WO2015025089A1 - Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile - Google Patents

Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile Download PDF

Info

Publication number
WO2015025089A1
WO2015025089A1 PCT/FR2014/051586 FR2014051586W WO2015025089A1 WO 2015025089 A1 WO2015025089 A1 WO 2015025089A1 FR 2014051586 W FR2014051586 W FR 2014051586W WO 2015025089 A1 WO2015025089 A1 WO 2015025089A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
signal
intensity
converter
Prior art date
Application number
PCT/FR2014/051586
Other languages
English (en)
Inventor
Gilles BRUST
Frédéric FLUXA
Vahé BAGHDASSARIANS
Hervé FRICOU
Erwann FOUCHE
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to JP2016535513A priority Critical patent/JP6306185B2/ja
Priority to CN201480051241.7A priority patent/CN105556320B/zh
Priority to EP14752901.0A priority patent/EP3036549A1/fr
Publication of WO2015025089A1 publication Critical patent/WO2015025089A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/66Testing of connections, e.g. of plugs or non-disconnectable joints
    • G01R31/68Testing of releasable connections, e.g. of terminals mounted on a printed circuit board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the object of the invention is to secure the supply of electrical energy to motor vehicle edge systems. It can also be applied more generally to electrical systems, in particular to on-board electrical systems, combining two electrical networks, interconnected by a DC / DC voltage converter (DC direct current converter), one of the following: networks comprising an electric accumulator battery recharged by the DC / DC converter.
  • DC / DC voltage converter DC direct current converter
  • the invention relates more particularly to securing the low voltage power supply of an automotive electrical system comprising two electrical networks interconnected by a DC / DC converter. These two networks can operate at identical nominal voltages or at different nominal voltages.
  • the vehicle may include a high voltage network including electrical machines, so that to limit the losses by Joule effect in the conductors and in order to be able to use conductive cables of smaller diameter.
  • the vehicle may include a second power grid powered at a lower voltage.
  • a second power grid powered at a lower voltage.
  • the second "low voltage" electrical network may comprise a dedicated electric storage battery, which is for example recharged by means of a DC / DC converter from the high voltage network during the driving phases of the vehicle.
  • the DC / DC converter can be controlled by an electronic control unit which is itself powered by the battery of the low voltage network.
  • an electronic control unit which is itself powered by the battery of the low voltage network.
  • One way to secure this power supply may be to use the redundancy of electricity supply by the "low voltage” storage battery on the one hand, and by the supply of electricity to the low voltage network by the second network via the DC / DC converter. In this case, it is important, before switching off the low voltage network supply via the DC / DC converter, to check that the low voltage battery is actually connected to the low voltage network, so that it can then supply power to the low voltage grid.
  • the patent application EP 195 8851 proposes the use of a second battery for securing the low-voltage on-board network.
  • the addition of a second battery weighs down the vehicle and increases the cost of the vehicle.
  • the object of the invention is to propose a system for monitoring the good connection of a battery of a low voltage network in a motor vehicle powered by two electrical networks interconnected by a DC / DC converter, in particular when one of the networks includes a battery recharged through the converter from the other network.
  • the network fed through the DC / DC converter sometimes comprises a starter, but generally does not include a generator of energy (alternator or alternator starter for example), the latter being carried on the first power grid.
  • the proposed monitoring device must be reliable, not disturb the electrical components and electrical consumers of the two networks and must be able to be set up for a low cost and without burdening the vehicle.
  • the invention proposes a method of detecting an electric battery disconnection in a system equipped with two electrical networks interconnected by a DC voltage converter (DC / DC) in DC voltage, the battery belonging to one two networks, and the converter for recharging the battery, that is to say connected so as to recharge the battery.
  • DC / DC DC voltage converter
  • control of the converter is configured to ensure, when the converter is running, the power supply of the network comprising the battery, and to recharge the battery so that it can take power in turn the network when the converter is inactive.
  • a predefined voltage signal is added to a DC voltage component supplied by the converter to the network comprising the battery, and the current flowing through the battery is measured by searching for a current intensity signal corresponding to the voltage signal added, to verify that the battery is connected to the network.
  • the system can be for example an electric motor vehicle or a hybrid propulsion vehicle.
  • the converter can be configured to recharge the battery at intervals of time, the battery supplying the network whose it is part of the other time intervals.
  • the nominal operating voltage of the network associated with the battery is preferably lower than the nominal voltage of the other network.
  • this other network comprises a second battery of higher nominal voltage.
  • the term "battery” designates by default the battery belonging to the network supplied with voltage by the converter, that is to say the network of lowest nominal voltage.
  • the highest rated voltage network may include a battery, but this is preferably referred to as a "second battery".
  • the added voltage signal and the desired intensity signal are periodic signals.
  • These signals may be for example reciprocal periodic signals, or periodic signals of constant sign.
  • the amplitude of the voltage signals is preferably reduced in comparison with the nominal voltage of the network fed by converter and by the battery, for example the amplitude is less than 2V for a nominal voltage network close to 14V.
  • the amplitude of the voltage signal may for example be between 0.2V and 1.5V, and preferably between 0.2V and 0.5V.
  • the frequency of the periodic signals may for example be between 20 Hz and 100 Hz.
  • the frequency of the periodic signals can be constant.
  • it is possible to send a particular pattern of periodic signals for example a pattern making it possible to obtain a noise induced in current close to that induced by a conventional thermal vehicle alternator. We can then use intensity signal detection strategies already developed for such vehicles with alternator.
  • the added voltage signal is a modification, of predefined sign, of the voltage level
  • the intensity signal is a variation, of predefined sign, of the intensity level. It is a sudden change, a predefined sign, the voltage level, and the intensity signal is a variation, of predefined sign, of the intensity level.
  • the amplitude of the Variation of the voltage level is preferably reduced in comparison to the nominal voltage of the converter-fed network and the battery. For example, an amplitude voltage step of between 0.2V and 2V, and preferably between 0.2V and 1V, may be applied.
  • the voltage signal is not added and the current signal is only sought when the absolute value of the intensity crossing the battery is below an intensity threshold.
  • the intensity threshold is preferably constant. For example, it is possible to trigger the addition of the AC voltage component if the absolute value of the intensity crossing the battery remains below the intensity threshold for a duration greater than a time threshold, and to continue this addition as long as the intensity remains below the intensity threshold.
  • the supply voltage of the circuit comprising the battery can be reduced if the absolute value of the intensity crossing the battery is below the intensity threshold, so as to oblige the battery, if it is connected. to its network, to charge a current in the network.
  • the simple reading of the current passing through this battery then makes it possible to detect its possible disconnection
  • the amplitude of the voltage signal is increased and a new detection attempt is made. It is possible to make a single increase in the amplitude of the voltage signal, or to provide several amplitude levels to be tested one after the other.
  • the voltage signal can be added to a setpoint controlling the output voltage of the converter.
  • the output voltage of the converter the voltage that the converter delivers to the network comprising the battery.
  • the voltage signal can be produced by a dedicated oscillating circuit and be added to the output voltage of the converter.
  • the invention also proposes a motor vehicle equipped with two electrical networks having two different voltage levels and interconnected by a DC voltage converter (DC / DC).
  • the converter is configured to recharge the battery, and the vehicle includes an estimator of the current through the battery.
  • the estimator is a current sensor connected directly between the negative terminal of the battery and the ground without any other electrical consumer or connection point of an electrical consumer interposed between the terminal of the battery and the ground of the battery. circuit-, or connected directly between the positive terminal of the battery and the ground.
  • the vehicle comprises means for adding a predefined voltage signal to a DC voltage delivered by the converter to the battery, and comprises filtering means able to detect in the intensity signal measured by the intensity estimator, a signal current corresponding to the added voltage signal.
  • corresponding intensity signal is meant a current intensity signal normally obtained during the transmission of the voltage signal, when the battery is correctly connected to the network.
  • the intensity signal can be of a substantially identical frequency. If the voltage signal is a sudden change in voltage level, the intensity signal may be an offset of the previous intensity curve, a predefined sign depending on the sign of the voltage level change.
  • the vehicle may include an electronic control unit configured to trigger the addition of the voltage signal when the absolute value of the current through the battery becomes below an intensity threshold.
  • the addition of the voltage signal is triggered if the absolute value of the intensity crossing the battery remains below an intensity threshold - the intensity threshold may for example be between 0.5A and 2A according to the accuracy of the current measuring device - during a predefined duration, for example for more than one second, or for a period of between 1 and 5s.
  • the electronic control unit is configured to emit an alert message if for a duration greater than a duration threshold, the intensity signal is not detected while the voltage signal is added to the signal.
  • An alert message may for example be displayed at the driver's address, or be sent by voice synthesis.
  • the alert message of the electronic control unit can lead to the implementation of safeguarding measures allowing the vehicle to arrive safely despite disconnection of the battery, for example a prohibition of the power off of the electrical network feeding the battery network through the converter. Safeguarding measures may include raising the idle speed of a combustion engine. The safeguarding measures may for example include the prohibition of a "stop and start" procedure with automatic shutdown of a heat engine during temporary stops of the vehicle if the engine uses a starter powered by the battery.
  • FIG. 1 is a schematic representation of a vehicle equipped with a detection device according to the invention
  • FIG. 2 is a schematic representation of the electrical system of a vehicle equipped with a detection device according to the invention 1
  • FIG. 3 is a simplified example of an operating algorithm of a detection system according to the invention.
  • a vehicle according to the invention comprises a first electrical network 3 and a second electrical network 2, the first electrical network 3 or high voltage network operating at a substantially higher voltage, for example a voltage at least 1, 5 times higher and preferably substantially twice as high as the second network 2 or network "low voltage" 2.
  • the vehicle 1 is a "light hybrid" type vehicle, that is to say that it comprises a heat engine 5 capable of driving the vehicle forward and comprises at least one electric machine 6 which is connected to certain wheels of the vehicle so that it can contribute as an electric motor to provide the driving torque of the vehicle.
  • the electric machine 6 also functions as an electric generator, for example for recovering electrical energy during so-called regenerative braking phases or for acting as an alternator for supplying the electrical network 2 for energy management purposes or charging the BT battery.
  • the heat engine can typically be associated with a starter 8 capable of mechanically starting the rotation of the heat engine when it is stopped, particularly for initial starts if the electrical network 3 (torque B att HT 1 1 and electric machine 6) does not have the power necessary to ensure the start of the cold engine 5.
  • the starter 8 is powered for example by the low voltage network 2.
  • the heat engine 5 may not be associated with a starter 8 and be launched directly by the electrical machine 6 connected to the high voltage network 3 and providing other functions mentioned above.
  • the second electrical network 2 is connected to a low voltage mass 21 and powered by a first low voltage battery 10.
  • the low voltage battery 10 may for example have a nominal operating voltage of between 12 and 13 volts.
  • the first high voltage electrical network 3 comprises a high voltage battery 1 1 and is connected to a high voltage mass 22 which may possibly be the same mass as the low voltage mass 21.
  • a direct current DC converter 4 (“DC / DC converter”) is interposed between the low voltage network 2 and the high voltage network 3, so that to be able to send a direct current from the high-voltage network 3 to the low-voltage network 2.
  • the converter 4 is controlled by an electronic control unit 12 which itself is supplied with low-voltage current by the second network 2.
  • the converter 4 may comprise a alternating voltage generator 13 produced by a hardware solution or by a strategy integrated in the control software which makes it possible to superimpose on the DC voltage sent to the second low voltage network 2, an AC component of amplitude lower than the DC average voltage sent to the network 2.
  • the second low-voltage network 2 typically comprises low-voltage consumers such as human-to-consumer interfaces.
  • machine 23 allowing the driver to drive the vehicle and to access various controls of the vehicle, includes other consumers contributing to the comfort of the driver and the passengers, these consumers 14 being able for example to include, a heating system, a sound system , and may include vehicle safety systems such as braking or trajectory control, steering assistance or visibility systems.
  • the low voltage battery 10 is connected to a current estimator 7, for example to a current sensor 7, screwed on the negative terminal of the battery 10.
  • the intensity value I measured by the current sensor 7 is transmitted to the electronic control unit 12.
  • the voltage converter 4 comprises a signal generator 13 able to modify the output voltage of the converter 4, in other words the voltage that the converter 4 applies between the terminals through which it is connected. to the second low-voltage network 2.
  • the generator signal 13 may for example be configured to be able to add to the output voltage of the converter, a periodic signal, for example an alternating signal, or another type of signal such as an offset of the output voltage applied quickly and for a period of time. predefined.
  • FIG. 2 diagrammatically illustrates the operation of a detection system according to the invention, making it possible to detect whether the low-voltage battery 10 is no longer connected to the low-voltage network 2.
  • FIG. 2 shows elements that are common to FIG. 1, the same elements being designated by the same references. In FIG. 2, only a part of the low voltage network is represented, as well as the output of the converter 4.
  • the converter 4 is driven by the electronic control unit 12 by sending a setpoint Ucons to deliver a DC output voltage U s to the low voltage network 2.
  • This DC voltage It is sent to a first input of an adder 18, the second input of an adder 18 receiving a voltage U va r delivered by an alternating voltage generator 16 external to the converter 4.
  • the alternating voltage generator 16 is for example powered by the converter 4, or is powered directly by the battery 1 1.
  • the low voltage network 2 is thus fed, at the output of the adder 18, by a voltage UBT which has a DC component, and an oscillation component of reduced amplitude relative to the average value of the DC component.
  • the amplitude chosen is, however, such that it makes it possible to cause a variation of substantially the same frequency of the current I flowing through the low voltage battery 10, the amplitude of this oscillation of the current being detectable by the current sensor 7 according to FIG. precision it has, for example an amplitude of the order of 1A or an amplitude of a few Amperes, for example between 1 to 3 A.
  • the electronic control unit 12 is configured to be able to detect this AC component of the current I when the battery 10 is correctly connected to the low voltage network 2, in particular when the positive terminal 9 of the battery is connected to the output of the DC / DC converter and the negative terminal of the battery 10 is properly connected to the low-voltage ground 21.
  • the battery 10 is disconnected from the network 2 by any of its terminals, it is no longer crossed by the AC current component corresponding to the alternating voltage signal delivered by the AC voltage generator 16.
  • the current sensor 7 may for example be interposed between the negative terminal of the battery 10 and the low voltage mass 21.
  • the current sensor could, according to other embodiments, be arranged directly on the + terminal of the battery 10 .
  • the low voltage network In order not to disturb the operation of the low voltage consumers too much, it is possible to supply the low voltage network with a DC voltage from the converter 4, as long as the current detected by the current sensor 7 is greater than threshold intensity. Above this threshold intensity, depending on the sign of the intensity, it can be considered that either the battery delivers a current to the consumers 14, or it receives a charging current of the converter 4, and therefore it is a priori connected to the network 2.
  • the electronic control unit 12 can therefore trigger the generation of the alternating signal U va r and at the same time perform a filtering of the intensity signal I arriving from the current sensor 7 to look for an AC current component therein corresponding to the alternating voltage signal U var -
  • a first amplitude of the alternating voltage signal U var may be added in a first step, and if this amplitude does not make it possible to obtain a detection of a corresponding signal of intensity, increase to one or several times, the amplitude of the signal U goes r while continuing to search for the signal corresponding to the level of the measured intensity 7.
  • the electronic control unit 12 may, for example, trigger an alarm sent to the user. warning the driver to warn him of a bad connection of the battery, and may also trigger an emergency operating mode in which the inverter 4 is kept active until the vehicle controls are completely extinguished in order to avoid that the vehicle remains immobilized before reaching its destination.
  • the voltage signal can be driven by the same electronic control unit as that connected to the current sensor 7, so that the amplitude of the voltage signals can be controlled with feedback from the oscillations. of current intensity possibly caused, and to avoid a divergence of these oscillations of current intensity.
  • FIG. 3 is a simplified representation, in the form of an algorithm 20, of an operating mode of the electronic control unit 12 enabling it to estimate whether the battery 10 is indeed well connected to the network 2. As illustrated on the algorithm 20 of FIG. 3, the electronic control unit 12 regularly performs a test 21 to check whether the absolute value of the intensity crossing the battery is greater than a threshold value I m i n .
  • the electronic control unit continues to monitor the absolute value of the intensity, and does not trigger the generation of the DC voltage output signal of the DC converter. / DC 4.
  • the electronic control unit When the absolute value of the intensity becomes less than or equal to the intensity threshold I m i n, that is to say when the test 21 is negative, it goes to a step 22.
  • the electronic control unit analyzes the signal of the current sensor 7 to search for an intensity signal corresponding to a predefined signal generated either directly by the DC / DC converter, or by a device whose voltage is added to the output voltage of the DC / DC. If the signal current intensity is detected, here an "I alternative" signal, the electronic control unit returns to step 21 and continues to monitor the absolute value of the current through the battery.
  • the electronic control unit may proceed to a step 25 where it alerts the driver that the battery is disconnected, and where it triggers backup measures as necessary to vehicle to drive until the driver explicitly requests the stopping of the vehicle, considering himself as having arrived at his destination.
  • the electronic control unit if it, during the test 22, does not detect the desired signal of current intensity, it can go to a step 23 where it controls an increase in the amplitude of the signal output voltage of the DC / DC.
  • the control unit can then check, for example in a step 24, whether the amplitude of the voltage signal has reached a threshold beyond which one no longer wishes to go. If the maximum allowable signal amplitude is reached and the intensity signal has still not been detected, it proceeds to the warning 25 warning the driver that the battery is disconnected. Otherwise, once the amplitude of the voltage signal is increased, it returns to step 22 of seeking the intensity signal to test whether this time a current signal has become detectable.
  • the invention is not limited to the embodiments described and can be declined in many variants.
  • the two networks interconnected by the DC / DC converter can operate at nominal voltages close to or even substantially equal nominal voltages.
  • a low AC component can be continuously emitted, and then the amplitude of this component can be increased if a corresponding signal of intensity is not detectable. It is conceivable to continuously seek an alternating current component or to search for a specific current intensity signal only when the average absolute value of the intensity falls below a certain threshold.
  • the voltage signal added to the DC output voltage of the converter may be a periodic signal, a constant frequency signal or a complex signal chosen to reproduce certain characteristics of the current noise usually generated by an alternator.
  • the voltage signal U va r may be a non-reciprocal periodic signal, or even a voltage increment applied in the form of a slot, that is to say comprising a rising edge, in order to try to detect a current intensity increment of corresponding sign.
  • the desired current intensity signal will then be non-reciprocating, and then, for example, a change in the absolute value of the intensity of the current will be sought.
  • the voltage delivered by the converter 4 is increased or reduced, preferably as fast as possible (while limiting the impact of this change in voltage on the consumers of the network 2) by applying a rising voltage front or a falling edge, to set this voltage value to a new constant value.
  • This rapid change of voltage delivered by the converter will preferably be controlled by the control electronics 12 by a modification of the target voltage.
  • An acceptable alternative solution may be to integrate this converter output voltage change internally of the DC / DC converter.
  • the advantage of the latter type of signal is that it can enable the implementation of a simplified disconnection detection strategy in that it consists only in detecting that a non-zero current, the battery 10 in front of by reacting to this evolution of the output voltage of the converter 10 either to discharge in order to ensure the supply continuity of the network 2, or to charge, according to the chosen voltage evolution. It can also minimize disturbances caused to the electrical consumers of the low voltage network 2 if the magnitude of the output voltage change of the converter may remain low while being sufficient to detect the reaction of the battery.
  • the system for detecting a bad battery connection makes it possible to warn the driver if the battery is incorrectly connected and also makes it possible to set up procedures for safeguarding the operation of the vehicle so that it can arrive at a good position. port without using the low voltage battery.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention propose un procédé de détection d'une déconnexion de batterie électrique (10) dans un système équipé de deux réseaux électriques interconnectés par un convertisseur (DC/DC) de tension continue en tension continue (4). La batterie (10) appartient à l'un des deux réseaux (2), et le convertisseur (4) est configuré pour recharger la batterie (2). On ajoute un signal de tension prédéfini (Uvar) à une composante de tension continue (Us) délivrée par le convertisseur (4) au réseau (2) comprenant la batterie (10), et on mesure le courant (I) traversant la batterie (10) en y recherchant un signal de courant (Ialternatif) correspondant au signal de tension ajouté (Uvar), pour vérifier que la batterie (10) est bien connectée au réseau (2).

Description

Procédé de détection d'une déconnexion de batterie d 'alimentation d'un véhicule automobile
L' invention a pour objet la sécurisation de l' alimentation en énergie électrique de réseaux de bord de véhicules automobiles. Elle peut également s ' appliquer de manière plus générale à des systèmes électriques , notamment à des systèmes électriques embarqués , combinant deux réseaux électriques, interconnectés par un convertisseur de tension de type DC/DC (convertisseur de courant continu en courant continu) , un des réseaux comprenant une batterie d' accumulation électrique rechargée par le convertisseur DC/DC.
L' invention concerne plus particulièrement la sécurisation de l' alimentation en électricité à basse tension d'un système électrique automobile comprenant deux réseaux électriques interconnectés par un convertisseur DC/DC. Ces deux réseaux peuvent fonctionner à des tensions nominales identiques ou à des tensions nominales différentes. Typiquement, dans des véhicules où au moins certaines machines électriques servent soit à récupérer de l' énergie de freinage, soit à aider à la propulsion du véhicule, soit les deux, le véhicule peut comprendre un réseau à haute tension incluant les machines électriques, afin de limiter les pertes par effet Joule dans les conducteurs et afin de pouvoir utiliser des câbles conducteurs de moindre diamètre.
Pour les autres fonctions standards le véhicule peut comprendre un second réseau électrique alimenté à une tension inférieure. On peut par exemple avoir un premier réseau électrique fonctionnant à une tension comprise entre 24 et 58 volts, par exemple à une tension de 48 volts , et un second réseau électrique, basse tension fonctionnant à des tensions nominales comprises entre 10,5 et 15 volts . Le second réseau électrique « basse tension » peut comprendre une batterie d' accumulateurs électriques dédiée, qui est par exemple rechargée au moyen d' un convertisseur DC/DC à partir du réseau haute tension pendant les phases de roulage du véhicule.
Pour des raisons de gestion de l' énergie électrique du réseau
« basse tension » et de gestion de la recharge de la batterie d' accumulateur « basse tension » , le convertisseur DC/DC peut être piloté par une unité de commande électronique qui est elle-même alimentée par la batterie du réseau basse tension. Pour certaines fonctions sécuritaires du véhicule, il peut être nécessaire de sécuriser l' alimentation en énergie électrique du réseau « basse tension ». Un moyen de sécuriser cette alimentation peut être d'utiliser la redondance d' alimentation en électricité par la batterie d' accumulation « basse tension » d'une part, et par l' alimentation en électricité du réseau basse tension par le second réseau via le convertisseur DC/DC. Il est dans ce cas important, avant de désactiver l' alimentation du réseau basse tension par le convertisseur DC/DC, de vérifier que la batterie basse tension est effectivement connectée au réseau basse tension, de manière à pouvoir ensuite assurer l' alimentation électrique du réseau « basse tension »
Ce peut être le cas, par exemple, pour des véhicules destinés à économiser de l' énergie, grâce à des systèmes de type « stop and start » dans lesquels un moteur thermique servant à propulser le véhicule est éteint lors d' un arrêt à un feu rouge et est relancé rapidement quand le conducteur ré-appuie sur la pédale d' accélération.
Si la sécurisation de l' alimentation en énergie électrique du réseau « basse tension » ne peut être portée que sur la batterie d' accumulateur « basse tension », il est indispensable de s ' assurer que cette batterie d' accumulateurs « basse tension » n' est pas déconnectée avant d' engager l' arrêt automatique du moteur.
La demande de brevet EP 195 8851 propose l' utilisation d' une seconde batterie pour sécuriser le réseau de bord à basse tension. L' ajout d' une seconde batterie alourdit le véhicule et augmente le coût de revient du véhicule. L' invention a pour but de proposer un système de surveillance de la bonne connexion d'une batterie d'un réseau basse tension dans un véhicule automobile alimentée par deux réseaux électriques interconnectés par un convertisseur DC/DC, en particulier lorsque l' un des réseaux comporte une batterie rechargée au travers du convertisseur à partir de l' autre réseau. Le réseau alimenté au travers du convertisseur DC/DC comporte parfois un démarreur, mais ne comporte généralement pas de producteur d' énergie (alternateur ou alterno démarreur par exemple), celui-ci étant porté sur le premier réseau électrique.
Le dispositif de surveillance proposé doit être fiable, ne pas perturber les composants électriques et consommateurs électriques des deux réseaux et doit pouvoir être mis en place pour un faible coût de revient et sans alourdir le véhicule.
A cette fin, l'invention propose un procédé de détection d'une déconnexion de batterie électrique dans un système équipé de deux réseaux électriques interconnectés par un convertisseur (DC/DC) de tension continue en tension continue, la batterie appartenant à l'un des deux réseaux, et le convertisseur permettant de recharger la batterie, c'est-à-dire connecté de manière à pouvoir recharger la batterie.
De manière plus générale, la commande du convertisseur est configurée pour assurer, quand le convertisseur est en marche, l'alimentationen énergie du réseau comprenant la batterie, et pour recharger la batterie pour que celle-ci puisse prendre alimenter à son tour le réseau quand le convertisseur est inactif.
On ajoute un signal de tension prédéfini à une composante de tension continue délivrée par le convertisseur au réseau comprenant la batterie, et on mesure le courant traversant la batterie en y recherchant un signal d'intensité de courant correspondant au signal de tension ajouté, pour vérifier que la batterie est bien connectée au réseau.
Le système peut être par exemple un véhicule automobile à propulsion électrique ou un véhicule automobile à propulsion hybride. Le convertisseur peut être configuré pour recharger la batterie par intervalles de temps, la batterie alimentant au besoin le réseau dont elle fait partie pendant les autres intervalles de temps. La tension nominale de fonctionnement du réseau associée à la batterie est de préférence inférieure à la tension nominale de l'autre réseau. De préférence, cet autre réseau comprend une seconde batterie de tension nominale plus élevée. Dans le présent texte, sauf précision contraire, le terme "la batterie" désigne par défaut la batterie appartenant au réseau alimenté en tension par le convertisseur, c'est-à-dire le réseau de tension nominale la plus basse. Le réseau de tension nominale la plus haute peut comprendre une batterie, mais celle-ci est alors de préférence désignée par " seconde batterie" .
Selon un mode de réalisation avantageux, le signal de tension ajouté et le signal d'intensité recherché sont des signaux périodiques.
Ces signaux peuvent être par exemple des signaux périodiques alternatifs , ou des signaux périodiques de signe constant. L'amplitude des signaux de tension est de préférence réduite devant la tension nominale du réseau alimenté par convertisseur et par la batterie, par exemple l'amplitude est inférieure à 2V pour un réseau de tension nominale voisine de 14V. L'amplitude du signal de tension peut être par exemple comprise entre 0.2V et 1 ,5V, et de préférence comprise entre 0.2V et 0.5V. La fréquence des signaux périodiques peut être par exemple comprise entre 20Hz et 100Hz. La fréquence des signaux périodiques peut être constante. Selon une autre variante de réalisation, on peut envoyer un motif particulier de signaux périodiques, par exemple un motif permettant d'obtenir un bruit induit en courant proche de celui induit par un alternateur de véhicule thermique classique. On peut alors utiliser des stratégies de détection de signal d'intensité déj à développées pour de tels véhicules avec alternateur.
Selon un mode de réalisation particulièrement avantageux, le signal de tension ajouté est une modification, de signe prédéfini, du niveau de tension, et le signal d'intensité est une variation, de signe prédéfini, du niveau d'intensité. Il s ' agit d' un changement soudain, de signe prédéfini, du niveau de tension, et le signal d'intensité est une variation, de signe prédéfini, du niveau d'intensité. L'amplitude de la variation du niveau de tension est de préférence réduite devant la tension nominale du réseau alimenté par convertisseur et par la batterie. On peut par exemple appliquer un échelon de tension d'amplitude comprise entre 0.2V et 2V, et de préférence comprise entre 0.2V et 1 V.
Selon un mode de réalisation, on n'ajoute le signal de tension et on ne recherche le signal de courant, que quand la valeur absolue de l'intensité traversant la batterie est inférieure à un seuil d'intensité. Le seuil d'intensité est de préférence constant. On peut par exemple déclencher l'ajout de la composante alternative de tension si la valeur absolue de l'intensité traversant la batterie reste inférieure au seuil d'intensité pendant une durée supérieure à un seuil de temps, et poursuivre cet ajout tant que l'intensité reste inférieure au seuil d'intensité.
Selon une autre variante de réalisation, on peut diminuer la tension d'alimentation du circuit comprenant la batterie si la valeur absolue de l'intensité traversant la batterie est inférieure au seuil d'intensité, de manière à obliger la batterie, si elle est connectée à son réseau, à débiter un courant dans le réseau. La simple lecture du courant traversant cette batterie permet alors de détecter son éventuelle déconnexion
Selon un mode de réalisation, après avoir ajouté le signal de tension sans détecter le signal correspondant d'intensité, on augmente l'amplitude du signal de tension et on effectue une nouvelle tentative de détection. On peut effectuer une seule augmentation de l'amplitude du signal de tension, ou prévoir plusieurs niveaux d'amplitude à tester les une après les autres.
Le signal de tension peut être ajouté à une valeur de consigne pilotant la tension de sortie du convertisseur. On appelle ici la tension de sortie du convertisseur, la tension que le convertisseur délivre au réseau comprenant la batterie.
Selon un autre mode de réalisation, le signal de tension peut être produit par un circuit oscillant dédié et être ajouté à la tension de sortie du convertisseur. L'invention propose également un véhicule automobile équipé de deux réseaux électriques ayant deux niveaux de tension différents et interconnectés par un convertisseur (DC/DC) de tension continue en tension continue. Le convertisseur est configuré pour recharger la batterie, et le véhicule comprend un estimateur de l'intensité de courant traversant la batterie. De manière préférentielle, l'estimateur est un capteur de courant branché directement entre la borne négative de la batterie et la masse -i.e. sans autre consommateur électrique ni point de connexion d'un consommateur électrique interposé entre la borne de la batterie et la masse du circuit- , ou branché directement entre la borne positive de la batterie et la masse.
Le véhicule comprend des moyens pour ajouter un signal prédéfini de tension à une tension continue délivrée par le convertisseur à la batterie, et comprend des moyens de filtrage aptes à détecter dans le signal d'intensité mesuré par l'estimateur d'intensité, un signal de courant correspondant au signal de tension ajouté. Par signal correspondant d'intensité, on entend un signal d'intensité de courant normalement obtenu lors de l'émission du signal de tension, lorsque la batterie est correctement branchée au réseau. Typiquement si le signal de tension est périodique, le signal d'intensité peut être périodique de fréquence sensiblement identique. Si le signal de tension est un changement brusque de niveau de tension, le signal d'intensité peut être un décalage de la courbe d'intensité précédente, de signe prédéfini en fonction du signe du changement de niveau de tension.
Le véhicule peut comprendre une unité de commande électronique configurée pour déclencher l'ajout du signal de tension quand la valeur absolue de l'intensité de courant traversant la batterie devient inférieure à un seuil d'intensité. De manière préférentielle, l'ajout du signal de tension est déclenché si la valeur absolue de l'intensité traversant la batterie reste inférieure à un seuil d'intensité - le seuil d'intensité peut être par exemple compris entre 0.5A et 2A selon la précision du dispositif de mesure du courant - pendant une durée prédéfinie, par exemple pendant plus d'une seconde, ou pendant une durée comprise entre 1 et 5s .
De manière avantageuse, l'unité de commande électronique est configurée pour émettre un message d'alerte si pendant une durée supérieure à un seuil de durée, le signal d'intensité n'est pas détecté alors que le signal de tension est ajouté à la tension de sortie continue du convertisseur. Un message d'alerte peut être par exemple affiché à l'adresse du conducteur, ou être émis par synthèse vocale. Le message d'alerte de l'unité de commande électronique peut provoquer la mise en place de mesures de sauvegarde permettant au véhicule d'arriver à bon port malgré la déconnexion de la batterie, par exemple une interdiction de la mise hors tension du réseau électrique alimentant le réseau de la batterie au travers du convertisseur. Les mesures de sauvegarde peuvent comprendre une élévation du régime de ralenti d'un moteur thermique. Les mesures de sauvegarde peuvent par exemple comprendre l'interdiction d'une procédure "stop and start" avec extinction automatique d'un moteur thermique lors des arrêts temporaires du véhicule si ce moteur thermique utilise un démarreur alimenté par la batterie.
D ' autres buts, caractéristiques et avantages de l' invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d' exemple non limitatif, et faite en référence aux dessins annexés sur lesquels :
- la figure 1 est une représentation schématique d' un véhicule équipé d'un dispositif de détection selon l' invention,
- la figure 2 est une représentation schématique du système électrique d'un véhicule équipé d' un dispositif de détection selon l' invention 1 , et
- la figure 3 est un exemple simplifié d' algorithme de fonctionnement d'un système de détection selon l' invention.
Tel qu' illustré sur la figure 1 , un véhicule selon l' invention comprend un premier réseau électrique 3 et un second réseau électrique 2, le premier réseau électrique 3 ou réseau haute tension fonctionnant à une tension sensiblement plus élevée, par exemple une tension au moins 1 ,5 fois plus élevée et de préférence sensiblement deux fois plus élevée que le second réseau 2 ou réseau « basse tension » 2.
Dans l' exemple illustré, le véhicule 1 est un véhicule de type « hybride léger » , c' est-à-dire qu' il comprend un moteur thermique 5 apte à faire avancer le véhicule et comprend au moins une machine électrique 6 qui est relié à certaines roues du véhicule de manière à pouvoir contribuer en tant que moteur électrique à fournir le couple moteur d' avancement du véhicule. La machine électrique 6 fonctionne également en tant que génératrice électrique, par exemple pour récupérer de l' énergie électrique pendant des phases de freinage dit récupératif ou pour jouer le rôle d' alternateur pour alimenter le réseau électrique 2 pour les besoins de gestion d' énergie ou de recharge de la batterie BT.
Le moteur thermique peut typiquement être associé à un démarreur 8 apte à lancer mécaniquement la rotation du moteur thermique lorsque celui-ci est à l' arrêt, notamment pour les démarrages initiaux si le réseau électrique 3 (couple B att HT 1 1 et machine électrique 6) ne dispose pas de la puissance nécessaire pour assurer le démarrage du moteur thermique 5 à froid. Le démarreur 8 est alimenté par exemple par le réseau basse tension 2.
Selon d' autres variantes de réalisation, le moteur thermique 5 peut ne pas être associé à un démarreur 8 et être lancé directement par la machine électrique 6 connectée au réseau haute tension 3 et assurant d' autres fonctions citées précédemment.
Le second réseau électrique 2 est relié à une masse basse tension 21 et alimenté par une première batterie basse tension 10. La batterie basse tension 10 peut par exemple avoir une tension de fonctionnement nominale comprise entre 12 et 13 volts . Le premier réseau électrique haute tension 3 comprend une batterie haute tension 1 1 et est relié à une masse haute tension 22 qui peut éventuellement être la même masse que la masse basse tension 21.
En l' absence d' autres sources de courant, par exemple en l' absence de production de courant électrique par la machine électrique 6, le réseau haute tension 3 est alimenté par la batterie 1 1. Un convertisseur 4 de courant continu en courant continu (« convertisseur DC/DC ») est interposé entre le réseau basse tension 2 et le réseau haute tension 3 , de manière à pouvoir envoyer un courant continu du réseau haute tension 3 vers le réseau basse tension 2. Le convertisseur 4 est piloté par une unité de commande électronique 12 elle-même alimentée en courant basse tension par le second réseau 2. Le convertisseur 4 peut comprendre un générateur de tension alternative 13 réalisée par une solution matérielle ou par une stratégie intégrée dans le logiciel de régulation qui permet de superposer à la tension continue envoyée vers le second réseau basse tension 2, une composante alternative d' amplitude inférieure à la tension moyenne continue envoyée vers le réseau 2.
Pendant les phases où le convertisseur 4 n' envoie pas de courant vers le second réseau 2, celui-ci est alimenté uniquement par la batterie basse tension 10. Le second réseau basse tension 2 comprend typiquement des consommateurs basse tension tels que des interfaces homme-machine 23 permettant au conducteur de piloter le véhicule et d' accéder à diverses commandes du véhicule, comprend d' autres consommateurs contribuant au confort du conducteur et des passagers, ces consommateurs 14 pouvant par exemple comprendre, un système de chauffage, un système de sonorisation, et peut comprendre des systèmes de sécurité du véhicule tels que des systèmes de freinage ou de contrôle de trajectoire, d' assistance de direction ou de visibilité.
La batterie basse tension 10 est connectée à un estimateur d' intensité 7, par exemple à un capteur de courant 7, vissé sur la borne négative de la batterie 10. La valeur d' intensité I mesurée par le capteur de courant 7 est transmise à l' unité de commande électronique 12.
Sur le mode de réalisation illustré sur la figure 1 , le convertisseur de tension 4 comporte un générateur de signal 13 apte à modifier la tension de sortie du convertisseur 4, autrement dit la tension que le convertisseur 4 applique entre les bornes par lesquelles il est connecté au second réseau basse tension 2. Le générateur de signal 13 peut par exemple être configuré pour pouvoir ajouter à la tension de sortie du convertisseur, un signal périodique, par exemple un signal alternatif, ou un autre type de signal tel qu'un décalage de la tension de sortie appliqué rapidement et pendant une durée prédéfinie.
La figure 2 illustre schématiquement le fonctionnement d'un système de détection selon l' invention, permettant de détecter si la batterie basse tension 10 n' est plus connectée au réseau basse tension 2. On retrouve sur la figure 2 des éléments communs à la figure 1 , les mêmes éléments étant désignés par les mêmes références. Sur la figure 2, seule une partie du réseau basse tension est représentée, ainsi que la sortie du convertisseur 4.
Dans l' exemple illustré sur la figure 2, le convertisseur 4 est piloté par l' unité de commande électronique 12 par l' envoi d'une consigne Ucons pour délivrer une tension de sortie continue Us au réseau basse tension 2. Cette tension continue Us est envoyée vers une première entrée d' un sommateur 18, la seconde entrée d'un sommateur 18 recevant une tension Uv ar délivrée par un générateur de tension alternative 16 externe au convertisseur 4. Le générateur de tension alternative 16 est par exemple alimenté par le convertisseur 4, ou est alimenté directement par la batterie 1 1.
Le réseau basse tension 2 est ainsi alimenté, à la sortie du sommateur 18 , par une tension UBT qui présente une composante continue, et une composante d' oscillation d' amplitude réduite par rapport à la valeur moyenne de la composante continue. L' amplitude choisie est cependant telle qu' elle permet de provoquer une variation sensiblement de même fréquence du courant I traversant la batterie basse tension 10, l' amplitude de cette oscillation d' intensité de courant étant détectable par le capteur de courant 7 selon la précision dont il dispose, par exemple une amplitude de l' ordre de 1A ou une amplitude de quelques Ampères, par exemple comprise entre 1 à 3 A.
L' unité de commande électronique 12 est configurée pour être capable de détecter cette composante alternative du courant I lorsque la batterie 10 est correctement connectée au réseau basse tension 2, notamment lorsque la borne positive 9 de la batterie est connectée à la sortie du convertisseur DC/DC et la borne négative de la batterie 10 est correctement connectée à la masse basse tension 21. Lorsque la batterie 10 est déconnectée du réseau 2 par l' une quelconque de ses bornes, elle n' est plus traversée par la composante de courant alternative correspondant au signal alternatif de tension délivré par le générateur de tension alternative 16.
Le capteur de courant 7 peut par exemple être interposé entre la borne négative de la batterie 10 et la masse basse tension 21. Le capteur de courant pourrait, selon d' autres variantes de réalisation, être disposé directement sur la borne + de la batterie 10.
Afin de ne pas trop perturber le fonctionnement des consommateurs basse tension, on peut envisager d' alimenter le réseau basse tension avec une tension continue venant du convertisseur 4, tant que le courant détecté par le capteur de courant 7 est supérieur en valeur absolue à une intensité seuil. Au-dessus de cette intensité seuil, en fonction du signe de l' intensité, on peut considérer que soit la batterie débite un courant vers les consommateurs 14, soit elle reçoit un courant de charge du convertisseur 4, et donc qu' elle est a priori connectée au réseau 2.
En dessous de cette intensité seuil, on peut considérer que soit le convertisseur DC/DC délivre l' alimentation électrique de l' ensemble des consommateurs du réseau 2 sans recharger la batterie 10 soit la batterie n' est pas correctement connectée au réseau 2. En- dessous de cette intensité seuil, l' unité de commande électronique 12 peut donc déclencher la génération du signal alternatif Uv ar et simultanément effectuer un filtrage du signal d' intensité I arrivant du capteur de courant 7 pour y rechercher une composante alternative de courant correspondant au signal alternatif de tension Uvar-
Selon certaines variantes de réalisation, on peut additionner dans un premier temps une première amplitude du signal alternatif de tension Uvar, et si cette amplitude ne permet pas d' obtenir une détection d' un signal correspondant d' intensité, augmenter, à une ou plusieurs reprises, l' amplitude du signal Uv ar tout en continuant à rechercher le signal correspondant au niveau de l' intensité mesurée par l' ampèremètre 7. Quand l' amplitude du signal Uvar atteint une certaine valeur et que l' on ne détecte toujours pas de signal variable d' intensité, l' unité de commande électronique 12 peut par exemple déclencher une alerte envoyée à l' attention du conducteur pour l' avertir d' une mauvaise connexion de la batterie, et peut également déclencher un mode de fonctionnement de secours dans lequel on garde le convertisseur 4 actif jusqu' à l' extinction complète des commandes du véhicule afin d' éviter que le véhicule ne reste immobilisé avant d' arriver à destination.
Dans certains modes de réalisation, le signal de tension peut être piloté par la même unité de commande électronique que celle qui est connectée au capteur de courant 7, de manière à pouvoir piloter l' amplitude des signaux de tension avec une rétroaction à partir des oscillations d' intensité de courant éventuellement provoquées , et éviter une divergence de ces oscillations d' intensité de courant.
La figure 3 est une représentation simplifiée, sous forme d' algorithme 20, d' un mode de fonctionnement de l' unité de commande électronique 12 lui permettant d' estimer si la batterie 10 est effectivement bien connectée au réseau 2. Tel qu' illustré sur l' algorithme 20 de la figure 3 , l'unité de commande électronique 12 effectue régulièrement un test 21 pour vérifier si la valeur absolue de l' intensité traversant la batterie est supérieure à une valeur seuil Imin .
Tant que cette valeur absolue reste supérieure au seuil d' intensité Imin , l'unité de commande électronique continue à surveiller la valeur absolue de l' intensité, et ne déclenche pas la génération du signal alternatif de tension en sortie du convertisseur DC/DC 4.
Lorsque la valeur absolue de l' intensité devient inférieure ou égale au seuil d' intensité Imin c ' est-à-dire lorsque le test 21 est négatif, on passe à une étape 22. L'unité de commande électronique analyse alors le signal du capteur de courant 7 pour y rechercher un signal d' intensité correspondant à un signal prédéfini généré soit directement par le convertisseur DC/DC, soit par un dispositif dont la tension s ' ajoute à la tension de sortie du DC/DC. Si le signal d' intensité de courant est détecté, ici un signal « I alternatif » , l' unité de commande électronique revient à l' étape 21 et continue de surveiller la valeur absolue de l' intensité de courant traversant la batterie. Si le signal d' intensité de courant n' est pas détecté, l' unité de commande électronique peut passer à une étape 25 où elle alerte le conducteur que la batterie est débranchée, et où elle déclenche au besoin des mesures de sauvegarde pour permettre au véhicule de rouler jusqu' à ce que le conducteur demande explicitement l' arrêt du véhicule, se considérant comme arrivé à destination.
Selon d' autres variantes de réalisation, si l' unité de commande électronique, lors du test 22, ne détecte pas le signal recherché d' intensité de courant, elle peut passer à une étape 23 où elle commande une augmentation d' amplitude du signal de tension en sortie du DC/DC.
L' unité de commande peut ensuite vérifier, par exemple à une étape 24, si l ' amplitude du signal de tension a atteint un seuil au-delà duquel on ne souhaite plus aller. Si l' amplitude maximale admissible de signal est atteinte et que le signal d' intensité n' a toujours pas été détecté, on passe à l' alerte 25 avertissant le conducteur que la batterie est débranchée. Sinon, une fois l' amplitude du signal de tension augmentée, on revient à l' étape 22 de recherche du signal d' intensité pour tester si cette fois un signal d' intensité de courant est devenu détectable.
L' invention ne se limite pas aux exemples de réalisation décrits et peut se décliner en de nombreuses variantes . Les deux réseaux interconnectés par le convertisseur DC/DC peuvent fonctionner à des tensions nominales proches voire des tensions nominales sensiblement égales .
On peut envisager d' émettre le signal prédéfini de tension en permanence, superposé à la tension continue du convertisseur DC/DC.
On peut envisager de n' émettre le signal prédéfini de tension que par intervalles de temps , quand la valeur absolue de l' intensité traversant la batterie passe en dessous d'un certain seuil. Selon une autre variante de réalisation, on peut émettre en continu une faible composante alternative, et ensuite augmenter l' amplitude de cette composante si un signal correspondant d' intensité n' est pas détectable. On peut envisager de rechercher en continu une composante alternative d' intensité ou ne rechercher un signal spécifique d' intensité de courant que quand la valeur absolue moyenne de l' intensité devient inférieure à un certain seuil. Le signal de tension ajouté à la tension continue de sortie du convertisseur peut être un signal périodique, un signal de fréquence constante ou un signal complexe choisi pour reproduire certaines caractéristiques du bruit en courant habituellement généré par un alternateur. Le signal de tension Uv ar peut être un signal périodique non alternatif, voire un incrément de tension appliqué sous forme de créneau, c'est-à-dire comprenant un front montant, pour tenter de détecter un incrément d' intensité de courant de signe correspondant. Le signal d'intensité de courant recherché sera alors non alternatif, et on recherchera alors par exemple une modification de la valeur absolue de l'intensité du courant. Autrement dit, on augmente ou on réduit, de préférence aussi vite que possible (tout en limitant l' impact de cette modification de tension sur les consommateurs du réseau 2) la tension délivrée par le convertisseur 4 en appliquant un front de tension montant ou un front descendant, pour établir cette valeur de tension à une nouvelle valeur constante. Cette modification rapide de tension délivrée par le convertisseur sera de préférence pilotée par l' électronique de contrôle 12 par une modification de la tension de consigne. Une solution alternative acceptable peut être d' intégrer cette modification de tension de sortie convertisseur en interne du convertisseur DC/DC.
L' avantage de ce dernier type de signal est qu' il peut permettre la mise en ouvre d'une stratégie de détection de déconnexion simplifiée en ce qu' elle ne consiste qu' à détecter qu' un courant non nul, la batterie 10 devant par réaction à cette évolution de tension de sortie du convertisseur 10 soit se décharger afin d' assurer la continuité d' alimentation du réseau 2, soit se charger, selon l' évolution de tension choisie. Il peut également minimiser les perturbations provoquées au niveau des consommateurs électriques du réseau basse tension 2 si l' amplitude de la modification de tension de sortie du convertisseur peut rester faible tout en étant suffisante pour détecter la réaction de la batterie.
Le système de détection d' une mauvaise connexion de batterie selon l' invention permet d' avertir le conducteur si la batterie est mal connectée et permet également de mettre en place des procédures de sauvegarde du fonctionnement du véhicule pour lui permettre d' arriver à bon port sans utiliser la batterie basse tension.

Claims

REVENDICATIONS
1. Procédé de détection d'une déconnexion de batterie électrique ( 10) dans un système équipé de deux réseaux électriques (2, 3) interconnectés par un convertisseur (DC/DC) de tension continue en tension continue (4), la batterie ( 10) appartenant à l'un des deux réseaux (2), et le convertisseur (4) étant configuré pour recharger la batterie ( 10), caractérisé en ce que l'on ajoute un signal de tension prédéfini (Uvar) à une composante de tension continue (Us) délivrée par le convertisseur (4) au réseau (2) comprenant la batterie ( 10) , et en ce que l'on mesure un courant (I) traversant la batterie ( 10) en y recherchant un signal d'intensité de courant ( Iaitematif) correspondant au signal de tension ajouté (Uvar), pour vérifier que la batterie ( 10) est bien connectée au réseau (2) .
2. Procédé de détection selon la revendication 1 , dans lequel le signal de tension (Uvar) ajouté et le signal d'intensité recherché
( laitematif) comportent des signaux périodiques.
3. Procédé de détection selon la revendication 1 , dans lequel le signal de tension ajouté est une modification, de signe prédéfini, du niveau de tension, et le signal d'intensité est une variation, de signe prédéfini, du niveau d'intensité.
4. Procédé de détection selon l'une des revendications 1 à 3 , dans lequel on n'ajoute le signal de tension (Uvar) et on ne recherche le signal de courant ( Iaitematif) ) que lorsque la valeur absolue de l'intensité (I) traversant la batterie ( 10) est inférieure à un seuil d'intensité ( Imin) .
5. Procédé de détection selon l'une quelconque des revendications précédentes , dans lequel, après avoir ajouté le signal de tension (Uvar) sans détecter le signal correspondant d'intensité ( laitematif) ) on augmente l'amplitude du signal de tension et on effectue une nouvelle tentative de détection du signal d'intensité de courant.
6. Procédé de détection selon l'une quelconque des revendications précédentes, dans lequel le signal de tension est obtenu en ajoutant un signal à une valeur de consigne pilotant la tension de sortie du convertisseur (4) .
7. Procédé de détection selon l'une quelconque des revendications 1 à 5 , dans lequel le signal de tension (Uvar) est produit par un circuit oscillant dédié ( 16) et est ajouté à la tension de sortie (Us) du convertisseur (4) .
8. Véhicule automobile ( 1 ) équipé de deux réseaux électriques (2, 3) interconnectés par un convertisseur (DC/DC) de tension continue en tension continue (4) , le convertisseur (4) étant configuré pour recharger la batterie ( 10), le véhicule comprenant un estimateur (7) de l'intensité de courant (I) traversant la batterie ( 10), caractérisé en ce que le véhicule comprend des moyens pour ajouter un signal prédéfini de tension à une tension continue délivré par le convertisseur (4) à la batterie ( 10) , et des moyens de filtrage aptes à détecter dans le signal d'intensité (I) mesuré par l'estimateur d'intensité (7) , un signal d'intensité de courant (Iaitematïf) correspondant au signal de tension ajouté (Uvar) -
9 . Véhicule selon la revendication 8, comprenant une unité de commande électronique ( 12) configurée pour déclencher l'ajout du signal de tension (Uvar) quand la valeur absolue de l'intensité ( I) de courant traversant la batterie ( 10) devient inférieure à un seuil d'intensité ( Imin) .
10. Véhicule selon l'un des revendications 8 ou 9 , dans lequel l'unité de commande électronique ( 12) est configurée pour émettre un message d'alerte si pendant une durée supérieure à un seuil de durée, le signal d'intensité ( Iaitematif) n'est pas détecté alors que le signal de tension (Uvar) est ajouté à la tension de sortie continue (Us) du convertisseur.
PCT/FR2014/051586 2013-08-22 2014-06-25 Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile WO2015025089A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016535513A JP6306185B2 (ja) 2013-08-22 2014-06-25 自動車両の電源バッテリの断線検出方法
CN201480051241.7A CN105556320B (zh) 2013-08-22 2014-06-25 用于检测机动车辆的供电电池的断开的方法
EP14752901.0A EP3036549A1 (fr) 2013-08-22 2014-06-25 Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1358125A FR3009869B1 (fr) 2013-08-22 2013-08-22 Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile
FR1358125 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025089A1 true WO2015025089A1 (fr) 2015-02-26

Family

ID=49949779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2014/051586 WO2015025089A1 (fr) 2013-08-22 2014-06-25 Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile

Country Status (5)

Country Link
EP (1) EP3036549A1 (fr)
JP (1) JP6306185B2 (fr)
CN (1) CN105556320B (fr)
FR (1) FR3009869B1 (fr)
WO (1) WO2015025089A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017001046A1 (fr) * 2015-06-30 2017-01-05 Audi Ag Procédé de fonctionnement d'un réseau de bord électrique d'un véhicule automobile et véhicule automobile
TWI613117B (zh) * 2017-01-17 2018-02-01 三陽工業股份有限公司 節能判斷方法
WO2018046166A1 (fr) * 2016-09-06 2018-03-15 Robert Bosch Gmbh Dispositif et procédé de détection d'une liaison électrique manquante entre un accumulateur électrique et un système d'alimentation électrique, notamment un réseau de bord d'un véhicule à moteur
FR3057672A1 (fr) * 2016-10-19 2018-04-20 Renault S.A.S. Confirmation du diagnostic de deconnexion batterie 12 volts d'un reseau de bord avec alternateur pilote
FR3073684A1 (fr) * 2017-11-16 2019-05-17 Valeo Equipements Electriques Moteur Machine electrique pour un vehicule automobile comprenant un capteur de courant
FR3085486A1 (fr) 2018-08-29 2020-03-06 Renault S.A.S Procede et systeme de detection d'un court-circuit ou d'un circuit ouvert d'une batterie 12v lors d'une phase de roulage d'un vehicule automobile
WO2023099419A1 (fr) * 2021-12-01 2023-06-08 Volkswagen Aktiengesellschaft Procédé d'évaluation d'une connexion électrique entre un accumulateur d'énergie électrique et un réseau de bord, système d'évaluation de batterie électronique et véhicule

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6610504B2 (ja) * 2016-10-31 2019-11-27 トヨタ自動車株式会社 電力供給システム
US20220034954A1 (en) * 2018-09-13 2022-02-03 Meta System S.P.A. System for checking the electrical insulation in converters for electric cars
FR3093187B1 (fr) * 2019-02-21 2021-02-19 Psa Automobiles Sa Procédé de diagnostic d’une batterie d’un véhicule automobile
JP2021078295A (ja) * 2019-11-12 2021-05-20 株式会社東芝 充電装置、電池診断システム、及び、充電方法
FR3113640B1 (fr) 2020-08-25 2022-08-05 Psa Automobiles Sa Vehicule securise vis-a-vis du risque de perte d’une batterie de servitude.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448778B1 (en) * 2001-01-29 2002-09-10 Honda Of America Mfg., Inc. Automated verification of proper connectivity of components to a wiring harness during assembly of article of manufacture
US20050075806A1 (en) * 2003-10-01 2005-04-07 General Electric Company Method and system for testing battery connectivity
WO2011114032A1 (fr) * 2010-03-19 2011-09-22 Peugeot Citroën Automobiles SA Dispositif de détection de déconnexion d'une batterie d'un réseau d'alimentation électrique
DE102011087678A1 (de) * 2011-12-02 2013-06-06 Conti Temic Microelectronic Gmbh Vorrichtung zur Erfassung des Zustands eines zu prüfenden Akkumulators

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745149B2 (ja) * 1989-04-25 1998-04-28 松下電工株式会社 信号回線の断線検知方法及びこの方法を用いた断線検知システム
JP4538990B2 (ja) * 2001-06-12 2010-09-08 株式会社豊田自動織機 電圧制御装置
JP2005354825A (ja) * 2004-06-11 2005-12-22 Nissan Motor Co Ltd ハイブリッド車両のsoc演算装置
JP5071516B2 (ja) * 2010-04-22 2012-11-14 株式会社デンソー 電力変換装置
JP2012242330A (ja) * 2011-05-23 2012-12-10 Omron Automotive Electronics Co Ltd 漏電検知装置
KR101262973B1 (ko) * 2011-05-24 2013-05-08 기아자동차주식회사 하이브리드 전기 차량의 비상주행 제어시스템 및 그 제어방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6448778B1 (en) * 2001-01-29 2002-09-10 Honda Of America Mfg., Inc. Automated verification of proper connectivity of components to a wiring harness during assembly of article of manufacture
US20050075806A1 (en) * 2003-10-01 2005-04-07 General Electric Company Method and system for testing battery connectivity
WO2011114032A1 (fr) * 2010-03-19 2011-09-22 Peugeot Citroën Automobiles SA Dispositif de détection de déconnexion d'une batterie d'un réseau d'alimentation électrique
DE102011087678A1 (de) * 2011-12-02 2013-06-06 Conti Temic Microelectronic Gmbh Vorrichtung zur Erfassung des Zustands eines zu prüfenden Akkumulators

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017001046A1 (fr) * 2015-06-30 2017-01-05 Audi Ag Procédé de fonctionnement d'un réseau de bord électrique d'un véhicule automobile et véhicule automobile
CN107735276A (zh) * 2015-06-30 2018-02-23 奥迪股份公司 用于运行机动车的车载电网的方法和机动车
US20190031030A1 (en) * 2015-06-30 2019-01-31 Audi Ag Method for Operating an Electrical System of a Motor Vehicle, and Motor Vehicle
US10500960B2 (en) 2015-06-30 2019-12-10 Audi Ag Method for operating an electrical system of a motor vehicle, and motor vehicle
WO2018046166A1 (fr) * 2016-09-06 2018-03-15 Robert Bosch Gmbh Dispositif et procédé de détection d'une liaison électrique manquante entre un accumulateur électrique et un système d'alimentation électrique, notamment un réseau de bord d'un véhicule à moteur
US11204381B2 (en) 2016-09-06 2021-12-21 Robert Bosch Gmbh Device and method for detecting a missing electrical connection of an energy store to an energy-supply system, particularly an electrical system of a motor vehicle
FR3057672A1 (fr) * 2016-10-19 2018-04-20 Renault S.A.S. Confirmation du diagnostic de deconnexion batterie 12 volts d'un reseau de bord avec alternateur pilote
TWI613117B (zh) * 2017-01-17 2018-02-01 三陽工業股份有限公司 節能判斷方法
FR3073684A1 (fr) * 2017-11-16 2019-05-17 Valeo Equipements Electriques Moteur Machine electrique pour un vehicule automobile comprenant un capteur de courant
WO2019097158A1 (fr) * 2017-11-16 2019-05-23 Valeo Equipements Electriques Moteur Machine electrique pour un vehicule automobile comprenant un capteur de courant
FR3085486A1 (fr) 2018-08-29 2020-03-06 Renault S.A.S Procede et systeme de detection d'un court-circuit ou d'un circuit ouvert d'une batterie 12v lors d'une phase de roulage d'un vehicule automobile
WO2023099419A1 (fr) * 2021-12-01 2023-06-08 Volkswagen Aktiengesellschaft Procédé d'évaluation d'une connexion électrique entre un accumulateur d'énergie électrique et un réseau de bord, système d'évaluation de batterie électronique et véhicule

Also Published As

Publication number Publication date
CN105556320B (zh) 2019-08-30
FR3009869A1 (fr) 2015-02-27
FR3009869B1 (fr) 2016-10-21
JP6306185B2 (ja) 2018-04-04
JP2016528870A (ja) 2016-09-15
CN105556320A (zh) 2016-05-04
EP3036549A1 (fr) 2016-06-29

Similar Documents

Publication Publication Date Title
EP3036549A1 (fr) Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile
EP2715909B1 (fr) Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe
EP2788221B1 (fr) Procede de gestion d'un alternateur associe a au moins une batterie d'alimentation et entraine par un moteur thermique
WO2008000980A1 (fr) Systeme micro-hybride pour vehicule automobile incorporant un module de strategies de pilotage
FR2898742A1 (fr) Dispositif de commande permettant une commande economique et fiable d'un generateur electrique.
FR2918027A1 (fr) Procede de pilotage de systeme micro-hybride pour vehicule, ainsi qu'unite de stockage d'energie et systeme hybride pour la mise en oeuvre de celui-ci
WO2019122696A1 (fr) Procédé de contrôle d'un convertisseur de courant continu dans un réseau de bord d'un véhicule automobile
EP3700053A1 (fr) Système et procédé de précharge d'un condensateur par une batterie comportant une résistance de précharge et un dispositif hacheur
EP2561595B1 (fr) Procede de commande de regulation d'un alternateur de vehicule automobile, et dispositifs correspondants
FR2996703A1 (fr) Procede de recuperation d'energie electrique avec lissage de tension sur un reseau electrique embarque
EP2859217B1 (fr) Procédé de démarrage d'un moteur à combustion interne, système et calculateur associés
FR3023658B1 (fr) Machine electrique tournante et systeme de demarrage de moteur
EP3313687B1 (fr) Procédé de gestion de la température d'une batterie d'un véhicule hybride
FR2992487A1 (fr) Procede de gestion d'un reseau electrique, agencement pour la mise en oeuvre du procede, support d'enregistrement et programme informatique associes au procede, vehicule automobile
EP2476001A1 (fr) Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur
EP2589131B1 (fr) Alimentation d'un reseau de bord d'un vehicule automobile
EP3802230B1 (fr) Gestion de l'alimentation d'un réseau électrique d'un véhicule automobile hybride
EP2622206A2 (fr) Procede de gestion de l'arret et du redemarrage automatique d'un moteur thermique de vehicule automobile et vehicule automobile correspondant
FR2960298A1 (fr) Procede de detection de defaut de connexion pour capteur de batterie dans un vehicule
EP2292459B1 (fr) Procédé de charge d'un module auxiliaire de stockage d'énergie
FR2938987A1 (fr) Procede de limitation de courant d'excitation maximum dans un systeme alterno-demarreur
FR2811944A1 (fr) Dispositif de transmission electronique de couple sans batterie de puissance
WO2020157394A1 (fr) Procede de pilotage d'un generateur couple a une roue-libre d'un vehicule automobile
FR3104515A1 (fr) Procede de controle d'une machine electrique d'un vehicule hybride
WO2013178946A1 (fr) Dispositif de commande auxiliaire des interrupteurs electroniques d'un convertisseur de tension

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480051241.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14752901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014752901

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016535513

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE