WO2011030024A1 - Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur - Google Patents

Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur Download PDF

Info

Publication number
WO2011030024A1
WO2011030024A1 PCT/FR2010/051692 FR2010051692W WO2011030024A1 WO 2011030024 A1 WO2011030024 A1 WO 2011030024A1 FR 2010051692 W FR2010051692 W FR 2010051692W WO 2011030024 A1 WO2011030024 A1 WO 2011030024A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage means
operating state
supercapacitor
speed
threshold value
Prior art date
Application number
PCT/FR2010/051692
Other languages
English (en)
Inventor
Patrice Cinneri
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Priority to EP10761039A priority Critical patent/EP2476001A1/fr
Publication of WO2011030024A1 publication Critical patent/WO2011030024A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/005Testing of electric installations on transport means
    • G01R31/006Testing of electric installations on transport means on road vehicles, e.g. automobiles or trucks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/64Testing of capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for determining an operating state of electrical energy storage means consisting of at least one supercapacitor, a device for implementing said method, usable in a stop device and automatic restart of the engine of a vehicle, in particular a micro-hybrid motor vehicle.
  • a & R device In order to limit the fuel consumption and the pollution of thermal engines, certain vehicles are equipped with a device for stopping and restarting the engine (hereinafter referred to as "A & R device” and designated by “Stop & Start” " in English).
  • the engine stop is automatically controlled whenever the vehicle speed is practically zero and the engine automatically restarts following a need expressed by the driver (for example action on the accelerator pedal or release of the brake pedal) or following a need of the vehicle (for example to maintain the temperature of certain elements, to maintain heating in the cabin in winter or air conditioning in summer or to maintain the temperature of the catalyst and therefore its effectiveness).
  • An A & R device comprises a logic circuit connected to sensors controlling the occurrence of certain conditions and if one or more of these conditions occur, the A & R device controls either stopping the engine (by cutting the injection example, the engine restart when the engine is stopped.
  • the restart is carried out through an electrotechnical chain comprising electrical energy storage means connected to a reversible alternator, itself connected to the crankshaft of the engine by a system of pulleys and transmission belt.
  • the electrical energy storage means may consist of one or more batteries and / or a super capacitor or super capacitor.
  • the storage means, as well as the various electrical equipment of the vehicle, are powered by the alternator when the latter is driven by the engine (transformation of mechanical energy into electrical energy).
  • a current electrotechnical architecture incorporates a reversible alternator, a starter, a 12V lead-acid battery and additional electrical energy storage means consisting of a set of supercapacitors.
  • said addictive storage means can be:
  • start-up services starter-battery circuit-additional storage means
  • restart alternative-battery circuit-additional storage means
  • a motor vehicle power supply system that includes two sources of electrical energy storage such as battery and supercapacitors. Off the start, both sources are connected in parallel and their voltages are equivalent. When starting, the two sources are put in series to feed twice a starter.
  • a method of managing an operation of a supercapacitor in which, by heating said supercapacitor, the internal resistance of said supercapacitor is reduced so that the activation of the supercapacitor functional unit by said supercapacitor can then be done under better conditions.
  • Overcapacity of the supercapacitor is thus avoided since the reduction of the internal resistance by heating makes it possible, especially at the end of life, to compensate for the aging effects (increase of the internal resistance) of the supercapacitor.
  • SOH Styrene-Coefficient Of Health
  • SOH estimator requires the implementation of relatively heavy algorithms.
  • the object of the present invention is to propose a method for determining the operating state of electrical energy storage means such as one or more supercapacitors equipping in particular an "A & R" system for a micro-vehicle. hybrid, hybrid.
  • This determination and the characterization of the state of the supercapacitor (s) thus makes it possible to diagnose an aging and possibly a potential failure of the supercapacitor (s) and thus to warn the user who can then replace them and / or in place degraded modes of operation.
  • the invention therefore relates to a method for determining the operating state of electrical energy storage means consisting of at least one supercapacitor, characterized in that, during the charging of said energy storage means electrical, the voltage across the terminals of said means is measured and the time interval required for said means to load an initial voltage "Uinit” at a final voltage value "Ufinal” under a given constant current I is measured, the load speed of said means is calculated in V / s, said load speed is compared with at least one given speed threshold value, and when the measured load speed is lower than said threshold value, it is determined that the means have operating state said in "good health" and when the charging speed is greater than this same threshold value, it is determined that the means have a state of operation said "in f in life ".
  • the load speed threshold value is a parameterizable value according to the characteristics of the supercapacitor which corresponds to a capacity loss value of the nominal capacity reflecting an end of life state. In general, it is chosen so as to correspond to a loss of at least 30% of the capacity of the supercapacitor (s).
  • the method for determining a state of operation of storage means such as a set of supercapacitors allows a diagnosis of the state of health or aging of the supercapacitor or supercapacitors, based on simple physical characteristics (terminal voltage, charging / discharging time, etc.).
  • the method according to the invention is based on the physical behavior of one or more supercapacitors which can be modeled (first-order) by a series resistance capacitance circuit.
  • Such a model can notably be used to equate the model in the manner
  • the current intended to recharge the supercapacitors is regulated by dedicated electronics according to three different constant levels:
  • the method according to the invention by measuring the time " ⁇ " set by the electrical energy storage means such that at least one supercapacitor to charge (AU) an initial voltage “Uinit” to a final voltage “Ufinal” (setpoint value) under a given constant current (non-zero), makes it possible to calculate the charge rate ( ⁇ / ⁇ ) of said storage means in V / s, which then makes it possible to determine the state of said supercapacitor by comparison with a given threshold value.
  • each start / restart involving the storage means of electrical energy can be put to contribution.
  • the start / restart phases have the effect of discharging the supercapacitors, following which is immediately recharged. It is at this point that the process is implemented.
  • the charging speed is less than a speed value corresponding to a given critical threshold, it can be considered that the set of supercapacitors is still healthy, which does not require any particular action and as soon as the charging speed is greater than this same threshold, then it is determined that the assembly is reaching the end of its life, and that security measures must be activated because the end-of-life threshold value is approaching the capacity.
  • the diagnosis is confirmed if and only if the statement " load speed greater than the threshold 'is established on at least N successive loads.
  • the operating state is determined "end of life" when the load speed is greater than the threshold value on at least N successive loads.
  • the diagnosis "end of life” As soon as the diagnosis "end of life” is confirmed, it transmits the information to the user, for example by triggering an alarm in the vehicle such as by turning on an indicator light on the dashboard.
  • the determination of the "end of life” state can trigger the control of degraded modes of operation to limit or even stop the solicitations of the set of supercapacitors, to the extent that it is about to be unusable.
  • the determined charging speed is compared with at least two load speed thresholds, each threshold corresponding to a given aging state storage means such as a set of supercapacitors , according to which different "progressive" degraded modes can be controlled.
  • a given aging state storage means such as a set of supercapacitors
  • the exceeding of a first threshold may cause the limitation of the voltage applied across the supercapacitors
  • the exceeding of a second threshold would further limit the voltage, and so on, up to the critical threshold. prohibiting the use of supercapacitors.
  • the method according to the invention provides an indicator of the health status of a supercapacitor or a set of supercapacitors as electrical energy storage means from simple information to measure and operate, such as: voltage measurements, counter, constant charge current level, ....
  • the purpose is to be able to diagnose in time a set of supercapacitors that reaches the end of life, but also to adjust the solicitations to which he is subject in the course of time.
  • the invention also relates to a device for determining the operating state of electrical energy storage means consisting of at least one supercapacitor for implementing the method of the invention, comprising measurement means. the voltage at the terminals of the electrical energy storage means, means for measuring the time interval for charging said means between an initial voltage and a final voltage, means for calculating the charging speed and the means for comparing and analyzing said charge rate with respect to at least one threshold value to determine the operating state of said storage means.
  • the invention therefore also relates to an "A &R" system of the type comprising a reversible alternator, a starter, a 12V lead battery and additional electrical energy storage means consisting of at least one supercapacitor, characterized in that it further comprises a device for determining the operating state of the electrical energy storage means, in which the operation determination method according to the invention is implemented in an on-board manner, it is ie implementing a functional self-monitoring made by the vehicle and potentially activating fault codes and degraded modes.
  • Such a method is intended to diagnose the supercapacitors of an "A & R" system regularly, and not only via requests sent by an external diagnostic tool as was the case beforehand.
  • the invention also relates to a motor vehicle equipped with supercapacitors such as micro-hybrid vehicles, “mild-hybrid”, “full-hybrid”, electric ....
  • Figure 1 schematically and modeled a supercapacitor
  • Figure 2 schematically shows an "A & R" system in a motor vehicle
  • FIG. 3 represents a curve showing the theoretical evolution of the capacity of a supercapacitor
  • FIG. 4 represents the method of determination in the form of a block diagram.
  • the method according to the invention is based on the physical behavior of a supercapacitor 1 which can be modeled (first order) by a circuit 2 consisting of a resistance and a capacitance in series as can be seen in Figure 1.
  • Such electrical energy storage means 3 are used in the case of an A & R system such as that shown in Figure 2 they consist for example of a set of two supercapacitors 1 in series.
  • the A & R system thus comprises the electrical energy storage means 3 and a DC / DC voltage converter 4, said means 3 being able to be put in series or in parallel with the battery 8.
  • the system also comprises a starter 5 , an alternator 6 and is connected to the on-board network 7.
  • the voltage U is thus measured at the terminals of the supercapacitor 1 or of a set of supercapacitors during charging and the time interval At which the supercapacitor 1 is charged to charge is measured. from an initial voltage Ui to a given final voltage Uf, for a given current of intensity I.
  • the decrease in capacity is slow (outside the elbow at the beginning of use), and monotonous, the aging of the supercapacitor is inherently irreversible. Knowing that the capacity decreases over time, and thanks to the formula linking speed of charge and capacity, it is possible to link the charging speed of the supercapacitor assembly to aging. In other words, the older the supercapacitor, the faster it will charge (and discharge).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un procédé de détermination de l'état de fonctionnement de moyens de stockage d'énergie électrique constitués d'au moins supercondensateur. L'invention consiste en ce que, lors de la charge desdits moyens de stockage d'énergie électrique, on mesure la tension aux bornes desdits moyens et on mesure l'intervalle de temps Δt nécessaire auxdits moyens pour se charger d'une tension initiale « Uinit » à une valeur de consigne de tension finale « Ufinal » sous un courant I constant donné, on calcule la vitesse de charge desdits moyens en V/s, on compare ladite vitesse de charge à au moins une valeur seuil de vitesse donnée, et lorsque la vitesse de charge mesurée est inférieure à ladite valeur seuil, on détermine que les moyens présentent un état de fonctionnement dit en « bonne santé » et lorsque la vitesse de charge est supérieure à cette même valeur seuil, on détermine que les moyens présentent un état de fonctionnement dit « en fin de vie ». Application aux véhicules équipés de système « A & R ».

Description

Procédé de détermination d'un état de fonctionnement de moyens de stockage d'énergie électrique constitués d'au moins un supercondensateur
[0001 ] La présente invention revendique la priorité de la demande française 0956127 déposée le 9 Septembre 2009 dont le contenu (texte, dessins et revendications) est ici incorporé par référence.
[ooo2] La présente invention concerne un procédé de détermination d'un état de fonctionnement de moyens de stockage d'énergie électrique constitués d'au moins un supercondensateur, un dispositif pour mettre en œuvre ledit procédé, utilisable dans un dispositif d'arrêt et de redémarrage automatique du moteur thermique d'un véhicule, notamment d'un véhicule automobile micro-hybride.
[ooo3] De façon à limiter la consommation de carburant et la pollution des moteurs thermiques, certains véhicules sont équipés d'un dispositif d'arrêt et de redémarrage du moteur thermique (ci-après « dispositif A&R » et désigné par « Stop & Start » en anglais). L'arrêt du moteur est commandé automatiquement chaque fois que la vitesse du véhicule est pratiquement nulle et le moteur redémarre automatiquement suite à un besoin exprimé par le conducteur (par exemple action sur la pédale d'accélérateur ou relâchement de la pédale de frein) ou suite à un besoin du véhicule (par exemple pour maintenir la température de certains éléments, pour maintenir le chauffage dans l'habitacle en hiver ou la climatisation en été ou pour maintenir la température du catalyseur et donc son efficacité).
[ooo4] Un dispositif A&R comporte un circuit logique relié à des capteurs contrôlant l'apparition de certaines conditions et si l'une ou plusieurs de ces conditions apparaissent, le dispositif A&R commande soit l'arrêt du moteur (par coupure de l'injection de carburant par exemple), soit le redémarrage du moteur lorsque ce dernier est arrêté. Le redémarrage est effectué grâce à une chaîne électrotechnique comprenant des moyens de stockage d'énergie électrique reliés à un alternateur réversible, lui-même relié au vilebrequin du moteur par un système de poulies et de courroie de transmission. Les moyens de stockage d'énergie électrique peuvent être constitués par une ou plusieurs batteries et/ou par une super capacité ou super condensateur. Les moyens de stockage, ainsi que les divers équipements électriques du véhicule, sont alimentés par l'alternateur lorsque ce dernier est entraîné par le moteur thermique (transformation d'énergie mécanique en énergie électrique). Lorsque l'alternateur fonctionne en moteur électrique, alimenté par les moyens de stockage, il actionne la rotation du vilebrequin (transformation d'énergie électrique en énergie mécanique). Le moteur thermique peut ainsi être mis en marche par l'alternateur. [ooo5] Une architecture actuelle électrotechnique intègre un alternateur réversible, un démarreur, une batterie au plomb 12V et des moyens de stockage d'énergie électrique additionnels constitués d'un ensemble de supercondensateurs. Au moyen d'une électronique de commande spécifique, lesdits moyens de stockage addictionnels peuvent être :
-mis en série avec la batterie, pour contribuer aux prestations de démarrage (circuit démarreur-batterie-moyens de stockage additionnels) et de redémarrage (circuit alternateur-batterie-moyens de stockage additionnels) et le maintien de la qualité du réseau de bord,
-mis en parallèle de l'alternateur (resp. la batterie) via un convertisseur de tension, pour assurer sa recharge lorsque le moteur est tournant (resp. à l'arrêt),
-isolé électriquement lorsque le système électrique ne requiert pas la contribution des moyens de stockage additionnels et que celui-ci est chargé.
[ooo6] Les supercondensateurs sont des composants dont l'utilisation est relativement nouvelle dans le domaine de l'automobile.
[ooo7] Par US 5 155 374, on connaît notamment un système d'alimentation pour véhicule automobile comprenant deux sources de stockage d'énergie électrique telles que batterie et supercondensateurs. Hors du démarrage, les deux sources sont connectées en parallèle et leurs tensions sont donc équivalentes. Lors du démarrage, les deux sources sont mises en série pour alimenter au double un démarreur.
[ooo8] Les caractéristiques physiques d'un supercondensateur évoluent dans le temps, au fur et à mesure de l'utilisation qui en est faite. En particulier, la capacité d'un supercondensateur diminue dans le temps, au fur et à mesure de son utilisation et cette capacité donne donc une image de l'état de fonctionnement, c'est-à-dire l'état de santé ou l'état de vieillissement du supercondensateur. On peut estimer qu'un supercondensateur est en fin de vie dès que sa capacité est en-dessous d'un certain seuil de sa capacité nominale, un tel seuil étant paramétrable pour chaque type de supercondensateurs à partie des données fournisseurs. Par exemple, on peut estimer qu'un supercondensateur est en fin de vie dès que sa capacité a perdu 30% de sa capacité nominale. Compte-tenu de ce vieillissement, il est nécessaire d'adapter la façon de solliciter un supercondensateur ou le remplacer. [ooo9] Ainsi, dans FR 2 831 726, est proposé un procédé de gestion d'un fonctionnement d'un supercondensateur dans lequel on réduit, par échauffement dudit supercondensateur, la résistance interne dudit supercondensateur de telle sorte que l'activation de l'unité fonctionnelle par ledit supercondensateur peut ensuite se faire dans de meilleures conditions. On évite ainsi un surdimensionnement du supercondensateur puisque la réduction de la résistance interne par échauffement permet, surtout en fin de vie, de compenser les effets de vieillissement (augmentation de la résistance interne) du supercondensateur.
[ooi o] Dans US 2009/0024265 est décrit un système « A & R » permettant de démarrer un moteur micro-hybride dans lequel on peut adapter les paramètres du système « Arrêt & Redémarrage » en fonction du niveau de la dégradation détectée des supercondensateurs, dégradation due au vieillissement de ces derniers. Ainsi, on estime le temps de démarrage, au moment de la décharge du supercondensateur, et on compare ce temps estimé à un temps attendu. Si, lors de cette comparaison, il y a une différence entre temps estimé et temps attendu, en particulier si le temps de démarrage est bien plus élevé, ceci indique une perte de performances des supercondensateurs. Aussi, en modifiant les paramètres du système « A & R», par exemple en augmentant la tension appliquée lors de la recharge suivante, on compense le vieillissement du supercondensateur de sorte qu'on maintient une performance de démarrage (temps de démarrage) constante. [ooi i] Toutefois, un tel système présente cependant un inconvénient majeur dans la mesure où le vieillissement des supercondensateurs est certes compensé pour permettre le maintien des performances de démarrage mais il n'est pas signalé au conducteur du véhicule que le ou les supercondensateurs doivent faire l'objet d'un changement. [0012] Comme on a pu le voir, l'utilisation des supercondensateurs nécessite un certain nombre de précautions intrinsèques pour ne pas les endommager. Ainsi, il apparaît nécessaire de pouvoir mettre en œuvre des stratégies de diagnostic, afin d'éviter une mauvaise utilisation des supercondensateurs, notamment lorsque ceux-ci approchent de leur fin de vie. Des stratégies plus complexes existent, telles que l'estimation en continu d'un SOH (State Of Health) sous la forme d'un pourcentage, déterminé à partir de la capacité et de la résistance interne réelle de l'ensemble de supercondensateurs, eux-mêmes estimés à partir de mesures de courant et de tension instantanées. Une estimation en continu d'un SOH est relativement complexe à mettre en œuvre car la résistance interne d'un ensemble de supercondensateurs est une variable difficile à quantifier avec précision compte-tenu des ordres de grandeur (quelques milli Ohms) et de sa dispersion par rapport à la température. En outre, un estimateur de SOH nécessite la mise en œuvre d'algorithmes relativement lourds.
[0013] Le but de la présente invention est de proposer un procédé de détermination de l'état de fonctionnement de moyens de stockage d'énergie électrique tels qu'un ou plusieurs supercondensateurs équipant notamment un système « A & R » pour véhicule micro-hybride, hybride. Cette détermination et la caractérisation de l'état du ou des supercondensateurs permet ainsi de diagnostiquer un vieillissement et éventuellement une potentielle défaillance du ou des supercondensateurs et d'avertir ainsi l'utilisateur qui peut alors procéder au remplacement de ceux-ci et/ou mettre en place des modes dégradés de fonctionnement.
[0014] L'invention concerne donc un procédé de détermination de l'état de fonctionnement de moyens de stockage d'énergie électrique constitués d'au moins un supercondensateur, caractérisé en ce que, lors de la charge desdits moyens de stockage d'énergie électrique, on mesure la tension aux bornes desdits moyens et on mesure l'intervalle de temps nécessaire auxdits moyens pour se charger d'une tension initiale « Uinit » à une valeur de consigne de tension finale « Ufinal » sous un courant I constant donné, on calcule la vitesse de charge desdits moyens en V/s, on compare ladite vitesse de charge à au moins une valeur seuil de vitesse donnée, et lorsque la vitesse de charge mesurée est inférieure à ladite valeur seuil, on détermine que les moyens présentent un état de fonctionnement dit en « bonne santé » et lorsque la vitesse de charge est supérieure à cette même valeur seuil, on détermine que les moyens présentent un état de fonctionnement dit « en fin de vie ». [0015] De manière avantageuse, la valeur seuil de vitesse de charge est une valeur paramétrable en fonction des caractéristiques du supercondensateur qui correspond à une valeur de perte de capacité de la capacité nominale reflétant un état de fin de vie. En, général, elle est choisie de manière à correspondre à une perte d'au moins 30% de la capacité du ou des supercondensateurs.
[0016] Le procédé de détermination d'un état de fonctionnement de moyens de stockage tels qu'un ensemble de supercondensateurs selon l'invention permet un diagnostic de l'état de santé ou de vieillissement du ou des supercondensateurs, en se basant sur des caractéristiques physiques simples (tension aux bornes, temps de charge/décharge, etc.).
[0017] Le procédé selon l'invention repose sur le comportement physique d'un ou de plusieurs supercondensateurs qui peut être modélisé (au premier ordre) par un circuit Résistance Capacité série.
[0018] Lorsque de tels moyens de stockage d'énergie électrique sont utilisés dans le cas d'un système A & R, ils sont constitués par exemple d'un ensemble de deux supercondensateurs en série. Par conséquent, la résistance interne globale vaut le double de celle d'un supercondensateur, et la capacité globale vaut la moitié de celle d'un supercondensateur. Ceci étant, le modèle équivalent revient strictement au même.
[0019] Un tel modèle peut notamment être mis en équation du modèle de la manière
. t dU n dl I
suivante : — = R— +—
dt dt C
[0020] Le courant destiné à recharger les supercondensateurs est régulé par une électronique dédiée suivant trois niveaux constants différents :
-dans des conditions nominales, le courant de charge des supercondensateurs sera maximal,
-dans des conditions moyennes, le courant de charge sera modéré,
-dans des conditions dégradées, on interdit la recharge des supercondensateurs (courant de 0A).
[0021 ] Etant donné que le courant de charge est régulé à une valeur constante et abstraction faite des régimes transitoires (très courts devant les phases de charge des supercondensateurs), l'équation différentielle précédente peut être simplifiée (I constant, donc dl/dt nul) selon la formule suivante :
AU _ I
[0022] Cette relation entre la tension U, l'intensité du courant I et la capacité C permet de donner l'interprétation physique suivante : la vitesse de charge à savoir ΔΙΙ/Δΐ est égale au courant de recharge divisé par la capacité des supercondensateurs. Ainsi, pour un courant de recharge donné, il apparaît que plus la capacité est faible, plus la vitesse de charge ΔΙΙ/Δΐ (et donc ensuite de décharge) est rapide.
[0023] Sachant que la capacité diminue au cours du temps, et grâce à la formule ci- dessus liant vitesse de charge et capacité, il est ainsi possible de lier la vitesse de charge des supercondensateurs au vieillissement. Autrement dit, plus les supercondensateurs vieillissent, plus ils se chargent (et se déchargent) vite.
[0024] Aussi, le procédé selon l'invention en mesurant le temps « Δΐ » mis par les moyens de stockage d'énergie électrique tels qu'au moins un supercondensateur pour se charger (AU) d'une tension initiale « Uinit » à une tension finale « Ufinal » (valeur de consigne) sous un courant constant donné (non nul), permet de calculer la vitesse de charge (ΔΙΙ/Δΐ) desdits moyens de stockage en V/s, qui permet ensuite de déterminer l'état de santé dudit supercondensateur par comparaison avec un valeur de seuil donnée.
[0025] Afin de réaliser un calcul de vitesse de charge représentatif, on se limite de préférence aux charges d'une amplitude supérieure à quelques centaines de mV (paramétrable), car il ne serait pas judicieux de calculer une vitesse de charge sur une faible amplitude de tension, compte tenu des imprécisions de mesure.
[0026] De manière avantageuse, pour un véhicule équipé de la fonction A & R, les occurrences de procéder à des charges d'amplitude suffisante sont nombreuses : chaque démarrage/redémarrage mettant à contribution les moyens de stockage d'énergie électrique peut être mis à contribution. En effet, les phases de démarrage/redémarrage ont pour effet de décharger les supercondensateurs, suite à quoi on procède immédiatement à sa recharge. C'est à ce moment là que le procédé est mis en oeuvre.
[0027] Ainsi, tant que la vitesse de charge est inférieure à une valeur de vitesse correspondant à un seuil critique donné, on peut considérer que l'ensemble de supercondensateurs est encore en bonne santé, ce qui ne nécessite pas d'action particulière et dès que la vitesse de charge est supérieure à ce même seuil, alors on détermine que l'ensemble arrive en fin de vie, et que des mesures sécuritaires doivent être activées car on approche de la valeur seuil de fin de vie sur la capacité.
[0028] Selon un mode de mise en œuvre préféré du procédé de l'invention et afin d'éviter un faux diagnostic lié aux imprécisions de mesure de tension par simple comparaison avec un seuil, on confirme le diagnostic si et seulement si le constat « vitesse de charge supérieure au seuil » est établi sur au moins N charges successives. Ainsi, l'état de fonctionnement est déterminé « en fin de vie » lorsque la vitesse de charge est supérieure à la valeur seuil sur au moins N charges successives.
[0029] Si entre temps le constat n'est pas réalisé, c'est certainement que les cas précédents sont liés à un mauvais diagnostic, lié par exemple à un mauvais calcul de la vitesse de charge. Par ailleurs, étant donné que le vieillissement est un phénomène lent, il n'est pas pénalisant de « rater » un calcul parmi N.
[0030] Dès lors que le diagnostic « en fin de vie » est confirmé, on transmet l'information à l'utilisateur, par exemple en déclenchant une alarme dans le véhicule telle qu'en allumant un voyant indicateur sur le tableau de bord.
[0031 ] En outre, il est également possible que la détermination de l'état « en fin de vie » permette de déclencher la commande de modes de fonctionnement dégradés visant à limiter, voire à stopper, les sollicitations de l'ensemble de supercondensateurs, dans la mesure où celui-ci est sur le point d'être inutilisable.
[0032] Selon une forme de réalisation de l'invention, la vitesse de charge déterminée est comparée à au moins deux seuils de vitesse de charge, chaque seuil correspondant à un état de vieillissement donné des moyens de stockage tels qu'un ensemble de supercondensateurs, en fonction duquel différents modes dégradés « progressifs » peuvent être commandés. [0033] Ainsi, par exemple, le dépassement d'un premier seuil peut entraîner la limitation de la tension appliquée aux bornes des supercondensateurs, le dépassement d'un second seuil limiterait davantage la tension, et ainsi de suite, jusqu'au seuil critique interdisant l'utilisation des supercondensateurs.
[0034] Ainsi, le procédé selon l'invention permet de donner un indicateur de l'état de santé d'un supercondensateur ou d'un ensemble de supercondensateurs en tant que moyens de stockage d'énergie électrique à partir d'informations simples à mesurer et à exploiter, telles que : mesures de tension, compteur, niveau de courant de charge constant, .... La finalité est de pouvoir diagnostiquer à temps un ensemble de supercondensateurs qui arrive en fin de vie, mais également d'ajuster les sollicitations auquel il est sujet au cours du temps.
[0035] Enfin, un tel procédé de détermination de l'état de fonctionnement de supercondensateurs peut être appliqué dans le cadre de l'utilisation de ces moyens de stockage d'énergie électrique dans un système de « A & R » équipant un véhicule automobile mais il peut être mis en œuvre dans d'autres secteurs que l'automobile lors que des supercondensateurs sont utilisés.
[0036] L'invention concerne également un dispositif de détermination de l'état de fonctionnement de moyens de stockage d'énergie électrique constitué d'au moins un supercondensateur pour la mise en œuvre du procédé de l'invention, comportant des moyens de mesure de la tension aux bornes des moyens de stockage d'énergie électrique, des moyens de mesure de l'intervalle de temps pour charger lesdits moyens entre une tension initiale et une tension finale, des moyens de calcul de la vitesse de charge et des moyens de comparaison et d'analyse de ladite vitesse de charge par rapport à au moins une valeur de seuil pour déterminer l'état de fonctionnement desdits moyens de stockage.
[0037] L'invention concerne donc également un système « A & R » du type comportant un alternateur réversible, un démarreur, une batterie au plomb 12V et des moyens de stockage d'énergie électrique additionnels constitués d'au moins un supercondensateur, caractérisé en ce qu'il comporte en outre un dispositif de détermination de l'état de fonctionnement des moyens de stockage d'énergie électrique, dans lequel le procédé de détermination de fonctionnement selon l'invention est mis en œuvre de manière embarquée, c'est-à-dire mettant en œuvre une auto-surveillance fonctionnelle faite par le véhicule et activant potentiellement des codes défauts et des modes dégradés.
[0038] Un tel procédé est destiné à diagnostiquer les supercondensateurs d'un système « A & R » de manière régulière, et pas seulement via des requêtes envoyées par un outil de diagnostic extérieur comme cela était le cas au préalable.
[0039] Un tel procédé est mis en œuvre uniquement sur des phases de charge.
[0040] L'invention concerne également un véhicule automobile équipé de supercondensateurs tels que des véhicules micro-hybrides, « mild-hybrides », « full- hybrides », électriques....
[0041 ] On décrira maintenant l'invention plus en détails en référence au dessin dans lequel :
La figure 1 représente de manière schématique et modélisé un supercondensateur ;
La figure 2 représente de manière schématique un système « A & R » dans un véhicule automobile ;
La figure 3 représente une courbe montrant l'évolution théorique de la capacité d'un supercondensateur ; et
La figure 4 représente le procédé de détermination sous forme d'un diagramme en bloc.
[0042] Comme on l'a vu précédemment, le procédé selon l'invention repose sur le comportement physique d'un supercondensateur 1 qui peut être modélisé (au premier ordre) par un circuit 2 constitué d'une Résistance et d'une Capacité en série comme cela est visible à la figure 1 .
[0043] De tels moyens de stockage d'énergie électrique 3 sont utilisés dans le cas d'un système A & R tel que celui représenté à la figure 2 ils sont constitués par exemple d'un ensemble de deux supercondensateurs 1 en série. Le système A & R comporte ainsi les moyens de stockage d'énergie électrique 3 et un convertisseur de tension DC/DC 4, lesdits moyens 3 pouvant être mis en série ou en parallèle avec la batterie 8. le système comporte en outre un démarreur 5, un alternateur 6 et est relié au réseau de bord 7. [0044] Selon le procédé de l'invention, on mesure donc la tension U aux bornes du supercondensateur 1 ou d'un ensemble de supercondensateurs lors de la charge et on mesure l'intervalle de temps At que met le supercondensateur 1 pour se charger d'une tension initiale Ui à une tension finale donnée Uf, pour un courant d'intensité donnée I. Ainsi selon la formule : ΔΙΙ/Δΐ = l/C, on peut déterminer que plus la capacité C est faible plus la vitesse de charge sera rapide.
[0045] En effet, comme on peut le voir de la courbe de la figure 3, la diminution de la capacité est lente (en dehors du coude en début d'utilisation), et monotone, le vieillissement du supercondensateur étant par nature irréversible. Sachant que la capacité diminue au cours du temps, et grâce à la formule liant vitesse de charge et capacité, il est possible de lier la vitesse de charge de l'ensemble de supercondensateur au vieillissement. Autrement dit, plus le supercondensateur vieillit, plus il se chargera (et se déchargera) vite.
[0046] Ainsi, à partir de la mesure de la tension pour un courant donné, on peut déterminer les paramètres de charge du supercondensateur AU et Δΐ à partir desquels on détermine ensuite la vitesse de charge (ΔΙΙ/Δΐ) qui permet de déterminer le capacité du supercondensateur et permet ainsi de déterminer l'état de fonctionnement du supercondensateur, cette capacité est ensuite comparée à des valeurs seuil qui permettent ainsi de définir un diagnostic sur l'état de fonctionnement de l'ensemble de supercondensateur comme étant « en fin de vie » « en cours de vieillissement », « faible vieillissement », par exemple.

Claims

Revendications
1. Procédé de détermination de l'état de fonctionnement de moyens de stockage d'énergie électrique constitués d'au moins supercondensateur (1 ), caractérisé en ce que, lors de la charge desdits moyens de stockage d'énergie électrique, on mesure la tension aux bornes desdits moyens et on mesure l'intervalle de temps Δί nécessaire auxdits moyens pour se charger d'une tension initiale « Uinit » à une valeur de consigne de tension finale « Ufinal » sous un courant I constant donné, on calcule la vitesse de charge desdits moyens en V/s, on compare ladite vitesse de charge à au moins une valeur seuil de vitesse donnée, et lorsque la vitesse de charge mesurée est inférieure à ladite valeur seuil, on détermine que les moyens présentent un état de fonctionnement dit en « bonne santé » et lorsque la vitesse de charge est supérieure à cette même valeur seuil, on détermine que les moyens présentent un état de fonctionnement dit « en fin de vie ».
2. Procédé selon la revendication 1 , caractérisé en ce que la valeur seuil de vitesse de charge est une valeur paramétrable en fonction des caractéristiques du ou des supercondensateurs (1 ) qui correspond à une valeur de perte de capacité de la capacité nominale reflétant un état de fin de vie.
3. Procédé selon la revendication 1 , caractérisé en ce que la valeur seuil est choisie de manière à correspondre à une perte d'au moins 30% de la capacité nominale du ou des supercondensateurs (1 ).
4. Procédé selon l'une des revendications 1 et 2, caractérisé en ce que l'état de fonctionnement est déterminé « en fin de vie » lorsque la vitesse de charge est supérieure à la valeur seuil sur au moins N charges successives.
5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que, dès que l'état de fonctionnement est déterminé « en fin de vie », on transmet l'information à l'utilisateur, tel qu'en déclenchant une alarme dans le véhicule notamment en allumant un voyant indicateur sur le tableau de bord.
6. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la vitesse de charge déterminée est comparée à au moins deux seuils de vitesse de charge, chaque seuil correspondant à un état de vieillissement donné des moyens de stockage, en fonction duquel différents modes dégradés « progressifs » peuvent être commandés.
7. Dispositif de détermination de l'état de fonctionnement de moyens de stockage d'énergie électrique constitué d'au moins un supercondensateur (1 ), caractérisé en ce qu'il comporte des moyens de mesure de la tension aux bornes des moyens de stockage d'énergie électrique, des moyens de mesure de l'intervalle de temps Δί pour charger lesdits moyens entre une tension initiale « Uinit » et une tension finale « Ufinal », des moyens de calcul de la vitesse de charge (ΔΙΙ/Δΐ) et des moyens de comparaison et d'analyse de ladite vitesse de charge par rapport à au moins une valeur de seuil pour déterminer l'état de fonctionnement desdits moyens de stockage.
8. Système « A & R » du type comportant un alternateur réversible, un démarreur, une batterie au plomb 12V et des moyens de stockage d'énergie électrique additionnels constitués d'au moins un supercondensateur (1 ), caractérisé en ce qu'il comporte en outre un dispositif de détermination de l'état de fonctionnement des moyens de stockage d'énergie électrique selon la revendication 6.
9. Véhicule automobile comportant un système « A & R » selon la revendication 8.
PCT/FR2010/051692 2009-09-09 2010-08-11 Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur WO2011030024A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10761039A EP2476001A1 (fr) 2009-09-09 2010-08-11 Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0956127A FR2949864B1 (fr) 2009-09-09 2009-09-09 Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur
FR0956127 2009-09-09

Publications (1)

Publication Number Publication Date
WO2011030024A1 true WO2011030024A1 (fr) 2011-03-17

Family

ID=42115720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2010/051692 WO2011030024A1 (fr) 2009-09-09 2010-08-11 Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur

Country Status (3)

Country Link
EP (1) EP2476001A1 (fr)
FR (1) FR2949864B1 (fr)
WO (1) WO2011030024A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516006A (zh) * 2012-06-26 2014-01-15 三星Sdi株式会社 电池组和电源设备
CN106926725A (zh) * 2017-03-21 2017-07-07 上汽通用汽车有限公司 车辆用蓄电池的使用寿命预测方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3101430B1 (fr) * 2019-09-27 2021-09-03 Continental Automotive Procédé d’estimation du vieillissement d’une batterie d’un véhicule

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956127A (fr) 1947-12-02 1950-01-26
WO1989006366A1 (fr) * 1987-12-30 1989-07-13 Robert Bosch Gmbh Procede et dispositif pour controler la capacite d'un condensateur
US5155374A (en) 1989-03-31 1992-10-13 Isuzu Motors Limited Driving apparatus for starting an engine with starter motor energized by a capacitor
FR2831726A1 (fr) 2001-10-26 2003-05-02 Renault Procede de gestion du fonctionnement d'une source de stockage d'energie electrique, notamment d'un supercondensateur
DE10309937A1 (de) * 2003-03-07 2004-09-23 Audi Ag Diagnoseschaltung zur Prüfung eines Kondensators und zugehöriges Verfahren
US20090024265A1 (en) 2007-07-19 2009-01-22 Bernhard Kortschak Micro-Hybrid Motor Vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460441B2 (en) * 2007-01-12 2008-12-02 Microchip Technology Incorporated Measuring a long time period

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR956127A (fr) 1947-12-02 1950-01-26
WO1989006366A1 (fr) * 1987-12-30 1989-07-13 Robert Bosch Gmbh Procede et dispositif pour controler la capacite d'un condensateur
US5155374A (en) 1989-03-31 1992-10-13 Isuzu Motors Limited Driving apparatus for starting an engine with starter motor energized by a capacitor
FR2831726A1 (fr) 2001-10-26 2003-05-02 Renault Procede de gestion du fonctionnement d'une source de stockage d'energie electrique, notamment d'un supercondensateur
DE10309937A1 (de) * 2003-03-07 2004-09-23 Audi Ag Diagnoseschaltung zur Prüfung eines Kondensators und zugehöriges Verfahren
US20090024265A1 (en) 2007-07-19 2009-01-22 Bernhard Kortschak Micro-Hybrid Motor Vehicle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2476001A1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103516006A (zh) * 2012-06-26 2014-01-15 三星Sdi株式会社 电池组和电源设备
US9263908B2 (en) 2012-06-26 2016-02-16 Samsung Sdi Co., Ltd. Battery pack having linear voltage profile, and SOC algorithm applying to the battery pack
CN106926725A (zh) * 2017-03-21 2017-07-07 上汽通用汽车有限公司 车辆用蓄电池的使用寿命预测方法和装置

Also Published As

Publication number Publication date
EP2476001A1 (fr) 2012-07-18
FR2949864B1 (fr) 2011-08-19
FR2949864A1 (fr) 2011-03-11

Similar Documents

Publication Publication Date Title
EP2160312B1 (fr) Procede de pilotage de systeme micro-hybride pour vehicule, ainsi qu'unite de stockage d'energie et systeme hybride pour la mise en oeuvre de celui-ci
EP2715909B1 (fr) Procede de rechargement d'un couple de batteries de vehicule de tensions nominales differentes, et systeme associe
EP2991853B1 (fr) Procédé de gestion du refroidissement d'une batterie à seuils de refroidissement ajustables
FR2988856A1 (fr) Procede et dispositif de diagnostic d'un circuit de decharge d'un systeme electrique
WO2008000980A1 (fr) Systeme micro-hybride pour vehicule automobile incorporant un module de strategies de pilotage
WO2008139103A2 (fr) Dispositif de stockage d'energie, notamment pour vehicule automobile
FR3009869A1 (fr) Procede de detection d'une deconnexion de batterie d'alimentation d'un vehicule automobile
EP2001074B1 (fr) Système et procédé de détermination de la perte de capacité et de l'énergie d'une batterie
EP2476001A1 (fr) Procede de determination d'un etat de fonctionnement de moyens de stockage d'energie electrique constitues d'au moins un supercondensateur
WO2021140283A1 (fr) Diagnostic d'état d'une batterie de servitude d'un véhicule par impulsions de courant
EP3087654B1 (fr) Procédé et système de gestion de batterie pour véhicule automobile
FR2991257A1 (fr) Reseau embarque dans un vehicule automobile comprenant un moteur et au moins deux accumulateurs ayant des tensions de charge differentes ainsi qu'un procede pour les gerer
EP1309064A2 (fr) Procédé de gestion du fonctionnement d'une source de stockage d'énergie électrique, notamment d'un supercondensateur
FR2992487A1 (fr) Procede de gestion d'un reseau electrique, agencement pour la mise en oeuvre du procede, support d'enregistrement et programme informatique associes au procede, vehicule automobile
EP2628234A1 (fr) Procede de recharge d'un module supercondensateur d'un vehicule automobile et vehicule automobile correspondant
EP3170242B1 (fr) Circuit électrique et procédé de gestion associé
EP2552722A1 (fr) Procede de controle de la charge d'un stockeur d'energie additionnelle d'un vehicule a propulsion micro-hybride et systeme mettant en uvre le procede
FR2972029A1 (fr) Dispositif d'inhibition d'une commande d'arret/redemarrage automatique d'un moteur thermique
FR2826457A1 (fr) Systeme d'evaluation de la duree de vie d'une batterie de stockage d'energie electrique d'alimentation d'une chaine de traction electrique ou hybride d'un vehicule automobile
EP2391520B1 (fr) Procede de gestion d'energie d'une chaine de traction d'un vehicule automobile hybride
EP2292459B1 (fr) Procédé de charge d'un module auxiliaire de stockage d'énergie
EP2313288B1 (fr) Systeme micro-hybride prevu pour alimenter un reseau de distribution electrique d'un vehicule automobile
FR3033954A1 (fr) Procede de gestion ameliore d'une batterie de vehicule
FR3013903A1 (fr) Dispositif de diagnostic de l'etat de sante de moyens de stockage d'energie electrique couples a un producteur d'energie electrique, et dispositif de controle associe
FR3104264A1 (fr) Diagnostic d’une batterie basse-tension dans un vehicule electrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761039

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010761039

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010761039

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE