラグをヤードに
流し出して徐冷固化した後破砕処理して必要粒度に調整
する方法がある。セメント原料やコンクリート用細骨材
の製造には前者の水砕方法が用いられている。
2. Description of the Related Art Blast furnace slag is used as a raw material for cement, roadbed material,
It is effectively used as aggregate for concrete. The method of treating slag is selected according to these applications, such as a method of directly injecting pressurized water into the molten slag, granulating it, and then crushing it to adjust to the required particle size. There is a method of adjusting the required particle size by crushing after cooling and solidification. The former granulation method is used in the production of cement raw materials and fine aggregate for concrete.

【0003】高炉水砕スラグをコンクリート用細骨材と
して利用するには、天然砂に似た適度な粒度分布が必要
である。しかし高炉水砕スラグは単身でコンクリート用
細骨材に使用されることは少なく、天然砂などと混合し
て使用されることが多いため、混合する砂の粒度に応じ
て粗目から細目までの多様な粒度が望まれることが多
い。
In order to use granulated blast furnace slag as fine aggregate for concrete, an appropriate particle size distribution similar to natural sand is required. However, granulated blast furnace slag is rarely used alone as fine aggregate for concrete, and is often used in the form of a mixture with natural sand. Fine particle sizes are often desired.

【0004】ところで高炉水砕スラグは、粒形状や粒度
分布を改善するために水砕後の破砕を行うことが多い。
ところが水砕後のスラグの粒径が既に小さいと、破砕す
れば更に細かくなり、混合可能な砂が限られて細骨材と
しての利用範囲が狭くなる。そこで水砕後のスラグの粒
径は適度に大きいほうが、粒形状や粒度を改善する上で
は好ましい。粗粒の硬質水砕スラグを製造する方法とし
て、例えば特公平6−39340号公報には、炉外方式
において粒化用、駆動用、上部用、下部用ノズルの水圧
(水量)を任意に調整して、単位容積質量(1.45k
g/L以上)が大きく緻密でかつコンクリート用細骨材
としての粒度(3.2FM以上)の水砕スラグが製造で
きることが開示されている。また特開平11−2362
55号公報には、冷却水温を60〜80℃で水砕する、
更には水流量のスラグ流量に対する比(以下「水/スラ
グ比」と呼ぶ)を30以上にして水砕する方法が開示さ
れている。
[0004] Granulated blast furnace slag is often crushed after granulation in order to improve the grain shape and particle size distribution.
However, if the particle size of the slag after the water granulation is already small, the slag becomes finer when crushed, the sand that can be mixed is limited, and the range of use as fine aggregate is narrowed. Therefore, it is preferable that the particle size of the slag after water granulation be appropriately large in order to improve the particle shape and particle size. As a method for producing coarse-grained hard granulated slag, for example, Japanese Patent Publication No. 6-39340 discloses a method of arbitrarily adjusting the water pressure (water amount) of a nozzle for granulation, driving, upper, and lower in an out-of-pile method. And the unit volume mass (1.45 k
It is disclosed that granulated slag having a large density (g / L or more) and a fine particle size (3.2 FM or more) as a fine aggregate for concrete can be produced. Also, Japanese Patent Application Laid-Open No. H11-2362
No. 55 discloses that water is cooled at a cooling water temperature of 60 to 80 ° C.
Further, a method of granulating water with a ratio of water flow to slag flow (hereinafter referred to as “water / slag ratio”) of 30 or more is disclosed.

【0005】一方高炉スラグは、水砕時に発泡して軽質
化しやすい。コンクリート用細骨材向けには、緻密な水
砕スラグが要求される。例えば特開昭54−56627
号公報には、緻密とほぼ同意義で硬質と記述している
が、硬質水砕スラグの製造方法として溶滓温度を130
0℃〜850℃に低下調整することが開示されている。
特開昭55−136151号公報には、水温70℃以下
で水/スラグ比8〜12の加圧水を噴射することが開示
されている。特開昭62−113738号公報には、特
定領域の水温および水/スラグ比を有する加圧水を噴射
することが開示されている。
[0005] On the other hand, blast furnace slag is easily foamed during granulation and lightened. For fine aggregate for concrete, dense granulated slag is required. For example, JP-A-54-56627
In the publication, hard and almost the same meaning as dense are described as hard.
It is disclosed that the temperature is adjusted to be reduced to 0 ° C. to 850 ° C.
JP-A-55-136151 discloses that pressurized water having a water / slag ratio of 8 to 12 is injected at a water temperature of 70 ° C. or lower. Japanese Patent Application Laid-Open No. 62-113738 discloses injecting pressurized water having a water temperature and a water / slag ratio in a specific area.

【0006】[0006]

【発明が解決しようとする課題】従来技術において、粗
粒かつ緻密な水砕スラグを製造する方法に関するもの
は、特公平6−39340号公報や特開平11−236
255号公報がある。水砕方法には大きく分けて炉外方
式、炉前方式があるが何れも加圧水を用いて水砕する方
法である。該前公報は、炉外方式ではスラグ温度が低下
し、結晶が析出し始めるので硬質化し、かつ粘性が高い
ため粗粒の水砕が得られ易いとしており、一方炉前方式
ではスラグ温度が高く粘性が低いため粒度の細かい水砕
が製造されるとしている。そして炉外方式で細かい水砕
を得るには冷却速度を速くする必要があるとして、粒化
用ノズルの水量を増やしている。また該後公報は、冷却
水温が高くなると粗粒化するとし、更に炉前方式では高
比重の水砕スラグを得るために水/スラグ比を30以上
にするとしている。
In the prior art, a method for producing coarse and dense granulated slag is disclosed in Japanese Patent Publication No. 6-39340 and Japanese Patent Application Laid-Open No. 11-236.
No. 255 publication. The granulation method is roughly classified into an out-of-furnace method and a pre-furnace method, both of which are methods of granulating water using pressurized water. The prior publication states that in the out-of-furnace method, the slag temperature is lowered, crystals begin to precipitate, so that it hardens, and because of its high viscosity, it is easy to obtain coarse-grained granules. It is said that fine granules are produced due to low viscosity. In order to obtain fine water granulation in an out-of-furnace method, it is necessary to increase the cooling rate, and the water amount of the granulation nozzle is increased. In addition, the subsequent publication states that when the cooling water temperature becomes high, coarse particles are formed, and in the in-furnace method, the water / slag ratio is set to 30 or more in order to obtain granulated slag having a high specific gravity.

【0007】このことから炉前方式、炉外方式のどちら
においても、緻密化に対して水量を増すことは有効であ
ると考えられる。一方粒径に対して水量を増すことは、
該後公報においては明確な関係がなかった述べている
が、該前公報では細粒化することが示されており、本発
明者らも細粒化することを試験的に知見した。従って加
圧水を用いて水砕する方法において水量を増すことは、
細粒化すると考えられる。即ち加圧水によって水砕する
従来の方法においては粗粒化に限界があると思われる。
そこで本発明では、従来とは異なる水砕方法によって粗
粒率が高く緻密な水砕スラグを製造する方法を提供す
る。
From this, it is considered that it is effective to increase the amount of water for densification in both the pre-furnace system and the out-of-furnace system. On the other hand, increasing the amount of water with respect to the particle size
Although there is no clear relationship in the subsequent gazette, the former gazette shows that the particles are finely divided, and the present inventors have experimentally found that the particles are finely divided. Therefore, increasing the amount of water in the method of granulating using pressurized water,
It is considered to be fine. That is, it seems that the conventional method of granulating with pressurized water has a limit in coarsening.
Therefore, the present invention provides a method for producing dense granulated slag having a high coarse particle ratio and a fine granulated slag by a granulation method different from the conventional one.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに本発明では、高炉溶融スラグを水で冷却する水砕方
法において、水砕スラグ樋の溶融スラグが落下する下流
に堰を設け、堰で仕切られた部分にスラグ冷却水を注水
しながら堰の下端部から漏水せしめて水槽を形成した状
態を維持しつつ、溶融スラグを水槽に投入して冷却した
高炉スラグを連続的に回収することを特徴とする高炉水
砕スラグの製造方法を提供する。可動な堰を用いて、堰
の下端部の開口面積を調整しながら連続的に高炉水砕ス
ラグを製造することも可能である。
According to the present invention, there is provided a granulating method for cooling blast furnace molten slag with water, wherein a weir is provided downstream of the granulated slag gutter where the molten slag falls. The molten slag is poured into the water tank to continuously recover the cooled blast furnace slag while maintaining the state where the water tank is formed by injecting the slag cooling water into the part partitioned by the weir while allowing the water to leak from the lower end of the weir. A method for producing granulated blast furnace slag is provided. Using a movable weir, it is also possible to continuously produce granulated blast furnace slag while adjusting the opening area of the lower end of the weir.

【0009】溶融スラグを直接水槽に投入して水砕する
ことも可能であるが、本発明では、分散板を用いてスラ
グ流束を薄く拡げるか、又は分割した後に水槽に投入す
る方法か、スラグ冷却水流によって水砕した後に水槽に
投入する方法を推奨する。
Although it is possible to throw molten slag directly into a water tank and granulate it, in the present invention, a method is used in which a slag flux is spread thinly by using a dispersion plate, or a method in which the slag flux is divided and then poured into a water tank. It is recommended to pulverize the water with a slag cooling water flow and then put it into a water tank.

【0010】更に本発明ではスラグ質量流量に対する注
水質量流量の比が10以上で、注水水温は60℃以下に
することを推奨する。
Further, in the present invention, it is recommended that the ratio of the mass flow rate of the injected water to the mass flow rate of the slag be 10 or more and the temperature of the injected water be 60 ° C. or less.

【0011】本発明を実施するには、高炉溶融スラグを
水で冷却して水砕する装置において、水砕スラグ樋の溶
融スラグを投入する下流に堰を備え、堰によってスラグ
冷却水の水槽が形成可能で、かつ堰の下端部に開口部を
設け、水砕スラグが冷却水と共に連続回収可能な構造を
備えた高炉水砕スラグの製造装置を用いる。また堰に可
動な機構を設け、堰の下端部と水砕スラグ樋の間の開口
部の面積を任意に調整可能な構造を備えた装置を用いる
ことも可能である。
In order to carry out the present invention, an apparatus for cooling and granulating blast furnace molten slag with water is provided with a weir downstream of a granulated slag gutter for charging the molten slag, and the weir forms a water tank for slag cooling water. An apparatus for producing granulated blast furnace slag, which can be formed, has an opening at the lower end of the weir, and has a structure capable of continuously collecting granulated slag together with cooling water is used. It is also possible to use a device having a structure in which a movable mechanism is provided in the weir and the area of the opening between the lower end of the weir and the granulated slag gutter can be arbitrarily adjusted.

【0012】[0012]

【発明の実施の形態】本発明者らは、高炉水砕スラグの
粗粒化を目的に、吹製水の水流量と粗粒率との関係を、
炉前方式を模擬して鋭意実験調査した。その結果、水流
量を低下させると高炉水砕スラグが粗粒化することを知
見した。従って水流量を最低限の0にすれば最大の粗粒
率が得られると推察されたが、従来の加圧水による水砕
で水流量0ではスラグを冷却ができない。そこで水流を
スラグに当てることなく冷却可能な方法として、水槽に
溶融スラグを直接投入したところ、加圧水による水砕ス
ラグより粗粒率の高いスラグが得られることを知見し
た。そして連続的に溶融スラグが流出する高炉炉前にお
いてこの方法を具現化するために、連続的に冷却水の入
れ替わる水槽を設けることで冷却効果を維持しつつ、か
つ水砕スラグを連続回収可能な構造とする本発明の水砕
方法を完成するに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors, for the purpose of coarsening granulated blast furnace slag, set the relationship between the water flow rate of blow making water and the coarse particle ratio.
The experiment was conducted simulating the in-furnace method. As a result, it was found that the granulated blast furnace slag becomes coarse when the water flow rate is reduced. Therefore, it was presumed that the maximum coarse grain ratio could be obtained by setting the water flow rate to the minimum value of 0, but slag could not be cooled at the water flow rate of 0 by conventional granulation with pressurized water. Then, as a method that can cool the water flow without hitting the slag, it was found that when molten slag was directly introduced into the water tank, a slag having a higher granularity than granulated slag using pressurized water could be obtained. And, in order to realize this method in front of the blast furnace in which the molten slag flows out continuously, it is possible to continuously collect the granulated slag while maintaining the cooling effect by providing a water tank that continuously replaces the cooling water. The inventors have completed the water granulation method of the present invention having a structure.

【0013】即ち本発明は、高炉溶融スラグを水で冷却
する水砕方法において、水砕スラグ樋の溶融スラグが落
下する下流に堰を設け、堰で仕切られた部分にスラグ冷
却水を注水しながら堰の下端部から漏水せしめて水槽を
形成した状態を維持しつつ、溶融スラグを水槽に投入し
て冷却した高炉スラグを連続的に回収することを特徴と
する高炉水砕スラグの製造方法である。
That is, the present invention relates to a granulating method for cooling blast furnace molten slag with water, wherein a weir is provided downstream of the granulated slag gutter where the molten slag falls, and slag cooling water is injected into a portion partitioned by the weir. A method of manufacturing granulated blast furnace slag, comprising continuously collecting molten slag into a water tank and continuously collecting cooled blast furnace slag while maintaining a state in which a water tank is formed by allowing water to leak from the lower end of the weir. is there.

【0014】図1に本発明の一実施様態例の概略側面図
を示す。先ず従来の炉前方式の水砕方法は、溶融スラグ
樋5から落下する溶融スラグ1を、スラグ冷却水供給ノ
ズル6から噴射するスラグ冷却水2で水砕し、スラグと
冷却水を水砕スラグ樋4に流して回収する。この場合溶
融スラグは加圧噴射するスラグ冷却水によって細粒にな
り冷却される。ここで水流量を低下させると水砕スラグ
は粗粒化するが、従来の水砕方法では、極端に低下させ
ると溶融スラグの冷却が不十分になる。そこで本発明で
は、溶融スラグを加圧水ではなく水槽に投入して水砕す
る。堰3を水砕スラグ樋4の溶融スラグ1が落下する下
流に設け、スラグ冷却水の貯まった水槽水8を保持でき
る構造とする。更に連続的に投入する溶融スラグを冷却
するために、冷却水が連続供給できるよう堰3の下端部
から漏水せしめる。ここで堰の下端部の開口面積は、水
砕スラグが滞留すること無く排出できれば一定で構わな
い。また水槽の水位は、深いほど十分な冷却が可能とな
るが、少なくともスラグが落下する場所において500mm
以上が好ましい。水槽水8に投入した溶融スラグ1は、
冷却されて水砕スラグ9になり、堰3の下端部から冷却
水と共に排出させる。スラグ冷却水の注水は、従来のス
ラグ冷却水供給ノズル6を利用する場合は、図1の実施
様態例で示すように、スラグ冷却水流遮蔽板12を設置
して噴射するスラグ冷却水がスラグに当たらないように
して注水することができるし、専用の注水系を設置して
行っても良い。
FIG. 1 is a schematic side view of an embodiment of the present invention. First, in the conventional water granulation method in front of the furnace, the molten slag 1 falling from the molten slag gutter 5 is granulated with slag cooling water 2 injected from a slag cooling water supply nozzle 6, and the slag and the cooling water are granulated slag. Flow down the gutter 4 and collect. In this case, the molten slag is turned into fine particles by the slag cooling water injected under pressure and cooled. Here, if the water flow rate is reduced, the granulated slag becomes coarse, but in the conventional granulation method, if the water flow rate is extremely reduced, the cooling of the molten slag becomes insufficient. Therefore, in the present invention, the molten slag is charged not into pressurized water but into a water tank to be granulated. The weir 3 is provided downstream of the granulated slag gutter 4 where the molten slag 1 falls, and has a structure capable of holding a water tank water 8 in which slag cooling water is stored. Further, in order to cool the molten slag which is continuously charged, water is leaked from the lower end of the weir 3 so that cooling water can be continuously supplied. Here, the opening area of the lower end of the weir may be constant as long as the granulated slag can be discharged without stagnation. Also, the water level of the water tank is deep enough to allow sufficient cooling, but at least 500 mm at the place where the slag falls
The above is preferred. The molten slag 1 put in the water tank 8
The water is cooled to form granulated slag 9 and discharged together with the cooling water from the lower end of the weir 3. When the conventional slag cooling water supply nozzle 6 is used for the injection of the slag cooling water, the slag cooling water to be injected by installing the slag cooling water flow shielding plate 12 is applied to the slag as shown in the embodiment of FIG. Water can be injected without hitting it, or a dedicated water injection system may be installed.

【0015】本発明では、可動な堰を用いて、堰の下端
部の開口面積を調整しながら水砕スラグを製造すること
を推奨する。スラグ流量が変化した場合に堰の下端部か
らの水砕スラグの排出を円滑に行うために、また水砕ス
ラグの品質を安定させるためにスラグ流量の変化に応じ
て注水流量を変化させた場合に堰の下端部からの排水量
や水位を制御するために、堰の下端部の開口面積が調整
できることが好ましい。一方従来の水砕方法も実施した
い場合には、堰を全開することで可能となる。本発明に
おける堰の可動構造として、図2〜5に実施様態例の概
略図を示す。側面図2およびその正面図3に示す実施様
態例は、堰3を堰駆動装置10によって上下動させるこ
とで堰の下端部の開口面積を調整する。該堰では、堰の
高さを変えることによって水槽水8の水位を調整するこ
とも可能である。側面図4およびその正面図5に示す実
施様態例は、堰駆動装置10によって堰3の上端部を回
転軸に下端部を開閉して開口面積を調整する。
In the present invention, it is recommended to manufacture granulated slag using a movable weir while adjusting the opening area of the lower end of the weir. When the water injection flow rate is changed according to the change in the slag flow rate in order to smoothly discharge the granulated slag from the lower end of the weir when the slag flow rate changes and to stabilize the quality of the granulated slag It is preferable that the opening area of the lower end of the weir can be adjusted in order to control the drainage amount and water level from the lower end of the weir. On the other hand, when it is desired to carry out the conventional water granulation method, it becomes possible by fully opening the weir. As a movable structure of the weir in the present invention, FIGS. In the embodiment shown in the side view 2 and the front view 3, the opening area of the lower end of the weir is adjusted by moving the weir 3 up and down by the weir driving device 10. In the weir, it is also possible to adjust the water level of the aquarium water 8 by changing the height of the weir. In the embodiment shown in the side view 4 and the front view 5, the weir driving device 10 adjusts the opening area by opening and closing the lower end about the upper end of the weir 3 as a rotation axis.

【0016】また本発明では、溶融スラグを直接水槽に
投入して水砕することも可能であるが、溶融スラグを水
槽に投入する前に、溶融スラグ分散板7を用いてスラグ
流束を薄く拡げるか、又は分割することを推奨する。該
方法によって溶融スラグの表面積を拡大し、水槽水によ
る冷却効率を高め、水砕スラグの密度を高くする。分散
板による表面積拡大は、例えば図1に示す平板状の分散
板7にスラグ流束を衝突させるだけでも可能である。更
に冷却効率を高めるには図6に示す突起11を有する分
散板7を用いる。図7は該分散板を用いた実施様態例を
示す概略側面図で、溶融スラグ1は分散板7に衝突して
表面積を拡大すると共に、突起11によって分割されて
水槽水に落下することで十分な冷却効果が得られる。ま
た分散板の異なる使用形態による本発明の実施様態例の
概略側面図を図8に示す。この場合は、分散板にスラグ
流束を衝突させる場合より溶融スラグを薄く拡げること
が可能で、且つ突起11で分割されるため、より十分な
冷却効果が得られる。
In the present invention, the molten slag can be directly charged into the water tank to be granulated. However, before the molten slag is charged into the water tank, the slag flux is thinned using the molten slag dispersion plate 7. It is recommended to expand or split. By this method, the surface area of the molten slag is increased, the cooling efficiency of the tank water is increased, and the density of the granulated slag is increased. The surface area can be increased by the dispersion plate only by causing the slag flux to collide with the flat dispersion plate 7 shown in FIG. 1, for example. In order to further increase the cooling efficiency, the dispersion plate 7 having the protrusions 11 shown in FIG. 6 is used. FIG. 7 is a schematic side view showing an embodiment using the dispersing plate. The molten slag 1 collides with the dispersing plate 7 to increase its surface area, and it is sufficient that the molten slag 1 is divided by the projections 11 and falls into the aquarium water. A great cooling effect can be obtained. FIG. 8 is a schematic side view of an embodiment of the present invention according to a different use form of the dispersion plate. In this case, the molten slag can be spread thinner than when the slag flux collides with the dispersing plate, and is divided by the projections 11, so that a more sufficient cooling effect can be obtained.

【0017】更に本発明では、冷却効率を高めるために
前述の分散板を用いる他に、従来の水砕に用いるスラグ
冷却水供給ノズルを利用してスラグ冷却水流によって水
砕した後に水槽に投入することも可能である。図9に、
スラグ冷却水流を用いた本発明の一実施様態例の概略側
面図を示す。図1の実施様態例では溶融スラグ1を直
接、または分散板7を用いて薄く拡げて水槽水8に投入
するが、図9の実施様態例では、溶融スラグ1をスラグ
冷却水2によって分割して表面積を大きくする。該実施
様態では、スラグが分割できる範囲内で水流量をできる
限り少なくする。従来の水砕方法は、加圧水によって水
砕するためにスラグを吹き飛ばせる以上の水量が必要で
あるが、本発明では水槽水で水砕するため、該実施様態
でのスラグ冷却水2はスラグ流束の分割ができれば良
く、水量は従来の水砕方法より少なくても良い。一方冷
却する水流量が多すぎると、従来の水砕方法と同様に水
砕スラグは細粒化し、本発明の水槽水にスラグを投入し
て粗粒化する効果が得られなくなる。従来の水砕装置の
スラグ冷却水供給ノズル6をそのまま利用して水流量を
下げる場合において、水槽水流量が不足する時には、ス
ラグ冷却水供給ノズルの台数を増やすか専用の注水系を
設置することによって水槽水流量を確保する。
Further, in the present invention, in addition to using the above-mentioned dispersing plate in order to enhance the cooling efficiency, a slag cooling water supply nozzle used for conventional granulation is used to granulate by a slag cooling water flow and then put into a water tank. It is also possible. In FIG.
1 shows a schematic side view of an embodiment of the present invention using a slag cooling water flow. In the embodiment of FIG. 1, the molten slag 1 is directly or spread thinly by using the dispersion plate 7 and is charged into the water tank 8. In the embodiment of FIG. 9, the molten slag 1 is divided by the slag cooling water 2. To increase the surface area. In this embodiment, the water flow rate is reduced as much as possible within a range where the slag can be divided. The conventional water granulation method requires more water than the slag can be blown off in order to granulate with pressurized water. However, in the present invention, the slag cooling water 2 in this embodiment is slag flow because the water is granulated with aquarium water. It suffices if the bundle can be divided, and the amount of water may be smaller than the conventional water granulation method. On the other hand, if the flow rate of the water to be cooled is too large, the granulated slag becomes fine as in the case of the conventional granulation method, and the effect of adding the slag to the aquarium water of the present invention to make it coarse cannot be obtained. When the water flow rate is reduced by using the slag cooling water supply nozzle 6 of the conventional water granulation apparatus as it is, if the water tank water flow rate is insufficient, increase the number of slag cooling water supply nozzles or install a dedicated water injection system. To secure the aquarium water flow.

【0018】本発明で、スラグ質量流量に対する注水質
量流量の比は10以上である。10より小さいと、冷却
が不十分で密度が低下する。堰の下端部の開口面積が一
定でスラグ流量の変動に合わせて注水量を制御すると水
位が変化する場合であっても、スラグ質量流量に対する
注水質量流量の比が10以上であれば十分冷却可能であ
る。可動な堰を設けた場合には、水位の制御も可能とな
るが、スラグ質量流量に対する注水質量流量の比を10
以上にしておけば、より優れた品質の水砕スラグが得ら
れる。スラグ質量流量に対する注水質量流量の比は大き
い方が冷却には好ましいため、上限は特に規定しない
が、この値が大きいほど注水設備費が増大することか
ら、40もあれば十分である。
In the present invention, the ratio of the mass flow rate of water injected to the mass flow rate of slag is 10 or more. If it is smaller than 10, the cooling is insufficient and the density decreases. Even if the water level changes when the water level changes if the water level changes when the opening area of the lower end of the weir has a constant opening area at the lower end of the weir and the slag flow rate can be sufficiently cooled if the ratio of the water flow rate to the slag mass flow rate is 10 or more. It is. When a movable weir is provided, the water level can be controlled, but the ratio of the water injection mass flow rate to the slag mass flow rate is 10
With the above, granulated slag of higher quality can be obtained. Since the larger the ratio of the mass flow rate of water injected to the mass flow rate of slag is preferable for cooling, the upper limit is not particularly defined. However, as this value increases, the cost of water injection equipment increases, so that 40 is sufficient.

【0019】また本発明で、注水水温は60℃以下であ
る。本発明では水槽水に溶融スラグを流し込むことで粗
粒化を図るが、一方で細粒化されないために冷却不足と
なって密度が低下するのを避けるため、前記の分散板を
用いたり注水量をスラグ流量に対して10以上にする以
外に、低水温の冷却水を用いることも可能である。低温
であるほど密度は向上するため、下限は特に規定しない
が、この値が小さいほど冷却設備費が増大することか
ら、室温程度までの範囲の低温であれば十分である。6
0℃より高いと、水温による緻密化効果は得られない。
In the present invention, the temperature of the water to be injected is 60 ° C. or less. In the present invention, coarse particles are obtained by pouring molten slag into aquarium water.On the other hand, in order to avoid insufficient cooling due to lack of fine particles and a decrease in density, use of the above-mentioned dispersion plate or water injection amount Is not limited to 10 or more with respect to the slag flow rate, it is also possible to use low-temperature cooling water. Since the lower the temperature, the higher the density, the lower limit is not particularly defined. However, the lower the value, the higher the cost of cooling equipment. Therefore, a low temperature in the range of about room temperature is sufficient. 6
If it is higher than 0 ° C., the effect of densification by water temperature cannot be obtained.

【0020】本発明の水砕装置は、従来の水砕装置に
堰、及び溶融スラグ分散板や堰可動装置、スラグ冷却水
流遮蔽板を追加設置して構成することも可能である。可
動な堰を設けた場合、堰を全開し分散板やスラグ冷却水
流遮蔽板を退避させることで、従来と全く同様な水砕方
法に随時切り替え可能である。
The water granulator of the present invention can be constructed by additionally installing a weir, a molten slag dispersion plate, a weir moving device, and a slag cooling water flow shielding plate in the conventional granulator. When a movable weir is provided, the weir is fully opened and the dispersion plate and the slag cooling water flow shielding plate are retracted, so that it is possible to switch to a water granulation method completely identical to the conventional one at any time.

【0021】[0021]

【実施例】表1に本発明の実施例、及び表2に本発明の
比較例を示す。また図10に、表1及び表2に示した具
体例のスラグの水砕後とその加工による品質変化を示し
た。比較例は従来の水砕装置及び水砕方法による水砕ス
ラグの製造例である。
EXAMPLES Table 1 shows examples of the present invention, and Table 2 shows comparative examples of the present invention. FIG. 10 shows the quality change of the slag of the specific examples shown in Tables 1 and 2 after the water granulation and the processing. The comparative example is a production example of granulated slag by a conventional granulation device and a granulation method.

【0022】図2を例にして本発明の実施様態を以下に
述べる。本発明を実施するために現状の炉前水砕装置に
可動堰3を設置した。設置位置は、水砕スラグ樋4の溶
融スラグが落下する位置より下流約3000mmとし
た。図3に示した上下動式可動堰の高さは1000mm
とした。高炉からの溶融スラグの流出が始まる前に、先
ずスラグ冷却水供給ノズル6よりスラグ冷却水2を水流
量25ton/min放出し、スラグ冷却水流遮蔽板1
2を挿入して水流方向を下げ、水砕スラグ樋4に放流開
始した。次いで堰3を降下してスラグ冷却水を堰き止め
始め、堰の下端開口部の開口面積を0.1平方mに調整
して、定常的水位の水槽を形成した。溶融スラグ1が溶
融スラグ樋5から流出し始めた時点で、溶融スラグ分散
板7をスラグに当たるような位置に調節し水砕を開始し
た。水砕開始後は、経験的に把握している時間経過に対
するスラグ流量の増加を考慮し、スラグ流量に対する水
流量の比が例えば10未満になる前に、水流量を段階的
に増加した。それに合わせ堰の開口面積も増加させた。
また水砕中は、水槽水の水位および堰下端部からの水砕
スラグの円滑な流出を監視しながら、堰の開口面積を随
時調整した。例えば水砕スラグが水槽に滞留する懸念の
ある場合は堰を上昇させ、水位が低下する場合は水流量
を増加した。突発的なスラグ流量増加などによって水砕
不可となるような場合には、即座にスラグ冷却水流遮蔽
板12および溶融スラグ分散板7を退避させ、かつ堰3
を全開にして、通常の水砕方法に切り替えられる状態に
して実施した。
An embodiment of the present invention will be described below with reference to FIG. In order to carry out the present invention, a movable weir 3 was installed in the existing in-furnace granulator. The installation position was about 3000 mm downstream from the position where the molten slag of the granulated slag gutter 4 falls. The height of the vertically movable movable weir shown in FIG. 3 is 1000 mm.
And Before the outflow of the molten slag from the blast furnace begins, the slag cooling water supply nozzle 6 first releases the slag cooling water 2 at a water flow rate of 25 ton / min, and the slag cooling water flow shielding plate 1
2 was inserted to lower the direction of water flow, and discharge into the granulated slag gutter 4 was started. Next, the weir 3 was lowered to start blocking the slag cooling water, and the opening area of the lower end opening of the weir was adjusted to 0.1 square m to form a water tank having a steady water level. When the molten slag 1 started flowing out of the molten slag trough 5, the molten slag dispersion plate 7 was adjusted to a position where it hits the slag, and water granulation was started. After the start of water granulation, the water flow rate was increased stepwise before the ratio of the water flow rate to the slag flow rate became less than 10, for example, in consideration of the increase in the slag flow rate over time that is empirically grasped. The opening area of the weir was also increased accordingly.
During the granulation, the opening area of the weir was adjusted as needed while monitoring the water level of the water tank and the smooth outflow of the granulated slag from the lower end of the weir. For example, when there was a concern that granulated slag would stay in the water tank, the weir was raised, and when the water level was lowered, the water flow rate was increased. In the case where water granulation becomes impossible due to a sudden increase in slag flow rate or the like, the slag cooling water flow shielding plate 12 and the molten slag dispersion plate 7 are immediately evacuated, and the weir 3
Was fully opened to be able to be switched to a normal granulation method.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】表1及び2に示した水温は、水砕中に変動
する水温の平均的な値である。また水/スラグ比は、ス
ラグ流量(ton/min)に対するスラグ冷却水量
(ton/min)で水砕中に変動する値の平均であ
る。
The water temperatures shown in Tables 1 and 2 are average values of the water temperature fluctuating during granulation. The water / slag ratio is an average of values that change during granulation with a slag cooling water amount (ton / min) with respect to a slag flow rate (ton / min).

【0026】高炉水砕スラグをコンクリート用細骨材と
して利用するには、JIS規格を満足することが望まれ
るが、粒度分布についてはむしろ混合する砂の粒度に応
じて粗目から細目までの多様な粒度が望まれることが多
い。そこで水砕後の加工は、絶乾密度が最低限JIS規
格の2.5以上が得られるまでは行い、水砕スラグの絶
乾密度が既に2.5以上の場合は粒形状を改善するに留
め、できうる限り粗粒率の高い細骨材を得ることとし、
少なくとも粗粒率3以上を目標とした。粗粒率の高い細
骨材は、混合する砂が粗い時には、更に破砕加工を行う
ことで粗粒率を低下させて利用することができ、利用価
値が高いからである。加工方法としては、絶乾密度を向
上させるのに効果的な方法や粒形状の改善に効果的な方
法を使い分け組み合わせて行い、例えばインパクトクラ
ッシャーやコーンクラッシャーなど通常の破砕機を用い
て行った。
In order to use granulated blast furnace slag as fine aggregate for concrete, it is desired to satisfy JIS standards. However, the particle size distribution is rather varied from coarse to fine depending on the particle size of sand to be mixed. Particle size is often desired. Therefore, processing after water granulation is performed until the absolute dry density is at least 2.5 or more of the JIS standard. If the absolute dry density of the granulated slag is already 2.5 or more, improve the grain shape To obtain fine aggregate with as high a coarse grain ratio as possible,
The target was at least a coarse grain ratio of 3 or more. This is because fine aggregate having a high coarse particle ratio can be used by lowering the coarse particle ratio by further crushing when the sand to be mixed is coarse, and is highly useful. As a processing method, a method effective for improving the absolutely dry density and a method effective for improving the grain shape were selectively used and combined, and for example, a normal crusher such as an impact crusher or a cone crusher was used.

【0027】水砕後および加工後の絶乾密度および粗粒
率は、JIS規格に準拠して測定し、スラグ品質評価の
目安とした。
The absolute dry density and the coarse particle ratio after granulation and processing were measured in accordance with JIS standards, and were used as a standard for evaluating slag quality.

【0028】実施例1は平均水温80℃の冷却水を平均
水/スラグ比12で供給して水砕した。堰は、図2およ
び図3に例示する上下動式を用い、溶融スラグ分散板は
例えば図2に示す平板形状を用いた。得られた水砕スラ
グの粗粒率は十分目標を上回ったが、絶乾密度が低かっ
たので目標値2.5以上になるまで加工を行ったとこ
ろ、粗粒率は低下したが目標3以上を確保できた。後述
する比較例8が、同じ水温、水/スラグ比ながら粗粒率
が低いために加工によって目標以下になるのに対し、本
発明の水砕方法では粗粒率の十分高い水砕スラグが得ら
れることから、加工後の品質において粗粒率が高く緻密
なスラグ細骨材が得られる。
In Example 1, water was cooled by supplying cooling water having an average water temperature of 80 ° C. at an average water / slag ratio of 12. The weir used a vertical movement type illustrated in FIGS. 2 and 3, and the molten slag dispersion plate used was, for example, a flat plate shape shown in FIG. The coarse-grained ratio of the obtained granulated slag was well above the target, but the processing was performed until the target value became 2.5 or more because the absolutely dry density was low. Was secured. In Comparative Example 8, which will be described later, although the water temperature and the water / slag ratio are low, the coarse grain ratio is low. Therefore, the water granulation method of the present invention provides a granulated slag having a sufficiently high coarse grain ratio. Therefore, a dense slag fine aggregate having a high coarse grain ratio in the quality after processing can be obtained.

【0029】実施例2は実施例1に対し、スラグ分散板
を用いずスラグ冷却水流によって溶融スラグを分割し
た。水流速は通常の水砕の半分程度とし、スラグ冷却水
供給ノズルとは異なる注水系を設置して水量を確保し
た。得られた水砕スラグは、圧力水による水砕のため実
施例1と比較して粗粒率が低下し密度が向上した。しか
し通常の水砕に比べ粗粒率の低下は軽微であった。絶乾
密度が目標値2.5以上になるまで加工を行ったとこ
ろ、粗粒率は目標3以上を確保できた。
Example 2 differs from Example 1 in that the molten slag was divided by a slag cooling water flow without using a slag dispersion plate. The water flow rate was about half that of normal granulation, and a water injection system different from the slag cooling water supply nozzle was installed to secure the water volume. The obtained granulated slag was reduced in coarse particle ratio and improved in density as compared with Example 1 due to granulation with pressurized water. However, the decrease in the coarse particle ratio was small compared to ordinary granulation. When the processing was performed until the absolute dry density reached the target value of 2.5 or more, the coarse grain ratio was able to secure the target of 3 or more.

【0030】実施例3は実施例1に対し水/スラグ比を
高めた。通常の水砕において水/スラグ比を高めると粗
粒率が低下するが、本発明の水砕方法では、殆ど低下し
なかった。一方絶乾密度は冷却能力が向上したことで高
くなった。得られた水砕スラグを絶乾密度が目標値2.
5以上になるまで加工したところ、粗粒率は目標3以上
を十分満足するスラグ細骨材が得られた。
Example 3 has a higher water / slag ratio than Example 1. Increasing the water / slag ratio in ordinary water granulation decreases the coarse particle ratio, but hardly decreases in the water granulation method of the present invention. On the other hand, the absolute dry density increased due to the improved cooling capacity. The absolute value of the absolute density of the obtained granulated slag is 2.
When processed to 5 or more, a slag fine aggregate having a coarse particle ratio sufficiently satisfying the target of 3 or more was obtained.

【0031】実施例4は実施例1に対し水温を60℃以
下にして水砕を行った。得られた水砕スラグが既に絶乾
密度、粗粒率とも目標を上回ったので、粒形状改善程度
の加工に留め、粗粒率が高く緻密なスラグ細骨材を得
た。
In Example 4, water granulation was performed at a water temperature of 60 ° C. or lower with respect to Example 1. Since the obtained granulated slag already exceeded the targets in both the absolutely dry density and the coarse particle ratio, processing was continued to the extent of improving the grain shape, and a dense slag fine aggregate with a high coarse particle ratio was obtained.

【0032】実施例5は図7に示すように突起付き分散
板を用いた例である。実施例1と比較して、突起による
スラグの分散効果で冷却能力が向上し絶乾密度が高くな
った。絶乾密度が目標値2.5以上になるまで加工した
が、目標品質を十分満足するスラグ細骨材が得られた。
Embodiment 5 is an example using a dispersion plate with projections as shown in FIG. Compared with Example 1, the cooling capacity was improved due to the slag dispersion effect of the projections, and the absolutely dry density was increased. Processing was performed until the absolute dry density reached the target value of 2.5 or more, but a slag fine aggregate sufficiently satisfying the target quality was obtained.

【0033】実施例6は図8に示すように溶融スラグを
突起付き分散板上に流し、緩やかに水槽水に流し込んだ
例である。実施例1と比較して、分散板にスラグ流束を
衝突させるより溶融スラグが薄く拡がり且つ突起11で
分割されたことで、より十分な冷却効果が得られ、水砕
スラグの絶乾密度は向上した。よって実施例1より軽微
な加工を行い、目標品質を十分満足するスラグ細骨材を
得た。
Embodiment 6 is an example in which the molten slag is flown on a dispersing plate having protrusions as shown in FIG. Compared with Example 1, the molten slag spreads thinner than the slag flux impinges on the dispersion plate and is divided by the projections 11, whereby a more sufficient cooling effect is obtained, and the absolute dry density of the granulated slag is Improved. Therefore, a smaller processing was performed than in Example 1, and a slag fine aggregate sufficiently satisfying the target quality was obtained.

【0034】実施例7は、図4及び図5に示すような開
閉式可動堰を用いた例で、その他の水砕条件は実施例1
と同じである。水砕スラグ品質は、実施例1とほぼ同等
のものが得られた。
Example 7 is an example in which a movable movable weir as shown in FIGS. 4 and 5 is used.
Is the same as The granulated slag quality was almost the same as that of Example 1.

【0035】比較例8および9は、従来の水砕装置によ
ってそれぞれ平均水温が80℃、および50℃で水砕し
た例である。水温が高いと密度は低いが粗粒率の比較的
高い水砕スラグが得られた。しかし絶乾密度が2.5以
上になるまで加工したところ、粗粒率は目標値以下の細
目の細骨材しか得られなかった。逆に水温が低いと絶乾
密度2.5以上の水砕スラグが得られたので、粒形状改
善程度の加工に留めたが、既に粗粒率が低いため、より
細目の細骨材しか得られなかった。比較例10は、比較
例8の絶乾密度を高めるため平均水温80℃を同じくし
て水/スラグ比を平均35で水砕した例である。水砕ス
ラグの絶乾密度は2.5以上となったが、粗粒率は低下
した。そこで粒形状改善程度の加工を行ったところ、粗
粒率が目標より低い細骨材になった。比較例11は、平
均水温50℃と比較的低く、平均水/スラグ比35と比
較的高めの条件で水砕した例である。どちらの条件も水
砕スラグの緻密化には効果があったが、粗粒率が低下す
る方向に作用し、粒径状調整程度の加工でも粗粒率が目
標以下の細骨材しか得られなかった。従来の水砕方法で
は粗粒化に限界があり、加工後の品質として粗粒かつ緻
密なスラグ細骨材を得ることは困難であった。
Comparative Examples 8 and 9 are examples in which the average water temperature was 80 ° C. and 50 ° C., respectively, by a conventional water granulator. When the water temperature was high, granulated slag having a low density but a relatively high coarse particle ratio was obtained. However, when the processing was performed until the absolute dry density became 2.5 or more, only fine aggregates having a coarse grain ratio less than the target value could be obtained. Conversely, if the water temperature was low, granulated slag with an absolutely dry density of 2.5 or more was obtained, so we stopped the processing to the degree of improving the grain shape, but because the coarse grain ratio was already low, we could only obtain finer fine aggregate. I couldn't. Comparative Example 10 is an example in which the average water temperature was set to 80 ° C. and the water / slag ratio was averaged to 35 to increase the absolute dry density of Comparative Example 8. The absolute dry density of the granulated slag became 2.5 or more, but the coarse particle ratio decreased. Then, when processing was performed to the extent that the grain shape was improved, the fine aggregate had a coarse grain ratio lower than the target. Comparative Example 11 is an example in which water granulation was performed at a relatively low average water temperature of 50 ° C. and a relatively high average water / slag ratio of 35. Both conditions were effective for densification of granulated slag, but they acted in the direction of decreasing the coarse particle rate, and even fine grain size adjustment could produce only fine aggregate with a coarse particle rate below the target. Did not. In the conventional water granulation method, there is a limit in coarsening, and it is difficult to obtain coarse and dense slag fine aggregate as the quality after processing.

【0036】[0036]

【発明の効果】本発明により、粗粒率が高く緻密な水砕
スラグを製造することが可能となった。その結果、後の
破砕加工で粗目から細目まで各種粒度の高炉スラグ細骨
材の製造が可能になり、多様な粒度の砂との混合が可能
となって細骨材としての利用範囲が広がった。更には針
状スラグが減少し、破砕加工が軽度で済み細骨材の特性
が向上した。
According to the present invention, it is possible to produce dense granulated slag having a high coarse particle ratio. As a result, it became possible to produce blast furnace slag fine aggregates of various particle sizes from coarse to fine in the subsequent crushing process, it became possible to mix with sand of various particle sizes, and the range of use as fine aggregates was widened . Further, needle-like slag was reduced, the crushing process was light, and the properties of fine aggregate were improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 溶融スラグを分散板に当てた後、堰によって
形成された水槽水に投入して水砕する、本発明の一実施
様態例を示す概略側面図。
FIG. 1 is a schematic side view showing an embodiment of the present invention, in which a molten slag is applied to a dispersion plate and then charged into a water tank formed by a weir to granulate the water.

【図2】 堰が上下動することによって堰の下端部の開
口面積を調整する機構を備えた、本発明の水砕装置の一
実施様態例を示す概略側面図。
FIG. 2 is a schematic side view showing an embodiment of the water granulator according to the present invention, provided with a mechanism for adjusting the opening area of the lower end of the weir by moving the weir up and down.

【図3】 堰が上下動することによって堰の下端部の開
口面積を調整する機構を備えた、本発明の水砕装置の一
実施様態例を示す概略正面図。
FIG. 3 is a schematic front view showing an embodiment of the water granulation apparatus of the present invention provided with a mechanism for adjusting the opening area of the lower end of the weir by moving the weir up and down.

【図4】 堰が弁開閉することによって堰の下端部の開
口面積を調整する機構を備えた、本発明の水砕装置の一
実施様態例を示す概略側面図。
FIG. 4 is a schematic side view showing one embodiment of the water granulator according to the present invention, provided with a mechanism for adjusting the opening area of the lower end of the weir by opening and closing the valve of the weir.

【図5】 堰が弁開閉することによって堰の下端部の開
口面積を調整する機構を備えた、本発明の水砕装置の一
実施様態例を示す概略正面図。
FIG. 5 is a schematic front view showing an embodiment of the water granulation apparatus of the present invention provided with a mechanism for adjusting the opening area of the lower end of the weir by opening and closing the valve of the weir.

【図6】 突起を備えた分散板の一例の斜視図。FIG. 6 is a perspective view of an example of a dispersion plate provided with protrusions.

【図7】 図6の分散板を用いて溶融スラグを分割した
後、堰によって形成された水槽水に投入して水砕する、
本発明の一実施様態例を示す概略側面図。
FIG. 7 is a diagram illustrating a method of dividing molten slag using the dispersion plate of FIG.
1 is a schematic side view showing an embodiment of the present invention.

【図8】 図6の分散板を用いて溶融スラグを分割した
後、可動堰によって形成された水槽水に投入して水砕す
る、本発明の一実施様態例を示す概略側面図。
FIG. 8 is a schematic side view showing one embodiment of the present invention, in which after the molten slag is divided using the dispersion plate of FIG. 6, the molten slag is poured into aquarium water formed by a movable weir and granulated.

【図9】 溶融スラグをスラグ冷却水供給ノズルから噴
射する水流で分割した後、堰によって形成された水槽水
に投入して水砕する、本発明の一実施様態例を示す概略
側面図。
FIG. 9 is a schematic side view showing an embodiment of the present invention, in which molten slag is divided by a water stream jetted from a slag cooling water supply nozzle, and then divided into water tank water formed by a weir to granulate.

【図10】 表1及び表2に示した具体例のスラグの水
砕後とその加工による品質変化を示した図。
FIG. 10 is a diagram showing a change in quality of the slag of the specific examples shown in Tables 1 and 2 after water granulation and the processing thereof.

【符号の説明】[Explanation of symbols]

1:溶融スラグ、2:スラグ冷却水、3:堰、4:水砕
スラグ樋、5:溶融スラグ樋、6:スラグ冷却水供給ノ
ズル、7:溶融スラグ分散板、8:水槽水、9:水砕ス
ラグ、10:堰駆動装置、11:溶融スラグ流束を分割
するための突起、12:スラグ冷却水流遮蔽板。
1: molten slag, 2: slag cooling water, 3: weir, 4: granulated slag gutter, 5: molten slag gutter, 6: slag cooling water supply nozzle, 7: molten slag dispersion plate, 8: water tank water, 9: Granulated slag, 10: Weir driving device, 11: Projection for dividing molten slag flux, 12: Slag cooling water flow shielding plate.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】高炉溶融スラグを水で冷却する水砕方法に
おいて、水砕スラグ樋の溶融スラグが落下する下流に堰
を設け、堰で仕切られた部分にスラグ冷却水を注水しな
がら堰の下端部から漏水せしめて水槽を形成した状態を
維持しつつ、溶融スラグを水槽に投入して冷却した高炉
スラグを連続的に回収することを特徴とする高炉水砕ス
ラグの製造方法。
In a water granulation method for cooling molten slag of blast furnace with water, a weir is provided downstream of the granulated slag trough where the molten slag falls, and the slag cooling water is poured into a part partitioned by the weir. A method for producing granulated blast furnace slag, wherein molten slag is charged into a water tank and cooled blast furnace slag is continuously collected while maintaining a state in which a water tank is formed by leaking water from a lower end portion.
【請求項2】可動な堰を用いて、堰の下端部の開口面積
を調整することを特徴とする請求項1に記載の高炉水砕
スラグの製造方法。
2. The method for producing granulated blast furnace slag according to claim 1, wherein the opening area of the lower end of the weir is adjusted using a movable weir.
【請求項3】溶融スラグを水槽に投入する前に、分散板
を用いてスラグ流束を薄く拡げるか又は分割することを
特徴とする請求項1または2に記載の高炉水砕スラグの
製造方法。
3. The method for producing granulated blast furnace slag according to claim 1, wherein the slag flux is thinly spread or divided using a dispersion plate before the molten slag is charged into the water tank. .
【請求項4】溶融スラグを、スラグ冷却水流によって水
砕した後に水槽に投入することを特徴とする請求項1ま
たは2に記載の高炉水砕スラグの製造方法。
4. The method for producing granulated blast furnace slag according to claim 1, wherein the molten slag is granulated by a slag cooling water stream and then charged into a water tank.
【請求項5】スラグ質量流量に対する注水質量流量の比
が10以上であることを特徴とする請求項1〜4のいず
れかに記載の高炉水砕スラグの製造方法。
5. The method for producing granulated blast furnace slag according to claim 1, wherein a ratio of a mass flow rate of the injected water to a mass flow rate of the slag is 10 or more.
【請求項6】注水水温が60℃以下であることを特徴と
する請求項1〜5に記載の高炉水砕スラグの製造方法。
6. The method for producing granulated blast furnace slag according to claim 1, wherein the temperature of the injected water is 60 ° C. or lower.
【請求項7】高炉溶融スラグを水で冷却して水砕する装
置において、水砕スラグ樋の溶融スラグを投入する下流
に堰が備えられ、堰によってスラグ冷却水の水槽が形成
可能で、かつ堰の下端部に開口部が設けられ、水砕スラ
グが冷却水と共に連続回収可能な構造を備えたことを特
徴とする高炉水砕スラグの製造装置。
7. An apparatus for water-cooling blast furnace molten slag with water, wherein a weir is provided downstream of the granulated slag gutter for charging the molten slag, and the weir can form a slag cooling water tank. An apparatus for producing granulated blast furnace slag, wherein an opening is provided at a lower end of the weir, and the granulated slag is provided with a structure capable of continuously collecting the granulated slag together with cooling water.
【請求項8】堰に可動な機構を設け、堰の下端部と水砕
スラグ樋の間の開口部の面積を任意に調整可能な構造を
備えたことを特徴とする請求項7に記載の高炉水砕スラ
グの製造装置。
8. The weir according to claim 7, wherein a movable mechanism is provided on the weir, and a structure capable of arbitrarily adjusting an area of an opening between a lower end of the weir and the granulated slag gutter is provided. Blast furnace granulated slag manufacturing equipment.
JP2001042997A 2001-02-20 2001-02-20 Manufacturing method of granulated blast furnace slag and equipment therefor Withdrawn JP2002249347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001042997A JP2002249347A (en) 2001-02-20 2001-02-20 Manufacturing method of granulated blast furnace slag and equipment therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001042997A JP2002249347A (en) 2001-02-20 2001-02-20 Manufacturing method of granulated blast furnace slag and equipment therefor

Publications (1)

Publication Number Publication Date
JP2002249347A true JP2002249347A (en) 2002-09-06

Family

ID=18905230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001042997A Withdrawn JP2002249347A (en) 2001-02-20 2001-02-20 Manufacturing method of granulated blast furnace slag and equipment therefor

Country Status (1)

Country Link
JP (1) JP2002249347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799461B1 (en) 2006-12-19 2008-02-01 재단법인 포항산업과학연구원 A size control method for slag granulation of apparatus for processing the slag granulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100799461B1 (en) 2006-12-19 2008-02-01 재단법인 포항산업과학연구원 A size control method for slag granulation of apparatus for processing the slag granulation

Similar Documents

Publication Publication Date Title
JP6674473B2 (en) Nozzle and tundish apparatus for granulating molten material
JP2016536131A (en) Molten metal granulation
JP2002249347A (en) Manufacturing method of granulated blast furnace slag and equipment therefor
US4352764A (en) Method of making slag sand and slag wool
JP3968995B2 (en) Method for producing coarse hard granulated slag
JPH05294687A (en) Device for producing spherical hydraulic substance
JP2006199984A (en) Slag processing method
CA1117297A (en) Method and apparatus for granulating blast furnace slag
KR20120020408A (en) Device to make iron and steel raw material being uniform in size
JP4136520B2 (en) Foam glass manufacturing method
JP3988347B2 (en) Particle size control method for hard granulated slag
KR20150030374A (en) Manufacturing apparatus of slag ball
JP3619389B2 (en) Method for producing blast furnace slag fine aggregate
JP2004277191A (en) Coarse aggregate for concrete
JPH11314946A (en) Apparatus for producing blast furnace granulated slag and production therefor
KR200218184Y1 (en) Uniformly granulating apparatus for slag granulation of blast furnace
JPH11236255A (en) Production of coarse-grained hard watergranulated blast furnace slag
JP4388259B2 (en) Method for producing blast furnace slag fine aggregate
JP2001048603A (en) Production of blast-furnace slag fine aggregate
TW539659B (en) Method for manufacturing hard granular water slag and its device
JP2024001550A (en) Method for producing slag material
JPH11188347A (en) Production of air-granulated slag
JP2000219545A (en) Process and equipment for producing water granulated slag
TW202237551A (en) Production method and production apparatus for slag material
JPH11292588A (en) Method for reducing water absorptivity of blast furnace slowly cooled slag

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513