WO2015021870A1 - 永磁电机、制冷压缩机及空调机组 - Google Patents

永磁电机、制冷压缩机及空调机组 Download PDF

Info

Publication number
WO2015021870A1
WO2015021870A1 PCT/CN2014/083551 CN2014083551W WO2015021870A1 WO 2015021870 A1 WO2015021870 A1 WO 2015021870A1 CN 2014083551 W CN2014083551 W CN 2014083551W WO 2015021870 A1 WO2015021870 A1 WO 2015021870A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
magnet motor
stator
inner cavity
Prior art date
Application number
PCT/CN2014/083551
Other languages
English (en)
French (fr)
Inventor
樊钊
丁亚斌
陈颖
刘怀灿
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP14836445.8A priority Critical patent/EP3035493B1/en
Priority to US14/912,032 priority patent/US10103586B2/en
Priority to JP2016533797A priority patent/JP6409066B2/ja
Publication of WO2015021870A1 publication Critical patent/WO2015021870A1/zh
Priority to PH12016500277A priority patent/PH12016500277A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/10Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth equivalents, e.g. rollers, than the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to a motor, and more particularly to a permanent magnet motor, a refrigerant compressor having the same, and an air conditioning unit having the same.
  • the highest temperature heat during permanent magnet motor operation mainly comes from stator copper loss and stator iron loss.
  • the magnetic distortion of the stator tooth is the largest, and the loss is large, which results in the highest temperature of the inner surface of the stator and the outer surface of the rotor.
  • the rotor heat can be neglected, so the main cause of the rotor temperature rise during the operation of the motor is heat transfer.
  • there are hidden dangers such as high temperature demagnetization and hidden dangers of motor insulation heat loss.
  • the technical problem to be solved by the present invention is to provide a permanent magnet motor capable of improving the heat exchange ratio of the motor, so that the heat exchange fluid such as the refrigerant can exchange heat in the stator tooth portion where the motor heat is most concentrated. Therefore, the temperature of the motor is stably controlled, and the problem of uneven cooling in the permanent magnet motor is solved.
  • Another technical problem to be solved by the present invention is to provide a refrigeration compressor having the permanent magnet motor and an air conditioning unit having the same.
  • the present invention provides a permanent magnet motor including a casing, a stator and a rotor, the stator and the rotor being mounted in the casing, and separating the inner cavity of the casing into a first inner cavity and a second inner cavity, the stator includes a stator core, and an axial venting hole connecting the first inner cavity and the second inner cavity is disposed on a tooth portion of the stator core;
  • the vent hole is a tapered hole extending in a height direction of the tooth portion, and a width of the axial vent hole near an end of the tooth portion is larger than a width thereof near an end of the root portion of the tooth portion.
  • the cross-sectional rim line of the axial vent includes an arc-shaped first rim line near a side of the tooth head, and an arc near a side of the root of the tooth And a second contour line and a linear third rim line connected between the two ends of the first rim line and the two ends of the second rim line.
  • the radius R1 of the first rim line is not more than 1/3 of the tooth width L2. 5 ⁇ The distance L between the center of the first rim and the inner circumference of the stator is greater than 0. 5mm.
  • the distance L1 between the center 01 of the first rim line and the center 02 of the second rim line is greater than or equal to the radius R1 of the first rim line.
  • the radius R2 of the second rim line is not greater than the radius R1 of the first rim line.
  • the rotor includes a rotor core and rotor compressions disposed on both sides of the rotor core in an axial direction, and a partition is disposed between at least one of the rotor compression and the rotor core And an outer edge of the spacer projects into an air gap between an inner circular surface of the stator and an outer circumferential surface of the rotor.
  • the spacer is an annular structure, and an outer diameter of the spacer is larger than a diameter of an outer circular surface of the rotor and smaller than a diameter of an inner circular surface of the stator.
  • a fluid inlet and a fluid outlet are provided on the housing, the fluid inlet being in communication with the first inner chamber, the fluid outlet being in communication with the second inner chamber.
  • a refrigeration compressor provided by the present invention includes a motor, and the motor is the above permanent magnet motor.
  • the refrigeration compressor is a centrifugal refrigeration compressor or a screw refrigeration compressor.
  • An air conditioning unit provided by the present invention includes a compressor, a condenser, a main throttle element and an evaporator, and the compressor, the condenser, the main throttle element and the evaporator pass through a pipeline Connecting to form a refrigerant circulation loop, the compressor is the above-described refrigeration compressor, and the fluid inlet is connected to an outlet of the condenser via an auxiliary throttle element, the fluid outlet and an intake port of the compressor Connected.
  • the air conditioning unit further includes a flasher connected between the condenser and the evaporator, or the fluid inlet is connected to the auxiliary device through the auxiliary device The liquid outlet of the flasher is in communication.
  • the axial vent hole on the stator core tooth portion is a tapered hole extending along the height direction of the stator core tooth portion, the heat exchange fluid can be performed on the tooth portion where the motor heat is most concentrated.
  • FIG. 1 is a cross-sectional structural view showing a permanent magnet motor in one embodiment of the present invention
  • FIG. 2 is a schematic structural view of a stator core of the permanent magnet motor shown in FIG. 1;
  • FIG. 3 is a partially enlarged schematic view showing a stator core of the permanent magnet motor shown in FIG. 1;
  • FIG. 4 is a schematic structural view of a separator of the permanent magnet motor shown in FIG. 1.
  • the casing; 10a the first inner cavity; 10b, the second inner cavity; 10c, the air gap; 20, the stator; 21, the stator core; 211, the yoke; 212, the tooth; 212 a , head; 212b, ⁇ ⁇ ; 21 3, axial vent; 21 3a, first rim; 21 3b, second contour; 21 3c, third rim; 22, winding winding; 23, the inner surface of the stator; 30, the rotor; 31, the rotor core; 32, the rotor pressure; 33, the partition; 33a, the outer edge of the partition; 34, the shaft; 35, the outer surface of the rotor.
  • a permanent magnet motor is provided.
  • the permanent magnet motor includes a casing 10, a stator 20 and a rotor 30, and the stator 20 is fixedly mounted in the casing 10,
  • the stator includes a stator core 21 and a turns winding 22.
  • the rotor 30 is mounted inside the stator core 21, and the stator 20 and the rotor 30 divide the inner cavity of the casing 10 into a first inner cavity 10a on the left side and a second inner cavity on the right side. 1 Ob , and an air gap 10c is formed between the inner circular surface 23 of the stator and the outer circumferential surface 35 of the rotor.
  • the rotor 30 includes a rotating shaft 34, a rotor core 31 mounted on the rotating shaft 34, and a rotor press 32 disposed on both sides in the axial direction of the rotor core 31.
  • the stator core 21 has a yoke portion 211 and a plurality of radially inwardly extending tooth portions 212.
  • the tooth portion 212 of the stator core 21 is disposed to communicate with the first inner cavity 10a.
  • an axial vent hole 21 3 of the second inner cavity 10b, the axial vent hole 213 is a tapered hole extending along a height direction of the tooth portion 212, and the axial vent hole 11 3
  • the width of the end near the head 212a of the tooth portion 212 is greater than the width of the end of the root portion 212b of the tooth portion 212.
  • the heat exchange fluid e.g., air, refrigerant
  • the tooth portion 212 is in full contact with the heat exchange fluid, thereby improving the heat exchange ratio of the motor, thereby stably controlling the temperature of the motor, and solving the problem of uneven cooling existing in the permanent magnet motor.
  • the axial venting hole 213 is tapered, the residual lacquer of the varnishing process is concentrated toward the narrow end of the axial venting hole 213 under the surface tension effect of the object, so that the wide end of the axial venting hole 213 is kept unobstructed, thereby ensuring The motor does not block the axial vent 213 during the dipping process.
  • the cross-sectional contour of the axial vent 213 includes an arc-shaped first rim line 213a adjacent to the head 212a-side of the tooth portion 212, and a side close to the root 212b side of the tooth portion 212.
  • the radius R1 of the first rim line 213a is not more than 1/3 of the width L2 of the tooth portion 212 to maintain the strength of the tooth portion 212 of the stator core 21.
  • the distance L between the center 01 of the first rim line 213a and the inner circular surface 23 of the stator 20 is greater than 0.5 mm, so that the axial vent 213 is as close as possible to the air gap.
  • the distance L1 between the center 01 of the first rim line 213a and the center 02 of the second rim line 213b is greater than or equal to the radius R1 of the first rim line 213a, so as to be The axial vent 213 remains tapered.
  • the radius R2 of the second rim line 213b is not more than 1/3 of the radius R1 of the first rim line 213a, ensuring that the surface tension of the liquid exists during the dipping process to make the paint adhere as much as possible.
  • the narrow end of the venting hole does not block the axial vent 213.
  • the rotor 30 includes a rotor core 31 and rotor compressions 32 disposed on both sides in the axial direction of the rotor core 31, and the rotor is compressed in one or two (two in this embodiment)
  • a partition 33 (shown in FIGS. 1, 4) is disposed between the rotor core 31 and the rotor core 31, and an outer edge 33a of the partition 33 extends into the air gap 10c. Due to the air blockage formed in the air gap 10c by the high speed rotation of the rotor 30, and because the outer edge 33a of the partition 33 protrudes into the air gap 10c, the air blocking effect is increased, which helps to prevent more heat exchange fluid from entering the air gap.
  • the axial venting hole 213 becomes the only passage of the entire circuit, thereby saving the amount of heat exchange fluid of the cooling motor and achieving a higher cooling ratio; moreover, the motor wind wear loss can be reduced.
  • the partition plate 33 has an annular structure, and the outer diameter of the partition plate 33 is larger than the outer circle of the rotor 30.
  • the diameter of the face 35 is smaller than the diameter of the inner circular surface 23 of the stator 20.
  • the partition 33 is made of a heat insulating material.
  • the heat exchange fluid such as refrigerant, air
  • the rotor pressure 32 forms a cold surface under relatively low temperature conditions, at which time there is a condensation effect on the surface of the rotor pressure 32 due to the high speed rotation of the rotor 30.
  • the condensed refrigerant directly slams toward the end of the winding 22, and cools the end of the winding 22 of the winding.
  • the rotor pressure 32 is provided with a groove or protrusion (not shown) on the surface of the partition plate 33 to achieve a better coagulation effect and a liquid carrying effect.
  • the spacer 33 is made of an insulating material, the insulating material is not magnetically permeable, is not magnetized, does not change the magnetic field in the motor, and does not add extra loss.
  • a fluid inlet (not shown) and a fluid outlet (not shown) are disposed on the casing 10, and the fluid inlet is in communication with the first inner chamber 1 Oa.
  • the fluid outlet is in communication with the second inner chamber 1 Ob.
  • a liquid heat exchange fluid preferably a liquid refrigerant enters the first inner chamber 10a from the fluid inlet and then exchanges heat through the axial vents 21 3, during which the heat transfer fluid absorbs heat and undergoes a phase change.
  • the heat transfer ratio of the motor is further improved by taking away heat through the phase change.
  • a refrigeration compressor including a motor, wherein the motor is a permanent magnet motor in the above embodiment, and the first inner cavity 10a is disposed on the casing 10 A communicating refrigerant inlet (not shown) and a refrigerant outlet (not shown) in communication with the second inner chamber 10b.
  • the heat exchange fluid enters the first inner chamber 10a from the refrigerant inlet, passes through the axial vent hole 213 and exchanges heat with the tooth portion 212, flows into the second inner chamber 10b, and finally discharges from the refrigerant outlet, so that the motor interior
  • the refrigerant forms an independent circulation system under the action of the compressor.
  • the refrigeration compressor is preferably a centrifugal refrigeration compressor or a screw 4 dry refrigeration compressor.
  • an air conditioning unit (not shown) including a compressor, a condenser, a main throttle element, a flasher and an evaporator, a compressor, a condenser, and a main road section.
  • the flow element, the flasher and the evaporator are connected by a pipeline to form a refrigerant circulation loop, the compressor is the above-mentioned refrigeration compressor, and the refrigerant inlet is passed through the auxiliary throttle element and the condenser or the flasher
  • the liquid outlet is in communication, and the refrigerant outlet is in communication with the suction port of the compressor.
  • the liquid refrigerant is throttled by the auxiliary throttle element to form a misty low temperature refrigerant injected into the first inner cavity 10a, and a part of the fogged low temperature refrigerant passes through the axial vent hole 21 3 to directly exchange heat with the tooth portion 212, and take away the stator.
  • the heat on it Since the heat in the permanent magnet motor is mainly from the stator copper loss and the stator iron loss, and the rotor 30 is composed of permanent magnets, the rotor 30 can be neglected, and the main cause of the temperature rise of the rotor 30 during the operation of the permanent magnet motor is Heat caused.
  • the permanent magnet motor in the embodiment directly exchanges the heat loss of the stator, so that the permanent magnet motor achieves the effect of the temperature field uniform distribution. It can eliminate hidden dangers such as high temperature demagnetization of permanent magnet permanent magnet motor and hidden heat loss of permanent magnet motor insulation.
  • Another portion of the misty low temperature refrigerant condenses into a liquid state on the surface of the rotor pressure 32. Due to the high speed rotation of the rotor 30, the condensed refrigerant directly rushes toward the end of the winding 22, cooling the end of the winding 22 of the winding.

Abstract

一种永磁电机、制冷压缩机及空调机组,永磁电机的机壳(10)内安装有定子(20)和转子(30),将机壳(10)内腔分隔成第一内腔(10a)和第二内腔(10b),定子(20)的定子铁心(21)的齿部(212)上设置有连通第一内腔(10a)与第二内腔(10b)的轴向通风孔(213);轴向通风孔(213)为沿齿部(212)高度方向延伸的锥形孔,其靠近齿部头部(212a)一端的宽度大于靠近齿部根部(212b)一端的宽度。锥形孔能使流体在发热最集中的齿部(212)进行充分换热,还能使浸漆过程中的残留漆在表面张力下向通风孔窄端集中,宽端保持通畅。

Description

永磁电机、 制冷压缩机及空调机组
相关申请
本专利申请要求 201 3年 8月 1 3 日申请的, 申请号为 201 310352017. 9 , 名称为 "永 磁电机、制冷压缩机及空调机组"的中国专利申请的优先权,在此将其全文引入作为参考。 技术领域
本发明涉及电机, 特别是涉及一种永磁电机、 具有该永磁电机的制冷压缩机及具有该 压缩机的空调机组。
背景技术
永磁电机运行过程中温度最高热量主要来自定子铜耗和定子铁耗。定子齿部磁密最大, 损耗耗较大, 导致电机定子内表面与转子外表面温度最高。 经实验和研究发现, 由于转子 由永磁体构成, 转子发热可以忽略, 因此在电机运行过程中导致转子温度升高主要原因是 传热引起。 对于永磁电机, 转子温度过高存在高温退磁等隐患和电机绝缘热损隐患。
对于制冷压缩机用永磁电机, 通常釆用冷媒喷射冷却或在定子与壳体之间设置螺旋流 道冷却, 在实际应用中这种冷却方式存在电机转子冷却效果差, 且电机内部热场不均匀, 有的地方温度偏高, 有的地方偏低的问题。
发明内容
针对上述现有技术现状, 本发明所要解决的技术问题在于, 提供一种永磁电机, 其能 提高电机换热比, 使冷媒等换热流体能在电机发热最集中的定子齿部换热, 从而稳定控制 电机温度, 解决永磁电机存在的冷却不均问题。 本发明所要解决的另一个技术问题在于, 提供一种具有该永磁电机的制冷压缩机和具有该制冷压缩机的空调机组。
为了解决上述技术问题, 本发明所提供一种永磁电机, 包括机壳、 定子和转子, 所述 定子和所述转子安装于所述机壳内, 且将所述机壳的内腔分隔成第一内腔和第二内腔, 所 述定子包括定子铁心, 所述定子铁心的齿部上设置有连通所述第一内腔与所述第二内腔的 轴向通风孔; 所述轴向通风孔为沿所述齿部的高度方向延伸的锥形孔, 且所述轴向通风孔 靠近所述齿部头部一端的宽度大于其靠近所述齿部根部一端的宽度。 在其中一个实施例中, 所述轴向通风孔的横截面轮靡线包括靠近所述齿部头部一侧的 圆弧状第一轮靡线、 靠近所述齿部根部一侧的圆弧状第二轮廓线以及连接在该第一轮靡线 两端与该第二轮靡线两端之间的直线状第三轮靡线。
在其中一个实施例中, 所述第一轮靡线的半径 R1不大于所述齿部宽度 L2的 1 / 3。 在其中一个实施例中, 所述第一轮靡线的中心 01与所述定子的内圆表面之间的距离 L 大于 0. 5mm。
在其中一个实施例中, 所述第一轮靡线的中心 01与所述第二轮靡线的中心 02之间的 间距 L1大于或等于所述第一轮靡线的半径 Rl。
在其中一个实施例中, 所述第二轮靡线的半径 R2不大于所述第一轮靡线的半径 R1的
1 / 3。
在其中一个实施例中, 所述转子包括转子铁心和设置于该转子铁心轴向方向上的两侧 的转子压圏, 在至少一个所述转子压圏与所述转子铁心之间设置有隔板, 且该隔板的外缘 伸入所述定子的内圆表面与所述转子的外圆表面之间的气隙内。
在其中一个实施例中, 所述隔板为环状结构, 且该隔板的外径大于所述转子的外圆表 面的直径、 小于所述定子的内圆表面的直径。
在其中一个实施例中, 在所述机壳上设置有流体进口和流体出口, 所述流体进口与所 述第一内腔连通, 所述流体出口与所述第二内腔连通。
本发明所提供的一种制冷压缩机, 包括电机, 所述电机为上述的永磁电机。
在其中一个实施例中, 所述制冷压缩机为离心式制冷压缩机或螺杆式制冷压缩机。 本发明所提供的一种空调机组, 包括压缩机、 冷凝器、 主路节流元件及蒸发器, 所述 压缩机、所述冷凝器、所述主路节流元件和所述蒸发器通过管道连接组成制冷剂循环回路, 所述压缩机为上述的制冷压缩机, 且所述流体进口经辅路节流元件与所述冷凝器的出口连 通, 所述流体出口与所述压缩机的吸气口连通。
在其中一个实施例中, 所述的空调机组还包括闪发器, 该闪发器连接在所述冷凝器与 所述蒸发器之间, 或者所述流体进口经所述辅路节流元件与所述闪发器的液体出口连通。
本发明所述提供的永磁电机, 由于定子铁心齿部上的轴向通风孔为沿定子铁心齿部的 高度方向延伸的锥形孔, 使换热流体能在电机发热最集中的齿部进行充分换热, 提高了电 机换热比, 从而稳定控制电机温度, 解决永磁电机存在的冷却不均问题, 从而使电机内部 保持恒温场; 而且, 由于轴向通风孔为锥形孔, 电机浸漆过程中, 残留漆在物体表面张力 效应下向轴向通风孔窄端集中, 使轴向通风孔宽端保持通畅, 保证了电机在浸漆过程中不 堵塞轴向通风孔。
本发明的附加技术特征的有益效果将在本说明书具体实施方式部分进行说明。 附图说明
图 1为本发明其中一个实施例中的永磁电机的剖视结构示意图;
图 2为图 1中所示永磁电机的定子铁心的结构示意图;
图 3为图 1中所示永磁电机的定子铁心的局部放大示意图;
图 4为图 1中所示永磁电机的隔板的结构示意图。
以上各图中, 10、 机壳; 10a、 第一内腔; 10b、 第二内腔; 10c、 气隙; 20、 定子; 21、 定子铁心; 211、 轭部; 212、 齿部; 212 a、 头部; 212b、 才艮部; 21 3、 轴向通风孔; 21 3a、 第一轮靡线; 21 3b、 第二轮廓线; 21 3c、 第三轮靡线; 22、 线圏绕组; 23、 定子的内圆表 面; 30、 转子; 31、 转子铁心; 32、 转子压圏; 33、 隔板; 33a、 隔板的外缘; 34、 转轴; 35、 转子的外圆表面。 具体实施方式
下面参考附图并结合实施例对本发明进行详细说明。 需要说明的是, 在不冲突的情况 下, 以下各实施例及实施例中的特征可以相互组合。
本发明其中一个实施例中, 提供一种永磁电机, 如图 1所示, 永磁电机包括机壳 10、 定子 20和转子 30 , 所述定子 20固定安装在所述机壳 10内, 所述定子包括定子铁心 21和 线圏绕组 22。 所述转子 30安装在所述定子铁心 21的内部, 所述定子 20和所述转子 30将 所述机壳 10的内腔分隔成左侧的第一内腔 10a和右侧的第二内腔 1 Ob , 且所述定子的内圆 表面 23和所述转子的外圆表面 35之间形成气隙 10c。 所述转子 30包括转轴 34、 安装在转 轴 34上的转子铁心 31和设置于该转子铁心 31轴向方向上两侧的转子压圏 32。
如图 2、 3所示, 所述定子铁心 21具有轭部 211和多个径向向内伸出的齿部 212 , 在定 子铁心 21的齿部 212上设置有连通所述第一内腔 10a与所述第二内腔 10b的轴向通风孔 21 3 , 该轴向通风孔 21 3为沿所述齿部 212的高度方向延伸的锥形孔, 且该轴向通风孔 11 3 靠近所述齿部 212头部 212a—端的宽度大于其靠近所述齿部 212根部 212b一端的宽度。 换热流体(如空气、 制冷剂)通过轴向通风孔 213将齿部 212上的热量带走。 由于轴向通 风孔 213为锥形孔, 使得齿部 212与换热流体充分接触, 提高了电机换热比, 从而稳定控 制电机温度, 解决永磁电机存在的冷却不均问题。 而且, 由于轴向通风孔 213为锥形, 这 样浸漆过程的残留漆在物体表面张力效应下向轴向通风孔 213的窄端集中, 使轴向通风孔 213的宽端保持通畅, 保证了电机在浸漆过程中不堵塞轴向通风孔 213。
较优地, 所述轴向通风孔 213的横截面轮廓线包括靠近所述齿部 212头部 212a—侧的 圆弧状第一轮靡线 213a、 靠近所述齿部 212根部 212b一侧的圆弧状第二轮靡线 213b以及 连接在该第一轮靡线 213a两端与该第二轮靡线 213b两端之间的直线状第三轮靡线 213c。 这样, 该轴向通风孔 213各边之间圆弧过渡, 一方面可以保持齿部 212的强度, 另一方面 避免尖角导致电荷聚集。
较优地, 所述第一轮靡线 213a的半径 R1不大于所述齿部 212宽度 L2的 1/3, 以保持 定子铁心 21的齿部 212的强度。
较优地, 所述第一轮靡线 213a的中心 01与所述定子 20的内圆表面 23之间的距离 L 大于 0.5mm, 使轴向通风孔 213尽量靠近气隙处。
较优地, 所述第一轮靡线 213a的中心 01与所述第二轮靡线 213b的中心 02之间的间 距 L1大于或等于所述第一轮靡线 213a的半径 R1, 以尽量使轴向通风孔 213保持锥形。
较优地,所述第二轮靡线 213b的半径 R2不大于所述第一轮靡线 213a的半径 R1的 1 / 3 , 保证电机在浸漆过程中, 液体表面张力存在使油漆尽量黏附在通风孔的窄端, 不至堵住轴 向通风孔 213。
较优地, 所述转子 30包括转子铁心 31和设置于该转子铁心 31轴向方向上的两侧的转 子压圏 32, 在一个或两个(本实施例为两个)所述转子压圏 32与所述转子铁心 31之间设 置有隔板 33 (如图 1、 4所示), 且该隔板 33的外缘 33a伸入所述气隙 10c内。 由于转子 30高速旋转在气隙 10c中形成的气阻塞, 且由于隔板 33的外缘 33a伸入气隙 10c 内 , 增 加了气阻塞效应, 有利于阻止更多换热流体进入气隙, 使轴向通风孔 213成为整个回路唯 一通道, 从而节省了冷却电机的换热流体量, 达到更高的冷却比; 而且, 还可以减小电机 风磨损耗。
如图 1所示, 所述隔板 33为环状结构, 且该隔板 33的外径大于所述转子 30的外圆表 面 35的直径、 小于所述定子 20的内圆表面 2 3的直径。
较优地, 所述隔板 33釆用隔热材料制成。 当换热流体(如冷媒、 空气)进入第一内腔 时,转子压圏 32在相对低温的条件下形成冷表面,此时在转子压圏 32表面会有凝结效应, 由于转子 30的高速旋转, 凝结的冷媒直接甩向线圏绕组 22端部, 冷却线圏绕组 22端部。 较优地, 所述转子压圏 32背对所述隔板 33的表面上设置有凹槽或突起(图中未示出), 以 达到更好的凝结效果和带液效果。
较优地, 所述隔板 33釆用绝缘材料制成, 绝缘材料不导磁, 不会被磁化, 不会改变电 机内的磁场, 不会增加额外的损耗。
较优地, 在所述机壳 1 0上设置有流体进口(图中未示出)和流体出口(图中未示出), 所述流体进口与所述第一内腔 1 Oa连通,所述流体出口与所述第二内腔 1 Ob连通。使用时, 液态换热流体(优选为液体制冷剂)从流体进口进入第一内腔 1 0a 内, 然后通过轴向通风 孔 21 3换热, 在此过程中, 换热流体吸收热量发生相变, 通过相变带走热量, 进一步提高 了电机换热比。
本发明另一个实施例中, 提供一种制冷压缩机, 包括电机, 所述电机为上述实施例中 的永磁电机, 在所述机壳 1 0上设置有与所述第一内腔 1 0a连通的冷媒进口 (图中未示出) 和与所述第二内腔 1 0b连通的冷媒出口 (图中未示出)。 这样, 换热流体从冷媒进口进入第 一内腔 1 0a 内 , 经过轴向通风孔 21 3与齿部 212换热后, 流入第二内腔 1 0b 内 , 最后从冷 媒出口排出, 这样电机内部冷媒在压缩机作用下形成独立的循环体系。 所述制冷压缩机优 选为离心式制冷压缩机或螺 4干式制冷压缩机。
本发明另一个实施例中, 提供一种空调机组(图中未示出), 包括压缩机、 冷凝器、 主 路节流元件、 闪发器及蒸发器, 压缩机、 冷凝器、 主路节流元件、 闪发器及蒸发器通过管 道连接组成制冷剂循环回路, 所述压缩机为上述的制冷压缩机, 且所述冷媒进口经辅路节 流元件与所述冷凝器或所述闪发器的液体出口连通, 所述冷媒出口与所述压缩机的吸气口 连通。 液态冷媒经辅路节流元件节流后形成雾态低温冷媒喷入第一内腔 1 0a中, 一部分雾 态低温冷媒通过轴向通风孔 21 3 , 与齿部 212直接进行换热, 带走定子上的热量。 由于永 磁电机运行过程中热量主要来自定子铜耗和定子铁耗, 而转子 30 由永磁体构成, 转子 30 发热可以忽略, 那么在永磁电机运行过程中导致转子 30温度升高主要原因是传热引起。 因 此本实施例中的永磁电机将定子热损直接交换, 使永磁电机达到温度场均勾分布的效果, 可以消除因永磁永磁电机存在高温退磁等隐患和永磁电机绝缘热损隐患。 另一部分雾态低 温冷媒在转子压圏 32表面上凝结成液态, 由于转子 30的高速旋转, 凝结的冷媒直接甩向 线圏绕组 22端部, 冷却线圏绕组 22端部。
以上所述实施例仅表达了本发明的几种实施方式, 其描述较为具体和详细, 但并不能 因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说, 在不脱离本发明构思的前提下, 还可以做出若千变形和改进, 这些都属于本发明的保护范 围。

Claims

权利要求
1、 一种永磁电机, 包括机壳、 定子和转子, 所述定子和所述转子安装于所述机壳内, 且将所述机壳的内腔分隔成第一内腔和第二内腔, 所述定子包括定子铁心, 所述定子铁心 的齿部上设置有连通所述第一内腔与所述第二内腔的轴向通风孔; 其特征在于, 所述轴向 通风孔为沿所述齿部的高度方向延伸的锥形孔, 且所述轴向通风孔靠近所述齿部头部一端 的宽度大于其靠近所述齿部根部一端的宽度。
2、 根据权利要求 1所述的永磁电机, 其特征在于, 所述轴向通风孔的横截面轮廓线包 括靠近所述齿部头部一侧的圆弧状第一轮靡线、 靠近所述齿部根部一侧的圆弧状第二轮廓 线以及连接在该第一轮靡线两端与该第二轮靡线两端之间的直线状第三轮靡线。
3、 根据权利要求 2所述的永磁电机, 其特征在于, 所述第一轮靡线的半径 R1不大于 所述齿部宽度 L2的 1 / 3。
4、 根据权利要求 1所述的永磁电机, 其特征在于, 所述第一轮靡线的中心 01与所述 定子的内圆表面之间的距离 L大于 0. 5隱。
5、 根据权利要求 1所述的永磁电机, 其特征在于, 所述第一轮靡线的中心 01与所述 第二轮靡线的中心 02之间的间距 L1大于或等于所述第一轮靡线的半径 Rl。
6、 根据权利要求 2所述的永磁电机, 其特征在于, 所述第二轮靡线的半径 R2不大于 所述第一轮靡线的半径 R1的 1 / 3。
7、 根据权利要求 1至 6中任意一项所述的永磁电机, 其特征在于, 所述转子包括转子 铁心和设置于该转子铁心轴向方向上的两侧的转子压圏, 在至少一个所述转子压圏与所述 转子铁心之间设置有隔板, 且该隔板的外缘伸入所述定子的内圆表面与所述转子的外圆表 面之间的气隙内。
8、 根据权利要求 7所述的永磁电机, 其特征在于, 所述隔板为环状结构, 且该隔板的 外径大于所述转子的外圆表面的直径、 小于所述定子的内圆表面的直径。
9、 根据权利要求 1至 6中任意一项所述的永磁电机, 其特征在于, 在所述机壳上设置 有流体进口和流体出口, 所述流体进口与所述第一内腔连通, 所述流体出口与所述第二内 腔连通。
10、 一种制冷压缩机, 包括电机, 其特征在于, 所述电机为根据权利要求 1至 9中任 一项所述的永磁电机。
11、 根据权利要求 10所述的制冷压缩机, 其特征在于, 所述制冷压缩机为离心式制冷 压缩机或螺 4干式制冷压缩机。
12、 一种空调机组, 包括压缩机、 冷凝器、 主路节流元件及蒸发器, 所述压缩机、 所 述冷凝器、 所述主路节流元件和所述蒸发器通过管道连接组成制冷剂循环回路, 其特征在 于, 所述压缩机为根据权利要求 10或 11所述的制冷压缩机, 且所述流体进口经辅路节流 元件与所述冷凝器的出口连通, 所述流体出口与所述压缩机的吸气口连通。
13、 根据权利要求 12所述的空调机组, 其特征在于, 还包括闪发器, 该闪发器连接在 所述冷凝器与所述蒸发器之间, 或者所述流体进口经所述辅路节流元件与所述闪发器的液 体出口连通。
PCT/CN2014/083551 2013-08-13 2014-08-01 永磁电机、制冷压缩机及空调机组 WO2015021870A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14836445.8A EP3035493B1 (en) 2013-08-13 2014-08-01 Permanent magnet motor, refrigeration compressor, and air conditioning unit
US14/912,032 US10103586B2 (en) 2013-08-13 2014-08-01 Permanent magnet motor, refrigeration compressor and air conditioning unit
JP2016533797A JP6409066B2 (ja) 2013-08-13 2014-08-01 永久磁石モーター、冷凍圧縮機および空気調和装置
PH12016500277A PH12016500277A1 (en) 2013-08-13 2016-02-10 Permanent magnet motor, refrigeration compressor, and air conditioning unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310352017.9A CN104377852B (zh) 2013-08-13 2013-08-13 永磁电机、制冷压缩机及空调机组
CN201310352017.9 2013-08-13

Publications (1)

Publication Number Publication Date
WO2015021870A1 true WO2015021870A1 (zh) 2015-02-19

Family

ID=52468031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083551 WO2015021870A1 (zh) 2013-08-13 2014-08-01 永磁电机、制冷压缩机及空调机组

Country Status (7)

Country Link
US (1) US10103586B2 (zh)
EP (1) EP3035493B1 (zh)
JP (1) JP6409066B2 (zh)
CN (1) CN104377852B (zh)
MY (1) MY179452A (zh)
PH (1) PH12016500277A1 (zh)
WO (1) WO2015021870A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014206845A1 (de) * 2014-04-09 2015-10-15 Zf Friedrichshafen Ag Stator für eine elektrische Maschine und elektrische Maschine
CN108199534B (zh) * 2018-02-05 2023-09-26 姜春辉 一种筒式单气隙外转子电机
CN108258822B (zh) * 2018-02-05 2023-08-22 姜春辉 一种筒式单气隙内转子电机
CN109038884B (zh) * 2018-07-12 2019-11-26 珠海格力电器股份有限公司 电机转子、电机
US11411448B2 (en) * 2019-09-03 2022-08-09 Hamilton Sundstrand Corporation Motor stator core design with integral cooling duct within teeth

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1090750B (de) * 1958-09-05 1960-10-13 Continental Elektro Ind Ag Genutete Bleche fuer elektrische Maschinen mit Kuehlkanaelen in den Zaehnen
US3675056A (en) * 1971-01-04 1972-07-04 Gen Electric Hermetically sealed dynamoelectric machine
DE2512190A1 (de) * 1975-03-20 1976-09-23 Baumueller Gmbh A Lamellierter, etwa kreisringfoermiger staender fuer einen gleichstrommotor
JPS5840898B2 (ja) * 1978-06-07 1983-09-08 株式会社日立製作所 短長回転子を有する回転電機
JP2006074866A (ja) * 2004-08-31 2006-03-16 Toshiba Corp 回転電機
WO2012082592A1 (en) * 2010-12-16 2012-06-21 Johnson Controls Technology Company Motor cooling system
CN203406692U (zh) * 2013-08-13 2014-01-22 珠海格力电器股份有限公司 永磁电机、制冷压缩机及空调机组
CN203554093U (zh) * 2013-08-13 2014-04-16 珠海格力电器股份有限公司 永磁电机、制冷压缩机及空调机组

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE590588C (de) * 1930-09-17 1934-01-06 Aeg Staenderaufbau zur radialen Lueftung der Staenderzaehne elektrischer Maschinen mit aus gezahnten Blechen geschichteten Staendereisen
US4182137A (en) * 1978-01-03 1980-01-08 Borg-Warner Corporation Liquid cooling system for hermetically sealed electric motor
JPS56102946U (zh) * 1980-01-10 1981-08-12
JP3102483B2 (ja) * 1989-06-16 2000-10-23 株式会社日立製作所 吸収式冷凍機
JPH0634238A (ja) * 1992-07-20 1994-02-08 Hitachi Ltd 吸収式冷凍機
GB2289992B (en) * 1994-05-24 1998-05-20 Gec Alsthom Ltd Improvements in or relating to cooling arrangements in rotating electrical machines
JPH11355987A (ja) * 1998-06-10 1999-12-24 Hitachi Ltd 回転電機用ロータ構造
US6933633B2 (en) * 2001-10-03 2005-08-23 Nissan Motor Co., Ltd. Rotating electric machine and cooling structure for rotating electric machine
JP4032687B2 (ja) * 2001-10-03 2008-01-16 日産自動車株式会社 回転電機
JP3982491B2 (ja) * 2003-12-22 2007-09-26 株式会社日立製作所 回転電機
JP4400425B2 (ja) * 2004-11-15 2010-01-20 トヨタ自動車株式会社 表面磁石型電動機、表面磁石型電動機の製造方法、および表面磁石型電動機を備えた内燃機関
US7705503B2 (en) * 2005-09-07 2010-04-27 Kabushiki Kaisha Toshiba Rotating electrical machine
DE102006022362A1 (de) * 2006-05-12 2007-11-15 Siemens Ag Permanenterregte Synchronmaschine
CN201438649U (zh) * 2009-06-15 2010-04-14 水利部杭州机械设计研究所 一种同步发电机定子铁芯
CN102005842B (zh) * 2010-10-29 2012-08-08 中电电机股份有限公司 大型异步电机转子扇形片叠压结构
US8789259B2 (en) * 2011-11-17 2014-07-29 Remy Technologies, L.L.C. Method of winding a stator core with a continuous conductor having a rectangular cross-section and a stator core
JP5772544B2 (ja) * 2011-11-25 2015-09-02 トヨタ自動車株式会社 回転電機の冷却構造
CN202475153U (zh) * 2012-03-16 2012-10-03 珠海格力电器股份有限公司 电机及包括该电机的空调
CN102611228A (zh) * 2012-03-20 2012-07-25 中科盛创(青岛)电气有限公司 永磁电机转子磁钢端部紧固结构
CN104377851B (zh) * 2013-08-13 2016-12-28 珠海格力电器股份有限公司 永磁电机、制冷压缩机及空调机组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1090750B (de) * 1958-09-05 1960-10-13 Continental Elektro Ind Ag Genutete Bleche fuer elektrische Maschinen mit Kuehlkanaelen in den Zaehnen
US3675056A (en) * 1971-01-04 1972-07-04 Gen Electric Hermetically sealed dynamoelectric machine
DE2512190A1 (de) * 1975-03-20 1976-09-23 Baumueller Gmbh A Lamellierter, etwa kreisringfoermiger staender fuer einen gleichstrommotor
JPS5840898B2 (ja) * 1978-06-07 1983-09-08 株式会社日立製作所 短長回転子を有する回転電機
JP2006074866A (ja) * 2004-08-31 2006-03-16 Toshiba Corp 回転電機
WO2012082592A1 (en) * 2010-12-16 2012-06-21 Johnson Controls Technology Company Motor cooling system
CN203406692U (zh) * 2013-08-13 2014-01-22 珠海格力电器股份有限公司 永磁电机、制冷压缩机及空调机组
CN203554093U (zh) * 2013-08-13 2014-04-16 珠海格力电器股份有限公司 永磁电机、制冷压缩机及空调机组

Also Published As

Publication number Publication date
EP3035493A1 (en) 2016-06-22
PH12016500277A1 (en) 2016-05-02
US20160197526A1 (en) 2016-07-07
EP3035493B1 (en) 2020-01-08
CN104377852A (zh) 2015-02-25
JP6409066B2 (ja) 2018-10-17
EP3035493A4 (en) 2016-11-16
US10103586B2 (en) 2018-10-16
MY179452A (en) 2020-11-06
CN104377852B (zh) 2016-12-28
JP2016528864A (ja) 2016-09-15

Similar Documents

Publication Publication Date Title
WO2015021872A1 (zh) 永磁电机、制冷压缩机及空调机组
WO2015021870A1 (zh) 永磁电机、制冷压缩机及空调机组
CN106451864B (zh) 永磁牵引电机混合通风冷却系统及方法
WO2014089978A1 (zh) 一种水冷电机
CN203406692U (zh) 永磁电机、制冷压缩机及空调机组
CN201466882U (zh) 电机风路结构
CN205407495U (zh) 永磁同步电机组件及具有其的压缩机和空调器
CN208539671U (zh) 一种自冷却电机转子
KR102018260B1 (ko) 전동압축기의 모터 냉각구조
CN203554093U (zh) 永磁电机、制冷压缩机及空调机组
CN207339512U (zh) 一种分体式且带冷却流道的电机壳体及具有其的电机
CN203261190U (zh) 一种超高速永磁同步电动机的散热结构
CN208010594U (zh) 压缩机及空调器
CN109104031B (zh) 电机及压缩机
CN204316260U (zh) 一种电机
CN211266681U (zh) 一种强迫冷却式实心转子电动机
CN107733163B (zh) 一种电机、离心式压缩机及空调机组
WO2020088293A1 (zh) 电机冷却组件及电机及压缩机
CN207052404U (zh) 一种变压器冷却装置
CN206865307U (zh) 一种新型具有内部冷却间隙的水冷盘式永磁电机
KR20120117552A (ko) 차량용 전동압축기
KR101392926B1 (ko) 팬-모터 조립체 및 이를 구비한 냉장고
CN108880106A (zh) 一种具有空气冷却装置的电机
CN111371251A (zh) 具有螺旋冷却式转子的电机以及压缩机
CN210327192U (zh) 超高速电机的转子结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836445

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12016500277

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 2016533797

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14912032

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014836445

Country of ref document: EP