JP2000219545A - Process and equipment for producing water granulated slag - Google Patents

Process and equipment for producing water granulated slag

Info

Publication number
JP2000219545A
JP2000219545A JP11024499A JP2449999A JP2000219545A JP 2000219545 A JP2000219545 A JP 2000219545A JP 11024499 A JP11024499 A JP 11024499A JP 2449999 A JP2449999 A JP 2449999A JP 2000219545 A JP2000219545 A JP 2000219545A
Authority
JP
Japan
Prior art keywords
water
slag
cooling
cooling water
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11024499A
Other languages
Japanese (ja)
Inventor
Hiroyuki Chiba
洋之 千葉
Yasuhiro Yamada
康浩 山田
Toshio Yanagawa
俊雄 柳川
Koji Sumioka
耕二 住岡
Ichio Shimoaze
五千雄 下畦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP11024499A priority Critical patent/JP2000219545A/en
Publication of JP2000219545A publication Critical patent/JP2000219545A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce high quality water granulated slag by stabilizing quenching and granulating conditions in the process. SOLUTION: This production process comprises spraying cooling water on molten slag which is discharged from a blast furnace and allowed to flow through a slag trough, from plural nozzles (1)-(7) arranged on the periphery of the slag trough, wherein: one portion of the cooling water heated in a hot water tank 20 is transferred to a water supply vessel 22 through a cooling tower 21 and the other portion is directly transferred to the water supply vessel 22 and the temperature of the cooling water in the water supply vessel 22 is controlled within the range of 70-85 deg.C by adjusting the flow rate ratio of the cooling water portion transferred through the cooling tower 21 to the cooling water portion directly transferred; and also, solenoid valves V1-V4 are placed in a water supply pipeline system extending from the water supply vessel 22 to the nozzles (1)-(7) through a header 11 and the group of the nozzles (1)-(7) is divided into four blocks. Thus, the solenoid valves V1-V4 are opened correspondingly to the flow rate of molten slag flowing through the slag trough to change the spray pattern of the cooling water from the nozzles (1)-(7).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高炉から排出された溶
融スラグを吹製し、セメント原料,建設資材等として使
用される水砕スラグの製造方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for producing granulated slag used as a raw material for cement, construction material, etc., by blowing molten slag discharged from a blast furnace.

【0002】[0002]

【従来の技術】高炉スラグは、徐冷スラグ,水砕スラグ
等として再利用されている。徐冷スラグは破砕・整粒し
て路盤材,コンクリート骨材,ロックウール原料,肥料
原料等に使用され、水砕スラグはセメント原料,土壌改
良剤,細骨材等に使用されている。徐冷スラグは高炉か
ら排出された溶融スラグを徐冷した後で破砕して路盤材
等に使用されるのに対し、水砕スラグは溶融スラグに大
量の水を吹き付けて急冷・破砕することにより製造され
る。具体的には図1に示すように、高炉本体1から出銑
樋2に排出される溶銑から、溶融スラグをスラグ樋3に
分離し、分離された溶融スラグに吹製函4から多量の冷
却水を吹き付けることにより、急冷・破砕している。
2. Description of the Related Art Blast furnace slag is reused as slowly cooled slag, granulated slag, and the like. Slow-cooled slag is crushed and sized and used for roadbed material, concrete aggregate, rock wool raw material, fertilizer raw material, and the like, and granulated slag is used for cement raw material, soil improver, fine aggregate, and the like. Slow-cooled slag is used for roadbed materials, etc. after slowly cooling the molten slag discharged from the blast furnace, whereas granulated slag is obtained by spraying a large amount of water onto the molten slag and rapidly cooling and crushing it. Manufactured. Specifically, as shown in FIG. 1, molten slag is separated into slag gutters 3 from hot metal discharged from a blast furnace main body 1 to a tapping gutter 2, and the separated molten slag is cooled by a large amount from a blow box 4. Rapid cooling and crushing by spraying water.

【0003】水砕スラグは、図2に示すようにガラス質
を主とする実質部aに開気泡b及び閉気泡cが分散した
粒子構造をもち、ガラス化率が高いほど高品質とされて
いる。ガラス化率は溶融スラグの急冷条件に影響される
ため、溶融スラグの流量に応じ冷却水の噴射水量を制御
することにより急冷条件を一定化している。また、特開
平5−311213号公報では、スラグ樋3の幅方向に
関して吹製ノズルを複数ゾーンに分割し、スラグ樋3の
幅方向に変動する溶融スラグの流量変化を打ち消すよう
に吹製ノズルからの噴射水量を制御している。
As shown in FIG. 2, the granulated slag has a particle structure in which open cells b and closed cells c are dispersed in a substantial portion a mainly composed of glass, and the higher the vitrification rate, the higher the quality. I have. Since the vitrification rate is affected by the quenching condition of the molten slag, the quenching condition is made constant by controlling the injection amount of cooling water according to the flow rate of the molten slag. Further, in Japanese Patent Application Laid-Open No. Hei 5-31213, the blowing nozzle is divided into a plurality of zones in the width direction of the slag gutter 3 and the blowing nozzle is changed so as to cancel the flow rate change of the molten slag fluctuating in the width direction of the slag gutter 3. Is controlled.

【0004】[0004]

【発明が解決しようとする課題】水砕スラグは、乾燥後
に石膏,石灰石等の副原料と混合され、破砕機で更に粉
砕されて各種用途に使用される。そのため、被粉砕性に
優れていることも、水砕スラグの品質を決める上で重要
な要件である。被粉砕性は、水砕スラグの粒子に分散し
ている開気泡b,閉気泡c等が多いほど良好である。高
温の噴射水を水砕スラグに吹き付けると、ガス発生反応
が促進され、多数の気泡が分散したスラグ粒子が得られ
る。しかし、過度に高温の噴射水は、水砕スラグに対す
る冷却能が低く、得られる水砕スラグの粒径が大きくな
る。しかも、水砕に多量の冷却水を使用することから、
水温の管理も容易でない。
The granulated slag is mixed with auxiliary materials such as gypsum and limestone after drying, and further pulverized by a crusher to be used for various purposes. Therefore, excellent grindability is also an important requirement in determining the quality of granulated slag. The crushability is better when the number of open bubbles b, closed bubbles c, and the like dispersed in the granulated slag particles is larger. When high-temperature spray water is sprayed on the granulated slag, a gas generation reaction is promoted, and slag particles in which a number of bubbles are dispersed are obtained. However, the injection water having an excessively high temperature has a low cooling capacity for the granulated slag, and the obtained granulated slag has a large particle size. Moreover, since a large amount of cooling water is used for granulation,
It is not easy to control water temperature.

【0005】[0005]

【課題を解決するための手段】本発明は、このような問
題を解消すべく案出されたものであり、温水タンクから
給水槽に冷却水を直送する経路を付設し、冷却塔からの
水量と直送水量との比率を制御することにより、溶融ス
ラグに吹き付ける冷却水を適正温度に維持し、またスラ
グ樋を流れる溶融スラグの流量に応じて噴射パターンを
変更することにより、溶融スラグの急冷・破砕条件を安
定化し、高品質の水砕スラグを製造することを目的とす
る。
SUMMARY OF THE INVENTION The present invention has been devised in order to solve such a problem. A path for directly sending cooling water from a hot water tank to a water supply tank is provided, and the amount of water from the cooling tower is reduced. By controlling the ratio of the cooling water to the molten slag to an appropriate temperature by controlling the ratio of the molten slag to the direct water supply amount, and by changing the injection pattern according to the flow rate of the molten slag flowing through the slag gutter, rapid cooling of the molten slag It is intended to stabilize the crushing conditions and produce high-quality granulated slag.

【0006】本発明の水砕スラグ製造方法は、その目的
を達成するため、高炉から排出されスラグ樋を流れる溶
融スラグにスラグ樋の周囲に配置された複数のノズルか
ら冷却水を吹き付けて水砕スラグを製造する際、溶融ス
ラグとの接触で昇温した冷却水を温水タンクから冷却塔
を経由して給水槽に送ると共に給水槽に直送し、冷却塔
経由の冷却水と温水タンクから直送された冷却水の流量
比率によって冷却水の温度を70〜85℃に調整し、給
水槽からヘッダを経てノズルに至る給水管に設けられた
電磁弁を溶融スラグの流量増加に応じて開き、冷却水の
噴射パターンを変更することを特徴とする。
In order to achieve the object, the method for producing granulated slag of the present invention is characterized in that the molten slag discharged from the blast furnace and flowing through the slag gutter is sprayed with cooling water from a plurality of nozzles arranged around the slag gutter to granulate the granulated slag. When manufacturing slag, the cooling water heated in contact with the molten slag is sent from the hot water tank to the water tank via the cooling tower and directly to the water tank, and is directly sent from the cooling water via the cooling tower and the hot water tank. The temperature of the cooling water is adjusted to 70 to 85 ° C. according to the flow rate of the cooling water, and the solenoid valve provided in the water supply pipe from the water supply tank to the nozzle via the header is opened in accordance with the increase in the flow rate of the molten slag. Is characterized by changing the ejection pattern of.

【0007】この方法で使用する装置は、温水タンク
と、冷却水が温水タンクから通常経路を経て送られ、給
水槽に送り出す冷却塔と、冷却水が温水タンクから直送
経路を経て送られる給水槽と、給水槽から冷却水をヘッ
ダに送り出す複数の給水ポンプと、スラグ樋の周囲に配
置された複数のノズルと、ヘッダとノズルとを結ぶ給水
管に設けられている電磁弁と、ヘッダから温水タンクに
冷却水を返送する返送経路とを備えている。
[0007] The apparatus used in this method includes a hot water tank, a cooling tower in which cooling water is sent from the hot water tank via a normal path and sent to a water supply tank, and a water supply tank in which cooling water is sent from the hot water tank via a direct path. And a plurality of water supply pumps for sending cooling water from the water supply tank to the header, a plurality of nozzles arranged around the slag gutter, a solenoid valve provided on a water supply pipe connecting the header and the nozzle, and hot water from the header. And a return path for returning the cooling water to the tank.

【0008】[0008]

【実施の形態】本発明に従った水砕スラグ製造装置は、
たとえば図3に示すように溶融スラグSが流れるスラグ
樋3の周囲に複数のノズル〜を配置した吹製函10
を備えている。ノズル,は上方から、ノズル〜
,は下方から、ノズルは側方から冷却水を溶融ス
ラグSに吹き付ける。各ノズル〜は、図4に示す配
管系統で温水タンク20,冷却塔21及び給水槽22に
接続されている。溶融スラグとの接触で昇温した冷却水
は、温水タンク20に一時的に収容され、通常経路Aを
経て冷却塔21に送られると共に、一部が直送経路Bを
経て給水槽22に送られる。直送経路Bに、流量調整弁
5 が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A granulated slag manufacturing apparatus according to the present invention comprises:
For example, as shown in FIG. 3, a blowing box 10 having a plurality of nozzles arranged around a slag trough 3 through which a molten slag S flows.
It has. Nozzle, from above, nozzle ~
, From below, the nozzle blows cooling water to the molten slag S from the side. Each nozzle is connected to the hot water tank 20, the cooling tower 21 and the water supply tank 22 by a piping system shown in FIG. The cooling water heated by the contact with the molten slag is temporarily stored in the hot water tank 20 and sent to the cooling tower 21 via the normal route A, and a part is sent to the water supply tank 22 via the direct delivery route B. . The direct path B, and flow control valve V 5 are provided.

【0009】流量調整弁V5 の開度調節し、温水タンク
20から冷却塔21に送られる水量と給水槽22に直送
される水量との比率を制御することにより、70〜85
℃の範囲に水温が適正にコントロールされる。温度が適
正に保たれた冷却水は、ガラス化率の低下を抑制し、溶
融スラグと接触した際に発泡反応を迅速に進め、水砕ス
ラグの被粉砕性を向上させる。70℃に達しない水温で
は、発泡反応時間が短くなり、被粉砕性が悪化する。逆
に85℃を超える水温では、溶融スラグに対する冷却能
が小さくなって水砕スラグのガラス化率を低下させると
共に、蒸気圧が高くなって給水ポンプ24にキャビテー
ションを発生させる危険性が増す。
[0009] and opening adjustment of the flow rate control valve V 5, by controlling the ratio of the amount of water sent directly with the amount of water sent from the hot water tank 20 to the cooling tower 21 to the water supply tank 22, 70-85
Water temperature is properly controlled in the range of ° C. The cooling water maintained at an appropriate temperature suppresses a decrease in the vitrification rate, promptly promotes a foaming reaction when coming into contact with the molten slag, and improves the crushability of the granulated slag. If the water temperature does not reach 70 ° C., the foaming reaction time becomes short, and the grindability deteriorates. On the other hand, at a water temperature exceeding 85 ° C., the cooling capacity for the molten slag is reduced to lower the vitrification rate of the granulated slag, and the vapor pressure is increased, thereby increasing the risk of generating cavitation in the water supply pump 24.

【0010】給水槽22内の冷却水は、給水ポンプ24
によりヘッダ11に圧送される。ヘッダ11は、給水管
121 〜127 を介して各ノズル〜に接続されてい
る。給水管121 ,124 の基管に電動バルブV4 ,給
水管123 に電動バルブV3,給水管125 に電動バル
ブV1 ,給水管122 ,126 ,127 の基管に電動バ
ルブV2 を設け、ノズル〜を四つのブロックに分け
ている。各電磁弁V1〜V4 は、スラグ樋3を流れる溶
融スラグSの流量に応じて開閉される。電磁弁V1 〜V
4 の開閉により、4種類の噴射パターンを採ることがで
きる。ヘッダ11は、更に返送経路C,Dを介して温水
タンク20にも接続されている。返送経路C,Dを通過
する水量は、それぞれ流量調整弁V6 ,V7 で制御され
る。
The cooling water in the water supply tank 22 is supplied to a water supply pump 24.
By pressure to the header 11. Header 11 is connected to the nozzles - through the water supply pipe 12 1 to 12 7. Water supply pipes 12 1, 12 4 of the motorized valve V 4 based pipe, the water supply pipe 12 third electric valve V 3, motorized valve V 1 to the water supply pipe 12 5, based tube of the water supply pipe 12 2, 12 6, 12 7 the motorized valve V 2 is provided, which divides the nozzle-to four blocks. Each of the solenoid valves V 1 to V 4 is opened and closed according to the flow rate of the molten slag S flowing through the slag gutter 3. Electromagnetic valve V 1 ~V
By opening and closing 4 , four types of injection patterns can be adopted. The header 11 is further connected to a hot water tank 20 via return paths C and D. The amounts of water passing through the return routes C and D are controlled by flow control valves V 6 and V 7 , respectively.

【0011】各ノズル〜は、溶融スラグSの流量に
応じ図5に示すようにオン・オフされる。タップ間
(a)では、電磁弁V1 を開き、ノズルから冷却水を
噴射し、吹製可能な状態で待機している。溶融スラグS
が排出される初期段階では、スラグ樋3を流れる溶融ス
ラグSの流量が少ないので、噴射水量を抑えた状態にセ
ットする。具体的には、ポンプ類に対する過負荷を防止
するため返送経路C,Dの流量調整弁V6 ,V7 を開い
て吐出流量を一定にし、圧力変動を抑える。また、温水
タンク20から直送経路Bを経て全量を給水槽22に送
り、冷却水の降温を防止することが好ましい。スラグ樋
3を溶融スラグSが流れ始めた吹製初期段階(b)で
は、電磁弁ノズルV2 を開き、ノズル,〜から冷
却水を噴射する。なお、スラグ樋3を流れる溶融スラグ
Sの流量は、工業用カメラの撮像結果を画像処理するこ
とやスラグ樋3の温度測定等により検出される。或い
は、製造された水砕スラグを輸送するコンベヤに設けて
いる秤量器を用い、溶融スラグSの流量を演算すること
もできる。
Each nozzle is turned on and off according to the flow rate of the molten slag S as shown in FIG. In between taps (a), it opens the solenoid valve V 1, by injecting cooling water from the nozzle, waiting in吹製state. Molten slag S
In the initial stage of discharging the slag, the flow rate of the molten slag S flowing through the slag gutter 3 is small, so that the amount of the injected water is set to be suppressed. Specifically, in order to prevent overload on the pumps, the flow rate control valves V 6 and V 7 of the return paths C and D are opened to keep the discharge flow rate constant and suppress pressure fluctuation. Further, it is preferable that the entire amount be sent from the hot water tank 20 to the water supply tank 22 via the direct feeding path B to prevent the temperature of the cooling water from dropping. In吹製initial stage of the slag trough 3 is molten slag S starts to flow (b), it opens the solenoid valve nozzle V 2, nozzle, for injecting cooling water from ~. In addition, the flow rate of the molten slag S flowing through the slag gutter 3 is detected by performing image processing on an imaging result of an industrial camera, measuring the temperature of the slag gutter 3, and the like. Alternatively, the flow rate of the molten slag S can be calculated using a weigher provided on a conveyor for transporting the produced granulated slag.

【0012】溶融スラグSの流量が定常化した段階
(c)では、電磁弁V1 ,V2 に加えて電磁弁V3 も開
き、ノズルからの冷却水噴射を追加する。また、通常
経路A及び直送経路Bを流れる冷却水の水量比率を調節
し、溶融スラグSに吹き付けられる冷却水の温度を適正
に維持する。更に、大量の溶融スラグSが流れる場合
(d)、電磁弁V4 も開き、全てのノズル〜から冷
却水を噴射する。冷却水の噴射量に応じ、給水槽22に
設けられている給水ポンプ24の運転台数を増減する。
このように、スラグ樋3を流れる溶融スラグSの流量に
応じて噴射形態及び噴射水量を調節することにより、適
正な吹製条件が維持される。また、温水タンク20から
直送経路Bを経て給水槽22に送り込まれる温水の流量
を制御することで、溶融スラグに吹き付けられる冷却水
の温度が適正に管理される。
[0012] In step the flow rate of the molten slag S is steady state (c), the solenoid valve V 3 is also opened in addition to the solenoid valves V 1, V 2, to add cooling water jetting from the nozzle. In addition, the ratio of the amount of cooling water flowing through the normal path A and the direct-feed path B is adjusted to appropriately maintain the temperature of the cooling water sprayed on the molten slag S. Further, if the flow a large amount of molten slag S (d), the solenoid valve V 4 is also opened, to inject cooling water from all of the nozzles ~. The number of operating water supply pumps 24 provided in the water supply tank 22 is increased or decreased according to the cooling water injection amount.
As described above, by adjusting the injection mode and the injection water amount in accordance with the flow rate of the molten slag S flowing through the slag gutter 3, appropriate blowing conditions are maintained. Further, by controlling the flow rate of the hot water sent from the hot water tank 20 to the water supply tank 22 via the direct feeding path B, the temperature of the cooling water sprayed on the molten slag is appropriately managed.

【0013】溶融スラグSに吹き付けられる冷却水の水
温が高いほど、溶融スラグSと冷却水との間で2N3 -
2 0→H2 +N2 +O2 -等のガス発生反応が活発に進
行し、発生したガスがスラグ粒子に分散するため、水砕
スラグの被破砕性が向上する。しかし、高すぎる水温で
は溶融スラグSの周囲に蒸気膜ができ、緩冷却となって
ガラス化率が低下する。本発明者等による調査・研究の
結果、冷却水の水温を70〜85℃に維持するとき、ガ
ラス化率が98%以上で被破砕性に優れた水砕スラグが
得られることが判った。適正水温70〜85℃は、溶融
スラグSの流量に応じた返送経路C,Dの開閉,給水ポ
ンプ24の稼動台数,給水槽23への流量制御等により
容易に達成できる。この点、直送経路Bのみをもつ配管
系統では、温水タンク20における温度制御だけで冷却
水温度を調節せざるを得ず、水砕に必要な多量の冷却水
の温度管理には不向きである。
The higher the temperature of the cooling water blown to the molten slag S, the higher the temperature of 2N 3 + between the molten slag S and the cooling water.
H 2 0 → H 2 + N 2 + O 2 - gas generating reaction proceeds actively such, generated gas for dispersing the slag particles, improves the crush resistance of the granulated slag. However, if the water temperature is too high, a vapor film is formed around the molten slag S, the cooling is slow, and the vitrification rate is reduced. As a result of investigation and research by the present inventors, it has been found that when the temperature of the cooling water is maintained at 70 to 85 ° C., granulated slag having a vitrification rate of 98% or more and excellent in crushability can be obtained. The appropriate water temperature of 70 to 85 ° C. can be easily achieved by opening and closing the return paths C and D according to the flow rate of the molten slag S, controlling the number of operating water supply pumps 24, controlling the flow rate to the water supply tank 23, and the like. In this respect, in a piping system having only the direct feed path B, the cooling water temperature must be adjusted only by controlling the temperature in the hot water tank 20, and is not suitable for controlling the temperature of a large amount of cooling water required for water granulation.

【0014】[0014]

【実施例】高炉に設けている3本の出銑口を交互に使用
して溶銑・溶融スラグを排出し、出銑樋2からスラグ樋
3に分流した溶融スラグSに冷却水を噴射して水砕スラ
グを製造した。このときの操業諸元を図6に示すよう
に、溶融スラグSの流量に応じて返送経路C,Dの開
閉,給水ポンプ24の稼動台数,給水槽23への流量制
御を実施し、水温を70〜85℃の範囲に維持して噴射
パターンをa→b→c→d(図5)に切り替えた。得ら
れた水砕スラグの比表面積を、JIS R5201に規
定されるブレーン法で測定した。図7の測定結果にみら
れるように、70℃以上の冷却水を使用し噴射パターン
を変更するとき、比表面積が4100cm2 /gを超え
る微粒状の水砕スラグが得られた。この水砕スラグのガ
ラス化率は、98%以上であり、セメント,土壌改良
剤,細骨材等として使用される高品質の原料であった。
これに対し、水温制御及び噴射パターンの変更なしで溶
融スラグSを水砕した場合(×)、高い温度の冷却水を
使用するほど比表面積が大きくなったが、本発明例に比
較すると低い比表面積の水砕スラグであった。水温制御
した場合(○)でも、噴射パターンの変更を伴った場合
(●)に比較すると比表面積の小さな水砕スラグになっ
ていた。
EXAMPLE Hot metal and molten slag are discharged by alternately using three tap holes provided in a blast furnace, and cooling water is injected into molten slag S diverted from the tapping trough 2 to the slag trough 3 by discharging. Granulated slag was produced. As shown in FIG. 6, the operating parameters at this time are as follows: opening and closing of return paths C and D, operating number of water supply pumps 24, and flow rate control to water supply tank 23 are performed in accordance with the flow rate of molten slag S, and water temperature is controlled. The spray pattern was switched from a to b to c to d (Fig. 5) while maintaining the temperature in the range of 70 to 85C. The specific surface area of the obtained granulated slag was measured by the Blaine method specified in JIS R5201. As can be seen from the measurement results in FIG. 7, when the spray pattern was changed using cooling water at 70 ° C. or higher, fine granulated slag having a specific surface area exceeding 4100 cm 2 / g was obtained. The vitrification rate of this granulated slag was 98% or more, and was a high-quality raw material used as cement, soil conditioner, fine aggregate, and the like.
On the other hand, when the molten slag S was granulated without changing the water temperature control and the spray pattern (×), the specific surface area became larger as the high-temperature cooling water was used. The granulated slag had a surface area. Even when the water temperature was controlled (○), the granulated slag had a smaller specific surface area as compared with the case where the spray pattern was changed (●).

【0015】[0015]

【発明の効果】以上に説明したように、本発明において
は、スラグ樋を流れる溶融スラグに冷却水を噴射して水
砕スラグを製造する際、温水タンクから給水槽に直送さ
れる水量を制御すると共に、水温70〜85℃の冷却水
の噴射パターンを溶融スラグの流量変化に応じて切り替
えている。これにより、被破砕性に優れガラス化率の高
い水砕スラグが安定して製造され、セメント,土壌改良
剤,細骨材等に高品質原料として使用される。
As described above, in the present invention, when producing cooling granulated slag by injecting cooling water into molten slag flowing through a slag gutter, the amount of water directly sent from a hot water tank to a water supply tank is controlled. At the same time, the spray pattern of the cooling water at a water temperature of 70 to 85 ° C. is switched according to a change in the flow rate of the molten slag. As a result, granulated slag having excellent crushability and high vitrification rate is stably produced, and is used as a high-quality raw material for cement, soil conditioners, fine aggregate, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 水砕スラグ製造装置が配置された高炉回りFig. 1 Around a blast furnace where granulated slag production equipment is installed

【図2】 水砕スラグの粒子構造Fig. 2 Particle structure of granulated slag

【図3】 本発明で使用する吹製函FIG. 3 shows a blow box used in the present invention.

【図4】 冷却水の配管系統Fig. 4 Cooling water piping system

【図5】 溶融スラグの流量に応じて変更される噴射パ
ターン
FIG. 5 Injection pattern changed according to the flow rate of molten slag

【図6】 実施例で採用した操業諸元の変化FIG. 6: Changes in operation specifications adopted in the example

【図7】 水砕スラグの比表面積に及ぼす冷却水の温度
及び噴射パターンの影響を表わしたグラフ
FIG. 7 is a graph showing the effect of cooling water temperature and spray pattern on the specific surface area of granulated slag.

【符号の説明】[Explanation of symbols]

1:高炉本体 2:出銑樋 3:スラグ樋 4,
10:吹製函 11:ヘッダ 121 〜127 :給
水管 20:温水タンク 21:冷却塔 22:給水槽 24:給水ポンプ 〜:ノズル A:通常経路 B:直送経路 C,D:返送経路 S:溶融スラグ V1 〜V4 :電磁弁 V5 〜V
7 :流量調整弁 a:ガラス質の実質部 b:開気泡 c:閉気泡
1: Blast furnace body 2: Tapping gutter 3: Slag gutter 4,
10:吹製a box 11: Header 12 1 to 12 7: feed water pipe 20: hot water tank 21: Cooling tower 22: Water tank 24: Water pump ~: nozzles A: Normal route B: direct path C, D: return path S : molten slag V 1 ~V 4: solenoid valve V 5 ~V
7 : Flow control valve a: Vitreous substantial part b: Open bubble c: Closed bubble

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柳川 俊雄 広島県呉市昭和町11番1号 日新製鋼株式 会社呉製鉄所内 (72)発明者 住岡 耕二 広島県呉市昭和町11番1号 日新製鋼株式 会社呉製鉄所内 (72)発明者 下畦 五千雄 広島県呉市昭和町11番1号 日新製鋼株式 会社呉製鉄所内 Fターム(参考) 4G012 JH03  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshio Yanagawa 111-1 Showa-cho, Kure-shi, Hiroshima Nisshin Steel Co., Ltd. Inside Kure Works (72) Inventor Koji Sumiooka 111-1 Showa-cho, Kure-shi, Hiroshima New Steel Co., Ltd. Kure Works (72) Inventor Gochio Shimomine 11-1, Showa-cho, Kure-shi, Hiroshima F-term in Nissin Steel Co., Ltd. Kure Works 4G012 JH03

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高炉から排出されスラグ樋を流れる溶融
スラグにスラグ樋の周囲に配置された複数のノズルから
冷却水を吹き付けて水砕スラグを製造する際、溶融スラ
グとの接触で昇温した冷却水を温水タンクから冷却塔を
経由して給水槽に送ると共に給水槽に直送し、冷却塔経
由の冷却水と温水タンクから直送された冷却水の流量比
率によって冷却水の温度を70〜85℃に調整し、給水
槽からヘッダを経てノズルに至る給水管に設けられた電
磁弁を溶融スラグの流量増加に応じて開き、冷却水の噴
射パターンを変更する水砕スラグの製造方法。
1. A method of producing granulated slag by spraying cooling water from a plurality of nozzles disposed around a slag gutter onto a molten slag discharged from a blast furnace and flowing through the slag gutter, the temperature of the molten slag being raised by contact with the molten slag. The cooling water is sent from the hot water tank to the water supply tank via the cooling tower and directly to the water supply tank, and the temperature of the cooling water is set to 70 to 85 depending on the flow rate ratio of the cooling water via the cooling tower and the cooling water directly sent from the hot water tank. A method for producing granulated slag in which the temperature is adjusted to ° C., and a solenoid valve provided in a water supply pipe extending from a water supply tank to a nozzle via a header is opened in accordance with an increase in the flow rate of the molten slag to change a spray pattern of cooling water.
【請求項2】 温水タンクと、冷却水が温水タンクから
通常経路を経て送られ、給水槽に送り出す冷却塔と、冷
却水が温水タンクから直送経路を経て送られる給水槽
と、給水槽から冷却水をヘッダに送り出す複数の給水ポ
ンプと、スラグ樋の周囲に配置された複数のノズルと、
ヘッダとノズルとを結ぶ給水管に設けられている電磁弁
と、ヘッダから温水タンクに冷却水を返送する返送経路
とを備えている水砕スラグ製造装置。
2. A hot water tank, a cooling tower in which cooling water is sent from the hot water tank via a normal path and sent out to a water supply tank, a water supply tank in which cooling water is sent from the hot water tank through a direct path, and cooling from the water supply tank. A plurality of feed pumps that send water to the header, a plurality of nozzles arranged around the slag gutter,
A granulated slag producing apparatus comprising: an electromagnetic valve provided in a water supply pipe connecting a header and a nozzle; and a return path for returning cooling water from the header to a hot water tank.
JP11024499A 1999-02-02 1999-02-02 Process and equipment for producing water granulated slag Withdrawn JP2000219545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11024499A JP2000219545A (en) 1999-02-02 1999-02-02 Process and equipment for producing water granulated slag

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11024499A JP2000219545A (en) 1999-02-02 1999-02-02 Process and equipment for producing water granulated slag

Publications (1)

Publication Number Publication Date
JP2000219545A true JP2000219545A (en) 2000-08-08

Family

ID=12139890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11024499A Withdrawn JP2000219545A (en) 1999-02-02 1999-02-02 Process and equipment for producing water granulated slag

Country Status (1)

Country Link
JP (1) JP2000219545A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765070B1 (en) * 2001-04-09 2007-10-08 주식회사 포스코 Apparatus and method for cooling slag and collecting granulation particulate in slag granulation equipment of blast-furnace
JP2011219292A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Granulation trough
US10941758B2 (en) 2016-05-03 2021-03-09 Lg Electronics Inc. Linear compressor and method for manufacturing a linear compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100765070B1 (en) * 2001-04-09 2007-10-08 주식회사 포스코 Apparatus and method for cooling slag and collecting granulation particulate in slag granulation equipment of blast-furnace
JP2011219292A (en) * 2010-04-07 2011-11-04 Nippon Steel Corp Granulation trough
US10941758B2 (en) 2016-05-03 2021-03-09 Lg Electronics Inc. Linear compressor and method for manufacturing a linear compressor

Similar Documents

Publication Publication Date Title
JP4353706B2 (en) Process for producing milled slag and facility for producing milled slag
US8480948B2 (en) Sinter processing system
CN105000811A (en) Parallel flow heat accumulating type lime kiln production technology based on CO2 accumulation
CN103014201A (en) Device and method for gas-solid ejection and granulation of molten blast furnace slags
KR970001243B1 (en) Apparatus for manufacturing cement clinker
JP2000219545A (en) Process and equipment for producing water granulated slag
JPS62142706A (en) Method for blowing granular particle into blast furnace
JP2000219546A (en) Process and equipment for producing water granulated slag
CN111960803B (en) Production process for directly preparing ceramsite in pulverized coal combustion power generation process
TW550293B (en) Blast furnace granulated slag, fine aggregate prepared therefrom and method for producing them
KR20090006940A (en) System and method for temperature control upon a up the heat load of stave blast furnace
JP2008308397A (en) Method of cooling molten slag and method of manufacturing slag product
TW539659B (en) Method for manufacturing hard granular water slag and its device
JP2004067400A (en) Process for manufacturing foam glass
JPH11236255A (en) Production of coarse-grained hard watergranulated blast furnace slag
JP2008308398A (en) Method of cooling molten slag and method of manufacturing slag product
CN108660269A (en) A kind of jet stream granulation spray gun and slag granulating heat-exchanger rig
JP3630051B2 (en) Method and equipment for producing granulated slag
JPS63222052A (en) Manufacture of water-granulated slag and apparatus therefor
KR102156711B1 (en) Equipment for treating slag and Method for treating slag
JPH046772B2 (en)
JPH0692698A (en) Method for sphering fine powder of slag
JPH0639340B2 (en) Apparatus and method for producing granulated slag outside the furnace
JP2002521563A (en) Method for producing zinc by IS method in IS vertical furnace plant and IS vertical furnace plant
JPS6117779B2 (en)

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404