WO2015024319A1 - 一种阵列基板及其制造方法、显示装置 - Google Patents

一种阵列基板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2015024319A1
WO2015024319A1 PCT/CN2013/088047 CN2013088047W WO2015024319A1 WO 2015024319 A1 WO2015024319 A1 WO 2015024319A1 CN 2013088047 W CN2013088047 W CN 2013088047W WO 2015024319 A1 WO2015024319 A1 WO 2015024319A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
layer
thin film
film transistor
electrode
Prior art date
Application number
PCT/CN2013/088047
Other languages
English (en)
French (fr)
Inventor
赵婷婷
Original Assignee
合肥京东方光电科技有限公司
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥京东方光电科技有限公司, 京东方科技集团股份有限公司 filed Critical 合肥京东方光电科技有限公司
Publication of WO2015024319A1 publication Critical patent/WO2015024319A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits

Definitions

  • the present invention relates to a display technology substrate, a method of manufacturing the same, and a display
  • TFT-LCD Thin Film Transistor-Liquid Crystal Display
  • the TFT-LCD is composed of an array substrate and a color filter substrate.
  • the array substrate and the color filter substrate are filled with liquid crystal, and the deflection of the liquid crystal is controlled to control the intensity of the light, and then the image display is realized by the color filter substrate.
  • the existing TFTMLCD is a passive light emitting device that requires a light source to display an image. According to different light sources, it can be divided into transmissive liquid crystal displays, reflective liquid crystal displays, and
  • the transmission rate of the light of the backlight is only 10%, which causes a large waste of power.
  • the reflective liquid crystal display uses reflective natural light as a light source, so it has the advantage of being energy-saving compared to a transmissive liquid crystal display, but its disadvantage is that it can only be used in a well-lit environment, at night or in low light conditions. Not available.
  • a transflective liquid crystal display has been invented.
  • a typical structure of an array substrate of a conventional transflective TF LCD is as shown in FIG. 2.
  • a reflective layer 20 is disposed in a pixel unit defined by the intersection of the horizontally and vertically intersecting gate lines 10 and the data lines 12, and the reflective layer is provided. 20 is connected to the pixel electrode 13 through the via 30.
  • a partial cross-sectional view in the dashed box can be obtained along the broken line B-B', as can be seen from the cross-sectional view B-B', between the reflective layer 20 and the pixel electrode 13.
  • the thickening layer 21 has a first cell thickness E and a second cell thickness F between the array substrate and the color filter substrate 40, so that the light passing through the transmissive region and the light reflected by the reflective region have the same light. Cheng.
  • the fabrication process of the array substrate of such a structure is cumbersome and complicated, and the thickness of the display panel is also increased due to the presence of the thickened layer, resulting in an increase in production cost while reducing the production efficiency.
  • Embodiments of the present invention provide an array substrate, a manufacturing method thereof, and a display device for manufacturing a transflective TFTiCD, which simplifies a processing process, improves production efficiency, and reduces production cost.
  • An aspect of an embodiment of the present invention provides an array substrate including horizontally intersecting gate lines and data lines and pixel units defined by the machine lines and data lines, the pixel unit including a thin film transistor TFT and a first An electrode, the pixel unit is divided into a transmissive area and a reflective area,
  • the reflective area has a reflective structure for reflecting light
  • the reflective structure includes a reflective layer, and the reflective layer is disposed in the same layer as the drain of the thin film transistor TFT;
  • a display device comprising the array substrate as described above.
  • a method for fabricating an array substrate includes horizontally and vertically intersecting gate lines and data lines, and pixel units defined by the intersection of the » lines and the data lines.
  • the pixel unit includes a thin film transistor TFT and a first electrode, and the pixel unit is divided into a transmissive area and a reflective area, and the method includes:
  • a reflective structure for reflecting light is disposed on a surface of the transparent substrate in the reflective region; in the reflective structure, a pattern of the reflective layer is formed in the same layer as a drain of the thin film transistor TFT by a patterning process;
  • the reflective layer, the drain of the thin film transistor TFT, and the first electrode are electrically connected.
  • Embodiments of the present invention provide an array substrate, a method of fabricating the same, and a display device, the array substrate including pixel units defined by intersections of gate lines and data lines, the pixel units being divided into a transmission area and a reflection
  • the region is provided with a reflective structure for reflecting light in the reflective region, and the reflective structure has a reflective layer formed in the same layer as the drain of the thin film transistor TFT by one patterning process. In this way, the step of separately forming the reflective layer can be reduced, thereby simplifying the manufacturing process and improving the production efficiency.
  • FIG. 1 is a schematic structural view of an array substrate of a transmissive liquid crystal display provided by the prior art
  • FIG. 2 is a schematic structural view of an array substrate of a transflective liquid crystal display provided by the prior art
  • FIG. 3 is a schematic structural diagram of an array substrate of a transflective liquid crystal display according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a reflective structure according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an array substrate of another transflective liquid crystal display according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a transflective liquid crystal display according to an embodiment of the present invention.
  • the array substrate provided by the embodiment of the present invention includes a horizontally intersecting gate line 10 and a data line II, and a pixel unit 02 defined by the intersection of the gate line 10 and the data line 11, the pixel unit 02 including a thin film transistor TFT22.
  • the first electrode 23, the pixel unit 02 is divided into a transmissive area 24 and a reflective area 25, the reflective area 25 having a reflective structure 251 for reflecting light.
  • the 251 may include a reflective layer 20, which may be disposed in the same layer as the drain 221 of the thin film transistor TFT.
  • Embodiments of the present invention provide an array substrate including a pixel unit defined by a cross between a gate line and a data line, the pixel unit being divided into a transmissive area and a reflective area, and a reflective structure for reflecting light is disposed in the reflective area, And the reflective structure has a reflective layer formed in the same layer as the drain of the thin film transistor TFT by one patterning process. In this way, the step of separately forming the reflective layer can be reduced, thereby simplifying the manufacturing process and improving the production efficiency.
  • the patterning process may include a photolithography process, or may include a photolithography process and an etching step, and may also include other processes for forming a predetermined pattern, such as printing, inkjet, and the like.
  • the photolithography process refers to a process of forming a pattern by using a photoresist, a mask, an exposure machine, etc., including a process of film formation, exposure, and development.
  • the corresponding patterning process can be selected in accordance with the structure formed in the present invention.
  • the reflective structure 251 may further include:
  • the gate metal layer, the gate insulating layer 15, the semiconductor conductive layer 16, and the passivation layer 17 are located in the reflective region 25.
  • the gate metal layer includes a gate electrode formed by a patterning process, a gate line 10, and a raised portion 14 of the reflective structure 251.
  • the semiconductor conductive layer 16 is made of a semiconductor material.
  • the semiconductor conductive layer 16 may be made of a semiconductor material a-Si and first conductive on the surface of the gate insulating layer 15.
  • the configuration of the semiconductor conductive layer is exemplified by taking FIG. 4 as an example.
  • the semiconductor conductive layers of other materials and structures will not be further described herein.
  • the hierarchical structure between the reflective layer 20 and the transparent substrate 12 mainly plays a role of increasing the light that reaches the display side of the display device and the light that passes through the transmission area to the display side of the display device.
  • the optical paths are similar or identical.
  • the hierarchical structure between the reflective layer 20 and the transparent substrate 12 is the same as the hierarchical structure between the drain 221 of the thin film transistor TFT and the transparent substrate 12, between the drain 221 and the transparent substrate 12 of the thin film transistor TFT can be fabricated. Simultaneously moving through the patterning process to complete the reflective layer 20 and By making the hierarchical structure between the substrates 12, the reflective structure can ensure that the reflective layer 20 and the drain 221 of the thin film transistor TFT can be formed in the same layer by one patterning process, and can be omitted. The manufacturing process of the structure having an increasing effect is separately produced, so that the manufacturing process can be simplified and the production efficiency can be improved.
  • the reflective region 25 may be connected to the region where the thin film transistor TFT22 is located.
  • the reflective layer 20 may be integrated with the drain 221 of the thin film transistor TFT.
  • the transmissive area 24 may be connected to the area where the thin film transistor TFT22 is located.
  • the transmissive area 24 can be connected to the area where the thin film transistor TFT22 is located. Specifically, it can be: a grid line that can be crossed by the horizontal and vertical lines! 0 and data lines!
  • the pixel unit defined by 1 is divided into a transmissive area 24 and a reflective area 25.
  • the first electrode 23' in the transmissive region 24 is connected to the region where the thin film transistor TFT22 is located; and the first electrode 23' in the reflective region 25 is through the first electrode 23' in the transmissive region 24 and the region where the thin film transistor TFT22 is located. Connected.
  • the positions of the reflective area and the transmissive area in the pixel unit can be flexibly set, so that the position of the transmissive area and the reflective area in the pixel unit can be adjusted according to specific requirements and needs in the actual production and processing by those skilled in the art. , thereby increasing the diversity of products.
  • the drain 221 and the first electrode 23 of the thin film transistor TFT can be electrically connected through via holes. Further, as shown in FIG. 4, in the embodiment of the present invention, the method of fabricating the via 30 can also be adopted.
  • the first electrode 23 is electrically connected to the reflective layer 20 through the via 30. Since the fabrication process of the via hole is relatively mature and simple in the field, the manner of realizing the electrical connection between the first electrode and the reflective layer by making via holes is simple and easy to operate.
  • the array substrate provided by the embodiment of the present invention can be applied to an AD SDS (Advanced-Super Dimensional Switching, ADS, advanced super-dimensional field switch) type, an IPS (In Plane Switch) type, and a TN. (Twist Nematic, twisted nematic) type of liquid crystal display device production.
  • AD SDS Advanced-Super Dimensional Switching, ADS, advanced super-dimensional field switch
  • IPS In Plane Switch
  • TN Transist Nematic, twisted nematic
  • the first electrode 23 may include a pixel electrode or a common electrode.
  • the color filter substrate and the array substrate which are formed into a box are included.
  • the difference is that the common electrode of the TN type display device is disposed on the color filter substrate, and the pixel electrode is disposed on the array substrate; the common electrode and the pixel electrode of the ADS type display device and the IPS type display device are disposed at On the array substrate.
  • the AD SDS technology forms a multi-dimensional electric field by a parallel electric field generated by the edge of the pixel electrode in the same plane and a longitudinal electric field generated between the pixel electrode layer and the common electrode layer, so that all the aligned liquid crystal molecules between the pixel electrodes in the liquid crystal cell and directly above the electrode can be generated.
  • the rotation conversion increases the working efficiency of the planar orientation liquid crystal and increases the light transmission efficiency.
  • the common electrode and the pixel electrode may be disposed in different layers, wherein the electrode located in the upper layer includes a plurality of slit-type electrodes, and the electrode located in the lower layer includes a plurality of slit-type electrodes or a flat-plate-shaped electrode.
  • the different layer arrangement is for at least two patterns, and the at least two pattern different layer arrangement means that at least two layers of the film are formed into at least two patterns by a patterning process, respectively.
  • the two-pattern heterogeneous arrangement means that, over the patterning process, a pattern is formed by each of the two films.
  • the common electrode and the pixel electrode different layer arrangement means that the lower layer electrode is formed by the patterning process by the first layer of the transparent conductive film, and the upper layer electrode is formed by the second layer of the transparent conductive film by the patterning process, wherein the lower layer electrode is a common electrode ( Or the pixel electrode), the upper electrode is a pixel electrode (or a common electrode).
  • the common electrode and the pixel electrode are disposed in the same layer, the common electrode includes a plurality of slit-type electrodes, and the pixel electrode includes a plurality of slit-type electrodes, and a plurality of slit-type electrodes are spaced apart from each other.
  • the same layer setting is for at least two patterns; at least two patterns of the same layer arrangement mean that at least two patterns are formed by the patterning process of the same film.
  • the common electrode and the pixel electrode are disposed in the same layer, that is, the pixel electrode and the common electrode are formed by the patterning process from the same transparent conductive film.
  • the pixel electrode refers to an electrode electrically connected to a data line through a switching unit (for example, may be a thin film transistor), and the common electrode refers to an electrode electrically connected to the common electrode line.
  • the thickness of the reflective structure 251 may be one-half the thickness of the liquid crystal cell case, and the thickness of the reflective structure 251 may be greater than the thickness of the thin film transistor TFT22.
  • the cell thickness of the liquid crystal cell refers to the distance between the array substrate behind the cell and the color filter substrate, and the liquid crystal is filled between the array substrate and the color filter substrate.
  • the distance F from the color film substrate 40 to the surface of the reflective layer 20 is one-half of the distance E of the color filter substrate 40 to the first electrode 23.
  • Embodiments of the present invention provide a display device including the array substrate as described above.
  • Embodiments of the present invention provide a display device including an array substrate including pixel units defined by intersections of gate lines and data lines, the pixel units being divided into a transmissive area and a reflective area, which are disposed in the reflective area. And a reflective structure that reflects light, and the reflective structure has a reflective layer formed in the same layer as the drain of the thin film transistor TFT by one patterning process. In this way, the step of separately forming the reflective layer can be reduced, thereby simplifying the manufacturing process and improving the production efficiency.
  • An embodiment of the present invention provides a method for fabricating an array substrate.
  • the array substrate includes horizontally and vertically intersecting gate lines 10 and data lines 11 and pixel units 02 defined by intersections of gate lines 10 and data lines 11.
  • the pixel unit 02 includes a thin film transistor TFT22 and a first electrode 23, and the pixel unit 02 is divided into a transmissive area 24 and a reflective area 25.
  • the manufacturing method may include:
  • a reflective structure 251 for reflecting light is disposed on the surface of the transparent substrate 12 in the reflective area 25.
  • a pattern of the reflective layer 20 is formed in the same layer as the drain electrode 221 of the thin film transistor TFT by one patterning process.
  • Embodiments of the present invention provide a method for fabricating an array substrate, the array substrate including pixel units defined by intersections of gate lines and data lines, the pixel units being divided into a transmissive area and a reflective area, and configured to reflect light in the reflective area.
  • the method for fabricating the reflective structure 251 may include:
  • S201 forming a gate metal layer on a surface of the transparent substrate, wherein the gate metal layer comprises a gate formed by a patterning process, a gate line 10, and a pattern of the raised portion 14 of the reflective structure 251.
  • S203 forming a pattern of the semiconductor conductive layer 16 between the N3 ⁇ 4 insulating layer 15 and the reflective layer 20 by a patterning process on the surface of the substrate on which the above structure is formed.
  • the semiconductor conductive layer 16 is made of a semiconductor; for example, as shown in FIG. As shown, the semiconductor conductive layer 16 may be made of a first conductive layer 161 on the surface of the gate insulating layer 15 made of a semiconductor material a Si, and/or a first conductive layer made of a semiconductor material n+a-Si. The second conductive layer 162 of the surface of the 161 is formed.
  • the configuration of the semiconductor conductive layer is exemplified by taking FIG. 4 as an example. The semiconductor conductive layers of other materials and structures will not be further described herein.
  • the hierarchical structure between the reflective layer 20 and the transparent substrate 12 mainly plays a role of increasing the light that reaches the display side of the display device through the reflection of the reflective layer and the light that reaches the display side of the display device through the transmission region. The process is close or the same.
  • the hierarchical structure between the two layers and the drain structure of the thin film transistor TFT 22 and the transparent substrate 12 are the same, and can be formed at the same time as the hierarchical structure between the drain 221 and the transparent substrate 12 of the thin film transistor TFT.
  • the patterning process completes the fabrication of the hierarchical structure between the reflective layer 20 and the transparent substrate 12.
  • the reflective structure is remotely configured to ensure that the reflective layer 20 and the drain 221 of the thin film transistor TFT can be patterned once.
  • the process is formed in the same layer, and the manufacturing process of separately fabricating the structure having the increasing effect can be omitted, thereby simplifying the manufacturing process and improving the production efficiency.
  • the reflective region 25 may be connected to the region where the thin film transistor TFT22 is located, so that the reflective layer 20 integrated with the drain electrode 2U of the thin film transistor TFT may be formed by a patterning process.
  • the transmissive area 24 may be connected to the area where the thin film transistor TFT22 is located.
  • the positions of the reflective area and the transmissive area in the pixel unit can be flexibly set, so that those skilled in the art can adjust the position of the transmissive area and the reflective area in the pixel unit according to specific design requirements and needs in actual production and processing. , thereby increasing the diversity of products.
  • the drain 221 and the first electrode 23 of the thin film transistor TFT can be electrically connected through via holes.
  • a reflective layer can also be adopted by a patterning process.
  • the surface of the surface 20 is formed with a via 30 such that the first electrode 23 is electrically connected to the reflective layer 20 through the via 30. Since the manufacturing process of the via hole is relatively mature and simple in the field, the manner of realizing the electrical connection between the first electrode and the reflective layer by means of the via hole is simple and easy to operate. Further, the thickness of the reflective structure 251 formed on the surface of the transparent substrate 12 in the reflective region 25 is one-half the thickness of the liquid crystal cell case.
  • the cell thickness of the liquid crystal cell refers to the distance between the array substrate behind the cell and the color filter substrate, and the liquid crystal is filled between the array substrate and the color filter substrate.
  • the distance F between the color filter substrate 40 and the surface of the reflective layer 20 is one-half of the distance E of the color filter substrate 40 to the first electrode 23. Therefore, the distance that the light passes through the reflective layer 20 and then reaches the display side surface of the display is equal to the distance that the light passes through the first electrode 23 to reach the display side surface of the display, that is, the reflected area and the light of the transmissive area have the same optical path, thereby Improve the display of the display and improve product quality.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种阵列基板及其制造方法、以及显示装置,用以制造半反半透式TFT-LCD,简化加工工艺,提高生产效率,降低生产成本。其中阵列基板包括:由栅线(10)和数据线(11)交叉界定的像素单元(02),像素单元(02)分为透射区域(24)和反射区域(25),在反射区域(25)内设置用于反射光线的反射结构(251),且反射结构(251)具有与薄膜晶体管TFT(22)的漏极(221)同层设置的反射层(20)。

Description

本发明涉及显示技术领 基板及其制造方法、 显示
TFT-LCD ( 薄膜晶体管 -液晶 显示器) 作为一种平板显示装置, 因其具有体积小、 功耗低、 无辐射以及制 作成本相对较低等特点, 而越来越多地被应用于高性能显示领域当中。
TFT-LCD由阵列基板和彩膜基板构成。 在阵列基板和彩膜基板中充入液 晶, 通过控制液晶的偏转, 从而实现对光线强弱的控制, 然后通过彩膜基板, 实现图像显示。现有的 TFTMLCD是一种被动发光器件, 需要光源使其显示图 像。 根据光源的不同, 可以分为透射式液晶显示器、 反射式液晶显示器以及
Figure imgf000002_0001
需要分别透过 TFT阵列基板的透明基板 12、 位于该透明基板 12上的像素电 极 13、 彩膜基板以及彩膜基板与阵列基板之间的液晶, 才能实现图像显示。 因此背光源的光线的传送率只有 10%, 这样一来造成了电力的大量浪费。
此外, 反射式液晶显示器是以反射自然光作为光源, 所以相比透射式 液晶显示器而言具有节能的优势, 然而它的缺点在于, 只能在光线充足的 环境下使用, 在夜晚或微光环境下无法使用。
因此, 结合透射式液晶显示器和反射式液晶显示器的优点, 人们发明 了一种半反半透式液晶显示器。 现有的半反半透式 TF LCD的阵列基板的 典型结构如图 2所示, 在由横纵交叉的栅线 10和数据线 12交叉定义的像 素单元内设置有反射层 20,该反射层 20通过过孔 30与像素电极 13相连接。 沿虚线 B-B'可以得到虚线框内的局部截面图, 由截面图 B- B'可以看出, 在 反射层 20与像素电极 13之间
Figure imgf000002_0002
[:!具有不同的光程, 过增厚层 21使得阵列基板和彩膜基板 40之间具有第一盒厚度 E以及第二 盒厚度 F, 这样一来, 使得通过透射区域的光线和通过反射区域反射后的光 线具有相同的光程。 然而这样一种结构的阵列基板的制作工艺繁琐、 复杂, 并且由于增厚层的存在, 也将使得显示面板的厚度增加, 导致在降低了生 产效率的同日寸增加了生产成本。
本发明的实施例提供一种阵列基板及其制造方法、 显示装置, 用以制造 半反半透式 TFTiCD, 简化加工工艺, 提高生产效率, 降低生产成本。
为达到上述目的, 本发明的实施例采用如下技术方案:
本发明实施例的一方面, 提供一种阵列基板, 包括横纵交叉的栅线和数 据线以及由所述機线和数据线交叉界定的像素单元, 所述像素单元包括薄膜 晶体管 TFT和第一电极, 所述像素单元分为透射区域和反射区域,
所述反射区域具有用于反射光线的反射结构;
所述反射结构包括反射层, 所述反射层与所述薄膜晶体管 TFT的漏极同 层设置;
所述反射层、 所述薄膜晶体管 TFT的漏极以及所述第一电极电连接。 本发明实施例的另一方面, 提供一种显示装置, 包括如上所述的阵列基 板。
本发明实施例的又一方面, 提供一种阵列基板的制造方法, 所述阵列基 板包括横纵交叉的栅线和数据线以及由所述 »线和所述数据线交叉界定的像 素单元, 所述像素单元包括薄膜晶体管 TFT和第一电极, 所述像素单元分为 透射区域和反射区域, 所述方法包括:
在所述反射区域内的透明基板的表面设置用于反射光线的反射结构; 在所述反射结构中, 通过一次构图工艺与所述薄膜晶体管 TFT的漏极同 层形成所述反射层的图案;
其中, 所述反射层、 所述薄膜晶体管 TFT的漏极以及所述第一电极电连 接。
本发明实施例提供一种阵列基板及其制造方法、 显示装置, 该阵列基板 包括由栅线和数据线交叉界定的像素单元, 该像素单元分为透射区域和反射 区域, 通过在反射区域设置用于反射光线的反射结构, 且该反射结构具有通 过一次构图工艺形成与薄膜晶体管 TFT的漏极同层的反射层。 这样一来, 可 以减少单独制作反射层的步骤, 从而简化了制作工艺, 提高了生产效率。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的^图作简单地介绍, 显而易见地, 下面 描述中的^图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术提供的透射式液晶显示器的阵列基板的结构示意图; 图 2 为现有技术提供的半反半透式液晶显示器的阵列基板的结构示意 图;
图 3为本发明实施例提供的一种半反半透式液晶显示器的阵列基板的结 构示意图;
图 4为本发明实施例提供的一种反射结构的结构示意图;
图 5为本发明实施例提供的另一种半反半透式液晶显示器的阵列基板的 结构示意图;
图 6为本发明实施例提供的一种半反半透式液晶显示器的结构示意图。
下面将结合本发明实施例中的 Pft图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普遥技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
如图 3所示,本发明实施例提供的阵列基板包括横纵交叉的栅线 10和数 据线 I I 以及由栅线 10和数据线 11交叉界定的像素单元 02, 该像素单元 02 包括薄膜晶体管 TFT22和第一电极 23 ,该像素单元 02分为透射区域 24和反 射区域 25 , 该反射区域 25具有用于反射光线的反射结构 251。
沿图 3中虚线 C-C'可得到局部截面图, 如该截面图 C- C'所示, 反射结构 251可以包括反射层 20, 反射层 20可以与薄膜晶体管 TFT的漏极 221同层 设置。
其中, 反射层 20、薄膜晶体管 TFT的漏极 221 以及第一电极 23电连接。 本发明实施例提供一种阵列基板, 该阵列基板包括由栅线和数据线交叉 界定的像素单元, 该像素单元分为透射区域和反射区域, 通过在反射区域设 置用于反射光线的反射结构, 且该反射结构具有通过一次构图工艺形成与薄 膜晶体管 TFT的漏极同层的反射层。 这样一来, 可以减少单独制作反射层的 步骤, 从而简化了制作工艺, 提高了生产效率。
需要说明的是, 在本发明中, 构图工艺, 可指包括光刻工艺, 或, 包括 光刻工艺以及刻蚀步骤, 同时还可以包括打印、 喷墨等其他用于形成预定图 形的工艺。 其中光刻工艺, 是指包括成膜、 曝光、 显影等工艺过程的利用光 刻胶、 掩模板、 曝光机等形成图形的工艺。 可根据本发明中所形成的结构选 择相应的构图工艺。
进一步地, 如图 4所示, 该反射结构 251还可以包括:
位于反射区域 25的栅极金属层、 栅极绝缘层 15、 半导体导电层 16和钝 化层 17。
其中, 该栅极金属层包括通过构图工艺形成的栅极、 栅线 10, 以及该反 射结构 251的增高部 14。
需要说明的是, 该半导体导电层 16采用半导体材料制成, 例如, 如图 4 所示, 该半导体导电层 16可以由半导体材料 a- Si制成的位于栅极绝缘层 15 表面的第一导电层 161,和 /或由半导体材料 n+a- Si制成的位于第一导电层 161 表面的第二导电层 162构成。 当然这里仅仅是以图 4为例对半导体导电层的 构成进行举例说明, 其它材质及结构的半导体导电层在此不再一一赘述。
需要说明的是, 反射层 20与透明基板 12之间的层级结构主要起到增高 的作用, 使得遥过反射层的反射到达显示器件显示侧的光线与遥过透射区域 到达显示器件显示侧的光线的光程相近或相同。
当反射层 20与透明基板 12之间的层级结构与薄膜晶体管 TFT的漏极 221 与透明基板 12之间的层级结构相同^, 可以在制作薄膜晶体管 TFT的漏极 221与透明基板 12之间的层级结构的同时遥过构图工艺完成反射层 20与透 明基板 12之间的层级结构的制作, 这样一来, 反射结构通过采用这种结构, 既可以保证反射层 20与薄膜晶体管 TFT的漏极 221可以采用一次构图工艺 同层形成, 又可以省去单独制作具有增高作用的结构的制作工序, 从而能够 简化制作工艺提高生产效率。
迸一步地, 如图 3所示, 反射区域 25可以与薄膜晶体管 TFT22所在区 域相连接, 这时, 反射层 20可以与薄膜晶体管 TFT的漏极 221为一体结构。
或者, 如图 5所示, 透射区域 24可以与薄膜晶体管 TFT22所在区域相 连接。
需要说明的是, 透射区域 24可以与薄膜晶体管 TFT22所在区域相连接 具体是指: 可以将由横纵交叉的栅线!0和数据线!1界定的像素单元划分为 透射区域 24和反射区域 25。 其中, 透射区域 24内的第一电极 23' 与薄膜晶 体管 TFT22所在区域相连接;而反射区域 25内的第一电极 23"是通过透射区 域 24内的第一电极 23'与薄膜晶体管 TFT22所在区域相连接的。
这样一来, 可以灵活设置反射区域和透射区域在像素单元中的位置, 使 得本领域技术人员在实际生产和加工中根据具体设 要求和需要对透射区域 和反射区域在像素单元中的位置进行调整, 从而提高产品的多样性。
现有技术中, 薄膜晶体管 TFT的漏极 221和第一电极 23可以通过过孔 实现电连接, 进一步地, 如图 4所示, 在本发明实施例中, 也可以采用制作 过孔 30的方式, 使得第一电极 23通过该过孔 30与反射层 20电连接。 由于 过孔的制作工艺在本领域中的应用相对成熟、 简便, 所以通过制作过孔的方 式实现第一电极与反射层之间的电连接的方式具有简单、 易操作等优点。
需要说明的是, 本发明实施例提供的阵列基板可以适用于 AD SDS ( Advanced- Super Dimensional Switching,简称为 ADS,高级超维场开关)型、 IPS (In Plane Switch, 横向电场效应) 型、 TN (Twist Nematic, 扭曲向列) 型等类型的液晶显示装置的生产。
进一步地, 第一电极 23可以包括像素电极或公共电极。
无论上述哪种液晶显示装置都包括对盒成形的彩膜基板和阵列基板。 不 同的是, TN型显示装置的公共电极设置在彩膜基板上, 像素电极设置在阵列 基板上; ADS型显示装置和 IPS型显示装置的公共电极和像素电极均设置在 阵列基板上。
AD SDS 技术通过同一平面内像素电极边缘所产生的平行电场以及像素 电极层与公共电极层间产生的纵向电场形成多维电场, 使液晶盒内像素电极 间、 电极正上方所有取向液晶分子都能够产生旋转转换, 从而提高了平面取 向系液晶工作效率并增大了透光效率。
在 ADS型显示装置的阵列基板中, 公共电极和像素电极可以异层设置, 其中位于上层的电极包含多个狭缝型电极, 位于下层的电极包含多个狭缝型 电极或为平板形电极。
异层设置是针对至少两种图案而言的, 至少两种图案异层设置是指, 分 别将至少两层薄膜通过构图工艺形成至少两种图案。两种图案异层设置是指, 遥过构图工艺, 由两层薄膜各形成一种图案。 例如, 公共电极和像素电极异 层设置是指, 由第一层透明导电薄膜通过构图工艺形成下层电极, 由第二层 透明导电薄膜遥过构图工艺形成上层电极, 其中, 下层电极为公共电极 (或 像素电极), 上层电极为像素电极 (或公共电极)。
在 IPS型显示装置的阵列基板中, 公共电极和像素电极同层设置, 公共 电极包含多个狭缝型电极, 像素电极包含多个狭缝型电极, 多个狭缝型电极 之间间隔设置。
同层设置是针对至少两种图案而言的; 至少两种图案同层设置是指, 将 同一薄膜通过构图工艺形成至少两种图案。 例如, 公共电极和像素电极同层 设置是指, 由同一透明导电薄膜通过构图工艺形成像素电极和公共电极。 其 中, 像素电极是指通过开关单元 (例如, 可以是薄膜晶体管) 与数据线电连 接的电极, 公共电极是指和公共电极线电连接的电极。
迸一歩地, 反射结构 251 的厚度可以为液晶盒盒厚的二分之一, 并且该 反射结构 251的厚度可以大于薄膜晶体管 TFT22的厚度。 需要说明的是, 液 晶盒的盒厚是指对盒后的阵列基板与彩膜基板之间的距离, 该阵列基板与彩 膜基板之间填充有液晶。 这样一来, 如图 6所示, 彩膜基板 40到反射层 20 表面的距离 F为彩膜基板 40到第一电极 23的距离 E的二分之一。 因此, 光 线通过反射层 20 再通过反射到达显示器显示侧表面的距离与光线透过第一 电极 23到达显示器显示侧表面的距离相等,即反射区域与透射区域的光线具 有相同的光程, 从而可以提升显示器的显示效果, 提高产品质量。 本发明实施例提供一种显示装置, 包括如上所述的阵列基板。
本发明实施例提供一种显示装置, 该显示装置包括阵列基板, 该阵列基 板包括由栅线和数据线交叉界定的像素单元, 该像素单元分为透射区域和反 射区域, 通过在反射区域设置用于反射光线的反射结构, 且该反射结构具有 通过一次构图工艺形成与薄膜晶体管 TFT的漏极同层的反射层。 这样一来, 可以减少单独制作反射层的步骤, 从而简化了制作工艺, 提高了生产效率。
本发明实施例提供一种阵列基板的制造方法, 如图 3所示, 该阵列基板 包括横纵交叉的栅线 10和数据线 11以及由栅线 10和数据线 11交叉界定的 像素单元 02, 该像素单元 02包括薄膜晶体管 TFT22和第一电极 23, 该像素 单元 02分为透射区域 24和反射区域 25 , 该制造方法可以包括:
SI01 : 在反射区域 25内的透明基板 12表面设置用于反射光线的反射结 构 251。
SI02: 在反射结构 251中, 遥过一次构图工艺与薄膜晶体管 TFT的漏极 221同层形成反射层 20的图案。
其中, 反射层 20、 薄膜晶体管 TFT的漏极 221以及第一电极 23电连接。 本发明实施例提供一种阵列基板的制造方法, 该阵列基板包括由栅线和 数据线交叉界定的像素单元, 该像素单元分为透射区域和反射区域, 通过在 反射区域设置用于反射光线的反射结构, 且该反射结构具有通过一次构图工 艺形成与薄膜晶体管 TFT的漏极同层的反射层。 这样一来, 可以减少单独制 作反射层的步骤, 从而简化了制作工艺, 提高了生产效率。
进一步的, 如图 4所示, 制作反射结构 251的方法可以包括:
S201 : 在透明基板的表面形成栅极金属层, 其中, 该栅极金属层包括通 过构图工艺形成的栅极、 栅线 10, 以及该反射结构 251的增高部 14的图案。
8202:在形成上述结构的基板表面通过构图工艺形成栅极绝缘层 15的图
S203 :在形成上述结构的基板表面通过构图工艺; N¾绝缘层 15与反射 层 20之间制作半导体导电层 16的图案。
需要说明的是, 该半导体导电层 16采用半导体; 制成, 例如, 如图 4 所示, 该半导体导电层 16可以由半导体材料 a Si制成的位于栅极绝缘层 15 表面的第一导电层 161,和 /或由半导体材料 n+a-Si制成的位于第一导电层 161 表面的第二导电层 162构成。 当然这里仅仅是以图 4为例对半导体导电层的 构成进行举例说明, 其它材质及结构的半导体导电层在此不再一一赘述。
8204:在形成反射层 20的基板表面通过构图工艺形成钝化层!7的图案。 需要说明的是, 反射层 20与透明基板 12之间的层级结构主要起到增高 的作用, 使得通过反射层的反射到达显示器件显示侧的光线与通过透射区域 到达显示器件显示侧的光线的光程相近或相同。
当反射层 20与透明基板! 2之间的层级结构与薄膜晶体管 TFT的漏极 22! 与透明基板 12之间的层级结构相同日寸, 可以在制作薄膜晶体管 TFT的漏极 221与透明基板 12之间的层级结构的同时遥过构图工艺完成反射层 20与透 明基板 12之间的层级结构的制作, 这样一来, 反射结构遥过采用这种结构, 既可以保证反射层 20与薄膜晶体管 TFT的漏极 221可以采用一次构图工艺 同层形成, 又可以省去单独制作具有增高作用的结构的制作工序, 从而能够 简化制作工艺提高生产效率。
进一步地, 如图 3所示, 反射区域 25可以与薄膜晶体管 TFT22所在区 域相连接, 这样一来, 可以通过构图工艺形成与薄膜晶体管 TFT的漏极 2U 为一体结构的反射层 20。
或者, 如图 5所示, 透射区域 24可以与薄膜晶体管 TFT22所在区域相 连接。
这样一来, 可以灵活设置反射区域和透射区域在像素单元中的位置, 使 得本领域技术人员在实际生产和加工中根据具体设计要求和需要对透射区域 和反射区域在像素单元中的位置进行调整, 从而提高产品的多样性。
现有技术中, 薄膜晶体管 TFT的漏极 221和第一电极 23可以通过过孔 实现电连接, 进一步地, 如图 4所示, 在本发明实施例中, 也可以采用通过 构图工艺在反射层 20的表面制作过孔 30的方式,使得第一电极 23通过该过 孔 30与反射层 20电连接。由于过孔的制作工艺在本领域中的应用相对成熟、 简便, 所以通过制作过孔的方式实现第一电极与反射层之间的电连接的方式 具有简单、 易操作等优点。 迸一步地, 在反射区域 25内的透明基板 12表面形成的反射结构 251的 厚度为液晶盒盒厚的二分之一。 需要说明的是, 液晶盒的盒厚是指对盒后的 阵列基板与该彩膜基板之间的距离,该阵列基板与彩膜基板之间填充有液晶。 这样一来, 如图 6所示, 彩膜基板 40到反射层 20表面的距离 F为彩膜基板 40到第一电极 23的距离 E的二分之一。 因此, 光线通过反射层 20再通过反 射到达显示器显示侧表面的距离与光线透过第一电极 23 到达显示器显示侧 表面的距离相等, 即反射区域与透射区域的光线具有相同的光程, 从而可以 提升显示器的显示效果, 提高产品质量。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以所述权利要求的保护范围为准。

Claims

1、 一种阵列基板, 包括横纵交叉的栅线和数据线以及由所述栅线和所述 数据线交叉界定的像素单元,所述像素单元包括薄膜晶体管 TFT和第一电极, 所述像素单元分为透射区域和反射区域, 其特征在于,
所述反射区域具有用于反射光线的反射结构;
所述反射结构包括反射层, 所述反射层与所述薄膜晶体管 TFT的漏极同 层设置;
所述反射层、 所述薄膜晶体管 TFT的漏极以及所述第一电极电连接。
2、根据权利要求 1所述的阵列基板,其特征在于,所述反射结构还包括: 位于反射区域的栅极金属层、 栅极绝缘层、 半导体导电层和钝化层。
3、 根据权利要求 1或 2所述的阵列基板, 其特征在于, 所述反射层与所 述反射区域内的透明基板之间的层级结构与所述薄膜晶体管 TFT的漏极与所 述透明基板之间的层级结构相同。
4、 根据权利要求 1或 2所述的阵列基板, 其特征在于, 所述反射区域与 所述薄膜晶体管 TFT所在区域相连接,所述反射层与所述薄膜晶体管 TFT的 漏极为一体结构。
5、 根据权利要求 1或 2所述的阵列基板, 其特征在于, 所述透射区域与 所述薄膜晶体管 TFT所在区域相连接。
6、 根据权利要求 1所述的阵列基板, 其特征在于, 所述反射层的表面设 置过孔, 所述第一电极通过所述过孔与所述反射层电连接。
7、 根据权利要求 1所述的阵列基板, 其特征在于, 所述第一电极包括像 素电极或公共电极。
8、 根据权利要求 1所述的阵列基板, 其特征在于, 所述反射结构的厚度 为液晶盒盒厚的二分之一, 并且所述反射结构的厚度大于所述薄膜晶体管 TFT的厚度。
9、 一种显示装置, 其特征在于, 包括如权利要求 1-8所述的任一阵列基 板。
10、 一种阵列基板的制造方法, 所述阵列基板包括横纵交叉的栅线和数 据线以及由所述栅线和所述数据线交叉界定的像素单元, 所述像素单元包括 薄膜晶体管 TFT和第一电极, 所述像素单元分为透射区域和反射区域, 其特 征在于, 所述方法包括:
在所述反射区域内的透明基板的表面设置用于反射光线的反射结构; 在所述反射结构中, 通过一次构图工艺与所述薄膜晶体管 TFT的漏极同 层形成所述反射层的图案;
其中, 所述反射层、 所述薄膜晶体管 TFT的漏极以及所述第一电极电连 接。
11 , 根据权利要求 10所述的制造方法, 其特征在于, 制作所述反射结构 的方法包括:
在透明基板的表面形成栅极金属层;
在形成上述结构的基板表面通过构图工艺形成栅极绝缘层的图案; 在形成上述结构的基板表面通过构图工艺在所述栅极绝缘层与所述反射 层之间制作半导体导电层的图案;
在形成所述反射层的基板表面通过构图工艺形成钝化层的图案。
12 , 根据权利要求 10或 11所述的阵列基板, 其特征在于, 所述反射层 与所述透明基板之间的层级结构与所述薄膜晶体管 TFT的漏极与所述透明基 板之间的层级结构相同。
13, 根据权利要求 10或 11所述的制造方法, 其特征在于, 所述反射区 域与所述薄膜晶体管 TFT所在区域相连接, 通过构图工艺形成与所述薄膜晶 体管 TFT的漏极为一体结构的所述反射层。
14, 根据权利要求 10或 11所述的制造方法, 其特征在于, 所述透射区 域与所述薄膜晶体管 TFT所在区域相连接。
15 , 根据权利要求 10所述的制造方法, 其特征在于, 通过构图工艺在所 述反射层的表面设置过孔,所述第一电极遥过所述过孔与所述反射层电连接。
16, 根据权利要求 10所述的制造方法, 其特征在于, 在所述透明基板的 表面形成的所述反射结构的厚度为液晶盒盒厚的二分之一, 并且所述反射结 构的厚度大于所述薄膜晶体管 TFT的厚度。
PCT/CN2013/088047 2013-08-23 2013-11-28 一种阵列基板及其制造方法、显示装置 WO2015024319A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310372887.2 2013-08-23
CN201310372887.2A CN103456741B (zh) 2013-08-23 2013-08-23 一种阵列基板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2015024319A1 true WO2015024319A1 (zh) 2015-02-26

Family

ID=49738940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/088047 WO2015024319A1 (zh) 2013-08-23 2013-11-28 一种阵列基板及其制造方法、显示装置

Country Status (2)

Country Link
CN (1) CN103456741B (zh)
WO (1) WO2015024319A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401358B1 (en) * 2016-09-30 2019-09-03 Ross Southern Laboratories Serodiagnosis of lyme disease by use of two recombinant proteins in ELISA

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111796451B (zh) * 2020-07-02 2024-02-09 Tcl华星光电技术有限公司 显示面板和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1952741A (zh) * 2005-10-18 2007-04-25 株式会社半导体能源研究所 液晶显示器件和电子设备
CN101110434A (zh) * 2006-07-19 2008-01-23 三菱电机株式会社 Tft阵列衬底及其制造方法、以及使用该衬底的显示装置
CN101329466A (zh) * 2007-06-21 2008-12-24 株式会社日立显示器 液晶显示装置
CN101552241A (zh) * 2008-04-03 2009-10-07 北京京东方光电科技有限公司 阵列基板及其制造方法和液晶显示装置
CN102544025A (zh) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 半透半反式薄膜晶体管阵列基板及其制造方法
CN202473923U (zh) * 2012-03-23 2012-10-03 京东方科技集团股份有限公司 阵列基板及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1952741A (zh) * 2005-10-18 2007-04-25 株式会社半导体能源研究所 液晶显示器件和电子设备
CN101110434A (zh) * 2006-07-19 2008-01-23 三菱电机株式会社 Tft阵列衬底及其制造方法、以及使用该衬底的显示装置
CN101329466A (zh) * 2007-06-21 2008-12-24 株式会社日立显示器 液晶显示装置
CN101552241A (zh) * 2008-04-03 2009-10-07 北京京东方光电科技有限公司 阵列基板及其制造方法和液晶显示装置
CN102544025A (zh) * 2010-12-31 2012-07-04 京东方科技集团股份有限公司 半透半反式薄膜晶体管阵列基板及其制造方法
CN202473923U (zh) * 2012-03-23 2012-10-03 京东方科技集团股份有限公司 阵列基板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10401358B1 (en) * 2016-09-30 2019-09-03 Ross Southern Laboratories Serodiagnosis of lyme disease by use of two recombinant proteins in ELISA

Also Published As

Publication number Publication date
CN103456741B (zh) 2016-03-23
CN103456741A (zh) 2013-12-18

Similar Documents

Publication Publication Date Title
US9880414B2 (en) Array substrate, liquid crystal display panel and display device
US20180059450A1 (en) Switchable Anti-Peeping Device and Manufacturing Method Thereof, and Display Device
KR102607407B1 (ko) 표시 장치 및 이의 제조 방법
WO2015027603A1 (zh) 阵列基板及其制作方法、3d显示装置
JP6054634B2 (ja) 液晶表示パネル及びその駆動方法
JP6043815B2 (ja) 薄膜トランジスタのアレイ基板及びその製造方法、並びに電子デバイス
US9298054B2 (en) Liquid crystal display device and method of manufacturing the same
WO2018036027A1 (zh) Ips型阵列基板的制作方法及ips型阵列基板
KR20130015126A (ko) 터치 스크린이 내장된 액정 표시장치와 이의 제조방법
WO2013166816A1 (zh) 阵列基板及其制作方法、显示面板和显示装置
KR20170143054A (ko) 액정 표시 장치
WO2015131443A1 (zh) 一种阵列基板及其制备方法、液晶显示面板
WO2014153844A1 (zh) 阵列基板及显示装置
KR20100059508A (ko) 액정표시장치의 패드부
WO2015024319A1 (zh) 一种阵列基板及其制造方法、显示装置
WO2014012317A1 (zh) 液晶显示器像素结构、阵列基板以及液晶显示器
KR101943019B1 (ko) 액정 표시장치와 이의 제조방법
WO2019006904A1 (zh) 一种显示面板及制造方法
CN113534528A (zh) 像素结构、像素结构的制作方法及阵列基板
KR100827856B1 (ko) 반투과형 프린지 필드 스위칭 모드 액정표시장치의어레이기판 및 그 제조방법
WO2022188525A1 (zh) 液晶面板、显示装置及液晶面板制造方法
TWI501015B (zh) 畫素結構及其製作方法
CN204257649U (zh) 阵列基板和显示装置
CN102955622A (zh) 基于多维电场模式的光学传感式触摸屏及其制备方法
CN102955621A (zh) 基于超高级超维场模式的光学传感式触摸屏及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891740

Country of ref document: EP

Kind code of ref document: A1