JP2022021235A - Production method of modified converter slag and production method of granular material for road bed material - Google Patents

Production method of modified converter slag and production method of granular material for road bed material Download PDF

Info

Publication number
JP2022021235A
JP2022021235A JP2020124718A JP2020124718A JP2022021235A JP 2022021235 A JP2022021235 A JP 2022021235A JP 2020124718 A JP2020124718 A JP 2020124718A JP 2020124718 A JP2020124718 A JP 2020124718A JP 2022021235 A JP2022021235 A JP 2022021235A
Authority
JP
Japan
Prior art keywords
slag
converter
modified
modifier
holding container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020124718A
Other languages
Japanese (ja)
Other versions
JP7310745B2 (en
Inventor
和欣 林
Kazuyoshi Hayashi
哲之 今井
Tetsuyuki Imai
勲 下田
Isao Shimoda
英樹 横山
Hideki Yokoyama
百紀 加茂
Momoki Kamo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020124718A priority Critical patent/JP7310745B2/en
Publication of JP2022021235A publication Critical patent/JP2022021235A/en
Application granted granted Critical
Publication of JP7310745B2 publication Critical patent/JP7310745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To modify a converter slag having high basicity generated in a converter refining process, that is, a converter slag having high refining capacity into a converter slag applicable to a road bed material without burden of a steelmaking process by a simple device configuration.SOLUTION: In a production method of a modified converter slag, a reformer mixed slag is obtained by spraying a powdery granulated slag reformer to a molten converter slag during flowing-down or to a position where the molten converter slag flows down into a slag-retaining vessel while flowing down the molten converter slag from the converter into the slag-retaining vessel, and mixing the slag reformer with the molten converter slag. Next, the reformer mixed slag is held in the slag-retaining vessel to form a reformer reaction slag. Next, the reformer reaction slag is discharged from the slag-retaining vessel, cooled and solidified to form a solidified slag. The solidified slag is pulverized and subjected to steam aging to obtain the modified converter slag.SELECTED DRAWING: Figure 1

Description

本発明は、改質転炉スラグの製造方法に関し、特に転炉精錬工程で発生する転炉スラグを道路路盤材として用いるための改質転炉スラグの製造方法に関する。 The present invention relates to a method for producing modified converter slag, and more particularly to a method for producing modified converter slag for using converter slag generated in a converter refining step as a roadbed material.

転炉精錬工程で発生する転炉スラグは製鋼スラグの一種であり、現在、土木工事用の仮設材、および道路の地盤改良材といった、いわゆる低級用途での利用が主体となっている。これは、転炉精錬工程において精錬剤として添加される石灰源などの一部が遊離CaOとして転炉スラグ中に残留した場合、この遊離CaOが水分と反応(水和反応)するためである。転炉スラグが地中に埋設されてこのような水和反応を生じると、埋設された転炉スラグの体積が2倍以上にも膨張することがあり、周囲の構造物を破壊する虞がある。 The converter slag generated in the converter refining process is a kind of steelmaking slag, and is currently mainly used for so-called low-grade applications such as temporary materials for civil engineering work and ground improvement materials for roads. This is because when a part of the lime source added as a refining agent in the converter refining step remains as free CaO in the converter slag, the free CaO reacts with water (hydration reaction). When the converter slag is buried in the ground and such a hydration reaction occurs, the volume of the buried converter slag may expand more than twice, and there is a risk of destroying the surrounding structures. ..

転炉スラグを含む製鋼スラグをより高級用途である道路路盤材、コンクリート用骨材、石材原料等に用いるためには、遊離CaOを低減する、あるいは遊離CaOの水和反応による膨張を沈静化させる必要がある。以下、製鋼スラグ中の遊離CaOの量を低減する、あるいは遊離CaOの水和反応による膨張を防ぐことを、製鋼スラグの改質とも称する。JIS A 5015:2018(道路用鉄鋼スラグ)には、製鋼スラグを道路路盤材として利用する場合には、水浸膨張比を1.0%以下とすることが定められている。 In order to use steelmaking slag containing converter slag for higher-grade roadbed materials, concrete aggregates, stone raw materials, etc., the free CaO is reduced or the expansion due to the hydration reaction of the free CaO is calmed down. There is a need. Hereinafter, reducing the amount of free CaO in the steelmaking slag or preventing expansion due to the hydration reaction of the free CaO is also referred to as modification of the steelmaking slag. JIS A 5015: 2018 (Road Steel Slag) stipulates that the water immersion expansion ratio should be 1.0% or less when steelmaking slag is used as a roadbed material.

製鋼スラグの膨張を抑制する方法として、遊離CaOの水和反応を事前に進行させるエージング法が採用されている。1990年代より前は、スラグを屋外に山積みし、大気および雨水により水和反応を生じさせる大気エージング処理が行われていた。しかしながら、大気エージング処理には3か月から6か月以上の期間を要していた。このため、1990年代に促進エージング処理が開発され、実用化されている(非特許文献1)。促進エージング処理としては、冷却ヤード内に製鋼スラグを投入して耐熱シートで覆い、冷却ヤード下部から製鋼スラグ内に蒸気を吹き込む蒸気エージング法、および密閉容器内で高圧蒸気により強制的に水和反応を促進させる加圧蒸気エージング法等が挙げられる。このうち現在は、設備構成が簡便な蒸気エージング法がより多く採用されている(非特許文献2)。 As a method of suppressing the expansion of steelmaking slag, an aging method in which the hydration reaction of free CaO is promoted in advance is adopted. Prior to the 1990s, slag was piled up outdoors and subjected to atmospheric aging treatment that caused a hydration reaction with air and rainwater. However, the atmospheric aging treatment required a period of 3 to 6 months or more. Therefore, the accelerated aging treatment was developed and put into practical use in the 1990s (Non-Patent Document 1). The accelerated aging treatment includes a steam aging method in which steelmaking slag is put into the cooling yard, covered with a heat-resistant sheet, and steam is blown into the steelmaking slag from the bottom of the cooling yard, and a forced hydration reaction is performed by high-pressure steam in a closed container. A pressurized steam aging method or the like that promotes slag can be mentioned. Of these, the steam aging method, which has a simple equipment configuration, is currently used more often (Non-Patent Document 2).

また、特許文献1には、製鋼スラグを、溶融温度以上の温度、好ましくは溶融温度より10℃以上高い温度で熱処理することで、製鋼スラグ中の遊離CaOを減少させ、かつ製鋼スラグの吸水率を減少させる製鋼スラグの改質方法が記載されている。特許文献2には、塩基度が高い製鋼スラグを溶融改質する方法が開示されている。この方法は、SiO2含有物質を改質材として、溶融改質処理装置内の製鋼スラグに前記改質材を溶射することにより、前記製鋼スラグを溶融改質処理する製鋼スラグの溶融改質処理方法であって、前記溶融改質処理の開始前における固相率が0.5以上の前記製鋼スラグを使用する場合に、前記製鋼スラグの前記溶融改質処理開始前の温度TMと前記製鋼スラグの液相線温度TLLとの関係が、TM+150℃≧TLLを満たす条件で、前記溶融改質処理を開始する方法である。 Further, in Patent Document 1, the steelmaking slag is heat-treated at a temperature equal to or higher than the melting temperature, preferably 10 ° C. or higher higher than the melting temperature to reduce free CaO in the steelmaking slag and to reduce the water absorption rate of the steelmaking slag. A method for modifying steelmaking slag to reduce the amount of slag is described. Patent Document 2 discloses a method for melt-modifying steelmaking slag having a high basicity. In this method, the steel-making slag is melt-reformed by spraying the reformer onto the steel-making slag in the melt-reforming treatment apparatus using a SiO 2 -containing substance as the reforming material. In the method, when the steelmaking slag having a solid phase ratio of 0.5 or more before the start of the melt reforming treatment is used, the temperature TM of the steelmaking slag before the start of the melt reforming treatment and the steelmaking slag. This is a method of starting the melt reforming treatment under the condition that the relationship with the liquidus temperature T LL of is satisfied with TM + 150 ° C. ≧ T LL .

特開2005-306654号公報Japanese Unexamined Patent Publication No. 2005-306654 特開2010-285634号公報Japanese Unexamined Patent Publication No. 2010-285634

佐々木剛ら「製鋼スラグの蒸気エージング処理の開発」新日鉄住金技報第399号(2014)p21-25Takeshi Sasaki et al. "Development of Steam Aging Treatment for Steelmaking Slag" Nippon Steel & Sumitomo Metal Technical Report No. 399 (2014) p21-25 堀井和弘ら「鉄鋼スラグ利用の現況および新規有効利用技術の開発状況概括」新日鉄住金技報第399号(2014)p3-9Kazuhiro Horii et al. "Overview of Current Status of Steel Slag Utilization and Development Status of New Effective Utilization Technology" Nippon Steel & Sumitomo Metal Technical Report No. 399 (2014) p3-9

しかしながら、転炉精錬時の脱燐能を確保する等の目的で、スラグの塩基度を高くして転炉の操業を行った場合、得られた転炉スラグに対して蒸気エージング法を適用しても、遊離CaOが低減できずに転炉スラグの安定化が不十分となる。ここで塩基度とは、転炉スラグ中のSiO2の質量濃度に対するCaOの質量濃度の比、すなわち、(mass%CaO)/(mass%SiO2)で示される値である。また、遊離CaOが低減できる場合であっても、エージングに少なくとも数日以上を要し、生産性が低いという問題がある。 However, when the converter is operated with the basicity of the slag increased for the purpose of ensuring the dephosphorization ability during converter refining, the steam aging method is applied to the obtained converter slag. However, the free CaO cannot be reduced and the stabilization of the converter slag becomes insufficient. Here, the basicity is a ratio of the mass concentration of CaO to the mass concentration of SiO 2 in the converter slag, that is, a value represented by (mass% CaO) / (mass% SiO 2 ). Further, even if the free CaO can be reduced, there is a problem that aging requires at least several days and the productivity is low.

また転炉スラグの塩基度が高い場合には、特許文献1に記載の方法、すなわち、溶融温度より10℃以上高い温度で熱処理し、その後徐冷するだけでは改質できない場合がある。 Further, when the basicity of the converter slag is high, the method described in Patent Document 1, that is, heat treatment at a temperature higher than the melting temperature by 10 ° C. or higher, and then slow cooling may not be sufficient for reforming.

特許文献2に記載の方法は、1)精錬終了後、出鋼した後に転炉内に転炉スラグを残留させ、送酸しながら転炉内に残存した地金を燃焼させることにより、溶融改質処理装置に装入し、転炉スラグを予熱する、2)改質材を溶射する前に、転炉から排滓後の転炉スラグを均熱炉で加熱して昇温させることにより、転炉スラグを予熱する、3)転炉の吹止温度を(TLL-150)℃以上とし、溶融改質処理装置に装入し、溶融改質処理を開始する際の転炉スラグの温度を(TLL-150)℃以上に保持する、など製鋼工程に負担をかける処理工程の追加、および追加の設備導入が必要となり、装置構成が複雑になるため、広く採用されるには至らなかった。 The method described in Patent Document 2 is as follows: 1) After refining, after steelmaking, the converter slag remains in the converter, and the metal remaining in the converter is burned while sending acid to melt and reform. It is charged into the quality treatment equipment to preheat the converter slag. Preheat the converter slag 3) Set the blowoff temperature of the converter to (TLL-150) ° C or higher, charge it into the melt reforming treatment equipment, and start the melting reforming treatment. It has not been widely adopted because it requires the addition of a processing process that imposes a burden on the steelmaking process, such as keeping the temperature above (T LL -150) ° C, and the introduction of additional equipment, which complicates the equipment configuration. rice field.

そこで本発明は、転炉精錬工程で発生する塩基度が高い転炉スラグ、すなわち精錬能が高い転炉スラグであっても、簡易な装置構成によって、製鋼工程の負担を伴わずに、道路路盤材にも適用可能な転炉スラグに改質することを目的とする。 Therefore, according to the present invention, even if the converter slag has a high basicity generated in the converter refining process, that is, the converter slag having a high refining ability, the simple device configuration allows the roadbed to be used without the burden of the steelmaking process. The purpose is to reform the converter slag that can be applied to materials.

本発明者らは、排滓中の溶融転炉スラグに対して、粉粒状のスラグ改質材を吹き付けることにより、簡易な装置構成によって、製鋼工程の負担を伴わずに、道路路盤材にも適用可能な水浸膨張比1.0%以下を満足する転炉スラグに改質することができることを知見した。 By spraying powdery granular slag modifier onto the molten converter slag being discharged, the present inventors have a simple equipment configuration, and can also be used for roadbed materials without burdening the steelmaking process. It was found that the converter slag can be modified to satisfy the applicable water immersion expansion ratio of 1.0% or less.

本発明は、上記知見に基づいてなされたものである。すなわち、本発明の要旨構成は以下のとおりである。 The present invention has been made based on the above findings. That is, the gist structure of the present invention is as follows.

[1] 転炉内における溶銑の精錬工程で発生した溶融転炉スラグを該転炉からスラグ保持容器内に流下しつつ、流下中の前記溶融転炉スラグに対して、または前記溶融転炉スラグが前記スラグ保持容器内に流下される位置に対して、粉粒状のスラグ改質材を吹き付けて、前記溶融転炉スラグにスラグ改質材を混合して改質材混合スラグとし、
次いで、前記改質材混合スラグを、前記スラグ保持容器内で保持して、改質材反応スラグとし、
次いで、前記改質材反応スラグを、前記スラグ保持容器から放流し、冷却して固化させて固化スラグとし、
次いで、前記固化スラグを粉砕して、粉砕スラグとし、
次いで、前記粉砕スラグに蒸気エージングを施して、改質転炉スラグを得る、改質転炉スラグの製造方法。
[1] While flowing the molten converter slag generated in the hot metal refining step in the converter from the converter into the slag holding container, the molten converter slag flowing down or the molten converter slag. Is sprayed with a powdery granular slag modifier to the position where the slag flows down into the slag holding container, and the slag modifier is mixed with the melt converter slag to form a modifier mixed slag.
Next, the modified material mixed slag is held in the slag holding container to obtain a modified material reaction slag.
Next, the modified material reaction slag is discharged from the slag holding container, cooled and solidified to obtain solidified slag.
Next, the solidified slag was crushed to obtain crushed slag.
Next, a method for manufacturing a reforming converter slag, wherein the crushed slag is steam-aged to obtain a reforming converter slag.

[2] 前記スラグ改質材は粒径4.5mm以下の粉粒体を含む、前記[1]に記載の改質転炉スラグの製造方法。 [2] The method for producing a modified converter slag according to the above [1], wherein the slag modifier contains powders and granules having a particle size of 4.5 mm or less.

[3] 前記スラグ改質材を混合する前の前記溶融転炉スラグの塩基度が3.6以上4.2以下である、前記[1]または[2]に記載の改質転炉スラグの製造方法。 [3] The modified converter slag according to the above [1] or [2], wherein the basicity of the molten converter slag before mixing the slag modifier is 3.6 or more and 4.2 or less. Production method.

[4] 前記改質材混合スラグの塩基度の計算値を3.3以下とする、前記[1]から[3]のいずれか1項に記載の改質転炉スラグの製造方法。 [4] The method for producing a modified converter slag according to any one of [1] to [3] above, wherein the calculated value of the basicity of the modified material mixed slag is 3.3 or less.

[5] 前記溶融転炉スラグを前記スラグ保持容器の底面に対して4m以上の高さから該スラグ保持容器に流下する、前記[1]から[4]のいずれか1項に記載の改質転炉スラグの製造方法。 [5] The modification according to any one of [1] to [4] above, wherein the melt converter slag flows down into the slag holding container from a height of 4 m or more with respect to the bottom surface of the slag holding container. How to make converter slag.

[6] 前記転炉内の前記溶融転炉スラグが前記転炉から前記スラグ保持容器に流下するまでに要する排出時間を30秒以上90秒以下とする、前記[1]から[5]のいずれか1項に記載の改質転炉スラグの製造方法。 [6] Any of the above [1] to [5], wherein the discharge time required for the melting converter slag in the converter to flow down from the converter to the slag holding container is 30 seconds or more and 90 seconds or less. The method for manufacturing a modified converter slag according to item 1.

[7] 前記スラグ改質材は、SiO2を90質量%以上含有する、前記[1]から[6]のいずれか1項に記載の改質転炉スラグの製造方法。 [7] The method for producing a modified converter slag according to any one of [1] to [6] above, wherein the slag modifying material contains 90% by mass or more of SiO 2 .

[8] 前記改質材混合スラグを前記スラグ保持容器で10分以上保持して前記改質材反応スラグとする、前記[1]から[7]のいずれか1項に記載の改質転炉スラグの製造方法。 [8] The reforming converter according to any one of [1] to [7], wherein the reforming material mixed slag is held in the slag holding container for 10 minutes or more to obtain the reforming material reaction slag. How to make slag.

[9] 前記[1]から[8]のいずれか1項に記載の改質転炉スラグを用いた、道路路盤材用粒状材の製造方法。 [9] A method for producing a granular material for roadbed material using the modified converter slag according to any one of the above [1] to [8].

本発明によれば,転炉精錬工程で発生する塩基度が高い転炉スラグ、すなわち精錬能が高い転炉スラグであっても、簡易な装置構成によって、製鋼工程の負担を伴わずに、道路路盤材にも適用可能な水浸膨張比1.0%以下を満足する転炉スラグに改質することができる。 According to the present invention, even a converter slag having a high basicity generated in a converter refining process, that is, a converter slag having a high refining ability can be used as a road without burdening the steelmaking process by a simple device configuration. It can be reformed into a converter slag satisfying a water immersion expansion ratio of 1.0% or less, which is also applicable to roadbed materials.

転炉から流下中の溶融転炉スラグに対してスラグ改質材を吹き付ける装置の構成を説明するための図である。It is a figure for demonstrating the structure of the apparatus which sprays a slag modifier to a molten converter slag flowing down from a converter. 転炉スラグの塩基度と遊離CaOの濃度(質量%)との関係を示す散布図である。It is a scatter diagram which shows the relationship between the basicity of a converter slag and the concentration (mass%) of free CaO. 転炉スラグの塩基度と水浸膨張比との関係を示す散布図である。It is a scatter diagram which shows the relationship between the basicity of a converter slag and a water immersion expansion ratio.

以下、本発明の一実施形態について説明する。なお、本明細書中で「改質転炉スラグ」とは、水浸膨張比1.0%以下を満足する転炉スラグのことを指す。水浸膨張比は、JIS A 5015:2018に準拠して測定する。 Hereinafter, an embodiment of the present invention will be described. In the present specification, the “reformed converter slag” refers to a converter slag that satisfies a water immersion expansion ratio of 1.0% or less. The water immersion expansion ratio is measured in accordance with JIS A 5015: 2018.

本実施形態に係る改質転炉スラグの製造方法は、
転炉内における溶銑の精錬工程で発生した溶融転炉スラグを該転炉からスラグ保持容器内に流下しつつ、流下中の前記溶融転炉スラグに対して、または前記溶融転炉スラグが前記スラグ保持容器内に流下される位置に対して、粉粒状のスラグ改質材を吹き付けて、前記溶融転炉スラグにスラグ改質材を混合して改質材混合スラグとし、
次いで、前記改質材混合スラグを、前記スラグ保持容器内で保持して、改質材反応スラグとし、
次いで、前記改質材反応スラグを、前記スラグ保持容器から放流し、冷却して固化させて固化スラグとし、
次いで、前記固化スラグを粉砕して、粉砕スラグとし、
次いで、前記粉砕スラグに蒸気エージングを施して、改質転炉スラグを得る、改質転炉スラグの製造方法である。
The method for manufacturing the reforming converter slag according to the present embodiment is as follows.
While flowing the molten converter slag generated in the hot metal refining process in the converter from the converter into the slag holding container, the molten converter slag flowing down or the molten converter slag is the slag. A powdery granular slag modifier is sprayed onto the position where the slag is poured into the holding container, and the slag modifier is mixed with the melt converter slag to obtain a modifier mixed slag.
Next, the modified material mixed slag is held in the slag holding container to obtain a modified material reaction slag.
Next, the modified material reaction slag is discharged from the slag holding container, cooled and solidified to obtain solidified slag.
Next, the solidified slag was crushed to obtain crushed slag.
Next, it is a method of manufacturing a reforming converter slag in which the crushed slag is steam-aged to obtain a reforming converter slag.

[改質材混合工程]
まず、転炉内において溶銑の精錬工程(以下、転炉精錬工程とも称する)を行い、溶融した転炉スラグ(以下、溶融転炉スラグとも称する)を発生させる。次いで、転炉精錬工程終了後、溶融転炉スラグをスラグ保持容器内に流下しつつ、流下中の溶融転炉スラグに対して、または溶融転炉スラグがスラグ保持容器内に流下される位置に対して、スラグ改質材を吹き付けて、溶融転炉スラグにスラグ改質材を混合して改質材混合スラグとする。該構成によれば、溶融転炉スラグおよびスラグ改質材がスラグ保持容器内に流下する運動エネルギーを利用して溶融転炉スラグおよびスラグ改質材の混合を行うため、特許文献2に記載のように、スラグ改質材を溶融転炉スラグに対して溶射するためのバーナ等、並びにスラグ改質材と溶融転炉スラグとを攪拌するための攪拌装置等の追加の設備が不要であり、コストを低減することができる。また、各種容器内で溶融転炉スラグとスラグ改質材とを混合する場合と比較して、溶融転炉スラグの浴面または内部でスラグ改質材が凝集して固化することを抑制して、溶融転炉スラグとスラグ改質材とを均一に混合し、改質材混合スラグの組成をより均一にすることができる。溶融転炉スラグとスラグ改質材との混合が不十分であると、スラグ改質材が十分に混合されていない部分の溶融転炉スラグが高塩基度のまま残留する虞がある。これに対し本実施形態によれば、溶融転炉スラグとスラグ改質材とを均一に混合することができるため、より高品質な改質転炉スラグを提供することができる。さらに、スラグを改質するために吹止温度を高めたり、出鋼前後に転炉を占有する処理を行なったりする必要がなく、製鋼工程のコスト上昇や生産性の低下を伴わないため、製鋼工程における負荷が少ない。
[Modifying material mixing process]
First, a hot metal refining step (hereinafter, also referred to as a converter refining step) is performed in the converter to generate molten converter slag (hereinafter, also referred to as molten converter slag). Next, after the completion of the converter refining step, the molten converter slag flows down into the slag holding container, and at a position where the molten converter slag flowing down or the molten converter slag flows down into the slag holding container. On the other hand, the slag modifier is sprayed and the slag modifier is mixed with the melt converter slag to obtain the modifier mixed slag. According to the configuration, the melt converter slag and the slag modifier are mixed by utilizing the kinetic energy flowing down into the slag holding container, and therefore, it is described in Patent Document 2. As such, no additional equipment such as a burner for spraying the slag reformer onto the melt converter slag and a stirrer for stirring the slag reformer and the melt converter slag is required. The cost can be reduced. In addition, compared to the case where the melt converter slag and the slag modifier are mixed in various containers, it is possible to suppress the aggregation and solidification of the slag modifier on the bath surface or inside of the melt converter slag. , The melt converter slag and the slag modifier can be uniformly mixed, and the composition of the modifier mixed slag can be made more uniform. If the melt converter slag and the slag modifier are not sufficiently mixed, the melt converter slag in the portion where the slag modifier is not sufficiently mixed may remain with high basicity. On the other hand, according to the present embodiment, since the melt converter slag and the slag reformer can be uniformly mixed, it is possible to provide a higher quality reformer slag. Furthermore, since it is not necessary to raise the blow-off temperature to reform the slag or to occupy the converter before and after steelmaking, the cost of the steelmaking process does not increase and the productivity does not decrease. The load in the process is small.

改質材によって転炉スラグを改質する簡便な方法としては、転炉精錬工程終了後の出鋼前に、転炉内に改質材を投入して、転炉内で溶融転炉スラグと改質材とを混合する方法が考えられる。しかしながら、該方法によっては、改質材の投入により転炉内の溶融転炉スラグが充分改質されるレベルまで塩基度を低下させると、溶融転炉スラグの脱リン能が低下してしまう。このため、吹錬中に溶鋼から溶融転炉スラグ中へと移行したリンが、改質材の投入後、再び溶鋼に移行(復リン)し、その結果として溶鋼中のリンが十分低減できない虞がある。そのため、転炉精錬工程終了後出鋼前に、転炉内に改質材を投入する場合には、精錬開始時により多くの石灰を転炉内に投入しておくことでスラグ量を増加させ、改質材の投入後に溶融転炉スラグ塩基度が低下してもスラグ量増加効果により復リンが生じないようにする必要があった。これに対し、本実施形態においては、転炉の外で溶融転炉スラグに改質材を混合するため、転炉内の溶鋼に復リンが生じる虞がなく、また、転炉精錬時の石灰の投入量を増加させる必要もない。 As a simple method of reforming converter slag with a reforming material, the reforming material is put into the converter before steelmaking after the completion of the converter refining process, and the melt converter slag is used in the converter. A method of mixing with the modifier is conceivable. However, depending on the method, if the basicity is lowered to a level where the molten converter slag in the converter is sufficiently modified by adding the reforming material, the dephosphorization ability of the molten converter slag is lowered. For this reason, the phosphorus transferred from the molten steel to the molten converter slag during smelting may be transferred (restored phosphorus) to the molten steel again after the modifier is added, and as a result, the phosphorus in the molten steel may not be sufficiently reduced. There is. Therefore, when the reforming material is put into the converter after the completion of the converter refining process and before the steel is discharged, the amount of slag is increased by putting more lime into the converter at the start of refining. Even if the basicity of the melt converter slag decreases after the modifier is added, it is necessary to prevent the restoration of phosphorus from occurring due to the effect of increasing the amount of slag. On the other hand, in the present embodiment, since the reforming material is mixed with the molten converter slag outside the converter, there is no risk of condensate in the molten steel in the converter, and lime during converter refining. There is no need to increase the input amount of.

スラグ改質材の粒径:4.5mm以下
スラグ改質材の粒径は、4.5mm以下とすることが好ましい。スラグ改質材の粒径を4.5mm以下とすることで、溶融転炉スラグ中に分散混合して改質材混合スラグとした際改質材混合スラグの中でスラグ改質材が浮力によって浮上することをより好適に防ぐことができる。また、スラグ改質材の粒径が4.5mm以下であれば、スラグ改質材の中心まで溶融転炉スラグとの反応が進行するのにかかる時間を短縮できるため、反応が完了する前に溶融転炉スラグの凝固が進むことをより好適に防ぐことができる。スラグ改質材の粒径の下限は特に限定されないが、吹き付けたスラグ改質材が周囲の気体の流れによって巻き上がることをより好適に防ぎ、スラグ改質材を溶融転炉スラグとより好適に混合するために、スラグ改質材の粒径は0.5mm以上とすることが好ましい。スラグ改質材の粒径は、より好ましくは0.7mm以上、さらに好ましくは1.4mm以上とする。また、スラグ改質材の粒径は、より好ましくは4.0mm以下、さらに好ましくは2.4mm以下とする。
Particle size of the slag modifier: 4.5 mm or less The particle size of the slag modifier is preferably 4.5 mm or less. By setting the particle size of the slag modifier to 4.5 mm or less, when the slag is dispersed and mixed in the melt converter slag to form a modifier-mixed slag, the slag modifier is buoyant in the modifier-mixed slag. It is possible to more preferably prevent ascending. Further, if the particle size of the slag reforming material is 4.5 mm or less, the time required for the reaction with the melt converter slag to proceed to the center of the slag reforming material can be shortened, so that the reaction can be completed before the reaction is completed. It is possible to more preferably prevent the solidification of the melt converter slag from progressing. Although the lower limit of the particle size of the slag modifier is not particularly limited, it is more suitable to prevent the sprayed slag modifier from being rolled up by the flow of the surrounding gas, and the slag modifier is more preferably to be used as a melt converter slag. For mixing, the particle size of the slag modifier is preferably 0.5 mm or more. The particle size of the slag modifier is more preferably 0.7 mm or more, still more preferably 1.4 mm or more. The particle size of the slag modifier is more preferably 4.0 mm or less, still more preferably 2.4 mm or less.

スラグ改質材の成分は特に限定されず、従来公知の成分とすることができる。スラグ改質材は、SiO2を90質量%以上含有することが好ましい。SiO2は遊離CaOと反応して、転炉スラグの塩基度を低減する。効率的に転炉スラグの改質を行うために、スラグ改質材中のSiO2の含有量が高いほど好ましい。より好ましくは、スラグ改質材は、SiO2を95質量%以上含有する。 The components of the slag modifier are not particularly limited and may be conventionally known components. The slag modifier preferably contains 90% by mass or more of SiO 2 . SiO 2 reacts with free CaO to reduce the basicity of converter slag. In order to efficiently reform the converter slag, the higher the content of SiO 2 in the slag reformer, the more preferable. More preferably, the slag modifier contains SiO 2 in an amount of 95% by mass or more.

スラグ改質材は、流下中の溶融転炉スラグに対して吹き付けてもよく、溶融転炉スラグがスラグ保持容器内に流下される位置に対して吹き付けてもよい。また、スラグ改質材を溶融転炉スラグに吹き付ける際のスラグ改質材の吹き付け速度は特に限定されないが、200kg/min以上350kg/min以下とすることができる。スラグ改質材は、溶融転炉スラグがスラグ保持容器内に流下される位置に対して吹き付けることが好ましい。スラグ改質材を、溶融転炉スラグがスラグ保持容器内に流下される位置に対して吹き付けることで、溶融転炉スラグが凝固することを防ぎ、より好適にスラグ改質材を溶融転炉スラグに混合することができる。 The slag modifier may be sprayed on the molten converter slag that is flowing down, or may be sprayed on the position where the molten converter slag is poured into the slag holding container. Further, the spraying speed of the slag reforming material when the slag reforming material is sprayed onto the melt converter slag is not particularly limited, but can be 200 kg / min or more and 350 kg / min or less. The slag modifier is preferably sprayed onto the position where the melt converter slag flows down into the slag holding vessel. By spraying the slag reformer to the position where the melt converter slag flows down into the slag holding container, the melt converter slag is prevented from solidifying, and the slag reformer is more preferably melted converter slag. Can be mixed with.

スラグ改質材を混合する前の溶融転炉スラグの塩基度:3.6以上4.2以下
スラグ改質材を混合する前の溶融転炉スラグの塩基度は、3.6以上とすることが好ましく、また4.2以下とすることが好ましい。なお、スラグ改質材を混合する前の溶融転炉スラグの塩基度は、直接的に分析するほか、いわゆる計算塩基度として求めることもできる。ここで計算塩基度とは、吹錬において出鋼開始までに炉内に添加された副原料(前チャージ時から残留したスラグを含む)中のSiO2純分に対するCaO純分の比(CaO/ SiO2)で求められる。もちろん、スラグ改質材を混合する前にスラグを採取して分析し、スラグ改質材を混合する前の溶融転炉スラグの塩基度を直接的に測定してもよい。一例においては精錬工程の終了直後の出鋼中に溶融転炉スラグを採取して分析し、測定する。溶融転炉スラグの塩基度を3.6以上とすることで、復リンを抑えることができる。また、溶融転炉スラグの塩基度を4.2以下とすることで、多量のスラグ改質材を使用せず、改質材混合スラグの塩基度を必要なレベルまで低下させることができる。すなわち、溶融転炉スラグを該転炉からスラグ保持容器内に流下させる限られた期間中でのスラグ改質材の吹き付けであっても、改質材混合スラグの塩基度を必要なレベルまで低下させることができる。スラグ改質材を混合する前の溶融転炉スラグの塩基度は、3.8以上とすることがより好ましい。また、スラグ改質材を混合する前の溶融転炉スラグの塩基度は、4.0以下とすることがより好ましい。なお、スラグ改質材を混合する前の溶融転炉スラグの塩基度は、精錬工程の開始時および処理中に転炉内に投入する副原料(焼石灰、石灰石、ドロマイト、珪石、リサイクルされた製鋼スラグ)の量によって調節することができる。
Molten converter before mixing slag modifier Slag basicity: 3.6 or more and 4.2 or less The basicity of melt converter slag before mixing slag modifier should be 3.6 or more. Is preferable, and 4.2 or less is preferable. The basicity of the melt converter slag before mixing the slag modifier can be directly analyzed or obtained as a so-called calculated basicity. Here, the calculated basicity is the ratio of the CaO pure content (CaO /) to the SiO 2 pure content in the auxiliary raw material (including the slag remaining from the precharge) added in the furnace by the start of steel ejection in the smelting. Obtained by SiO 2 ). Of course, the slag may be collected and analyzed before the slag modifier is mixed, and the basicity of the melt converter slag before the slag modifier may be mixed may be directly measured. In one example, melt converter slag is collected, analyzed, and measured during steel ejection immediately after the completion of the refining process. By setting the basicity of the melting converter slag to 3.6 or more, recovery of phosphorus can be suppressed. Further, by setting the basicity of the melt converter slag to 4.2 or less, the basicity of the modified material mixed slag can be reduced to a required level without using a large amount of slag modifier. That is, even if the slag modifier is sprayed during a limited period in which the melt converter slag is allowed to flow from the converter into the slag holding container, the basicity of the modified material mixed slag is reduced to a required level. Can be made to. The basicity of the melt converter slag before mixing the slag modifier is more preferably 3.8 or more. Further, the basicity of the melt converter slag before mixing the slag modifier is more preferably 4.0 or less. The basicity of the melt converter slag before mixing the slag modifier was determined by the auxiliary materials (burnt lime, limestone, dolomite, silica stone, recycled) to be put into the converter at the start of the refining process and during the treatment. It can be adjusted by the amount of steelmaking slag).

溶融転炉スラグは、通常、出鋼後に転炉を排滓側に傾動して転炉の炉口からスラグ保持容器に流下させる。この際、スラグ保持容器の底面に対して4m以上の高さからスラグ保持容器に流下することが好ましい。スラグ保持容器の底面に対して4m以上の高さから溶融転炉スラグを流下することで、溶融転炉スラグの流下に伴い発生する流動によってスラグ改質材が溶融転炉スラグ中にさらに混合されやすくなる。溶融転炉スラグを流下させる高さは高いほど、スラグ保持容器内に流下されたときの流動が激しくなり、スラグ改質材が溶融転炉スラグ中に混合されやすくなる。溶融転炉スラグは、スラグ保持容器の底面に対してより好ましくは5m以上、さらに好ましくは6m以上の高さからスラグ保持容器に流下する。 In the molten converter slag, the converter is usually tilted to the discharge side after the steel is discharged and flows down from the furnace mouth of the converter into the slag holding container. At this time, it is preferable to flow down into the slag holding container from a height of 4 m or more with respect to the bottom surface of the slag holding container. By flowing the melt converter slag from a height of 4 m or more with respect to the bottom surface of the slag holding container, the slag modifier is further mixed in the melt converter slag by the flow generated by the flow of the melt converter slag. It will be easier. The higher the height at which the melt converter slag flows down, the more vigorous the flow when it flows down into the slag holding container, and the easier it is for the slag modifier to be mixed into the melt converter slag. The melt converter slag flows down into the slag holding container from a height of 5 m or more, more preferably 6 m or more with respect to the bottom surface of the slag holding container.

転炉内の溶融転炉スラグが該転炉からスラグ保持容器に流下するまでに要する排出時間は30秒以上90秒以下とすることが好ましい。排出時間を30秒以上とすることにより、溶融転炉スラグの排出中に十分な量のスラグ改質材を混合することができる。一方で、一般的に転炉からの溶融転炉スラグの排出は、転炉を傾動させて転炉の炉口から溶融転炉スラグを流下させるため、溶融転炉スラグを一定の少ない流量で排出することは難しい。よって、排出時間を90秒以下とすることにより、溶融転炉スラグの流量が低下しすぎず、スラグ改質材と好適に混合することができる。排出時間は、より好ましくは50秒以上とする。また、排出時間は、より好ましくは80秒以下とする。なお、転炉内の溶融転炉スラグが該転炉からスラグ保持容器に流下するまでに要する排出時間は、転炉を排滓側に傾動し、炉口からスラグが流出し始めたタイミングを始点、炉口からスラグが流出しなくなったタイミングを終点として測定する。なお、転炉から排滓される溶融転炉スラグの量に関わらず、転炉内の溶融転炉スラグが該転炉からスラグ保持容器に流下するまでに要する排出時間を測定することができる。すなわち、転炉から溶融転炉スラグを全量排滓する場合であっても、または溶融転炉スラグの全量は排滓しない場合であっても、転炉を排滓側に傾動し、炉口からスラグが流出し始めたタイミング、および炉口からスラグが流出しなくなったタイミングに基づき、転炉内の溶融転炉スラグが該転炉からスラグ保持容器に流下するまでに要する排出時間を測定することができる。 The discharge time required for the molten converter slag in the converter to flow down from the converter to the slag holding container is preferably 30 seconds or more and 90 seconds or less. By setting the discharge time to 30 seconds or more, a sufficient amount of slag modifier can be mixed during the discharge of the melt converter slag. On the other hand, in general, the discharge of molten converter slag from a converter tilts the converter and causes the molten converter slag to flow down from the furnace mouth of the converter, so that the molten converter slag is discharged at a constant small flow rate. It's difficult to do. Therefore, by setting the discharge time to 90 seconds or less, the flow rate of the melt converter slag does not decrease too much, and it can be suitably mixed with the slag modifier. The discharge time is more preferably 50 seconds or more. The discharge time is more preferably 80 seconds or less. The discharge time required for the molten converter slag in the converter to flow down from the converter to the slag holding container starts from the timing when the converter is tilted toward the drain side and the slag begins to flow out from the furnace mouth. , Measure the timing when the slag does not flow out from the furnace mouth as the end point. Regardless of the amount of molten converter slag discharged from the converter, the discharge time required for the molten converter slag in the converter to flow down from the converter to the slag holding container can be measured. That is, even when the total amount of the molten converter slag is discharged from the converter, or even when the entire amount of the molten converter slag is not discharged, the converter is tilted to the discharge side and the converter is tilted from the furnace mouth. To measure the discharge time required for the melt converter slag in the converter to flow down from the converter to the slag holding container based on the timing when the slag begins to flow out and the timing when the slag stops flowing out from the furnace mouth. Can be done.

改質材混合スラグの塩基度の計算値:3.3以下
溶融転炉スラグとスラグ改質材との混合によって得られる改質材混合スラグの塩基度の計算値は、3.3以下とすることが好ましい。ここで、改質材混合スラグの塩基度の計算値とは、溶鋼を出鋼した直後に転炉内に残留している溶融転炉スラグのうち排滓する量および成分組成の推定値、並びに添加するスラグ改質材の量および成分組成を考慮して求められる改質材混合スラグ中のSiO2の質量濃度に対するCaOの質量濃度の比である。例えば、排滓する溶融転炉スラグの量が9000kgであり、その成分組成が、CaO:45%、SiO2:11%である場合、SiO2が100%のスラグ改質材を360kg添加すると、改質材混合スラグの塩基度の計算値は3.0となる。改質材混合スラグの塩基度の計算値を3.3以下とすれば、溶融転炉スラグに含まれるCaOの量に対してスラグ改質材によって供給されるSiO2の量がより好適であるため、溶融転炉スラグ中の遊離CaO量をより好適に低減することができる。
Calculated basicity of modified material mixed slag: 3.3 or less The calculated basicity of modified material mixed slag obtained by mixing melt converter slag and slag modifier is 3.3 or less. Is preferable. Here, the calculated value of the basicity of the modified material mixed slag is an estimated value of the amount and component composition of the molten converter slag remaining in the converter immediately after the molten steel is ejected. It is a ratio of the mass concentration of CaO to the mass concentration of SiO 2 in the modified material mixed slag obtained in consideration of the amount of the slag modifier to be added and the component composition. For example, when the amount of molten converter slag discharged is 9000 kg and the composition of the components is CaO: 45% and SiO 2 : 11%, when 360 kg of a slag modifier having 100% SiO 2 is added, The calculated value of the basicity of the modified material mixed slag is 3.0. When the calculated value of the basicity of the modified material mixed slag is 3.3 or less, the amount of SiO 2 supplied by the slag modifier is more suitable for the amount of CaO contained in the melt converter slag. Therefore, the amount of free CaO in the melt converter slag can be more preferably reduced.

本実施形態においては、複雑な装置構成を採用せずに、簡易な装置構成によって、転炉スラグを改質することができる。転炉およびスラグ保持容器は、従来公知の構成とすることができる。転炉としては、上吹き転炉、上底吹き転炉、底吹き転炉のいずれであっても好適に適用し得る。スラグ保持容器としては、いわゆるスラグ鍋と呼ばれるスラグ保持・輸送容器を適用し得る。通常、転炉スラグはスラグ鍋に排滓され、ディーゼル車等に牽引されるなどしてスラグ処理場まで搬送され、スラグ処理場でスラグ鍋を傾動軸周りに傾動させることで、放流される。このスラグ鍋は、通常、鋳鉄製で、楕円形形状、真円形状、矩形形状などの上端開口部の形状を有する。また、容器内面には耐火物が敷設されない。なお、スラグ保持容器は、転炉から排滓される溶融スラグとスラグ改質剤を一定時間保持し得るものであればよく、上記スラグ鍋に限定されるものではない。また、スラグ改質材を吹き付ける装置の構成も特に限定されないが、例えば図1に示すように、(i)スラグ改質材を貯蔵するとともに、気体で内部加圧できる容器を具備し、容器の下部に設けられた弁からスラグ改質材を切り出すことができるよう構成されたディスペンサー3、(ii)ディスペンサー3の下流側に接続され、切り出されたスラグ改質材を気流搬送する送給配管4、(iii)送給配管4の末端に接続され、スラグ改質材を溶融転炉スラグに吹き付けるノズル5(一例においてはランスノズル)、(iv)並びに、ディスペンサー3を加圧し、またスラグ改質材を気体搬送するために必要な気体をディスペンサー3に対して供給する気体供給制御装置6を備える構成を採用することができる。スラグ改質材を気体搬送するために用いる気体は、例えば窒素ガスとすることができる。 In the present embodiment, the converter slag can be modified by a simple device configuration without adopting a complicated device configuration. The converter and the slag holding container may have conventionally known configurations. As the converter, any of a top-blown converter, an top-bottom blown converter, and a bottom-blown converter can be suitably applied. As the slag holding container, a so-called slag holding / transport container, which is a so-called slag pot, can be applied. Normally, converter slag is discharged to a slag pan, transported to a slag processing plant by being towed by a diesel vehicle or the like, and discharged by tilting the slag pan around a tilting axis at the slag processing plant. This slag pan is usually made of cast iron and has a shape of an upper end opening such as an elliptical shape, a perfect circular shape, and a rectangular shape. In addition, no refractory material is laid on the inner surface of the container. The slag holding container is not limited to the above-mentioned slag pan as long as it can hold the molten slag discharged from the converter and the slag modifier for a certain period of time. Further, the configuration of the device for spraying the slag modifier is not particularly limited, but as shown in FIG. 1, for example, (i) the slag modifier is stored and a container that can be internally pressurized with a gas is provided. Dispenser 3 configured to be able to cut out the slag reformer from the valve provided at the bottom, (ii) Feed pipe 4 connected to the downstream side of the dispenser 3 and carrying the cut out slag reformer in an air flow. , (Iii) Pressurize the nozzle 5 (Lance nozzle in one example), (iv) and the dispenser 3 which are connected to the end of the feed pipe 4 and spray the slag reformer onto the melt converter slag, and also slag reformer. A configuration including a gas supply control device 6 for supplying the gas required for transporting the material to the dispenser 3 can be adopted. The gas used for transporting the slag modifier can be, for example, nitrogen gas.

[保持工程]
上記のようにして得られた改質材混合スラグは、溶融転炉スラグ中にスラグ改質材が懸濁した状態となる。次いで、該改質材混合スラグを、スラグ保持容器内で保持して、改質材反応スラグとする。該保持工程において、改質材混合スラグ内の溶融転炉スラグとスラグ改質材とが十分に反応して、溶融転炉スラグ内の遊離CaO量を低減し、塩基度の低い改質材反応スラグとすることができる。
[Holding process]
The modified material mixed slag obtained as described above is in a state in which the slag modifier is suspended in the melt converter slag. Next, the modified material mixed slag is held in a slag holding container to obtain a modified material reaction slag. In the holding step, the melt converter slag in the modifier mixed slag and the slag modifier react sufficiently to reduce the amount of free CaO in the melt converter slag, and the modifier reaction with low basicity. It can be a slag.

保持工程における保持時間は特に限定されない。ここで、スラグ改質材は固体の粉粒体であるため、溶融転炉スラグ中の元素または分子が、スラグ改質材の表面から中心へ向けて粉粒体内を拡散して反応する反応形態をとる。したがって、スラグ改質材を溶融転炉スラグと完全に反応させるために、保持工程における保持時間は、溶融転炉スラグ中の元素または分子が、スラグ改質材の粉粒体内を拡散して反応する時間以上とすることが好ましい。すなわち、改質材混合スラグはスラグ保持容器で10分以上保持することが好ましい。改質材混合スラグのスラグ保持容器内における保持は、改質材混合スラグを入れたスラグ保持容器を同じ場所で静置してもよいし、改質材混合スラグを入れたスラグ保持容器を運搬しても、改質材混合スラグを保持した状態が一定時間維持されればよい。なお、反応を十分に進行させる観点からは、改質材混合スラグに溶融相が存在し、スラグ保持容量(スラグ保持容器内で保持可能な改質材混合スラグの量と、製鋼工程で排出される転炉スラグの量とのバランス)が許す限りにおいて、保持時間は長いほど好ましい。改質材混合スラグはスラグ保持容器でより好ましくは20分以上、さらに好ましくは30分以上保持する。 The holding time in the holding step is not particularly limited. Here, since the slag modifier is a solid powder or granular material, the reaction form in which the element or molecule in the melt converter slag diffuses and reacts in the powder or granular material from the surface to the center of the slag modifier. Take. Therefore, in order to completely react the slag reformer with the melt converter slag, the holding time in the holding step is such that the elements or molecules in the melt converter slag diffuse into the powder particles of the slag reformer and react. It is preferable that the time is longer than that. That is, it is preferable to hold the modified material mixed slag in a slag holding container for 10 minutes or more. For holding the modified material mixed slag in the slag holding container, the slag holding container containing the modified material mixed slag may be allowed to stand in the same place, or the slag holding container containing the modified material mixed slag may be transported. Even so, it is sufficient that the state of holding the modified material mixed slag is maintained for a certain period of time. From the viewpoint of sufficiently advancing the reaction, the molten phase is present in the modified material mixed slag, and the slag holding capacity (the amount of the modified material mixed slag that can be held in the slag holding container and the amount of the modified material mixed slag that can be held in the slag holding container and the amount discharged in the steelmaking process). The longer the holding time is, the more preferable it is, as long as the balance with the amount of converter slag allows. The modified material mixed slag is more preferably held in a slag holding container for 20 minutes or longer, more preferably 30 minutes or longer.

また、保持工程における保持温度も特に限定されない。本実施形態によれば、出鋼直後の溶融転炉スラグをスラグ改質材と混合させることから、スラグ改質材を溶融させて溶融転炉スラグと反応させるのに必要な熱量が十分に確保されている。そのため、スラグ保持容器内で改質材混合スラグを加熱する必要はない。保持工程におけるスラグ保持容器内で改質材混合スラグの保持温度は、好ましくは950℃以上とし、好ましくは1250℃以下とする。 Further, the holding temperature in the holding step is not particularly limited. According to this embodiment, since the melt converter slag immediately after steelmaking is mixed with the slag reformer, a sufficient amount of heat required to melt the slag reformer and react with the melt converter slag is secured. Has been done. Therefore, it is not necessary to heat the modified material mixed slag in the slag holding container. The holding temperature of the modified material mixed slag in the slag holding container in the holding step is preferably 950 ° C. or higher, and preferably 1250 ° C. or lower.

[冷却・固化工程]
次いで、改質材反応スラグを、スラグ保持容器から放流し、冷却して固化させて固化スラグとする。改質材反応スラグは、スラグ保持容器からスラグ放流ヤード等に放流され、冷却されて固化される。放流時の流動により、改質材反応スラグが再度攪拌される。よって、放流が行われるタイミングで、改質材反応スラグ内に溶融相と固相とが混在している場合でも、改めて溶融相と固相とが混合され、溶融相中に固相が懸濁した状態(マクロな均一混合状態)となる。放流後の改質材反応スラグは、スラグ放流ヤード等において冷却されて、固化する。放流後の改質材反応スラグを冷却する方法は特に限定されない。改質材反応スラグの冷却・固化によって生成する固化スラグの均一度を高めるためには、冷却速度の遅い放冷を採用することが好ましいが、冷却に要する時間を短縮する必要がある場合は散水冷却を行ってもよい。
[Cooling / solidification process]
Next, the modified material reaction slag is discharged from the slag holding container, cooled and solidified to obtain solidified slag. The modified material reaction slag is discharged from the slag holding container to a slag discharge yard or the like, cooled and solidified. The flow at the time of discharge causes the modifier reaction slag to be agitated again. Therefore, even if the molten phase and the solid phase are mixed in the reforming material reaction slag at the timing of discharge, the molten phase and the solid phase are mixed again and the solid phase is suspended in the molten phase. (Macro uniform mixing state). The modified material reaction slag after discharge is cooled and solidified in the slag discharge yard or the like. The method for cooling the modifier reaction slag after discharge is not particularly limited. In order to improve the uniformity of the solidified slag produced by cooling and solidifying the reforming material reaction slag, it is preferable to adopt cooling with a slow cooling rate, but if it is necessary to shorten the cooling time, sprinkle water. Cooling may be performed.

[粉砕工程]
次いで、固化スラグを粉砕して、粉砕スラグとする。粉砕には、ロッドミル、コーンクラッシャー、インパクトクラッシャー、ジョークラッシャーなどの公知の粉砕機を用いることができる。粉砕スラグの粒径は、目的に応じて決定することができる。本発明においては、粉砕スラグは、粒径40mm以下とすることが好ましい。粉砕スラグの粒径を40mm以下とすることで、蒸気エージング後に得られる改質転炉スラグを、道路路盤材に特に好適に適用することができる。例えば、固化スラグを粉砕して40mm以下の粉砕スラグをとする場合、次に示す手順で行なうことができる。固化スラグをショベルカーなどの重機で粗破砕しながら振動篩(1次篩)に投入し、40mmを超える粒径の固化スラグを篩上として採取する。篩上の固化スラグは粉砕機に投入されて破砕(1次破砕)され、粉砕機の下流側に設置された振動篩(2次篩)にかけられる。2次篩の篩上(40mmを超える粒径の固化スラグ)は、再度粉砕機に投入され40mm以下になるまで粉砕(2次破砕)される。ここで、固化スラグの1次破砕の前や後に必要に応じ磁力選別を行ない固化スラグ中に含まれる地金や粒鉄を取り除いてもよい。
[Crushing process]
Next, the solidified slag is crushed into crushed slag. For crushing, a known crusher such as a rod mill, a cone crusher, an impact crusher, or a jaw crusher can be used. The particle size of the crushed slag can be determined according to the purpose. In the present invention, the crushed slag preferably has a particle size of 40 mm or less. By setting the particle size of the crushed slag to 40 mm or less, the modified converter slag obtained after steam aging can be particularly preferably applied to the roadbed material. For example, when the solidified slag is crushed to obtain crushed slag of 40 mm or less, the procedure described below can be used. The solidified slag is roughly crushed by a heavy machine such as a shovel car and put into a vibrating sieve (primary sieve), and the solidified slag having a particle size exceeding 40 mm is collected on the sieve. The solidified slag on the sieve is put into a crusher, crushed (primary crushing), and placed on a vibrating sieve (secondary sieve) installed on the downstream side of the crusher. The surface of the secondary sieve (solidified slag having a particle size of more than 40 mm) is put into the crusher again and crushed (secondary crushing) until the size becomes 40 mm or less. Here, the bare metal and grain iron contained in the solidified slag may be removed by performing magnetic force sorting as necessary before and after the primary crushing of the solidified slag.

なお、粉砕スラグの細粒を篩分け等により取り除くなどして粒度分布を調整してから蒸気エージングに供してもよい。例えば、粉砕スラグが粒径10mm以上40mm以下の粒子を80体積%以上含むことで、蒸気エージング時に破砕スラグの粒子同士が適度な充填密度で処理がなされるため、水浸膨張比1.0%以下を満たす改質転炉スラグをより高い収量で製造することができる。 The particle size distribution may be adjusted by removing fine particles of crushed slag by sieving or the like, and then subjected to steam aging. For example, when the crushed slag contains 80% by volume or more of particles having a particle size of 10 mm or more and 40 mm or less, the particles of the crushed slag are treated with an appropriate filling density during steam aging, so that the water immersion expansion ratio is 1.0%. A modified converter slag that satisfies the following can be produced with a higher yield.

[蒸気エージング工程]
次いで、粉砕スラグに蒸気エージングを施して、改質転炉スラグを得る。蒸気エージングは従来公知の方法に従って行うことができる。
[Steam aging process]
The crushed slag is then steam aged to obtain modified converter slag. Steam aging can be performed according to a conventionally known method.

なお、上記した条件以外の製造条件は、常法によることができる。 In addition, the manufacturing conditions other than the above-mentioned conditions can be applied by a conventional method.

本実施形態に係る改質転炉スラグの製造方法によって製造された改質転炉スラグは、道路路盤材、コンクリート用骨材、および石材原料等の高級用途に好適に適用することができる。本実施形態に係る改質転炉スラグは、道路路盤材用粒状材の製造に特に好適に適用し得る。なお、本明細書において、道路路盤材用粒状材とは、少なくとも固化工程、粉砕工程を経た、道路路盤材の原料として適用可能な粒状の転炉スラグを指す。 The modified converter slag produced by the method for producing modified converter slag according to the present embodiment can be suitably applied to high-grade applications such as roadbed materials, aggregates for concrete, and stone raw materials. The modified converter slag according to the present embodiment can be particularly suitably applied to the production of granular materials for roadbed materials. In the present specification, the granular material for roadbed material refers to granular converter slag that has undergone at least a solidification step and a crushing step and can be applied as a raw material for roadbed material.

(発明例)
図1に示す概略構成の装置を用いて、実験を行った。まず、上底吹き型転炉内に溶銑を入れて、酸素を上部から吹き込みつつ、精錬を行った。吹止温度1654℃にて転炉での吹錬を終了した。吹錬終了時点での溶融転炉スラグの塩基度は3.61であった。吹錬終了後、炉体を出鋼側に傾動して出鋼孔から溶鋼を出鋼した。転炉出鋼後の溶鋼中リン濃度は、0.011質量%であった。出鋼後直ちに炉体を排滓側(反出鋼側)に傾動し、溶融転炉スラグをスラグ保持容器の底面に対して5.5mの高さから転炉からスラグ保持容器内に流下しつつ、ディスペンサーに受け入れた成分組成がSiO2:96%、(Al23:3%、Fe23:1%)、粒径1.4mm~2.4mmのスラグ改質材を、窒素ガスで搬送して流下中の溶融転炉スラグに対してランスノズルから吹き付け、改質材混合スラグを得た。84秒間で転炉内の溶融転炉スラグの約半量を流下し、534kgのスラグ改質材を、流下中の溶融転炉スラグに対して吹き付けた。スラグ保持容器内への流下終了直後の改質材混合スラグの塩基度は2.82であった。次いで、改質材混合スラグをスラグ保持容器内にて15分間保持して、改質材反応スラグとした。次いで、改質材反応スラグを、前記スラグ保持容器から熱間状態でスラグ放流ヤードへ放流し、散水冷却を実施して、固化スラグとした。固化スラグの塩基度は2.68であり、遊離CaOの含有量は2.73質量%であった。各発明例における固化スラグの塩基度および遊離CaOの結果を、表1に示す。また、図2に、固化スラグの塩基度を横軸とし、遊離CaOの質量%を縦軸としたグラフを示す。
上記で得た固化スラグをショベルカーで粗破砕後、1次篩にかけ粒径が40mmを超える固化スラグを採取し、篩上をタイヤ式ロールミル(1次破砕機)で粉砕した。タイヤ式ロールミルで粉砕された固化スラグは2次篩で篩分けされ、依然粒径が40mmを超える固化スラグはギア式ロッドミルで粒径が40mm以下になるまで破砕された。このようにして得られた篩下のスラグを全て混合して粒径が40mm以下の粉砕スラグとした。得られた粉砕スラグに蒸気エージングを施して最終的に改質転炉スラグを得た。蒸気エージングは、粉砕スラグを山積みして外面をシートで覆い、山積みされたスラグ内に蒸気を吹き込むことで実施した。山積みしたスラグの層厚は約3mとした。蒸気の吹込み開始後、スラグ層内に設置した温度計の指示値が100℃近傍に到達後、48時間蒸気の吹込みを継続した。蒸気吹込みの停止後は、約48時間空冷した。
(Invention Example)
An experiment was conducted using the apparatus having the schematic configuration shown in FIG. First, hot metal was put into the upper bottom blowing type converter, and refining was performed while blowing oxygen from above. The blowing in the converter was completed at the blowing stop temperature of 1654 ° C. The basicity of the melt converter slag at the end of blowing was 3.61. After the blowing was completed, the furnace body was tilted to the steel ejection side and molten steel was ejected from the steel ejection holes. The phosphorus concentration in the molten steel after the steel was discharged from the converter was 0.011% by mass. Immediately after steel removal, the furnace body is tilted to the discharge side (reverse steel side), and the melt converter slag flows down from the converter into the slag holding container from a height of 5.5 m with respect to the bottom surface of the slag holding container. At the same time, a slag modifier having a composition of ingredients accepted into the dispenser of SiO 2 : 96% (Al 2 O 3 : 3%, Fe 2 O 3 : 1%) and a particle size of 1.4 mm to 2.4 mm is added to nitrogen. It was conveyed by gas and sprayed from a lance nozzle onto the molten converter slag flowing down to obtain a reforming material mixed slag. About half of the molten converter slag in the converter was flowed down in 84 seconds, and 534 kg of the slag modifier was sprayed onto the molten converter slag in the flow. Immediately after the completion of the flow into the slag holding container, the basicity of the modified material mixed slag was 2.82. Next, the modified material mixed slag was held in the slag holding container for 15 minutes to obtain a modified material reaction slag. Next, the modified material reaction slag was discharged from the slag holding container into the slag discharge yard in a hot state, and sprinkled cooling was carried out to obtain solidified slag. The basicity of the solidified slag was 2.68, and the content of free CaO was 2.73% by mass. Table 1 shows the basicity of the solidified slag and the results of free CaO in each example of the invention. Further, FIG. 2 shows a graph in which the basicity of solidified slag is on the horizontal axis and the mass% of free CaO is on the vertical axis.
The solidified slag obtained above was roughly crushed with a shovel car, then subjected to a primary sieve to collect solidified slag having a particle size of more than 40 mm, and the top of the sieve was crushed with a tire type roll mill (primary crusher). The solidified slag crushed by the tire type roll mill was sieved by a secondary sieve, and the solidified slag still having a particle size of more than 40 mm was crushed by a gear type rod mill until the particle size became 40 mm or less. All of the slag under the sieve thus obtained was mixed to obtain crushed slag having a particle size of 40 mm or less. The obtained crushed slag was steam-aged to finally obtain a modified converter slag. Steam aging was carried out by stacking crushed slag, covering the outer surface with a sheet, and blowing steam into the piled slag. The layer thickness of the piled slag was about 3 m. After the start of steam blowing, the indicated value of the thermometer installed in the slag layer reached the vicinity of 100 ° C., and then the steam blowing was continued for 48 hours. After the steam blowing was stopped, it was air-cooled for about 48 hours.

(比較例1)
発明例と同様に精錬を行って、吹止温度1655℃で転炉での吹錬を終了した。吹錬終了時点での溶融転炉スラグの塩基度は5.00であった。転炉吹錬終了直後の出鋼前に炉上に設けたホッパーから発明例1と同組成のスラグ改質材3tを転炉内へ投入し、出鋼を開始した。スラグ改質材を出鋼中の6分間、溶鋼上の転炉スラグ中に保持して反応させることで改質材混合スラグとし、出鋼後、転炉を排滓側に傾転して排滓した。改質材混合スラグの塩基度は2.61であった。なお、転炉出鋼後の溶鋼中リン濃度は、0.014質量%であり、発明例より高い値となった。吹錬終了時の溶融転炉スラグの塩基度は5.00と発明例の3.61より高いにもかかわらず、転炉出鋼後の溶鋼中リン濃度が発明例より高い値となったのは、スラグ改質剤を転炉内に投入したことにより、溶融転炉スラグの塩基度が吹錬終了時より低下したため、出鋼中に復リンが生じたものと考えられる。続いて、発明例と同様に、改質材混合スラグを熱間状態でスラグ放流ヤードへ流下し、散水冷却を実施して、固化スラグを得た。冷却後の固化スラグのスラグ塩基度は2.76、遊離CaOの含有量は2.77質量%であった。比較例1の他の例も含めた冷却後の固化スラグの塩基度および遊離CaOの結果を、表1および図2に示す。
得られた固化スラグは、発明例と同様の条件にて、粉砕、および蒸気エージング処理を施した。
(Comparative Example 1)
Refining was carried out in the same manner as in the invention example, and the blowing in the converter was completed at the blowing stop temperature of 1655 ° C. The basicity of the melt converter slag at the end of blowing was 5.00. A slag reforming material 3t having the same composition as that of Invention Example 1 was put into the converter from a hopper provided on the furnace immediately after the completion of the converter blowing, and the steelmaking was started. The slag reforming material is held in the converter slag on the molten steel for 6 minutes during steel ejection to form a modified material mixed slag, and after steelmaking, the converter is tilted to the slag side and discharged. It was slagged. The basicity of the modified material mixed slag was 2.61. The phosphorus concentration in the molten steel after the steel was discharged from the converter was 0.014% by mass, which was higher than that of the invention example. Although the basicity of the molten converter slag at the end of smelting was 5.00, which was higher than that of the invention example 3.61, the phosphorus concentration in the molten steel after the converter was ejected was higher than that of the invention example. It is probable that due to the introduction of the slag modifier into the converter, the basicity of the melt converter slag was lower than that at the end of smelting, and thus rephosphorus was generated during steelmaking. Subsequently, as in the example of the invention, the reformed material mixed slag was flowed down to the slag discharge yard in a hot state, and sprinkled cooling was carried out to obtain solidified slag. The slag basicity of the solidified slag after cooling was 2.76, and the content of free CaO was 2.77% by mass. The basicity of the solidified slag after cooling and the results of free CaO including other examples of Comparative Example 1 are shown in Table 1 and FIG.
The obtained solidified slag was pulverized and steam-aged under the same conditions as in the invention.

(比較例2)
発明例と同様に精錬を行って、吹止温度1666℃で転炉での吹錬を終了した。吹錬終了時点での溶融転炉スラグの塩基度は3.32であった。次いで、スラグ保持容器内に発明例1と同組成のスラグ改質材1tを前置きした状態で、スラグ保持容器に対して転炉内の溶融転炉スラグを流下して、改質材混合スラグとした。改質材混合スラグの塩基度は3.28であり、溶融転炉スラグの塩基度からあまり低下しなかった。次いで、改質材混合スラグをスラグ保持容器内にて15分間保持して、改質材反応スラグとした。続いて、発明例と同様に、改質材反応スラグを熱間状態でスラグ放流ヤードへ流下し、散水冷却を実施して、固化スラグを得た。なお、改質材反応スラグ放流後のスラグ保持容器の底には焼結した未溶融のスラグ改質材が観察された。冷却後の固化スラグの塩基度は3.8、遊離CaOの含有量は8.10質量%であった。比較例2の他の例も含めた固化スラグの塩基度および遊離CaOの結果を、表1および図2に示す。得られた固化スラグは、発明例と同様の粉砕、および蒸気エージング処理を施した。
(Comparative Example 2)
Refining was carried out in the same manner as in the invention, and the blowing in the converter was completed at the blowing stop temperature of 1666 ° C. The basicity of the melt converter slag at the end of blowing was 3.32. Next, with the slag reforming material 1t having the same composition as that of Invention Example 1 placed in front of the slag holding container, the molten converter slag in the converter is poured down into the slag holding container to form the modified material mixed slag. did. The basicity of the modified material mixed slag was 3.28, which did not decrease much from the basicity of the melt converter slag. Next, the modified material mixed slag was held in the slag holding container for 15 minutes to obtain a modified material reaction slag. Subsequently, as in the example of the invention, the reforming material reaction slag was flowed down to the slag discharge yard in a hot state, and sprinkled cooling was carried out to obtain solidified slag. In addition, sintered unmelted slag modifier was observed at the bottom of the slag holding container after the modified material reaction slag was discharged. The basicity of the solidified slag after cooling was 3.8, and the content of free CaO was 8.10% by mass. The basicity of solidified slag and the results of free CaO including other examples of Comparative Example 2 are shown in Table 1 and FIG. The obtained solidified slag was subjected to the same pulverization and steam aging treatment as in the invention.

Figure 2022021235000002
Figure 2022021235000002

図2に示すように、本発明例においては、塩基度が高い転炉スラグを、簡易な装置構成によって、製鋼工程の負担を伴わずに、塩基度が3.3以下の固化スラグに改質することができた。 As shown in FIG. 2, in the example of the present invention, the converter slag having a high basicity is modified into a solidified slag having a basicity of 3.3 or less by a simple apparatus configuration without burdening the steelmaking process. We were able to.

発明例と同様に精錬を行って、吹錬終了時点での溶融転炉スラグの塩基度、および改質材の添加量を変更することによって改質材混合スラグの計算塩基度を変化させた実験を行ない、得られた改質転炉スラグの水浸膨張比を測定した。結果を図3に示した。図3の縦軸は、改質転炉スラグの水浸膨張比の測定値、横軸は、縦軸の改質転炉スラグを改質した際の改質材混合スラグの計算塩基度を示す。図3から、改質材混合スラグの塩基度の計算値が3.3以下になるよう溶融転炉スラグにスラグ改質材を吹き付ければ、48時間の蒸気エージングで水浸膨張比を1.0%以下とすることができることがわかる。 An experiment in which refining was performed in the same manner as in the invention example, and the calculated basicity of the modified material mixed slag was changed by changing the basicity of the melt converter slag at the end of blowing and the amount of the modified material added. The water immersion expansion ratio of the obtained reforming converter slag was measured. The results are shown in FIG. The vertical axis of FIG. 3 shows the measured value of the water immersion expansion ratio of the reforming converter slag, and the horizontal axis shows the calculated basicity of the reforming material mixed slag when the reforming converter slag is reformed on the vertical axis. .. From FIG. 3, if the slag reforming material is sprayed on the melt converter slag so that the calculated value of the basicity of the modified material mixed slag is 3.3 or less, the water immersion expansion ratio can be increased by steam aging for 48 hours. It can be seen that it can be 0% or less.

1 転炉
2 スラグ保持容器
3 ディスペンサー
4 送給配管
5 ノズル
6 気体供給制御装置
1 converter 2 slag holding container 3 dispenser 4 feed piping 5 nozzle 6 gas supply control device

Claims (9)

転炉内における溶銑の精錬工程で発生した溶融転炉スラグを該転炉からスラグ保持容器内に流下しつつ、流下中の前記溶融転炉スラグに対して、または前記溶融転炉スラグが前記スラグ保持容器内に流下される位置に対して、粉粒状のスラグ改質材を吹き付けて、前記溶融転炉スラグにスラグ改質材を混合して改質材混合スラグとし、
次いで、前記改質材混合スラグを、前記スラグ保持容器内で保持して、改質材反応スラグとし、
次いで、前記改質材反応スラグを、前記スラグ保持容器から放流し、冷却して固化させて固化スラグとし、
次いで、前記固化スラグを粉砕して、粉砕スラグとし、
次いで、前記粉砕スラグに蒸気エージングを施して、改質転炉スラグを得る、改質転炉スラグの製造方法。
While flowing the molten converter slag generated in the hot metal refining process in the converter from the converter into the slag holding container, the molten converter slag flowing down or the molten converter slag is the slag. A powdery granular slag modifier is sprayed onto the position where the slag is poured into the holding container, and the slag modifier is mixed with the melt converter slag to obtain a modifier mixed slag.
Next, the modified material mixed slag is held in the slag holding container to obtain a modified material reaction slag.
Next, the modified material reaction slag is discharged from the slag holding container, cooled and solidified to obtain solidified slag.
Next, the solidified slag was crushed to obtain crushed slag.
Next, a method for manufacturing a reforming converter slag, wherein the crushed slag is steam-aged to obtain a reforming converter slag.
前記スラグ改質材は粒径4.5mm以下の粉粒体を含む、請求項1に記載の改質転炉スラグの製造方法。 The method for producing modified converter slag according to claim 1, wherein the slag modifier contains powders and granules having a particle size of 4.5 mm or less. 前記スラグ改質材を混合する前の前記溶融転炉スラグの塩基度が3.6以上4.2以下である、請求項1または2に記載の改質転炉スラグの製造方法。 The method for producing modified converter slag according to claim 1 or 2, wherein the basicity of the molten converter slag before mixing the slag modifier is 3.6 or more and 4.2 or less. 前記改質材混合スラグの塩基度の計算値を3.3以下とする、請求項1から3のいずれか1項に記載の改質転炉スラグの製造方法。 The method for producing a modified converter slag according to any one of claims 1 to 3, wherein the calculated value of the basicity of the modified material mixed slag is 3.3 or less. 前記溶融転炉スラグを前記スラグ保持容器の底面に対して4m以上の高さから該スラグ保持容器に流下する、請求項1から4のいずれか1項に記載の改質転炉スラグの製造方法。 The method for manufacturing a modified converter slag according to any one of claims 1 to 4, wherein the melt converter slag flows down into the slag holding container from a height of 4 m or more with respect to the bottom surface of the slag holding container. .. 前記転炉内の前記溶融転炉スラグが前記転炉から前記スラグ保持容器に流下するまでに要する排出時間を30秒以上90秒以下とする、請求項1から5のいずれか1項に記載の改質転炉スラグの製造方法。 The one according to any one of claims 1 to 5, wherein the discharge time required for the melting converter slag in the converter to flow down from the converter to the slag holding container is 30 seconds or more and 90 seconds or less. Method for manufacturing modified converter slag. 前記スラグ改質材は、SiO2を90質量%以上含有する、請求項1から6のいずれか1項に記載の改質転炉スラグの製造方法。 The method for producing a modified converter slag according to any one of claims 1 to 6, wherein the slag modifying material contains 90% by mass or more of SiO 2 . 前記改質材混合スラグを前記スラグ保持容器で10分以上保持して前記改質材反応スラグとする、請求項1から7のいずれか1項に記載の改質転炉スラグの製造方法。 The method for producing a modified converter slag according to any one of claims 1 to 7, wherein the modified material mixed slag is held in the slag holding container for 10 minutes or more to obtain the modified material reaction slag. 請求項1から8のいずれか1項に記載の改質転炉スラグを用いた、道路路盤材用粒状材の製造方法。 A method for producing a granular material for roadbed material using the reforming converter slag according to any one of claims 1 to 8.
JP2020124718A 2020-07-21 2020-07-21 Method for producing reforming converter slag and method for producing granular material for roadbed material Active JP7310745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020124718A JP7310745B2 (en) 2020-07-21 2020-07-21 Method for producing reforming converter slag and method for producing granular material for roadbed material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020124718A JP7310745B2 (en) 2020-07-21 2020-07-21 Method for producing reforming converter slag and method for producing granular material for roadbed material

Publications (2)

Publication Number Publication Date
JP2022021235A true JP2022021235A (en) 2022-02-02
JP7310745B2 JP7310745B2 (en) 2023-07-19

Family

ID=80220367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020124718A Active JP7310745B2 (en) 2020-07-21 2020-07-21 Method for producing reforming converter slag and method for producing granular material for roadbed material

Country Status (1)

Country Link
JP (1) JP7310745B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749470A (en) * 2022-04-24 2022-07-15 安徽永茂泰环保科技有限公司 Resource utilization method of secondary aluminum ash

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007190A (en) * 2010-06-22 2012-01-12 Jfe Steel Corp Method for resource recovery from steelmaking slag, and raw material for phosphate fertilizer
WO2014041418A2 (en) * 2012-09-13 2014-03-20 Danieli & C. Officine Meccaniche Spa Apparatus and method for processing metallurgic slag
JP2017007880A (en) * 2015-06-18 2017-01-12 株式会社神戸製鋼所 Ageing method of steelmaking slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007190A (en) * 2010-06-22 2012-01-12 Jfe Steel Corp Method for resource recovery from steelmaking slag, and raw material for phosphate fertilizer
WO2014041418A2 (en) * 2012-09-13 2014-03-20 Danieli & C. Officine Meccaniche Spa Apparatus and method for processing metallurgic slag
JP2017007880A (en) * 2015-06-18 2017-01-12 株式会社神戸製鋼所 Ageing method of steelmaking slag

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749470A (en) * 2022-04-24 2022-07-15 安徽永茂泰环保科技有限公司 Resource utilization method of secondary aluminum ash

Also Published As

Publication number Publication date
JP7310745B2 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
JP4818567B2 (en) Refining agent and refining method
JP6421634B2 (en) Manufacturing method of molten steel
JP7310745B2 (en) Method for producing reforming converter slag and method for producing granular material for roadbed material
JP5440443B2 (en) Recycling method of steelmaking slag
JP4388482B2 (en) Slag processing method
CN116042963A (en) Method for preparing refining slag former from casting residues
JP4427370B2 (en) Method for reforming slag of chromium ore smelting reduction furnace
JP5098518B2 (en) Hot phosphorus dephosphorization method
JP6020840B2 (en) Sintering raw material manufacturing method
JP2002220615A (en) Converter steelmaking method
JPH10263768A (en) Method for reusing converter slag
JP4511909B2 (en) Steelmaking slag treatment method
JP2009114489A (en) Method for dephosphorizing molten iron
JP7363731B2 (en) Method for dephosphorizing hot metal and manufacturing method for molten steel
JP2000226284A (en) Production of citric soluble potash fertilizer
JP5402383B2 (en) Steelmaking refining process using converter and method for producing low phosphorus steel
JP3692856B2 (en) Hot repair method for converter
JP7405263B2 (en) Method for carbonating CaO-containing substances and method for producing carbonated substances
JP2001262217A (en) Method and device for treating reduced slag in electric furnace
JP2672588B2 (en) Hot Metal Pretreatment Method in Blast Furnace Castings
JP3994988B2 (en) Method of recovering and using metal components contained in slag slag containing chromium
JPH11269525A (en) Desiliconization of molten iron by addition of desiliconizing agent
TW202409300A (en) Method for melting direct-reduced iron, solid iron and method for producing solid iron, and civil engineering and construction material and method for producing civil engineering and construction material
TW202407107A (en) Method for melting direct reduction iron, solid iron and method for manufacturing solid iron, material for civil engineering and construction, method for producing material for civil engineering and construction, and system for melting direct reduction iron
CN116814905A (en) Slag melting agent, preparation method thereof and hard wire steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230619

R150 Certificate of patent or registration of utility model

Ref document number: 7310745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150