JP2013139358A - Method of producing water granulated blast-furnace slag aggregate - Google Patents

Method of producing water granulated blast-furnace slag aggregate Download PDF

Info

Publication number
JP2013139358A
JP2013139358A JP2011290465A JP2011290465A JP2013139358A JP 2013139358 A JP2013139358 A JP 2013139358A JP 2011290465 A JP2011290465 A JP 2011290465A JP 2011290465 A JP2011290465 A JP 2011290465A JP 2013139358 A JP2013139358 A JP 2013139358A
Authority
JP
Japan
Prior art keywords
blast furnace
furnace slag
fine aggregate
surface area
granulated blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011290465A
Other languages
Japanese (ja)
Other versions
JP5831227B2 (en
Inventor
Yasuto Miyata
康人 宮田
Keiji Watanabe
圭児 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011290465A priority Critical patent/JP5831227B2/en
Publication of JP2013139358A publication Critical patent/JP2013139358A/en
Application granted granted Critical
Publication of JP5831227B2 publication Critical patent/JP5831227B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a water granulated blast-furnace slag aggregate excellent in bleeding properties efficiently at low cost.SOLUTION: A water granulated blast-furnace slag is subjected to surface treatment through aging to increase specific surface area, thereby obtaining a water granulated blast-furnace slag aggregate having a specific surface area of 0.7 m/g or larger. Thus, it is preferable that the aging is conducted outdoor or indoor for one month or longer after the water granulated blast-furnace slag is produced.

Description

本発明は、ブリージング特性が優れた高炉水砕スラグ細骨材の製造方法に関する。   The present invention relates to a method for producing granulated blast furnace slag fine aggregate having excellent breathing characteristics.

従来、高炉水砕スラグの多くはセメント原料・混和材として利用されているが、この用途での需要も限界があることから、今後は天然砂代替の細骨材としての利用拡大が期待されている。
しかし、従来の高炉水砕スラグ細骨材は、天然砂に較べてブリージング特性が劣るため単独では用いず、天然砂と混合して利用されるのが一般的である。ここで、ブリージングとは、コンクリートが硬化する前に骨材が沈み込み、表層に水が浮上する現象を指し、ブリージング特性とは、そのような現象を生じにくい性能を指す。ブリージングは、コンクリートのひび割れ等の原因となる。
Conventionally, most of granulated blast furnace slag has been used as a raw material and admixture for cement, but since there is a limit to the demand for this application, it is expected to expand its use as a fine aggregate instead of natural sand in the future. Yes.
However, conventional blast furnace granulated slag fine aggregates are generally not used alone because they have inferior breathing properties compared to natural sand, but are generally used by mixing with natural sand. Here, breathing refers to a phenomenon in which aggregates sink before concrete hardens, and water floats on the surface layer. Breathing characteristics refer to performance that hardly causes such phenomena. Breathing causes concrete cracks and the like.

高炉水砕スラグ細骨材がブリージング特性に劣る主因は、スラグ表面がガラス質であるため、天然砂に比較して保水性が劣るためである。保水性が劣るのは、比表面積が小さく、表面水を保持する空間がほとんど無いことが原因であると考えられている。
高炉水砕スラグ細骨材のブリージング特性を改善するための従来技術としては、下記のようなものがある。
(1)粒度分布調整により比表面積を大きくする方法
(2)アルカリ処理により比表面積を大きくする方法(特許文献1)
(3)スラグにポリマーを散布することにより、保水性を高める方法(特許文献2)
The main reason why the granulated blast furnace slag fine aggregate is inferior in breathing characteristics is that the surface of the slag is vitreous, and the water retention is inferior to natural sand. The reason why water retention is poor is considered to be that the specific surface area is small and there is almost no space for holding surface water.
Conventional techniques for improving the breathing characteristics of blast furnace granulated slag fine aggregate include the following.
(1) Method of increasing specific surface area by adjusting particle size distribution (2) Method of increasing specific surface area by alkali treatment (Patent Document 1)
(3) Method to increase water retention by spraying polymer on slag (Patent Document 2)

特開平4−77335号公報Japanese Patent Laid-Open No. 4-77335 特開2004−99389号公報JP 2004-99389 A

しかし、上記(1)の方法は、粒度を細かくすると比表面積を大きくすることはできるが、流動特性などが悪化してしまう問題がある。
上記(2)の方法は、アルカリを添加し、高温処理するものであるが、処理設備や加熱、薬剤に要するコストなど、処理に多大なコストがかかる。また、上記(3)の方法も、同様に処理に多大なコストがかかる。
However, although the method (1) can increase the specific surface area by reducing the particle size, there is a problem that the flow characteristics and the like deteriorate.
In the method (2), alkali is added and high-temperature processing is performed, but processing costs such as processing equipment, heating, and cost required for chemicals are very expensive. In addition, the method (3) is also expensive in processing.

以上のことから現状では、高炉水砕スラグ細骨材の多くは天然砂と混合して使用され、ブリージング特性が許容範囲内になるようにしている。しかし、このような使用形態では、スラグの配合比率を高めることができないため、スラグの使用量にも限界がある。
したがって本発明の目的は、ブリージング特性が優れた高炉水砕スラグ細骨材を低コストで効率的に製造することができる方法を提供することにある。
From the above, at present, most of the granulated blast furnace slag fine aggregate is used by mixing with natural sand so that the breathing characteristics are within an allowable range. However, in such a usage form, since the blending ratio of slag cannot be increased, there is a limit to the amount of slag used.
Accordingly, an object of the present invention is to provide a method capable of efficiently producing a blast furnace granulated slag fine aggregate having excellent breathing characteristics at low cost.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]高炉水砕スラグにエージングによる表面改質を施して比表面積を増大させ、比表面積が0.7m/g以上の高炉水砕スラグ細骨材とすることを特徴とするブリージング特性に優れた高炉水砕スラグ細骨材の製造方法。
[2]上記[1]の製造方法において、高炉水砕スラグを製造後、屋外または屋内にて1ヶ月以上エージングすることを特徴とする高炉水砕スラグ細骨材の製造方法。
The gist of the present invention for solving the above problems is as follows.
[1] Breasting characteristics characterized by blast furnace granulated slag being subjected to surface modification by aging to increase the specific surface area, and to make a blast furnace granulated slag fine aggregate having a specific surface area of 0.7 m 2 / g or more. An excellent method for producing granulated blast furnace slag fine aggregate.
[2] A method for producing a granulated blast furnace slag fine aggregate according to [1], wherein the granulated blast furnace slag is aged outdoors or indoors for at least one month.

本発明によれば、ブリージング特性が優れた高炉水砕スラグ細骨材を低コストで効率的に製造することができる。   According to the present invention, a granulated blast furnace slag fine aggregate excellent in breathing characteristics can be efficiently produced at low cost.

表面改質前の高炉水砕スラグ、高炉水砕スラグに対してエージング(3年以上屋外エージング)による表面改質を行った細骨材D2、及び天然砂の顕微鏡観察写真とSEM観察写真Blast furnace granulated slag before surface modification, fine aggregate D2 that has undergone surface modification by aging (outdoor aging for 3 years or more), and microscopic and SEM photographs of natural sand 試験に供した各細骨材の比表面積の測定結果を示すグラフA graph showing the measurement results of the specific surface area of each fine aggregate subjected to the test 試験に供した各細骨材の比表面積とブリージング量との関係を示すグラフGraph showing the relationship between specific surface area and breathing amount of each fine aggregate used in the test

本発明者らは、高炉水砕スラグの比表面積がブリージング特性に大きく影響するとの前提の下で、高炉水砕スラグの比表面積を大きくする表面改質方法について検討を行うとともに、比表面積とブリージング特性との関係について調査した。
高炉水砕スラグの表面改質方法として、下記の方法を試験した。
Under the assumption that the specific surface area of blast furnace granulated slag greatly affects the breathing characteristics, the present inventors have investigated a surface modification method for increasing the specific surface area of blast furnace granulated slag, and The relationship with characteristics was investigated.
The following method was tested as a surface modification method for granulated blast furnace slag.

(1)スラグの結晶化+蒸気エージングによる表面改質
高炉水砕スラグを1100℃×48時間で加熱して結晶化させた後、蒸気エージングを48時間施した。この表面改質された材料を「細骨材A」とする。
(2)水和反応による表面改質
i)アルカリ処理: 水酸化ナトリウムでpHを12に調整した水に高炉水砕スラグを入れ、水温90℃で24時間保持した。この表面改質された材料を「細骨材B」とする。
ii)酸処理: クエン酸でpHを2〜3に調整した水に高炉水砕スラグを入れ、水温90℃で24時間保持した。この表面改質された材料を「細骨材C」とする。
iii)屋外エージング: 製造後3ヶ月屋外エージングした高炉水砕スラグを用いた。この表面改質された材料を「細骨材D1」とする。
iv)屋外エージング: 製造後3年以上屋外エージングした高炉水砕スラグを用いた。この表面改質された材料を「細骨材D2」とする。
(1) Surface modification by slag crystallization + steam aging Blast furnace granulated slag was crystallized by heating at 1100 ° C. for 48 hours, and then subjected to steam aging for 48 hours. This surface-modified material is referred to as “fine aggregate A”.
(2) Surface modification by hydration reaction
i) Alkali treatment: Blast furnace granulated slag was added to water adjusted to pH 12 with sodium hydroxide and kept at a water temperature of 90 ° C. for 24 hours. This surface-modified material is referred to as “fine aggregate B”.
ii) Acid treatment: Blast furnace granulated slag was added to water adjusted to pH 2 to 3 with citric acid, and kept at a water temperature of 90 ° C. for 24 hours. This surface-modified material is referred to as “fine aggregate C”.
iii) Outdoor aging: Blast furnace granulated slag which was aged for 3 months after production was used. This surface-modified material is referred to as “fine aggregate D1”.
iv) Outdoor aging: Granulated blast furnace slag that has been aged for over 3 years after production was used. This surface-modified material is referred to as “fine aggregate D2.”

各材料の評価では、顕微鏡観察とSEM観察による表層の生成物調査及び比表面積調査を実施して比表面積が大きいものを抽出し、ブリージング試験を実施した。
まず、比表面積を増大させるのに有効な処理方法について検討を行った。
表面改質前の高炉水砕スラグ、高炉水砕スラグに対してエージング(3年以上屋外エージング)による表面改質を行った細骨材D2、及び天然砂について、顕微鏡観察とSEM観察により表層の生成物を調査した。その結果を図1に示す。SEM観察結果から、エージングによる表面改質を行った細骨材D2は、水和物、炭酸化物と考えられる析出物が多く析出していた。
In the evaluation of each material, a surface layer product investigation and a specific surface area investigation were conducted by microscopic observation and SEM observation, and those having a large specific surface area were extracted, and a breathing test was conducted.
First, a treatment method effective for increasing the specific surface area was examined.
Blast furnace granulated slag before surface modification, fine aggregate D2 that has undergone surface modification by aging (outdoor aging for 3 years or more), and natural sand, surface layer by microscopic observation and SEM observation The product was investigated. The result is shown in FIG. From the results of SEM observation, the fine aggregate D2 subjected to surface modification by aging had a large amount of precipitates considered to be hydrates and carbonates.

各材料について、比表面積の調査を行った結果を図2に示す。比表面積は、未処理の高炉水砕スラグ細骨材(従来材)が0.10m/gであるのに対し、アルカリ処理を施した細骨材Bで0.77m/g、3ヶ月屋外エージング(養生)した細骨材D1で1.28m/g、3年以上屋外エージング(養生)した細骨材D2で3.9m/gであり、細骨材D1で未処理の高炉水砕スラグの約10倍、細骨材D2で未処理の高炉水砕スラグの約40倍であった。 The result of having investigated the specific surface area about each material is shown in FIG. The specific surface area, whereas the untreated water-granulated blast furnace slag fine aggregate (conventional material) is 0.10m 2 / g, 0.77m 2 / g, 3 months fine aggregate B having been subjected to alkali treatment Outdoor aged (cured) fine aggregate D1 1.28m 2 / g, outdoor aging (cured) fine aggregate D2 3.9m 2 / g, untreated with fine aggregate D1 blast furnace It was about 10 times that of granulated slag and about 40 times that of untreated blast furnace granulated slag.

各材料についてブリージング試験を行い、ブリージング量を求めた。また、モルタルフロー試験を実施した。各材料のブリージング量と比表面積を図3に示す。これによれば、比表面積とブリージング量は非常に良い相関関係が認められる。最も比表面積が大きい3年以上屋外エージング(養生)した細骨材D2は、ブリージング量0.11cm/cmであり、これは未処理の水砕スラグ細骨材(従来材)の1/3、目標である天然砂(0.26cm/cm)の例の1/2以下である。また、3ヶ月屋外エージング(養生)した細骨材D1は、アルカリ処理を施した細骨材Bよりも、比表面積が大きく、ブリージング特性も優れており、アルカリ処理や、高温での処理を施すことなく、簡便な設備でエージング処理することで、優れたブリージング特性を得ることができる。1ヶ月屋外エージングでアルカリ処理を施した場合と同等以上の性能が得られている。
以上の結果より、ブリージング特性に大きく影響する要因は比表面積であること、比表面積を増大させる方法としてエージング(水和反応)による表面改質が有効であることが判った。
Each material was subjected to a breathing test to determine the amount of breathing. Moreover, the mortar flow test was implemented. The breathing amount and specific surface area of each material are shown in FIG. According to this, a very good correlation is recognized between the specific surface area and the breathing amount. The fine aggregate D2, which has been aged (cured) for 3 years or more with the largest specific surface area, has a breathing amount of 0.11 cm 3 / cm 2 , which is 1/0 of that of untreated granulated slag fine aggregate (conventional material). 3. It is 1/2 or less of the target natural sand (0.26 cm 3 / cm 2 ). Fine aggregate D1, which has been aged (cured) for 3 months, has a larger specific surface area and superior breathing properties than fine aggregate B that has been subjected to alkali treatment, and is subjected to alkali treatment and high temperature treatment. Without performing the aging process with simple equipment, excellent breathing characteristics can be obtained. A performance equal to or better than that obtained when the alkali treatment is performed by outdoor aging for one month is obtained.
From the above results, it was found that the factor that greatly affects the breathing characteristics is the specific surface area, and that surface modification by aging (hydration reaction) is effective as a method for increasing the specific surface area.

Claims (2)

高炉水砕スラグにエージングによる表面改質を施して比表面積を増大させ、比表面積が0.7m/g以上の高炉水砕スラグ細骨材とすることを特徴とするブリージング特性に優れた高炉水砕スラグ細骨材の製造方法。 A blast furnace with excellent breathing characteristics, characterized in that the granulated blast furnace slag is subjected to surface modification by aging to increase the specific surface area, and the blast furnace granulated slag fine aggregate has a specific surface area of 0.7 m 2 / g or more. A method for producing granulated slag fine aggregate. 高炉水砕スラグを製造後、屋外または屋内にて1ヶ月以上エージングすることを特徴とする請求項1に記載の高炉水砕スラグ細骨材の製造方法。   The method for producing fine granulated blast furnace slag according to claim 1, wherein the granulated blast furnace slag is aged outdoors or indoors for 1 month or more after production.
JP2011290465A 2011-12-30 2011-12-30 Process for producing granulated blast furnace slag fine aggregate Active JP5831227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011290465A JP5831227B2 (en) 2011-12-30 2011-12-30 Process for producing granulated blast furnace slag fine aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011290465A JP5831227B2 (en) 2011-12-30 2011-12-30 Process for producing granulated blast furnace slag fine aggregate

Publications (2)

Publication Number Publication Date
JP2013139358A true JP2013139358A (en) 2013-07-18
JP5831227B2 JP5831227B2 (en) 2015-12-09

Family

ID=49037207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011290465A Active JP5831227B2 (en) 2011-12-30 2011-12-30 Process for producing granulated blast furnace slag fine aggregate

Country Status (1)

Country Link
JP (1) JP5831227B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025501A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
JP2016000918A (en) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Simple pavement material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160363A (en) * 1980-05-03 1981-12-10 Chikage Sando Kk Improvement of concrete properties with blast furnace water-granulated sand
JP2004075454A (en) * 2002-08-16 2004-03-11 Tetsugen Corp Blast furnace granulated slag fine aggregate and method of preventing caking of blast furnace granulated slag
JP2004161580A (en) * 2002-11-15 2004-06-10 Kokan Kogyo Kk Method of treating granulated blast furnace slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56160363A (en) * 1980-05-03 1981-12-10 Chikage Sando Kk Improvement of concrete properties with blast furnace water-granulated sand
JP2004075454A (en) * 2002-08-16 2004-03-11 Tetsugen Corp Blast furnace granulated slag fine aggregate and method of preventing caking of blast furnace granulated slag
JP2004161580A (en) * 2002-11-15 2004-06-10 Kokan Kogyo Kk Method of treating granulated blast furnace slag

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN3099003404; 高炉スラグ細骨材を用いるコンクリート施工指針 同解説 M6D15, 1983, P15-105 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025501A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
CN105452187A (en) * 2013-08-20 2016-03-30 杰富意钢铁株式会社 Method for producing solidified slag, solidified slag, method for producing coarse aggregate for concrete, and coarse aggregate for concrete
JPWO2015025501A1 (en) * 2013-08-20 2017-03-02 Jfeスチール株式会社 Method for producing solidified slag and method for producing coarse aggregate for concrete
JP2016000918A (en) * 2014-06-11 2016-01-07 新日鐵住金株式会社 Simple pavement material

Also Published As

Publication number Publication date
JP5831227B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
CN111233364B (en) Composite mineral admixture, preparation method thereof and artificial sand concrete material containing composite mineral admixture
CN102092976B (en) Mass eco-concrete expansive agent and preparation method thereof
CN108975757B (en) Nano lithium slag early strength agent for sulphoaluminate cement and preparation method thereof
CN105036651A (en) Desert sand concrete
CN103979848B (en) A kind of heat insulating type concrete and preparation method thereof
CN105693154A (en) Environment-friendly aerated concrete and preparation method thereof
CN110041035B (en) C30 high-impermeability concrete with low consumption of rubber materials and preparation method thereof
CN102690084A (en) Self-compaction concrete with heavily doped fly ash and preparation method thereof
CN104017466A (en) High-temperature-resistant corrosion-resistant coating for aluminum plate
CN106242327A (en) A kind of regenerative micro powder cement mixture and preparation method thereof
CN106542762A (en) Efficient Sulfate corrosion-resistant concrete additive and preparation method thereof
CN105254228A (en) Mortar with high salt water resistance for air-entrapping brick
CN107857493A (en) A kind of method that sulphate aluminium cement is modified
CN105985038B (en) A kind of water-fast and sulfate attack inorganic coagulation material and preparation method thereof
CN108191293B (en) Low-temperature curing agent for concrete
CN104496350A (en) Corrosion-resistant polymer modified cement mortar and preparation method thereof
CN103396060B (en) Concrete mixture for mass concrete construction
JP5831227B2 (en) Process for producing granulated blast furnace slag fine aggregate
CN104119013A (en) Preparation method of glucose-base setting-retarding water reducer
CN103910531A (en) Refractory concrete
CN110877967A (en) High-density anti-freezing-seepage marine concrete and preparation method thereof
CN103467046A (en) Polymer cement mortar and preparation method thereof
CN107986655B (en) Phosphoaluminate cement modified sulphoaluminate cement clinker
CN101665287B (en) Scale inhibitor
CN105731854B (en) One kind compensation shrinkage type cement expansive material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151012

R150 Certificate of patent or registration of utility model

Ref document number: 5831227

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250