WO2015021570A1 - 高强高模聚乙烯纤维复合滤布及其生产方法 - Google Patents

高强高模聚乙烯纤维复合滤布及其生产方法 Download PDF

Info

Publication number
WO2015021570A1
WO2015021570A1 PCT/CN2013/000935 CN2013000935W WO2015021570A1 WO 2015021570 A1 WO2015021570 A1 WO 2015021570A1 CN 2013000935 W CN2013000935 W CN 2013000935W WO 2015021570 A1 WO2015021570 A1 WO 2015021570A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
modulus polyethylene
polyethylene fiber
filter cloth
composite filter
Prior art date
Application number
PCT/CN2013/000935
Other languages
English (en)
French (fr)
Inventor
何飞
Original Assignee
山东爱地高分子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东爱地高分子材料有限公司 filed Critical 山东爱地高分子材料有限公司
Priority to PCT/CN2013/000935 priority Critical patent/WO2015021570A1/zh
Publication of WO2015021570A1 publication Critical patent/WO2015021570A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material

Definitions

  • the invention relates to the technical field of filter cloth production, in particular to a high-strength and high-modulus polyethylene fiber composite filter cloth and a production method thereof.
  • Industrial filter cloth is a filter medium woven from natural fibers and synthetic fibers, mainly used for solid-liquid separation and gas-solid separation.
  • Synthetic fibers mainly include polypropylene, polyester, nylon, vinylon, etc.
  • polyester and polypropylene are the most commonly used, mainly solid-liquid separation, widely used in pharmaceutical manufacturing, chemical industry, mining, food processing and manufacturing, metallurgical smelting, ceramic manufacturing, Filtration equipment, separation equipment, press equipment, filter presses, etc. in industries such as cement, filter cloth are indispensable for these equipment.
  • textile filter cloth is the most diverse and most versatile filter cloth.
  • polypropylene PP
  • PET polyester
  • nylon PA polyamide
  • polypropylene fiber filter cloth can be affected by common industrial liquids such as xylene, toluene and tetrachloroethane during use, and then decompose to affect product quality
  • nylon nylon
  • the biggest disadvantage of the filter cloth is that it is chemically unstable, it is easy to release a trace amount of harmful substances, and the filter is re-contaminated.
  • polyester fiber filter cloth Although the polyester fiber filter cloth has high strength, flexibility, and good abrasion resistance, it is resistant to acid corrosion in chemical stability and poor in alkali resistance and cannot be widely used.
  • the present invention provides a high-strength and high-modulus polyethylene fiber composite filter cloth which is excellent in high strength, acid and alkali resistance, wear resistance and tensile strength, and has a long service life, and a production of the filter cloth. method.
  • a high-strength high-modulus polyethylene fiber composite filter cloth comprising a woven layer and a non-woven layer, wherein the filter cloth structure is a composite nonwoven layer under the woven layer or an intermediate composite nonwoven layer of the two-layer woven layer.
  • the woven layer is made of high-strength and high-modulus polyethylene fiber warp and high-strength high-modulus polyethylene fiber weft interweaving, and the adjacent warp and weft are between the filter holes A;
  • the non-woven layer is made of high-strength and high-modulus polyethylene short fibers by non-woven fabric.
  • the three-dimensional structure is formed by a filter hole B between adjacent short fibers.
  • the high-strength high-modulus fiber has a strength of 10 to 50 g/d and a modulus of 400 to 1600 cN'/dte X . Due to its high strength and modulus, it can accommodate high filtration pressures and high wash pressure impacts.
  • the woven layer is made of high strength and high modulus polyethylene fiber warp and high strength high modulus polyethylene fiber weft using plain weave or Twill weave.
  • the strength of the high-strength high-modulus polyethylene fiber is 10-50 g/d, and the fiber fineness is 200D-6000D.
  • the pore size A is from 1 00 to 2500 mesh and has a pore diameter of 5 to 150 ⁇ m.
  • the filter hole B has a specification of 155-3250 mesh and a pore size of 2-100 micrometers.
  • the high-strength high-modulus polyethylene fiber woven layer has a mass per unit area of 140-630 g/n and a gas permeability of 25
  • the high-strength high-modulus polyethylene short fibers are cut from high-strength and high-modulus polyethylene fibers.
  • the high-strength high-modulus polyethylene fiber has a strength of 10-50 g/d, a modulus of 400-1600 cN/d tex, a single-filament fineness of 2D-16D, and an added curvature of 3-15 rpm.
  • the high-strength and high-modulus polyethylene staple fiber obtained by the koji is 5-60
  • the high-strength high-modulus polyethylene fiber nonwoven layer has a mass per unit area of 110-480 g/n, a gas permeability of 75-200 L/m 2 - s , breaking strength: longitudinal > 30 kN/m, latitudinal > 25 kN/m, elongation at break Length: warp direction ⁇ 60%, weft direction ⁇ 70°/ «, heat shrinkage S90 °C. 90rain ⁇ 2%
  • the high-strength high-modulus polyethylene fiber is produced by a melting method or a jelly method, and the melting method is also called a dry method, and the jelly method is also called a wet method.
  • the high-strength high-modulus polyethylene fiber composite filter cloth when the structure is a composite nonwoven layer under the woven layer, is produced by: laminating a nonwoven layer under the woven layer.
  • the high-strength high-modulus polyethylene fiber composite filter cloth when the structure is a two-layer woven layer intermediate composite nonwoven layer, is produced by: a composite nonwoven layer in the middle of the two-layer woven layer.
  • the high-strength high-modulus polyethylene fiber woven layer is made of high-strength high-modulus polyethylene fiber warp and high-strength high-modulus polyethylene fiber weft by interlacing with plain or twill.
  • the preparation steps are as follows:
  • Fiber twisting and winding The high-strength and high-modulus polyethylene fiber multifilament is twisted and processed into a bobbin for spare warping;
  • Warping the yarn is removed from the quilt by the creel and the warping machine Wrap it up and wind it onto the warping shaft by the specified length;
  • Wear the heald insert pass the warp yarns on the warp beam through the warp, heald and steel shovel, and form the shed on the loom by the opening device , weaving with weft yarns in plain or twill weave;
  • weaving on the machine weaving on the upper loom;
  • stereotype setting temperature: softening point temperature; setting speed: 8m/min; cooling temperature : Below the glass transition temperature of the material;
  • heat setting The purpose of heat setting is to eliminate the accumulation of fibers and fabrics in the previous process, to avoid high elastic deformation, and to improve the stability of the size of the base fabric.
  • the high-strength high-modulus polyethylene fiber nonwoven layer is made of high-strength and high-modulus polyethylene short fibers by non-woven fabric.
  • the preparation process steps are as follows:
  • High-mold polyethylene fiber non-woven layer or spunlace method, high-strength high-modulus polyethylene short fiber through suction, metering, stretching, web forming, tiling, spunlace, dry spurting non-woven fabric production process, made High-strength high-modulus polyethylene fiber nonwoven layer.
  • the non-woven layer is a three-dimensional knot, and the filter hole diameter is small, and can be applied to gas-solid separation of ultrafine particles.
  • the woven layer is used to filter larger solid particles and the nonwoven layer is used to filter smaller solid particles.
  • the combination of the nonwoven layer and the woven layer can reduce the clogging of the nonwoven layer by large particles and prolong its service life.
  • High-strength and high-modulus polyethylene fiber has excellent corrosion resistance and can be used for separation of solid and liquid in strong acid and alkali. Moreover, the high-strength and high-modulus polyethylene fiber is chemically inert, and it is difficult to react with other acids and bases, so it does not react with other substances during use, and does not pollute the mother liquid or the solid filter material.
  • the high-strength and high-modulus polyethylene fiber has a smooth surface and excellent characteristics, and can be well separated from the filtered solid. Good slag discharge performance, easy to clean, easy to reuse, reducing filtration costs.
  • the polyethylene fiber has chemical inertness on the surface without dipping, and the obtained filter cloth can effectively filter the fine powder in the material with a certain viscosity, thereby saving the raw material.
  • High-strength and high-modulus polyethylene fiber can be widely used in food and pharmaceutical filtration industries because of its excellent properties such as non-toxic, odorless, non-polluting and chemically stable.
  • Preparation of 1 000 mesh high strength and high modulus polyethylene fiber composite filter cloth a 1 000 mesh high strength and high modulus polyethylene fiber nonwoven layer is laminated in the middle of two layers of 500 mesh high strength and high modulus polyethylene fiber woven layer to make 1 000 mesh high strength and high modulus polyethylene fiber composite. Filter cloth.
  • Fiber twisting and winding cylinder the strength is 35 g/d and the modulus is 1 300cN/dte X.
  • Warping through the creel and warping machine, the yarn is taken from the winding Unwinding and winding onto the warping shaft with the specified length;
  • Piercing the warp The warp yarns on the warping shaft are sequentially passed through the warp, the heald and the steel shovel, and the shuttle is formed by the opening device on the loom Mouth, interlaced with weft yarn to form a fabric; (4), weaving on the machine: weaving on the upper loom; (5) Stereotype: setting temperature: material softening point temperature; setting speed: 8m/min; cooling temperature: Lower than the glass transition temperature of the material; the purpose is to improve the thermal stability or mechanical strength of the base fabric; (6),
  • woven layer diameter 20-30 microns; mass per unit area: 180g/m 2 ; air permeability: 190L/m 2 - s; breaking strength: warp direction > 6000N/5 20cm, weft direction > 5500N /5 20cm; elongation at break: warp direction ⁇ 5°/», weft direction ⁇ 6%; heat shrinkage 5) 90°C. 90min ⁇ 23 ⁇ 4.
  • the high-strength and high-modulus polyethylene fiber after cutting is cut with a fiber cutter, and the length of the high-strength high-mode polyethylene staple fiber after cutting is 35;
  • Textile manufacturing The high-strength high-modulus polyethylene fiber is made into a high-strength high-modulus polyethylene fiber by a needle punching method.
  • the high-strength high-modulus polyethylene staple fiber is subjected to suction, metering, drawing, web forming, tiling, pre-stinging and needle punching. Spinning layer.
  • Non-woven layer pore diameter 11-14 microns; Mass per unit area: 270g/m 2 ; Air permeability: 150L/m 2 - s; Breaking strength: Longitudinal > 35kN/m, latitudinal > 30kN/m Elongation at break: Warp direction ⁇ 50. /», latitudinal ⁇ 60%; heat shrinkage a90°C . 90rain ⁇ 2°/o 0
  • the 500 mesh high-strength high-modulus polyethylene fiber woven layer, the 1000-mesh high-strength high-modulus polyethylene fiber nonwoven layer, and the 500-mesh high-strength high-modulus polyethylene fiber woven layer are sequentially laid and tempered by hot pressing, and the composite filter cloth is sewn at the periphery by cutting. together.
  • the 1000 mesh high strength and high modulus polyethylene fiber composite filter cloth was prepared: a 1000 mesh high strength and high modulus polyethylene fiber nonwoven layer was laminated under a 500 mesh high strength and high modulus polyethylene fiber woven layer to form a 1000 mesh high strength high modulus polyethylene fiber filter cloth. 1. First prepare a 500 mesh high strength and high modulus polyethylene fiber woven layer. The steps are as follows:
  • Fiber twisting and simplification Select high-strength high-modulus polyethylene fiber with a strength of 35g/d and a fiber fineness of 200D produced by the jelly method, and twist the high-strength and high-modulus polyethylene fiber into a bobbin to be processed.
  • the obtained woven layer aperture 20-30 microns; Mass per unit area: 180g/m 2 ; Air permeability: 190L/m 2 - s; Breaking strength: Warp direction >6000N/5 X 20cra, latitudinal > 5500N/5 ⁇ 20cm; elongation at break: warp direction ⁇ 5%, weft direction ⁇ 6%; heat shrinkage 5) 90 °C. 90min ⁇ 2%.
  • Non-woven layer aperture 11-14 microns; Mass per unit area: 270g/m 2 ; Air permeability: 150L/m 2 - s; Breaking strength: Longitudinal >35kN/m, latitudinal > 30kN/m Elongation at break: warp direction ⁇ 50%, weft direction ⁇ 60%; heat shrinkage S90. C . 90min ⁇ 2% 0
  • the 500 mesh high-strength high-modulus polyethylene fiber woven layer and the 1000-mesh high-strength high-modulus polyethylene fiber nonwoven layer were sequentially laid flat, and the composite filter cloth was bonded with glue by the hot pressing.
  • Examples 3 and 4 are the same as Example 1, and Examples 5 and 6 are the same as Example 2, as shown in Table 1.
  • Example 1 2 3 4 5 6 Double layer Three layer Three layer Double layer Double layer Filter cloth specifications / mesh
  • Non-woven layer >35 >30 >55 >25 ⁇ 55 >25
  • step 2 (3) non-woven fabric production: using a spunlace method, the high-strength high-modulus polyethylene short fibers are subjected to a production process of suction, metering, drawing, web forming, tiling, spunlacing, and drying of spunlace nonwoven fabrics. Made of high strength and high modulus polyethylene fiber nonwoven layer.
  • a double-layer composite filter cloth which is composed of a polypropylene nonwoven layer and a glass fiber mesh cloth.
  • the performance parameters of the double-layer composite filter cloth and the single-layer polypropylene are not provided.
  • the performance parameters of the spun filter cloth are compared with the high-strength and high-modulus polyethylene filter cloth double-layer composite filter cloth of the same specification and the single-layer non-woven filter cloth. The performance is shown in Table 3:
  • the pressure of the double-layer composite filter cloth produced by the same is five times that of the polypropylene/glass fiber double-layer composite filter cloth.
  • the service life is 2-3 times.
  • the service life of the high-strength high-modulus polyethylene single-layer non-woven filter cloth is more than three times that of the polypropylene single-layer non-woven filter cloth.
  • the composite filter cloth made of the intermediate composite nonwoven layer of the two-layer woven layer has better performance than the double-layer composite filter cloth of the composite nonwoven layer under the woven layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

一种高强高模聚乙烯纤维复合滤布及其生产方法,复合滤布包括机织层和无纺层,滤布结构为机织层下复合无纺层或两层机织层中间复合无纺层。机织层由高强高模聚乙烯纤维经线和高强高模聚乙烯纤维纬线交织制成,相邻的经线和纬线之间为滤孔A;无纺层是由高强高模聚乙烯短纤维经无纺织造而成的立体结构,相邻的短纤维之间为滤孔B。复合滤布的生产方法是将机织层和无纺层复合在一起。

Description

高强高模聚乙烯纤维复合滤布及其生产方法 技术领域
本发明涉及滤布生产技术领域, 具体的说是一种高强高模聚乙烯纤维复合滤布 及其生产方法。
背景技术
工业滤布是由天然纤维和合成纤维织造而成的过滤介质, 主要用于固液分离和 气固分离。 合成纤维主要有丙纶, 涤纶, 锦纶, 维纶等, 其中以涤纶和丙纶最为常 用, 以固液分离为主, 广泛应用于医药制造、 化学工业、 开矿、 食品加工与制造、 冶金冶炼、 陶瓷制造、 水泥等行业中的过滤设备、 分离设备、 压榨设备、 压滤机等, 滤布是这些设备不可或缺的。 其中纺织滤布是品种最多、 用途最广的过滤布。
目前国内化纤纤维中, 聚丙烯 (PP )、 聚酯(PET)及聚酰胺 (尼龙 PA ) 在纺织滤 布中应用最为广泛。 但其产品在应用过程中都有自己的缺点: 如聚丙烯纤维滤布在 使用过程中能受二甲苯、 甲苯、 四氯乙烷等常用工业液体的影响进而发生分解影响 产品质量; 如聚酰胺 (尼龙) 滤布的最大的缺点就是化学性质不稳定, 容易放出微 量的有害物质, 对过滤物进行二次污染, 所以该种滤布不能用于食品加工、 生物制 药等进入人体的行业; 如聚酯纤维滤布: 聚酯纤维滤布虽强度高, 具有挠性, 耐磨 性较好, 但在化学稳定性方面耐酸腐蚀, 耐碱性方面较差, 无法广泛应用。
发明内容:
为解决上述技术问题, 本发明提出了一种高强度, 耐酸碱性、 耐磨性和抗拉性 均优异, 且使用寿命较长的高强高模聚乙烯纤维复合滤布, 以及生产该滤布的方法。
本发明的技术方案: 一种高强高模聚乙烯纤维复合滤布, 其包括机织层和无纺 层, 滤布结构为机织层下复合无纺层或两层机织层中间复合无纺层。 所述机织层由 高强高模聚乙烯纤维经线和高强高模聚乙烯纤维纬线交织制成, 相邻的经线和纬线 之间为滤孔 A ; 所述无纺层是由高强高模聚乙烯短纤维经无纺织造而成的立体结构, 相邻的短纤维之间为滤孔 B。
所述高强高模量纤维, 其强度为 1 0- 50g/d , 摸量为 400-1600cN'/d t eX。 因其具 有较高的强度和模量, 其可以适应高过滤压力及高洗涤压力的冲击。
所述机织层由高强高模聚乙烯纤维经线和高强高模聚乙烯纤维纬线采用平紋或 斜紋编织制成。 选用的高强高模聚乙烯纤维强度为 1 0— 50g/d, 纤维纤度为 200D— 6000D
所述滤孔 A规格为 1 00-2500目, 孔径为 5-150微米。 所述滤孔 B规格为 155-3250 目, 孔径为 2-100微米。
所述高强高模聚乙烯纤维机织层的单位面积质量为 140— 630g/n , 透气量为 25
-650L/m2 - s , 断裂强力为: 经向 >6000N/5 X 20cm, 纬向 M 000 Ν/ 5 χ 20cm, 断裂伸 长为: 经向 <5%, 纬向 <6°/», 热收缩为 39 (TC . 90min<2°/«
所述高强高模聚乙烯短纤维由高强高模聚乙烯纤维加曲切断而成。 选用的高强 高模聚乙烯纤维强度为 10— 50g/d , 模量为 400- 1600cN/d tex, 单丝纤度为 2D— 16D, 加曲曲数为 3-15曲 /cm。 加曲制得的高强高模聚乙烯短纤维长度为 5-60
所述高强高模聚乙烯纤维无纺层的单位面积质量为 110-480g/n , 透气量为 75-200L/m2 - s , 断裂强力: 纵向〉 30kN/m, 纬向〉 25kN/m, 断裂伸长: 经向 <60%, 纬 向 <70°/« , 热收缩 S90 °C . 90rain<2%
所述高强高模聚乙烯纤维, 是采用熔融法或冻胶法生产的, 熔融法又称干法, 冻胶法又称湿法。
所述高强高模聚乙烯纤维复合滤布, 其结构为机织层下复合无纺层时, 其生产 方法是: 在机织层下方复合无纺层。
所述高强高模聚乙烯纤维复合滤布, 其结构为两层机织层中间复合无纺层时, 其生产方法是: 在两层机织层的中间复合无纺层。
所述高强高模聚乙烯纤维机织层是由高强高模聚乙烯纤维经线和高强高模聚乙 烯纤维纬线采用平紋或斜紋交织制成的, 制备工艺步骤如下:
( 1 )纤维加捻络筒: 将高强高模聚乙烯纤维复丝加捻,加工成筒纱以备用整经; ( 2 )整经: 通过纱架和整经机, 将纱线从络简上退绕下来, 以规定长度卷绕到整经 轴上; ( 3 ) 穿综插筘: 将整经轴上的经纱依次经过穿经片、 综丝和钢筘, 在织机上 由开口装置形成梭口, 与纬线纱以平紋或斜紋交织形成织物; (4 )、 上机织造: 上织 机进行织布加工; (5 ) 定型: 定型温度: 材质软化点温度; 定型速度: 8m/分; 冷却 温度: 低于材质玻璃化温度; (6 )、 热定型: 热定型的目的是为了消除前道工序中聚 集在纤维和织物内部的, 避免产生高弹变型, 提高基布尺寸的稳定性。
所述高强高模聚乙烯纤维无纺层是由高强高模聚乙烯短纤维经无纺织造而成, 制备工艺步骤如下:
( 1 ) 加曲: 将高强高模聚乙烯纤维加湿后用纤维加曲机加曲, 曲度为 3-15 曲 /cm。 (2 )切断: 将加曲后高强高模聚乙烯纤维用纤维切断机进行切断, 切断后的高 强高模聚乙烯短纤维长度为 5-60mm。 ( 3 ) 无纺织造: 采用针刺法, 将高强高模聚乙 烯短纤维经过吸料、 计量、 拉伸、 成网、 平铺、 预刺和针刺的针刺无纺布生产工序, 制成高强高模聚乙烯纤维无纺层; 或采用水刺法, 将高强高模聚乙烯短纤维经过吸 料、 计量、 拉伸、 成网、 平铺、 水刺、 干墚的水刺无纺布生产工序, 制成高强高模 聚乙烯纤维无纺层。
本发明的有益效果在于:
1、 无纺层是立体结抅, 且滤孔直径小, 可应用于超细颗粒的气固分离。 机织层 用于过滤较大固体颗粒, 无纺层用于过滤较小固体颗粒。 将无纺层和机织层复合使 用, 可以减少大颗粒对无纺层的堵塞, 延长其使用寿命。
2、 高强高模聚乙烯纤维具有优良的抗腐蚀性能, 可以用于强酸强碱中固液的分 离。 且高强高模聚乙烯纤维具有化学惰性, 其很难与其他酸碱发生反应, 故在使用 过程中不会与其他的物质发生反应, 不会对母液或固体过滤物质造成污染。
3、 高强高模聚乙烯纤维具有表面比较光滑优良特性, 可以很好的与过滤固体 分离。 卸渣性能较好, 易于清洗, 方便重复使用, 降低了过滤成本。 聚乙烯纤维 具有表面不浸胶的化学惰性, 制得的滤布可以有效滤除具有一定粘度的物料中的 微细粉, 节约了原料。
4、 高强高模聚乙烯纤维因其具有本身无毒、 无味、 无污染、 化学稳定等优良特 性, 可以广泛用于食品和医药过滤行业。
具体实施方式
以下通过实施例具体说明本发明。
实施例 1 :
制备 1 000目高强高模聚乙烯纤维复合滤布:在两层 500目高强高模聚乙烯纤维机 织层的中间复合一层 1 000目高强高模聚乙烯纤维无纺层, 制成 1 000目高强高模聚乙 烯纤维复合滤布。
1、 首先制备 500目高强高模聚乙烯纤维机织层, 步骤如下:
( 1 )纤维加捻络筒:选用采用冻胶法生产的、强度为 35 g/d、模量为 1 300cN/d t eX 纤维纤度为 200D的高强高模聚乙烯纤维, 将高强高模聚乙烯纤维复丝加捻, 加工成 简纱以备用整经; (2 ) 整经: 通过纱架和整经机, 将纱线从络筒上退绕下来, 以规 定长度卷绕到整经轴上; ( 3 ) 穿综插筘: 将整经轴上的经纱依次经过穿经片、 综丝 和钢筘, 在织机上由开口装置形成梭口, 与纬线纱以斜紋交织形成织物; (4 )、 上机 织造: 上织机进行织布加工; (5 ) 定型: 定型温度: 材质软化点温度; 定型速度: 8m/分; 冷却温度: 低于材质玻璃化温度; 目的是改善基布的热稳定性或机械强度; ( 6 )、 热定型。 热定型的目的是为了消除前道工序中聚集在纤维和织物内部的, 避 免产生高弹变型, 提高基布尺寸的稳定性。
经检测: 制得的机织层孔径: 20- 30微米; 单位面积质量: 180g/m2 ; 透气量: 190L/m2 - s; 断裂强力: 经向〉 6000N/5 20cm, 纬向〉 5500N/5 20cm; 断裂伸长: 经向 <5°/», 纬向 <6% ; 热收缩 5)90°C . 90min〈2¾。
2、 接下来, 制备 1000目高强高模聚乙烯纤维无纺层, 步骤如下:
( 1 )加曲: 选用采用冻胶法生产的、 强度为 25g/d、 模量为 1000cN/dtex、 单丝 纤度为 8D的高强高模聚乙烯纤维,将高强高模聚乙烯纤维加湿后用纤维加曲机加曲, 加曲曲度为 7曲 / cm; ( 2 ) 切断: 将加曲后高强高模聚乙烯纤维用纤维切断机进行切 断, 切断后的高强高模聚乙烯短纤维长度为 35麵; ( 3 ) 无纺织造: 采用针刺法, 将 高强高模聚乙烯短纤维经过吸料、 计量、 拉伸、 成网、 平铺、 预刺和针刺的针刺无 纺布生产工序, 制成高强高模聚乙烯纤维无纺层。
经检测: 制得的无纺层孔径: 11-14微米; 单位面积质量: 270g/m2 ; 透气量: 150L/m2 - s; 断裂强力: 纵向〉 35kN/m, 纬向〉 30kN/m; 断裂伸长: 经向 <50。/», 纬向 <60%; 热收缩 a90°C . 90rain<2°/o 0
3、 制备 1000目高强高模聚乙烯纤维复合滤布, 步骤如下:
将 500目高强高模聚乙烯纤维机织层、 1000目高强高模聚乙烯纤维无纺层、 500 目高强高模聚乙烯纤维机织层依次平铺, 通过热压定型, 裁剪后复合滤布周边用缝 纫方法缝合在一起。
实施例 2 :
制备 1000目高强高模聚乙烯纤维复合滤布:在 500目高强高模聚乙烯纤维机织层 下复合一层 1000目高强高模聚乙烯纤维无纺层, 制成 1000目高强高模聚乙烯纤维滤 布。 1、 首先制备 500目高强高模聚乙烯纤维机织层, 步骤如下:
( 1 ) 纤维加捻络简: 选用采用冻胶法生产的、 强度为 35g/d、 纤维纤度为 200D 的高强高模聚乙烯纤维, 将高强高模聚乙烯纤维复丝加捻, 加工成筒纱以备用整经; ( 2 )整经: 通过纱架和整经机, 将纱线从络简上退绕下来, 以规定长度卷绕到整经 轴上; ( 3 ) 穿综插筘: 将整经轴上的经纱依次经过穿经片、 综丝和钢筘, 在织机上 由开口装置形成梭口, 与纬线纱以斜紋交织形成织物; (4 )、 上机织造: 上织机进行 织布加工; (5 ) 定型: 定型温度: 材质软化点温度; 定型速度: 8m/分; 冷却温度: 低于材质玻璃化温度; 目的是改善基布的热稳定性或机械强度; (6 )、 热定型。 热定 型的目的是为了消除前道工序中聚集在纤维和织物内部的, 避免产生高弹变型, 提 高基布尺寸的稳定性。
经检测: 制得的机织层孔径: 20-30微米; 单位面积质量: 180g/m2; 透气量: 190L/m2 - s; 断裂强力: 经向 >6000N/5 X 20cra, 纬向〉 5500N/5 χ 20cm; 断裂伸长: 经向〈5%, 纬向 <6% ; 热收缩 5)90°C . 90min<2%。
2、 接下来, 制备 1000目高强高模聚乙烯纤维无纺层, 步骤如下:
( 1 ) 加曲: 选用采用冻胶法生产的、 强度为 25g/d、 单丝纤度为 8D的高强高模 聚乙烯纤维, 将高强高模聚乙烯纤维加湿后用纤维加曲机加曲, 加曲曲度为 7曲 /cm; ( 2 )切断: 将加曲后高强高模聚乙烯纤维用纤维切断机进行切断, 切断后的高强高 模聚乙烯短纤维长度为 35隱; ( 3 ) 无纺织造: 采用针刺法, 将高强高模聚乙烯短纤 维经过吸料、 计量、 拉伸、 成网、 平铺、 预刺和针刺的针刺无纺布生产工序, 制成 高强高模聚乙烯纤维无纺层。
经检测: 制得的无纺层孔径: 11-14微米; 单位面积质量: 270g/m2 ; 透气量: 150L/m2 - s; 断裂强力: 纵向 >35kN/m, 纬向 > 30kN/m; 断裂伸长: 经向 <50%, 纬向 <60%; 热收缩 S90。C . 90min<2%0
3、 制备 1000目高强高模聚乙烯纤维复合滤布, 步骤如下:
将 500目高强高模聚乙烯纤维机织层和 1000目高强高模聚乙烯纤维无纺层依次平铺, 通过热压定型, 裁剪后复合滤布周边用胶粘合在一起。
实施例 3 - 6
除以下区别外, 实施例 3和 4同实施例 1 , 实施例 5和 6同实施例 2 , 如表 1所示。
表 1 实施例 1 2 3 4 5 6 三层 双层 三层 三层 双层 双层 滤布规格 /目
/1000 /400 /3250 /155 /3250 /155 机织 纤维强力(g/d) 35 35 50 10 50 10 层纤 纤维模量
1300 1300 1600 400 1600 400 维规 (cN/dtex)
格 纤维纤度(D) 200 400 200 6000 200 6000 纤维强力(g/d) 25 24 50 10 50 10 无纺 纤维模量
1000 1000 1600 400 1600 400 层纤 (cN/dtex)
维规 单丝纤度(D) 8 10 2 16 2 16 格 曲数 (个 /cm) 7 5 15 3 15 3 短纤长度(醒) 35 40 5 60 5 60 物性如表 2所示:
表 2
实施例 1 2 3 4 5 6 双层 三层 三层 双层 双层 滤布规格 /目
10(H) 400 3250 155 3250 155 孔径(μιτι) 20-30 50-55 5-10 140-150 5-10 140-150 克重(g/m2) 180 150 250 120 250 120 透气量(L/m2* 120 370 120 370
190 240
s)
纵向断裂强力
〉6000 >5500 〉7500 〉4500 〉7500 >4500 (N/5 X 20cm)
横向断裂强力
>5500 >5000 >7000 〉4000 >7000 〉4000 (N/5 X 20cm)
纵向断裂伸长 <5% <5% <5% <5% <5% <5% 横向断裂伸长 <6% <6% <6% <6% <6% <6% 热收缩 5)90
<2% <2% <2% <2 <2% <2% 。C .90min
孔径(μηι) 11-14 35-40 1-4 95-105 1-4 95-105 克重(g/m2) 270 320 240 380 240 380 透气量(L/m2* 50 50
150 200 300 300 s)
纵向断裂强力
无纺层 >35 >30 >55 >25 〉55 >25
(kN/m)
测试结
横向断裂强力
果 〉30 〉28 〉50 〉20 〉50 〉20
(kN/m)
纵向断裂伸长 <50% <50% <50% <50 <50% <50% 横向断裂伸长 <60% <60% <60% <60% <60% <60% 热收缩 5)90
<2% <2% <2 <2% <2% <2% 。C .90min 实施例: 7 :
除以下区别外, 其他同实施例 1或实施例 2。
步骤 2中, ( 3 )无纺织造: 采用水刺法, 将高强高模聚乙烯短纤维经过吸料、 计 量、 拉伸、 成网、 平铺、 水刺、 干燥的水刺无纺布生产工序, 制成高强高模聚乙烯 纤维无纺层。
对比例 1 :
在专利 CN 201997186 U中给出了一种双层复合滤布, 由丙纶无纺层和玻璃纤维 网格布组成, 其实施例中给出了双层复合滤布的性能参数和单层丙纶无纺滤布的性 能参数, 和相同规格的高强高模聚乙烯滤布双层复合滤布和单层无纺滤布相比, 性 能如表 3所示:
表 3
Figure imgf000008_0001
通过对比表 3中的数据可以发现: 由于高强高模聚乙烯纤维的高强度和高耐磨 性, 用其生产的双层复合滤布的承受压力是丙纶 /玻纤双层复合滤布的 5倍, 使用寿 命是其的 2-3倍。 而对比单层无纺滤布, 高强高模聚乙烯单层无纺滤布的使用寿命是 丙纶单层无纺滤布的 3倍以上。本发明中由两层机织层的中间复合无纺层制成的复合 滤布, 其性能要更优于机织层下复合无纺层的双层复合滤布。

Claims

WO 2015/021570 权 禾!】 求 书 PCT/CN2013/000935
1、 一种高强高模聚乙烯纤维复合滤布, 其特征在于, 其包括机织层和无纺层; 所述机织层由高强高模聚乙烯纤维经线和高强高模聚乙烯纤维纬线交织制成, 相邻 的经线和纬线之间为滤孔 A; 所述无纺层是由高强高模聚乙烯短纤维经无纺织造而 成的立体结构, 相邻的短纤维之间为滤孔 B。
2、 根据权利要求 1所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述滤 布结构为机织层下复合无纺层。
3、 根据权利要求 1所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述滤 布结构为两层机织层中间复合无纺层。
4、 根据权利要求 1-3中任一项所述的高强高模聚乙烯纤维复合滤布, 其特征在 于, 所述机织层由高强高模聚乙烯纤维经线和高强高模聚乙烯纤维纬线采用平紋或 斜紋编织制成。
5、 根据权利要求 4所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述高 强高模聚乙烯纤维强度为 1 0— 50g/d, 模量为 400- 1600cN/d t ex, 纤维纤度为 200D— 6000D.
6、 根据权利要求 1所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述滤 孔 A规格为 1 00-2500目, 孔径为 5-150微米。
7、 根据权利要求 1所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述滤 孔 B规格为 1250-3250目, 孔径为 2- 1 0微米。
8、 根据权利要求 1所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述高 强高模聚乙烯短纤维由高强高模聚乙烯纤维加曲切断而成。
9、 根据权利要求 8所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述高 强高模聚乙烯纤维强度为 1 0— 50g/d ,模量为 400- 1600cN/d t ex ,单丝纤度为 2D— 16D。
1 0、 根据权利要求 8所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所述加 曲曲数为 3-15曲 /cm。
Π、 根据权利要求 1或 8所述的高强高模聚乙烯纤维复合滤布, 其特征在于, 所 述高强高模聚乙烯短纤维长度为 5-60隱。
12、 根据权利要求 1所述的高强高模聚乙烯纤维复合滤布, 其生产方法是: 将 所述机织层和无纺层复合在一起。
1 3、 根据权利要求 12所述的高强高模聚乙烯纤维复合滤布的生产方法, 其特征 在于, 在所述机织层下方复合无纺层。 WO 2015/021570 权 禾 ^ 要 求 书 PCT/CN2013/000935
14、拫据权利要求 12所述的高强高模聚乙烯纤维复合滤布的生产方法,其特征 在于, 在所述两层机织层的中间复合无纺层。
1 5、 根据权利要求 12 - 14中任一项所述的高强高模聚乙烯纤维复合滤布的生产 方法, 其特征在于, 所述机织层是由高强高模聚乙烯纤维经线和高强高模聚乙烯纤 维纬线采用平紋或斜紋交织制成, 制备工艺步骤如下:
( 1 )纤维加捻络筒:将高强高模聚乙烯纤维复丝加捻,加工成箇纱以备用整经; ( 2 )整经: 通过纱架和整经机, 将纱线从络简上退绕下来, 以规定长度卷绕到整经 轴上; (3 ) 穿综插筘: 将整经轴上的经纱依次经过穿经片、 综丝和钢筘, 在织机上 由开口装置形成梭口, 与纬线纱以平紋或斜紋交织形成织物; (4 )、 上机织造: 上织 机进行织布加工; (5 )定型: 定型温度: 材质软化点温度; 定型速度: 8m/分; 冷却 温度: 低于材质玻璃化温度。
16、 根据权利要求 12-14中任一项所述的高强高模聚乙烯纤维复合滤布的生产 方法, 其特征在于, 所述无纺层是由高强高模聚乙烯短纤维经无纺织造而成, 制备 工艺步骤如下:
( 1 ) 加曲: 将高强高模聚乙烯纤维加湿后用纤维加曲机加曲, 曲度为 3-15曲 /cm; ( 2 )切断: 将加曲后高强高模聚乙烯纤维用纤维切断机进行切断, 切断后的高 强高模聚乙烯短纤维长度为 5-60醒; ( 3 )无纺织造: 采用针刺法, 将高强高模聚乙 烯短纤维经过吸料、 计量、 拉伸、 成网、 平铺、 预刺和针刺的针刺无纺布生产工序, 制成高强高模聚乙烯纤维无纺层。
17、根据权利要求 16所述的高强高模聚乙烯纤维复合滤布的生产方法,其特征 在于, 所述步骤(3 )是: 采用水刺法, 将高强高模聚乙烯短纤维经过吸料、 计量、 拉伸、 成网、 平铺、 水刺、 干燥的水刺无纺布生产工序, 制成高强高模聚乙烯纤维 无纺层。
PCT/CN2013/000935 2013-08-12 2013-08-12 高强高模聚乙烯纤维复合滤布及其生产方法 WO2015021570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000935 WO2015021570A1 (zh) 2013-08-12 2013-08-12 高强高模聚乙烯纤维复合滤布及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/000935 WO2015021570A1 (zh) 2013-08-12 2013-08-12 高强高模聚乙烯纤维复合滤布及其生产方法

Publications (1)

Publication Number Publication Date
WO2015021570A1 true WO2015021570A1 (zh) 2015-02-19

Family

ID=52467898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000935 WO2015021570A1 (zh) 2013-08-12 2013-08-12 高强高模聚乙烯纤维复合滤布及其生产方法

Country Status (1)

Country Link
WO (1) WO2015021570A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115937A (zh) * 2009-12-30 2011-07-06 宁波荣溢化纤科技有限公司 一种超高分子量聚乙烯短纤维的制备方法
CN102614714A (zh) * 2012-04-03 2012-08-01 山东爱地高分子材料有限公司 超高分子量聚乙烯纤维滤布
CN202860281U (zh) * 2012-08-30 2013-04-10 辽宁天泽产业集团纺织有限公司 一种耐高温纤维无纺过滤布

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115937A (zh) * 2009-12-30 2011-07-06 宁波荣溢化纤科技有限公司 一种超高分子量聚乙烯短纤维的制备方法
CN102614714A (zh) * 2012-04-03 2012-08-01 山东爱地高分子材料有限公司 超高分子量聚乙烯纤维滤布
CN202860281U (zh) * 2012-08-30 2013-04-10 辽宁天泽产业集团纺织有限公司 一种耐高温纤维无纺过滤布

Similar Documents

Publication Publication Date Title
TWI778946B (zh) 袋濾器用過濾布及其製造方法及袋濾器
KR101781667B1 (ko) 원더 패브릭
CN104492163A (zh) 一种工业废气过滤材料及其制造方法
JP5551905B2 (ja) 微細繊維を含むシートの製造装置及び方法
JPWO2009066697A1 (ja) 抄紙用フェルト
TWI738963B (zh) 袋式過濾器用過濾布及其製造方法
JP2017089022A (ja) 工業用二層織物
WO2008025248A1 (fr) Procédé de tissage utilisant un non-tissé en tant que fil tissé
CN101618289A (zh) 一种用于液体过滤的工业滤布及用途
WO2015021570A1 (zh) 高强高模聚乙烯纤维复合滤布及其生产方法
CN216006174U (zh) 一种过滤钛白粉的丙纶长丝滤布
JP6289671B2 (ja) ウォーターパンチングを用いた防刃生地の製造方法
CN204319946U (zh) 一种工业废气过滤材料
JP2000226787A (ja) トランスファーファブリック及びこれを使用する製紙機械
WO2020098015A1 (zh) 一种机织针织复合结构基耐高温环保滤料及其制备方法
KR101421327B1 (ko) 아라미드 직물, 그 제조방법, 및 이를 이용한 아라미드 펄프의 제조방법
CN206809909U (zh) 一种无纺滤布
CN110373933B (zh) 一种基于纱架供纱的无交织压榨毛毯及其制备方法
JP5922483B2 (ja) 抄紙用フェルト
CN217395887U (zh) 一种防纰裂涤纶梭织面料
CN110396853B (zh) 一种基于整经工艺的无交织压榨毛毯及其制备方法
AU2008330900A1 (en) Industrial fabric for paper making and press
CN211416556U (zh) 一种新型生物质纤维的纺丝制品
CN202786634U (zh) 一种新型嵌入式牛仔面料
CN212124415U (zh) 一种超薄高分子保暖面料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891441

Country of ref document: EP

Kind code of ref document: A1