WO2015019898A1 - 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体 - Google Patents

活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体 Download PDF

Info

Publication number
WO2015019898A1
WO2015019898A1 PCT/JP2014/069912 JP2014069912W WO2015019898A1 WO 2015019898 A1 WO2015019898 A1 WO 2015019898A1 JP 2014069912 W JP2014069912 W JP 2014069912W WO 2015019898 A1 WO2015019898 A1 WO 2015019898A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
active energy
energy ray
resin composition
meth
Prior art date
Application number
PCT/JP2014/069912
Other languages
English (en)
French (fr)
Inventor
晃生 海野
宇野 誠一
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201480008626.5A priority Critical patent/CN105073805B/zh
Priority to JP2014555002A priority patent/JP5713156B1/ja
Priority to US14/772,206 priority patent/US20160017177A1/en
Publication of WO2015019898A1 publication Critical patent/WO2015019898A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/08Polyesters modified with higher fatty oils or their acids, or with natural resins or resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/01Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/46Polyesters chemically modified by esterification
    • C08G63/48Polyesters chemically modified by esterification by unsaturated higher fatty oils or their acids; by resin acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate

Definitions

  • the present invention is an active energy ray-curable resin composition that is excellent in storage stability and further has a high level of applicability to various substrates, adhesion, and appearance and heat resistance of a cured coating film.
  • the present invention relates to an active energy ray-curable resin composition suitably used as an undercoating coating agent for performing metal vapor deposition on a molded body formed by combining a plurality of resin types.
  • Base materials used for such applications include BMC (bulk molding compound), PPS (polyphenylene sulfide), ALD (aluminum die cast), PBT (polybutylene terephthalate) / PET (polyethylene terephthalate) alloy resin, PC (polycarbonate). ), ABS (Acrylonitrile-Butadiene-Styrene Copolymer), PC (polycarbonate) reinforced with fillers such as glass fiber, etc., and has excellent heat resistance and impact resistance.
  • plastic base materials are often used from the viewpoint of weight reduction.
  • the reflector of the headlamp lens of automobile parts is a combination of a plurality of types of base materials.
  • a base material with excellent heat resistance is used for the part close to the lamp light source, and a base material with excellent workability is used for the part far from the lamp light source because the base material shape is complicated.
  • a coating agent depending on the type of substrate.
  • the coating agent is a mixture of an alkyd resin and a (meth) acryloyl group-containing monomer.
  • the two have different polarities, it is difficult to uniformly dissolve them.
  • the compatibility is poor, it has been a problem to cause appearance defects such as whitening when the coating agent is cured.
  • Water-based coating agents are said to be environmentally friendly, but in reality, they contain a low-molecular-weight volatile component used as a neutralizing agent, so that the working environment is not very favorable, and storage stability as a coating agent is problematic. is there.
  • the problem to be solved by the present invention is an active energy ray that is excellent in storage stability and further has a high level of coating properties and adhesion to various substrates, and appearance and heat resistance of a cured coating film.
  • the object is to provide a curable resin composition, an active energy ray-curable undercoating coating agent for metal vapor deposition using the same, and a molded article having an undercoat layer for metal vapor deposition that has excellent adhesion to various substrates. .
  • the present inventors contain, as essential components, an oil-modified alkyd resin obtained by using two or more kinds of specific fats and oils and a compound having a (meth) acryloyl group.
  • the present inventors have found that the above problems can be solved by using an active energy ray-curable resin composition to complete the present invention.
  • the present invention is an active energy ray-curable resin composition containing an oil-modified alkyd resin (A) and a compound (B) having a (meth) acryloyl group, the oil-modified alkyd resin (A).
  • it is an oil-modified alkyd resin having an oil length of 30 to 70 and a mass average molecular weight of 30,000 to 200,000 obtained by using two or more oils and fats (a1) having an iodine value of 100 or more.
  • An active energy ray-curable resin composition, an active energy ray-curable undercoating coating agent for metal vapor deposition using the same, and a molded article having an undercoat layer made of the undercoating coating agent are provided.
  • an active energy ray-curable resin composition that is excellent in coating suitability, adhesion, and storage stability to various plastic substrates. Since the oil-modified alkyd resin used in the composition has good compatibility with the compound having a (meth) acryloyl group used in combination with this, the resulting cured coating film has excellent smoothness and problems such as whitening It has excellent appearance and heat resistance, so it has excellent applicability to molded products with complex shapes and combinations of multiple types of substrates. It can be suitably used as an agent.
  • two or more fats and oils (a1) having an iodine value of 100 or more are used in combination of two or more fats and oils (a1) having an iodine value of 100 or more.
  • the oil-modified alkyd resin (A) having an oil length of 30 to 70 and a weight average molecular weight of 30,000 to 200,000 and a compound (B) having a (meth) acryloyl group are obtained as essential components.
  • the oil-modified alkyd resin is usually a resin obtained by condensation of a saturated polybasic acid and / or an unsaturated polybasic acid and a polyhydric alcohol using a drying oil, semi-drying oil, non-drying oil or a fatty acid thereof as a modifier. It is.
  • the oil-modified alkyd resin is obtained by using two or more oils and fats (a1) having an iodine value of 100 or more, and has an oil length of 30 to 70 and a mass average molecular weight of 30,000. By using up to 200,000 resins, adhesion to various plastic substrates is improved.
  • Examples of the oil (a1) having an iodine value of 100 or more include kiri oil, linseed oil, dehydrated castor oil, soybean oil, safflower oil, tall oil and the like. From the viewpoint of adhesion to the substrate, linseed oil, soybean oil, safflower oil, and tall oil are preferably used.
  • the molecular weight distribution range of the alkyd resin (A) to be obtained is widened, and it is easy to express adhesion to the substrate and anti-sagging, and easily obtain a composition excellent in coating suitability. Can do.
  • it is possible to maintain the uniformity of the resulting oil-modified alkyd resin by using two or more types of oils and fats in combination from the raw material stage, rather than using a mixture of a plurality of types of the alkyd resins after being synthesized as an alkyd resin.
  • the combination and mixing ratio of two or more kinds of fats and oils (a1) are not particularly limited, and can be appropriately set according to the intended oil length of the obtained oil-modified alkyd resin (A).
  • the iodine value of the fat (a1) is 100 or more.
  • the oil-modified alkyd resin (A) used in the present invention is a resin having an oil length of 30 to 70 and a mass average molecular weight of 30,000 to 200,000 obtained by using two or more types of fats and oils having a high iodine value as described above.
  • the reactivity with active energy rays and the compatibility with the compound (B) having a (meth) acryloyl group described later are good, but from the viewpoint of further improving the reactivity and compatibility.
  • the polyol (a2) having an ether bond in the molecule and the polybasic acid (a3) having a cyclic unsaturated group in the molecule are preferable.
  • Examples of the polyol (a2) having an ether bond in the molecule include ring-opening polymerization with various cyclic ether bond-containing compounds such as ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl glycidyl ether, and butyl glycidyl ether.
  • Examples thereof include modified polyether polyols and polyalkylene glycols such as diethylene glycol, dipropylene glycol, polyethylene glycol, and polypropylene glycol, which are particularly excellent in reactivity with active energy rays and are easily available industrially. From the viewpoint, it is preferable to use polyalkylene glycol, and it is particularly preferable to use diethylene glycol or dipropylene glycol.
  • the polyhydric alcohol it is preferable to use a branched alkane-type polyol having 3 or more hydroxyl groups in the molecule from the viewpoint of further improving the crosslinking density.
  • the branched alkane type polyol include aliphatic polyols such as trimethylolethane, trimethylolpropane, glycerin, hexanetriol, pentaerythritol; the aliphatic polyols, ethylene oxide, propylene oxide, tetrahydrofuran, ethyl glycidyl ether, propyl Polycondensation reaction of modified polyether polyols obtained by ring-opening polymerization with various cyclic ether bond-containing compounds such as glycidyl ether and butyl glycidyl ether, the aliphatic polyols and various lactones such as ⁇ -caprolactone From the viewpoint of improving the cross-linking density and obtaining a film
  • polybasic acid (a3) examples include (anhydrous) aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid and orthophthalic acid; alicyclic dicarboxylic acids such as hexahydrophthalic acid and 1,4-cyclohexanedicarboxylic acid.
  • aromatic dicarboxylic acids such as phthalic acid, terephthalic acid, isophthalic acid and orthophthalic acid
  • alicyclic dicarboxylic acids such as hexahydrophthalic acid and 1,4-cyclohexanedicarboxylic acid.
  • An acid etc. are mentioned, You may use individually or in combination of 2 or more types.
  • various monocarboxylic acids can be used in combination for the preparation of the molecular weight of the alkyd resin (A) to be obtained.
  • a monocarboxylic acid having a cyclic structure such as benzoic acid.
  • the method for producing the oil-modified alkyd resin (A) is not particularly limited, and for example, after reacting fats and oils with alcohols in the presence of a catalyst (esterification reaction or transesterification reaction), further Examples include a method in which an acid is added to cause a reaction (esterification reaction) and a method in which an oil and fat used as a raw material, an alcohol, and an acid are charged and reacted together. The progress of the reaction can be monitored by measuring the amount of water distilled by the dehydration reaction, the acid value or the hydroxyl value.
  • the oil length of the oil-modified alkyd resin (A) obtained above is essential to be in the range of 30 to 70, and more preferably in the range of 40 to 60.
  • the oil length is the percentage of the fat and oil component mass ratio to the total mass of unsaturated fatty acids or unsaturated fatty acid esters in the oils and carboxylic acids and fats and oils as raw materials.
  • the mass average molecular weight (Mw) of the oil-modified alkyd resin (A) used in the present invention is compatible with the compound (B) having a (meth) acryloyl group and the solvent used when preparing the composition. From the viewpoint of obtaining a coating film having good solubility and a relatively low viscosity and excellent appearance, it is essential to be in the range of 30,000 to 200,000.
  • the mass average molecular weight (Mw) is preferably in the range of 70,000 to 150,000 because it is easy to increase the density and is excellent in adhesion to the substrate.
  • the molecular weight distribution (Mw / Mn) represented by the ratio to the number average molecular weight (Mn) is in the range of 20 to 60 from the viewpoint of following the unevenness of the substrate and adhesion to various substrates. In particular, the range of 20 to 40 is preferable.
  • the hydroxyl value of the oil-modified alkyd resin (A) is preferably in the range of 60 to 140, particularly in the range of 90 to 110, from the viewpoint of good adhesion to various substrates. preferable.
  • the acid value of the oil-modified alkyd resin (A) is preferably in the range of 1 to 20, particularly in the range of 5 to 15 from the viewpoint of storage stability when the composition is used. preferable.
  • various organic solvents may be added to the oil-modified alkyd resin (A).
  • the organic solvent include ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone, cyclic ethers such as tetrahydrofuran (THF) and dioxolane, esters such as methyl acetate, ethyl acetate, and butyl acetate, toluene, xylene Aromatics such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether. These may be used alone or in combination of two or more.
  • ketones such as acetone, methyl ethyl ketone (MEK), and methyl isobutyl ketone
  • cyclic ethers such as tetrahydrofuran (THF) and dioxolane
  • esters such as methyl acetate,
  • the compound (B) having a (meth) acryloyl group used in the present invention is not particularly limited as long as it can react with the oil-modified alkyd resin (A) to obtain a cured coating film. From the viewpoint, it is preferably a compound having two or more (meth) acryloyl groups in one molecule.
  • a (meth) acrylate monomer obtained by reacting a polyol and (meth) acrylic acid (2) Urethane (meth) acrylate obtained by adding a compound having a hydroxyl group and a (meth) acryloyl group to a compound having a terminal isocyanate group in the molecule, (3) At least two epoxy groups or glycidyl in the molecule Epoxy (meth) acrylate obtained by reacting a group-containing compound with (meth) acrylic acid, (4) polyol and polybasic acid Is a polyester (meth) acrylate obtained by reacting a polyester polyol obtained by condensation polymerization of the acid anhydride with (meth) acrylic acid, and (5) a copolymer acrylic polymer obtained by polymerizing an acrylic monomer or vinyl monomer with an acryloyl group. Examples thereof include acrylic acrylate obtained by pendant.
  • the polyol is not particularly limited.
  • (meth) acrylate monomers include, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di ( (Meth) acrylate, dipropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide modified bisphenol A type di (meth) acrylate, Propylene oxide modified bisphenol A di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, glycerin di (meth) Chryrate, pentaerythritol di (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate
  • examples of the compound having a terminal isocyanate group in the molecule include polyisocyanate or polyisocyanate exemplified as the polyol in the compound of (1) above. The thing obtained by making it react can be mentioned.
  • the polyisocyanate in the above (2) may be, for example, any of aliphatic, alicyclic, aromatic and aromatic-aliphatic, such as For example, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), methylcyclohexane-2,4-diisocyanate, methylcyclohexane-2 , 6-diisocyanate, 1,3- (isocyanatomethyl) cyclohexane, isophorone diisocyanate, trimethylhexamethylene diisocyanate, dimer acid diisocyanate, dianisidine diisocyanate, phenyldi Socyanate, halogenated phenyl diisocyanate, methylene diisocyanate, ethylene diiso
  • Diisocyanates such as 3-dimethoxy-4.4'-diisocyanate diphenyl, 1,4-anthracene diisocyanate, phenylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,10-decanmethylene diisocyanate, 1,3-cyclohexylene diisocyanate Nurates, burettes, adducts of these diisocyanates; triisocyanates such as 2,4,6-tolylene triisocyanate, 2,4,4′-triisocyanate diphenyl ether, etc. Can.
  • Examples of the compound having a hydroxyl group and a (meth) acryloyl group in the above (2) include pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, epoxy (meth) acrylate, 2-hydroxyethyl (meth).
  • Examples of the compound having at least two epoxy groups or glycidyl groups in the molecule (3) include glycidyl ethers containing, for example, bisphenol A, bisphenol F, 2,6-xylenol, brominated bisphenol A, phenol novolac and the like.
  • Type epoxy resin, glycidyl ester type epoxy resin containing dimer acid, glycidyl ester type epoxy resin containing aromatic or heterocyclic amine, alicyclic epoxy resin, acrylic resin having epoxy group or glycidyl group, etc. Can be mentioned.
  • glycerol triglycidyl ether trimethylolpropane triglycidyl ether, sorbitol tetraglycidyl ether, sorbitol pentaglycidyl ether, sorbitan tetraglycidyl ether, sorbitan pentaglycidyl ether , Triglycerol tetraglycidyl ether, tetraglycerol tetraglycidyl ether, pentaglycerol tetraglycidyl ether, triglycerol pentaglycidyl ether, tetraglycerol pentaglycidyl ether, pentaglycerol pentaglycidyl ether, pentaerythritol tetraglycidyl ether, triglycidyl isocyanurate, etc. be able to
  • examples of the polyol, polybasic acid or acid anhydride thereof include the same as those described above.
  • the compound (B) having a (meth) acryloyl group the above (1) to (5) can be used, and these are polymerized due to the participation of the unsaturated bond contained therein.
  • the reaction occurs and the active energy ray is cured, but if necessary, other compounds having an unsaturated bond such as diallyl fumarate and triallyl isocyanurate can also be contained.
  • the mass ratio [(A) / (B)] of the content of the oil-modified alkyd resin (A) in the active energy ray-curable resin composition of the present invention and the compound (B) having a (meth) acryloyl group is:
  • a range of 20/80 to 80/20 is preferable from the viewpoint of obtaining a coating film having good compatibility and a good coating film appearance.
  • the range of 70/30 to 30/70 is more preferable in that an excellent adhesion to the substrate and a tough coating film can be obtained.
  • a photopolymerization initiator (C) can be contained in order to favorably advance the curing reaction with active energy rays.
  • the photopolymerization initiator (C) is not particularly limited as long as it generates radicals by the action of light, and specifically includes 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxy.
  • Examples of the commercially available photopolymerization initiator (C) include Irgacure-184, 149, 261, 369, 500, 651, 754, 784, 819, 907, 1116, 1664, 1700, 1800, 1850, 2959, 4043, Darocur-1173, Lucillin TPO (manufactured by BASF), Kayacure-DETX, MBP, DMBI, EPA, OA (Nippon Kayaku Co., Ltd.) Company), BiCure-10, 55 (Stofa Chemical), Trigonal P1 (Akzo), Sandley 1000 (Sands), Deep (Apjon), Quantacure-PDO, ITX, EPD (manufactured by Ward Brenkinsop) and the like can be mentioned. These may be used alone or in combination of two or more.
  • the photopolymerization initiator maintains light sensitivity satisfactorily and does not cause precipitation of crystals or deterioration of physical properties of the coating film.
  • the range is preferably 0.05 to 20 parts by mass, and more preferably 0.1 to 10 parts by mass.
  • an amino resin may be included as necessary to further improve the heat resistance of the resulting coating film.
  • the amino resin examples include a methylolated amino resin synthesized from at least one of melamine, urea, and benzoguanamine and formaldehyde; such a methylolated amino resin, wherein a part or all of the methylol group is obtained.
  • Alkyl etherified with a lower monohydric alcohol such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, and the like.
  • amino resins include, for example, Cymel 303 (manufactured by Nippon Cytec Industries, Inc., methylated melamine resin), Cymel 350 (manufactured by Nippon Cytec Industries, Inc., methylated melamine resin), Uban 520 (Mitsui).
  • the amino resin when used, it is preferable to contain 5 to 20 parts by mass with respect to a total of 100 parts by mass of the oil-modified alkyd resin (A) and the compound (B) having a (meth) acryloyl group in the composition.
  • composition of the present invention can contain a solvent in order to dilute and facilitate coating.
  • the solvent is not particularly limited, but a low surface tension solvent is preferable in order to improve wettability.
  • examples of such a solvent include alcohol solvents, ketone solvents, and the like.
  • ethyl acetate, butyl acetate, toluene, xylene and the like can be used in combination in view of the evaporation rate and cost.
  • composition of the present invention can contain a surface conditioner.
  • the surface preparation agent is not particularly limited, and examples thereof include a fluorine-based additive and a cellulose-based additive.
  • the fluorine-based additive has a function of preventing repelling when applied to various substrates by reducing surface tension and increasing wettability.
  • Specific examples of the fluorine-based additive include Megafac F-177 (manufactured by DIC Corporation).
  • the cellulosic additive has an effect of imparting a film-forming property at the time of coating.
  • the cellulose-based additive is preferably a high molecular weight product having a number average molecular weight of 15000 or more in order to reduce fluidity. Examples of such a cellulose additive include cellulose acetate-butyrate resin.
  • the amount of the fluorine-based additive when the amount of the fluorine-based additive is increased, the adhesion of the deposited aluminum and the top coat is decreased, and when the amount of the cellulose-based additive is increased, the solid content of the composition of the present invention is increased. It is preferable to use a fluorine-based additive and a cellulose-based additive in combination.
  • the addition amount of the surface preparation agent ranges from 0.01 to 3.0 parts by mass with respect to the total amount of fluorine-based additive and cellulose-based additive with respect to 100 parts by mass of the nonvolatile content in the composition. preferable.
  • the fluorine-based additive is used alone, it is preferably in the range of 0.01 to 1.0 part by mass, and when the cellulose-based additive is used alone, it is 0.5 to 5.0 parts by mass. It is preferable that it is the range of these.
  • the active energy ray-curable resin composition of the present invention further includes various additions such as a photosensitizer, an ultraviolet absorber, an antioxidant, a silicon-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent.
  • a photosensitizer such as an ultraviolet absorber, an antioxidant, a silicon-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent.
  • An agent may be contained.
  • the active energy ray-curable resin composition of the present invention can be suitably used as an active energy ray-curable undercoat coating agent for metal deposition. Specifically, it is used as an undercoat layer when a metal vapor deposition layer is formed on a substrate.
  • an undercoat layer when a metal vapor deposition layer is formed on a substrate.
  • the active energy ray-curable resin composition of the present invention is applied onto a substrate by a method such as spray coating.
  • the coating amount is preferably in the range of 5 to 60 ⁇ m after curing, and more preferably in the range of 10 to 40 ⁇ m.
  • the resin composition is cured by irradiating active energy rays to form the undercoat layer.
  • active energy rays include ultraviolet rays and electron beams.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, or a metal halide lamp as a light source can be used, and the amount of light, the arrangement of the light source, etc. are adjusted as necessary.
  • it is preferable to irradiate to ultraviolet integrated light quantity is 50 ⁇ 5000mJ / cm 2, accumulated light amount is more preferably irradiated such that the 500 ⁇ 2000mJ / cm 2.
  • the base material on which the undercoat layer of the present invention is installed is provided with a metal vapor deposition layer thereon, and a top coat layer and the like are further provided thereon.
  • the thickness of the metal vapor-deposited layer is preferably in the range of 30 nm to 3 ⁇ m
  • the thickness of the topcoat layer after curing is preferably in the range of 3 to 40 ⁇ m.
  • Examples of the molded body thus obtained include an automobile reflector.
  • Mass average molecular weight (Mw) and molecular weight distribution (Mw / Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
  • Measuring device HLC-8220GPC manufactured by Tosoh Corporation Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation + Tosoh Corporation TSK-GEL SuperHZM-M ⁇ 4 Detector: RI (differential refractometer) Data processing; Multi-station GPC-8020 model II manufactured by Tosoh Corporation Measurement conditions; Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 0.35 ml / min Standard; Monodisperse polystyrene Sample; Filtered 0.2% tetrahydrofuran solution in terms of resin solids with a microfilter (100 ⁇ l)
  • Synthesis example 1 In a flask having a stir bar, temperature sensor, rectifying tube, decanter, 840 parts of linseed oil, 420 parts of soybean oil, 208 parts of benzoic acid, 525 parts of pentaerythritol, 88 parts of diethylene glycol, 843 parts of phthalic anhydride, 85 parts of xylene and 0.5 part of an organic titanium compound was charged, dry nitrogen was flowed into the flask, and heated to 230 to 250 ° C. with stirring to perform a dehydration condensation reaction.
  • Synthesis example 2 In a flask equipped with a stir bar, temperature sensor, rectifying tube and decanter, 616 parts of linseed oil, 299 parts of soybean oil fatty acid, 53 parts of p-tert-benzoic acid, 211 parts of pentaerythritol, 38 parts of dipropylene glycol, 153 parts of glycerin Then, 563 parts of phthalic anhydride, 71 parts of xylene and 0.4 part of an organotitanium compound were charged, dried nitrogen was flowed into the flask and heated to 230 to 250 ° C. with stirring to carry out a dehydration condensation reaction.
  • Synthesis example 3 In a flask having a stir bar, temperature sensor, rectifying tube, decanter, linseed oil 1149 parts, safflower oil 391 parts, benzoic acid 12 parts, pentaerythritol 450 parts, dipropylene glycol 91 parts, phthalic anhydride 664 parts, isophthal 149 parts of acid, 71 parts of xylene and 0.4 part of an organic titanium compound were charged, dried nitrogen was flowed into the flask and heated to 230 to 250 ° C. with stirring to perform a dehydration condensation reaction.
  • Acrylic resin (X) “Acridic 56-393-BA” (manufactured by DIC Corporation, 20 parts of styrene in 100 parts of monomer mixture, glass transition temperature: 5 ° C.) was used. This is designated as acrylic resin (X).
  • Comparative Alkyd Resin (Y1) In a flask having a stir bar, temperature sensor, condenser, linseed oil 1,104 parts, benzoic acid 470 parts, pentaerythritol 605 parts, phthalic anhydride 740 parts, xylene 85 parts and organic titanium 0.4 parts of the compound was charged, dry nitrogen was flowed into the flask, and heated to 220-240 ° C. with stirring to conduct a dehydration condensation reaction.
  • alkyd resin (Y1).
  • Alkyd resin for comparison (Y2) A flask having a stirring bar, a temperature sensor, and a condenser is charged with 1,120 parts of soybean oil, 200 parts of neopentyl glycol, 460 parts of trimethylolpropane, 1210 parts of phthalic anhydride, 85 parts of xylene and 0.4 parts of an organic titanium compound. Then, dry nitrogen was allowed to flow into the flask and heated to 220-240 ° C. with stirring to conduct a dehydration condensation reaction.
  • alkyd resin (Y2).
  • Alkyd resin for comparative example (Y3) In a flask having a stir bar, temperature sensor, rectifying tube, decanter, soybean oil 1412 parts, neopentyl glycol 259 parts, trimethylolpropane 445.6 parts, adipic acid 276 parts, phthalic anhydride 559 parts, xylene 90 parts and An organic titanium compound (0.3 parts) was charged, dry nitrogen was flowed into the flask, and heated to 220 to 240 ° C. with stirring to perform a dehydration condensation reaction.
  • alkyd resin having an oil length of 50 having a number average molecular weight of 3,800, a mass average molecular weight of 310,000, a hydroxyl value of 78, and an acid value of 8 was obtained. This is designated as alkyd resin (Y3).
  • alkyd resin having a number average molecular weight of 3,800, a mass average molecular weight of 303,000, a hydroxyl value of 41, and an acid value of 5.1 was obtained. This is designated as alkyd resin (Y4).
  • Kayalad TMPTA Trimethylolpropane triacrylate (Nippon Kayaku Co., Ltd.) Aronix M-305: A mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate (manufactured by Toagosei Co., Ltd.) NK-ester APG-200: Tripropylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.) Aronix M-5300: ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate (manufactured by Toagosei Co., Ltd.) Cymel 303: Melamine resin (Nippon Cytec Industries, Ltd.) Cymel 307: Melamine resin (Nippon Cytec Industries, Inc.) Irgacure 651: Photopolymerization initiator (BASF) Kayacure DETX-S: Photopolymerization initiator (Nippon Kayaku Co.
  • Reflective Material BMC bulk molding compound
  • PPS polyphenylene sulfide
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • the composition prepared previously was air spray-coated on the surface of each substrate. Thereafter, the solvent is dried under conditions of 80 ° C. ⁇ 10 minutes, and an undercoat layer having a film thickness of 10 to 15 ⁇ m is formed on the substrate by irradiating ultraviolet rays with an irradiation amount of 1000 mJ / cm 2 with an 80 W / cm high-pressure mercury lamp. Undercoat layer) was formed.
  • Reflector 1 180 ° C
  • Reflector 2 230 ° C
  • Reflector 3 200 ° C
  • Reflector 4 120 ° C
  • the reflective plate 1 was evaluated for appearance and adhesion after being left in a constant temperature and humidity chamber with a temperature of 50 ° C. and a humidity of 95 RH% for 240 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 貯蔵安定性に優れ、更に種々の基材への塗工性、密着性、及び硬化塗膜の外観や耐熱性を高いレベルで兼備する活性エネルギー線硬化型樹脂組成物、これを用いた金属蒸着用活性エネルギー線硬化型下塗り用コーティング剤、及び種々の基材との密着性に優れる金属蒸着用アンダーコート層を有する成形体を提供する。具体的には油変性アルキド樹脂(A)と、(メタ)アクリロイル基を有する化合物(B)とを含有する活性エネルギー線硬化型樹脂組成物であって、前記油変性アルキド樹脂(A)が、ヨウ素価が100以上の油脂(a1)を2種以上併用して得られる、油長が30~70、質量平均分子量が3万~20万の油変性アルキド樹脂であることを特徴とする活性エネルギー線硬化型樹脂組成物を用いる。

Description

活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
 本発明は、貯蔵安定性に優れ、更に種々の基材への塗工性、密着性、及び硬化塗膜の外観や耐熱性を高いレベルで兼備する活性エネルギー線硬化型樹脂組成物、更には、複数の樹脂種を組み合わせてなる成形体に対して金属蒸着を行うための下塗り用コーティング剤として好適に用いられる活性エネルギー線硬化型樹脂組成物に関する。
 優れた耐熱性が求められる自動車部品の外装ランプレンズの反射鏡などの基材の表面には、アルミニウムやスズなどの金属を真空蒸着又はスパッタリング等により金属薄膜を形成させる必要がある。このような用途に用いられる基材としては、BMC(バルクモールディングコンパウンド)、PPS(ポリフェニレンサルファイド)、ALD(アルミダイキャスト)、PBT(ポリブチレンテレフタレート)/PET(ポリエチレンテレフタレート)アロイ樹脂、PC(ポリカーボネート)、ABS(アクリロニトリル-ブタジエン-スチレン共重合樹脂)、ガラス繊維などのフィラーで強化したPC(ポリカーボネート)等のプラスチック基材や金属基材があり、耐熱性、耐衝撃性に優れ、近年は、特に軽量化の観点からプラスチック基材がよく使用されるようになってきた。
 しかし、このような耐熱性プラスチック基材上に、アルミニウム等の金属を蒸着すると、得られる部品の表面平滑性が低下し、金属の光輝感が得られにくいという問題があり、特に、自動車ヘッドランプレンズの反射鏡に用いる場合、反射鏡として必要な光学特性を確保することが困難であった。そのため、金属薄膜を形成する前に、予め基材表面に下塗りのコーティング剤を塗布し硬化させてコーティング層を形成することで、部品の表面の平滑性を維持し、光学特性を改善してきた(例えば、特許文献1~5参照)。
 しかしながら、自動車部品のヘッドランプレンズの反射鏡は、複数種の基材を組み合わせてなるものである。例えば、ランプ光源に近い部位には耐熱性に優れる基材を、ランプ光源から遠い部位は基材形状が複雑となることから加工性に優れる基材を使用しており、それぞれの基材に対して、密着性や耐熱性を付与するためには、基材種に応じてコーティング剤を使い分ける必要があった。
 また、自動車ヘッドランプレンズの反射鏡に限らず、携帯電話、グリル、エンブレム等の自動車部品、化粧品容器、家電製品等の部品の外観に高意匠性を付与させるため、表面外観が金属様の部品が多く使用されている。これらは種々のプラスチックを組み合わせて成形体を形成し、その表面にスズやアルミニウム等の金属を真空蒸着することによって作られるものである。このような方法を行なう場合、その表面を平滑にし、プラスチック基材と金属蒸着膜との密着性を高めるためには、様々なプラスチック基材に対して適用できる下塗り用コーティング剤が求められている。以前は熱硬化型下塗りコーティング剤が使用されていたが、硬化時のエネルギー削減などの観点から、近年は環境に優しい活性エネルギー線硬化型の下塗りコーティング剤が使用されている。コーティング剤は、アルキド樹脂と(メタ)アクリロイル基含有モノマーを混合することが一般的だが、両者は極性が異なるため、均一に相溶することが困難であった。相溶性が悪い場合、コーティング剤を硬化した際に白化などの外観不良を起こすことが問題であった。水性のコーティング剤は環境対応型といわれるが、実際には、中和剤として用いる低分子量の揮発成分を含有することにより、作業環境はあまり好ましくなく、コーティング剤としての保存安定性にも問題がある。
再表95/32250号公報 特開2003-221408号公報 特開2006-070169号公報 特開2011-021153号公報 特開2012-067162号公報
 従って、本発明が解決しようとする課題は、貯蔵安定性に優れ、更に種々の基材への塗工性、密着性、及び硬化塗膜の外観や耐熱性を高いレベルで兼備する活性エネルギー線硬化型樹脂組成物、これを用いた金属蒸着用活性エネルギー線硬化型下塗り用コーティング剤、及び種々の基材との密着性に優れる金属蒸着用アンダーコート層を有する成形体を提供することにある。
 本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、特定の油脂を2種以上併用して得られる油変性アルキド樹脂と、(メタ)アクリロイル基を有する化合物とを必須成分として含有する活性エネルギー線硬化型樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明は、油変性アルキド樹脂(A)と、(メタ)アクリロイル基を有する化合物(B)とを含有する活性エネルギー線硬化型樹脂組成物であって、前記油変性アルキド樹脂(A)が、ヨウ素価が100以上の油脂(a1)を2種以上併用して得られる、油長が30~70、質量平均分子量が3万~20万の油変性アルキド樹脂であることを特徴とする活性エネルギー線硬化型樹脂組成物、これを用いる金属蒸着用活性エネルギー線硬化型下塗り用コーティング剤、及び当該下塗り用コーティング剤からなるアンダーコート層を有する成形体を提供するものである。
 本発明によれば、各種プラスチック基材への塗工適正、密着性、及び保存安定性に優れる活性エネルギー線硬化型樹脂組成物を得ることができる。当該組成物に用いる油変性アルキド樹脂は、これと組み合わせて用いる(メタ)アクリロイル基を有する化合物との相溶性が良好であることから、得られる硬化塗膜の平滑性に優れ、白化等の問題も発生せずに外観が良好であり、耐熱性も有することから、複雑な形状を有する成形体や複数種の基材が組み合わせてなる成形体への適用性に優れ、金属蒸着の下塗り用コーティング剤として好適に用いることができる。
 本発明の活性エネルギー線硬化型樹脂組成物には、ヨウ素価が100以上の油脂(a1)を2種以上併用して得られる、ヨウ素価が100以上の油脂(a1)を2種以上併用して得られる、油長が30~70、質量平均分子量が3万~20万の油変性アルキド樹脂(A)と(メタ)アクリロイル基を有する化合物(B)を必須成分として含有する。
 油変性アルキド樹脂は、通常、乾性油、半乾性油、不乾性油あるいはこれらの脂肪酸を変性剤とし、飽和多塩基酸及び/又は不飽和多塩基酸と多価アルコールとの縮合によって得られる樹脂である。本発明においては、この油変性アルキド樹脂として、ヨウ素価が100以上の油脂(a1)を2種以上併用して得られるものであって、且つ油長が30~70、質量平均分子量が3万~20万の樹脂を用いることによって、各種プラスチック基材への密着性等を改良したものである。
 前記ヨウ素価が100以上の油脂(a1)としては、例えば、キリ油、亜麻仁油、脱水ひまし油、大豆油、サフラワー油、トール油等が挙げられ、工業的入手容易性、得られるアルキド樹脂の基材への密着性等の観点より、亜麻仁油、大豆油、サフラワー油、トール油を用いることが好ましい。
 又、本発明では、前述の油脂(a1)を2種以上用いることを必須とする。2種以上用いることで、得られるアルキド樹脂(A)の分子量分布幅が広くなり、基材への付着性、たれ防止性を発現しやすく、塗工適正に優れた組成物を容易に得ることができる。また、アルキド樹脂として合成された後に複数種の当該アルキド樹脂を混合して用いることよりも、原料の段階から2種以上の油脂を併用することで、得られる油変性アルキド樹脂の均一性を保ち、もって、硬化塗膜の均質性が発現され、塗膜外観が良好となるものと考えられる。2種以上の油脂(a1)の組み合わせや混合比率においては特に限定されるものではなく、得られる油変性アルキド樹脂(A)の目的とする油長等に応じて、適宜設定できる。
 又、前記油脂(a1)のヨウ素価としては、100以上であることを必須とする。このような油脂(a1)を用いることによって、得られるアルキド樹脂を含む組成物の活性エネルギー線での硬化反応が向上し、耐熱性に優れた塗膜を得ることができる。
 本発明で用いる油変性アルキド樹脂(A)は、前述のようにヨウ素価の高い2種以上の油脂を併用して得られる油長が30~70、質量平均分子量が3万~20万の樹脂であり、活性エネルギー線での反応性や、後述する(メタ)アクリロイル基を有する化合物(B)との相溶性が良好であるが、更にこの反応性や相溶性を向上させることができる観点から、分子内にエーテル結合を有するポリオール(a2)と、分子内に環状不飽和基を有する多塩基酸(a3)を用いて得られるものであることが好ましい。分子内にエーテル結合を有するポリオール(a2)中における、エーテル酸素と結合しているα炭素が、活性エネルギー線の照射によりラジカルを発生することが一般に知られており、このことから、高い反応性を有する組成物とすることが可能となり、又架橋密度が高い塗膜を得ることができる。
 前記分子内にエーテル結合を有するポリオール(a2)としては、例えば、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルポリオール類や、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングルコール等が挙げられ、活性エネルギー線での反応性に特に優れ、工業的に入手が容易である観点より、ポリアルキレングリコールを用いることが好ましく、特にジエチレングリコール、ジプロピレングリコールを用いることが好ましい。
 また、多価アルコールとしては、更に架橋密度を向上させることができる観点より、分子内に水酸基を3個以上有する分岐アルカン型ポリオールを併用することが好ましい。分岐アルカン型ポリオールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、グリセリン、ヘキサントリオール、ペンタエリスリトール等の脂肪族ポリオール類;前記脂肪族ポリオール類と、エチレンオキシド、プロピレンオキシド、テトラヒドロフラン、エチルグリシジルエーテル、プロピルグリシジルエーテル、ブチルグリシジルエーテル等の種々の環状エーテル結合含有化合物との開環重合によって得られる変性ポリエーテルポリオール類、前記脂肪族ポリオール類と、ε-カプロラクトン等の種々のラクトン類との重縮合反応によって得られるラクトン系ポリエステルポリオール類などが挙げられ、架橋密度を向上させ、耐熱性、強靭性が良好な塗膜が得られる観点より、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセリンを用いることが好ましい。
 又前記多塩基酸(a3)としては、(無水)フタル酸、テレフタル酸、イソフタル酸、オルソフタル酸等の芳香族ジカルボン酸;ヘキサヒドロフタル酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸等が挙げられ、単独でも、2種以上を併用してもよい。
 又、得られるアルキド樹脂(A)の分子量の調製等のため、各種モノカルボン酸を併用することもできる。特に得られる硬化塗膜の耐熱性や強靭性の観点から、安息香酸等の環状構造を有するモノカルボン酸を用いることが好ましい。
 前記油変性アルキド樹脂(A)の製造方法としては、特に限定されるものではなく、例えば、触媒の存在下、油脂とアルコール類とを反応(エステル化反応又はエステル交換反応)させた後、更に酸類を加えて反応(エステル化反応)させる方法や、原料として用いる油脂とアルコールと酸類とを一括で仕込んで反応させる方法が挙げられる。反応の進行度合いは、脱水反応で留出する水の量や、酸価あるいは水酸基価を測定することでモニターすることができる。
 上記で得られる油変性アルキド樹脂(A)の油長としては、30~70の範囲であることを必須とし、40~60の範囲であることがより好ましい。油長とは、原料であるアルコール類、カルボン酸類、及び油脂中の不飽和脂肪酸又は不飽和脂肪酸エステルの質量の総和に対する油脂成分の質量比を百分率で示したものであり、この範囲である油変性アルキド樹脂(A)を用いることで、活性エネルギー線での反応性が優れると共に(メタ)アクリロイル基を有する化合物(B)との相溶性に優れる点から外観が良好な塗膜が得られると共に、基材への追随性にも優れたものを得ることができる。
 又、本発明で用いる油変性アルキド樹脂(A)の質量平均分子量(Mw)は、(メタ)アクリロイル基を有する化合物(B)との相溶性や、組成物を調製する際に用いる溶剤への溶解性が良好であり、又、比較的低い粘度の組成物であって、且つ外観に優れる塗膜が得られる観点から3万~20万の範囲であることを必須とし、特に塗膜の架橋密度を上げることが容易であって、基材との密着性等にも優れる点から、質量平均分子量(Mw)が7万~15万の範囲であることが好ましい。また、数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は基材凹凸への追随性、各種基材への付着性の観点より、20~60の範囲であることが好ましく、特に20~40の範囲であることが好ましい。
 更に前記油変性アルキド樹脂(A)の水酸基価としては、各種基材への密着性が良好となる観点から、60~140の範囲であることが好ましく、特に90~110の範囲であることが好ましい。また、前記油変性アルキド樹脂(A)の酸価としては、組成物とした際の保存安定性の観点から、1~20の範囲であることが好ましく、特に5~15の範囲であることが好ましい。
 本発明では前記油変性アルキド樹脂(A)に種々の有機溶剤を添加しても良い。該有機溶剤は、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン類、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール類が挙げられる。これらは単独で使用しても二種類以上を併用しても良い。
 本発明で用いる(メタ)アクリロイル基を有する化合物(B)としては特に限定されず、前記油変性アルキド樹脂(A)と反応して硬化塗膜が得られるものであれば良いが、架橋密度の観点から、1分子中に2個以上の(メタ)アクリロイル基を有する化合物であることが好ましく、例えば、(1)ポリオールと(メタ)アクリル酸とを反応させて得られる(メタ)アクリレートモノマー、(2)分子内に末端イソシアネート基を有する化合物に、水酸基及び(メタ)アクリロイル基を有する化合物を付加して得られるウレタン(メタ)アクリレート、(3)分子内に少なくとも2個のエポキシ基又はグリシジル基を有する化合物と(メタ)アクリル酸とを反応させて得られるエポキシ(メタ)アクリレート、(4)ポリオールと多塩基酸又はその酸無水物を縮重合してなるポリエステルポリオールに(メタ)アクリル酸を反応させて得られるポリエステル(メタ)アクリレート、(5)アクリルモノマーやビニルモノマーを重合した共重合アクリルポリマーにアクリロイル基をペンダントさせて得られるアクリルアクリレート等を挙げることができる。
 上記(1)の(メタ)アクリレートモノマーにおいて、ポリオールとしては特に限定されず、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリエチレングリコール、トリメチレングリコール、ポリプロピレングリコール、テトラメチレングリコール、ポリテトラメチレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、ネオベンチルグリコール、1,2-ヘキシレングリコール、1,6-ヘキサンジオール、ヘプタンジオール、1,10-デカンジオール、シクロヘキサンジオール、2-ブテン-1,4-ジオール、3-シクロヘキセン-1,1-ジメタノール、4-メチル-3-シクロヘキセン-1,1-ジメタノール、3-メチレン-1,5-ペンタンジオール、(2-ヒドロキシエトキシ)-1-プロパノール、4-(2-ヒドロキシエトキシ)-1-ブタノール、5-(2-ヒドロキシエトキシ)-ペンタノール、3-(2-ヒドロキシプロポキシ)-1-ブタノール、4-(2-ヒドロキシプロポキシ)-1-ブタノール、5-(2-ヒドロキシプロポキシ)-1-ペンタノール、1-(2-ヒドロキシエトキシ)-2-ブタノール、1-(2-ヒドロキシエトキシ)-2-ペンタノール、水素化ビスフェノールA、グリセリン、ジグリセリン、ポリカプロラクトン、1,2,6-ヘキサントリオール、トリメチロールプロパン、トリメチロールエタン、ペンタントリオール、トリスヒドロキシメチルアミノメタン、3-(2-ヒドロキシエトキシ)-1,2-プロパンジオール、3-(2-ヒドロキシプロポキシ)-1,2-プロパンジオール、6-(2-ヒドロキシエトキシ)-1,2-ヘキサンジオール、1,9-ノナンジオール、ヒドロキシピバリン酸ネオペンチルグリコール、スピログリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、2,2-ビス(4-ヒドロキシプロピロキシフェニル)プロパン、ペンタエリスリトール、ジペンタエリスリトール、トリメチロールプロパン、トリスヒドロキシエチルイソシアヌレート、ジ(2-ヒドロキシエチル)-1-アセトキシエチルイソシアヌレート、ジ(2-ヒドロキシエチル)-2-アセトキシエチルイソシアヌレート、マニトール、グルコース等のポリオール類を挙げることができ、更に、これらのポリオール類にエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトン、γ-ブテロラクトン等を付加反応させて得られるアルキレンオキサイド変性又はラクトン変性のポリオール、過剰のこれらのポリオール類と多塩基酸又はその酸無水物とを縮合して得られる末端水酸基を有するポリエステルポリオール、ポリエーテルポリオール等も挙げることができる。
 かかる(メタ)アクリレートモノマーの具体例としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールA型ジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、ヒドロキシピバリン酸変性ネオペンチルグリコールジ(メタ)アクリレート等[以上、2官能の(メタ)アクリル系モノマー];トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(メタ)アクリロイルオキシエトキシトリメチロールプロパン、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート等[以上、3官能以上の(メタ)アクリル系モノマー]が挙げられる。
 上記(2)のウレタン(メタ)アクリレートにおいて、上記分子内に末端イソシアネート基を有する化合物としては、例えば、ポリイソシアネート、又は、上記(1)の化合物におけるポリオールとして例示されているものにポリイソシアネートを反応させて得られるもの等を挙げることができる。
 上記(2)におけるポリイソシアネートとしては、例えば、脂肪族系、脂環式系、芳香族系及び芳香族-脂肪族系等のうちのいずれのものであっても良く、このようなものとしては、例えば、トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン-2,4-ジイソシアネート、メチルシクロヘキサン-2,6-ジイソシアネート、1,3-(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、ジアニシジンジイソシアネート、フェニルジイソシアネート、ハロゲン化フェニルジイソシアネート、メチレンジイソシアネート、エチレンジイソシアネート、ブチレンジイソシアネート、プロピレンジイソシアネート、オクタデシレンジイソシアネート、1,5-ナフタレンジイソシアネト、ポリメチレンポリフェニレンジイソシアネート、トリフェニルメタントリイソシーアネート、ナフチレンジイソシアネート、3-フェニル-2-エチレンジイソシアネート、クメン-2,4-ジイソシアネート、4-メトキシ-1,3-フュニレンジイソシアネート、4-エトキシ-1,3-フェニレンジイソシアネート、2,4’-ジイソシアネートジフェニルエーテル、5,6-ジメチル-1,3-フェニレンジイソシアネート、4,4’-ジイソシアネートジフェニルエーテル、ベンジジンジイソシアネート、9,10-アンスラセンジイソシアネート、4,4’-ジイソシアネートジベンジル、3,3-ジメチル-4,4’-ジイソシアネートジフェニル、2,6-ジメチル-4,4’-ジイソシアネートジフェニル、3.3-ジメトキシ-4.4’-ジイソシアネートジフェニル、1,4-アンスラセンジイソシアネート、フェニレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,10-デカンメチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート等のジイソシアネート類;これらジイソシアネート類のヌレート体、ビュレット体、アダクト体;2,4,6-トリレントリイソシアネート、2,4,4’-トリイソシアネートジフェニルエーテル等のトリイソシアネート類等を挙げることができる。
 上記(2)における水酸基及び(メタ)アクリロイル基を有する化合物としては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、エポキシ(メタ)アクレリート、2-ヒドロキシエチル(メタ)アクリレート、グリセロールジ(メタ)アクリレート、及び、これらにエチレンオキサイド、プロピレンオキサイド、ε-カプロラクトン、γ-ブチロラクトン等を付加して得られるアルキレンオキサイド変性又はラクトン変性の化合物等を挙げることができ、又、これらの化合物にポリイソシアネートを付加した化合物を用いることもできる。
 上記(3)における分子内に少なくとも2個のエポキシ基又はグリシジル基を有する化合物としては、例えば、ビスフェノールA、ビスフェノールF、2,6-キシレノール、臭素化ビスフェノールA、フェノールノボラック等を含有するグリシジルエーテル型エポキシ樹脂、ダイマー酸等を含有するグリシジルエステル型エポキシ樹脂、芳香族又は複素環族アミン等を含有するグリシジルエステル型エポキシ樹脂、脂環型のエポキシ樹脂、エポキシ基又はグリシジル基を有するアクリル樹脂等を挙げることができる。
 特に、分子内に3個以上のエポキシ基又はグリシジル基を有する化合物として、グリセロールトリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ソルビトールテトラグリシジルエーテル、ソルビトールペンタグリシジルエーテル、ソルビタンテトラグリシジルエーテル、ソルビタンペンタグリシジルエーテル、トリグリセロールテトラグリシジルエーテル、テトラグリセロールテトラグリシジルエーテル、ペンタグリセロールテトラグリシジルエーテル、トリグリセロールペンタグリシジルエーテル、テトラグリセロールペンタグリシジルエーテル、ペンタグリセロールペンタグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、トリグリシジルイソシアヌレート等を挙げることができる
 上記(4)において、ポリオールや多塩基酸又はその酸無水物としては上記と同様のものが挙げられる。
 本発明においては、(メタ)アクリロイル基を有する化合物(B)として、上記(1)~(5)等のものを使用することができ、これらのものは、含有する不飽和結合の関与によって重合反応が生じて活性エネルギー線硬化されるが、必要に応じて、更にその他の不飽和結合を有する化合物、例えばジアリルフマレート、トリアリルイソシアヌレート等を含有することもできる。
 本発明の活性エネルギー線硬化型樹脂組成物中の油変性アルキド樹脂(A)と、(メタ)アクリロイル基を有する化合物(B)との含有量の質量比[(A)/(B)]は20/80~80/20の範囲であることが、相溶性が良好であり、塗膜外観が良好な塗膜が得られる点で好ましい。なかでも、基材への優れた付着性且つ強靭な塗膜が得られる点で70/30~30/70の範囲であることがより好ましい。
 本発明の組成物では、活性エネルギー線での硬化反応を良好に進行させるため、光重合開始剤(C)を含有させることができる。前記光重合開始剤(C)としては、光の作用によりラジカルを発生するものであれば特に限定されず、具体的には、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピレンフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルホリノプロパン-1、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンジルジメチルケタール、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン、チオキサンソン、2-クロルチオキサンソン、2-メチルチオキサンソン、2,4-ジメチルチオキサンソン、イソプロピルチオキサンソン、カンファーキノン、ジベンゾスベロン、2-エチルアンスラキノン、4’,4”-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、α-アシロキシムエステル、アシルホスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル、9,10-フェナンスレンキノン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、ジメチルアミノ安息香酸、ジメチルアミノ安息香酸アルキルエステル等が挙げられ、中でもベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾイルイソプロピルエーテル、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ジメチルアミノ安息香酸、ジメチルアミノ安息香酸アルキルエステルが好ましく、特にはジメチルアミノ安息香酸、ジメチルアミノ安息香酸アルキルエステルが好ましく用いられる。
 前記光重合開始剤(C)の市販品としては、例えば、イルガキュア-184、同149、同261、同369、同500、同651、同754、同784、同819、同907、同1116、同1664、同1700、同1800、同1850、同2959、同4043、ダロキュア-1173、ルシリンTPO(BASF社製)、カヤキュア-DETX、同MBP、同DMBI、同EPA、同OA(日本化薬株式会社製)、バイキュア-10、同55(ストウファ・ケミカル社製)、トリゴナルP1(アクゾ社製)、サンドレイ1000(サンドズ社製)、ディープ(アプジョン社製)、クオンタキュア-PDO、同ITX、同EPD(ワードブレンキンソップ社製)等が挙げられる。これらはそれぞれ単独で使用しても良いし、2種類以上を併用しても良い。
 前記光重合開始剤は、光の感度を良好に保ち、かつ、結晶の析出や塗膜物性の劣化等を生じない点で、本発明の活性エネルギー線硬化型樹脂組成物100質量部に対し、0.05~20質量部の範囲であることが好ましく、0.1~10質量部の範囲であることがより好ましい。
 本発明においては、上記の各成分に加えて、必要に応じて、アミノ樹脂を含有させて、得られる塗膜の耐熱性を更に向上させることができる。
 上記アミノ樹脂としては、例えば、メラミン、尿素及びベンゾグアナミンのうち少なくとも1種とホルムアルデヒド類とから合成されるメチロール化アミノ樹脂;このようなメチロール化アミノ樹脂であって、メチロール基の一部又は全部を、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等の低級一価アルコールによって、アルキルエーテル化したもの等を挙げることができる。
 このようなアミノ樹脂の具体例としては、例えば、サイメル303(日本サイテックインダストリーズ株式会社製、メチル化メラミン樹指)、サイメル350(日本サイテックインダストリーズ株式会社製、メチル化メラミン樹脂)、ユーバン520(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン20-SE-60(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン2021(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン220(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン22R(三井化学株式会社社製、n-ブチル化変性メラミン樹脂)、ユーバン2028(三井化学株式会社社製、n-ブテル化変性メラミン樹脂)、ユーバン165(三井化学株式会社社製、イソブチル化変性メラミン樹脂)、ユーバン114(三井化学株式会社社製、イソブチル化変性メラミン樹脂)、ユーバン62(三井化学株式会社社製、イソブチル化変性メラミン樹脂)、ユーバン60R(三井化学株式会社社製、イソブチル化変性メラミン樹脂)等を挙げることができる。
 前記アミノ樹脂を用いる場合、組成物中の油変性アルキド樹脂(A)及び(メタ)アクリロイル基を有する化合物(B)の合計100質量部に対して、5~20質量部含有させることが好ましい。
 更に、本発明の組成物には、希釈して塗装しやすくするために溶剤を含有することができる。前記溶剤としては特に限定されないが、濡れ性を高めるためには低表面張力溶剤が好ましく、このようなものとしては、例えば、アルコール系溶剤、ケトン系溶剤等を挙げることができ、更に、これらに加えて、蒸発速度やコスト等に鑑み、酢酸エチル、酢酸ブチル、トルエン、キシレン等を併用することもできる。
 更にまた、本発明の組成物には、表面調整剤を含有することができる。前記表面調製剤としては特に限定されず、例えば、フッ素系添加剤、セルロース系添加剤等を挙げることができる。前記フッ素系添加剤は、表面張力を低下させて濡れ性を高めることにより、各種基材に塗布するときのハジキを防止する作用を有する。前記フッ素系添加剤の具体例としては、例えば、メガファックF-177(DIC株式会社製)等を挙げることができる。
 前記セルロース系添加剤は、塗布時の造膜性を付与する作用を有する。前記セルロース系添加剤としては、流動性を低下させるために数平均分子量15000以上の高分子量品が好ましく、このようなものとしては、例えば、セルロースアセテート-ブチレート樹脂等を挙げることができる。
 本発明においては、フッ素系添加剤の量が多くなると、蒸着アルミニウムやトップコートの密着性の低下等をきたし、上記セルロース系添加剤の量が多くなると、本発明の組成物の固形分含有量が低下し、塗膜が付着しにくくなるので、フッ素系添加剤及びセルロース系添加剤を併用することが好ましい。
 前記表面調製剤の添加量は、組成物中における不揮発分の合計100質量部に対して、フッ素系添加剤及びセルロース系添加剤の合計量が、0.01~3.0質量部の範囲が好ましい。フッ素系添加剤を単独で用いる場合には、0.01~1.0質量部の範囲であることが好ましく、セルロース系添加剤を単独で用いる場合には、0.5~5.0質量部の範囲であることが好ましい。
 本発明の活性エネルギー線硬化型樹脂組成物は、更に光増感剤紫外線吸収剤、酸化防止剤、シリコン系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤等の各種添加剤を含有しても良い。これらの添加量は、添加剤の効果を十分発揮し、また硬化を阻害しない範囲で用いることが出来る。
 本発明の活性エネルギー線硬化型樹脂組成物は、金属蒸着用活性エネルギー線硬化型下塗り用コーティング剤として好適に用いることができる。具体的には、基体に金属蒸着層を形成する際のアンダーコート層として用いる。以下、本発明の活性エネルギー硬化型樹脂組成物を基材に金属蒸着層を形成する際のアンダーコート層として用いる際の各種条件等について詳述する。
 前記アンダーコート層を形成するに際し、本発明の活性エネルギー線硬化型樹脂組成物は、スプレーコート等の方法により基材上に塗布される。その際の塗布量は、硬化後の膜厚が5~60μmの範囲となることが好ましく、10~40μmの範囲となることがより好ましい。硬化塗膜の膜厚を上記範囲内とすることで、接着効果の発現と塗膜の硬化性発現の点で好ましい。
 上記方法で基材上に活性エネルギー線硬化型樹脂組成物を塗布した後、樹脂組成物中の有機溶剤を揮発させる目的で、50~150℃の範囲である温度条件下、5~25分間プレヒートする。
 上記プレヒート工程終了後、活性エネルギー線を照射して樹脂組成物を硬化させ、前記アンダーコート層を形成する。本発明で使用する活性エネルギー線は、例えば、紫外線や電子線が挙げられる。紫外線により硬化させる場合、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用でき、必要に応じて光量、光源の配置などを調整する。本発明においては、紫外線を積算光量が50~5000mJ/cmとなるように照射するのが好ましく、積算光量が500~2000mJ/cmとなるように照射するのがより好ましい。
 以上のようにして本発明のアンダーコート層が設置された基材は、その上に金属蒸着層が設置され、その上に更にトップコート層等が設置される。その際の金属蒸着層の膜厚は30nm~3μmの範囲であり、トップコート層の硬化後の膜厚は3~40μmの範囲であることが好ましい。このようにして得られる成形体としては、自動車反射鏡等が挙げられる。本発明の活性エネルギー線硬化型樹脂組成物を金属蒸着層のアンダーコート層として用いることで、該金属層の金属光沢、基材への密着性、及び耐熱性に優れる成形体が得られる。また、本発明の活性エネルギー線硬化型樹脂組成物は貯蔵安定性にも優れる特徴を有する。
 以下に本発明を具体的な合成例、実施例を挙げてより詳細に説明する。以下、「部」「%」は、特に記載のない限り、質量基準である。
 [質量平均分子量(Mw)、分子量分布(Mw/Mn)の測定方法]
 質量平均分子量(Mw)、分子量分布(Mw/Mn)は下記条件のゲルパーミュレーションクロマトグラフィー(GPC)により測定した。
 測定装置 ;東ソー株式会社製 HLC-8220GPC
 カラム  ;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L
       +東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 合成例1
 攪拌棒、温度センサー、精留管、デカンターを有するフラスコに、亜麻仁油840部、大豆油420部、安息香酸208部、ペンタエリスリトール525部、ジエチレングリコール88部、無水フタル酸843部、キシレン85部及び有機チタン化合物0.5部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱し、脱水縮合反応を行った。酸価が10.0mgKOH/gとなったところで反応を停止し、150℃まで冷却後、混合溶剤(キシレン/トルエン=50/50(質量比))を滴下して固形分60%に希釈した。その結果、数平均分子量4,200、質量平均分子量109,000、水酸基価85、酸価10.0である油長45のアルキド樹脂(A1)を得た。
 合成例2
 攪拌棒、温度センサー、精留管、デカンターを有するフラスコに、亜麻仁油616部、大豆油脂肪酸299部、p-tert-安息香酸53部、ペンタエリスリトール211部、ジプロピレングリコール38部、グリセリン153部、無水フタル酸563部、キシレン71部及び有機チタン化合物0.4部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱し、脱水縮合反応を行った。酸価が8.3mgKOH/gとなったところで反応を停止し、150℃まで冷却後、混合溶剤(キシレン/トルエン=50/50(質量比))を滴下して固形分60%に希釈した。その結果、数平均分子量3,400、質量平均分子量90,000、水酸基価108、酸価8.3である油長50のアルキド樹脂(A2)を得た。
 合成例3
 攪拌棒、温度センサー、精留管、デカンターを有するフラスコに、亜麻仁油1149部、サフラワー油391部、安息香酸12部、ペンタエリスリトール450部、ジプロピレングリコール91部、無水フタル酸664部、イソフタル酸149部、キシレン71部及び有機チタン化合物0.4部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230~250℃に加熱し、脱水縮合反応を行った。酸価が8.9mgKOH/gとなったところで反応を停止し、150℃まで冷却後、混合溶剤(キシレン/トルエン=50/50(質量比))を滴下して固形分60%に希釈した。その結果、数平均分子量3,900、質量平均分子量78,000、水酸基価81、酸価8.9である油長55のアルキド樹脂(A3)を得た。
 比較用樹脂:アクリル樹脂(X)
 「アクリディック 56-393-BA」(DIC株式会社製、単量体混合物100部中スチレン20部、ガラス転移温度:5℃)を用いた。これをアクリル樹脂(X)とする。
 比較用アルキド樹脂(Y1)の合成
 攪拌棒、温度センサー、コンデンサを有するフラスコに、亜麻仁油1,104部、安息香酸470部、ペンタエリスリトール605部、無水フタル酸740部、キシレン85部及び有機チタン化合物0.4部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら220~240℃に加熱し、脱水縮合反応を行った。酸価が2.6mgKOH/gとなったところで反応を停止し、150℃まで冷却後、混合溶剤(キシレン/トルエン=50/50(質量比))を滴下して固形分60%に希釈した。その結果、数平均分子量3,600、質量平均分子量52,000、水酸基価84、酸価2.6である油長40のアルキド樹脂を得た。これをアルキド樹脂(Y1)とする。
 比較用アルキド樹脂(Y2)
 攪拌棒、温度センサー、コンデンサを有するフラスコに、大豆油1,120部、ネオペンチルグリコール200部、トリメチロールプロパン460部、無水フタル酸1210部、キシレン85部及び有機チタン化合物0.4部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら220~240℃に加熱し、脱水縮合反応を行った。酸価が41mgKOH/gとなったところで反応を停止し、150℃まで冷却後、混合溶剤(キシレン/トルエン=50/50(質量比))を滴下して固形分60%に希釈した。その結果、数平均分子量3,600、質量平均分子量39,000、水酸基価20、酸価41である油長40のアルキド樹脂を得た。これをアルキド樹脂(Y2)とする。
 比較例用アルキド樹脂(Y3)
 攪拌棒、温度センサー、精留管、デカンターを有するフラスコに、大豆油1412部、ネオペンチルグリコール259部、トリメチロールプロパン445.6部、アジピン酸276部、無水フタル酸559部、キシレン90部及び有機チタン化合物0.3部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら220~240℃に加熱し、脱水縮合反応を行った。酸価が8mgKOH/g以下となったところで反応を停止し、150℃まで冷却後、トルエンと酢酸エチルを滴下して固形分50%に希釈した。その結果、数平均分子量3,800、質量平均分子量310,000、水酸基価78、酸価8である油長50のアルキド樹脂を得た。これをアルキド樹脂(Y3)とする。
 比較例用アルキド樹脂(Y4)の合成
 攪拌棒、温度センサー、精留管、デカンターを有するフラスコに、亜麻仁油1269部、ペンタエリスリトール593部、無水フタル酸880g、キシレン60部及び有機チタン化合物0.3部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら220~240℃に加熱し、脱水縮合反応を行った。酸価が5.1mgKOH/g以下となったところで反応を停止し、150℃まで冷却後、トルエンと酢酸エチルを滴下して固形分50%に希釈した。その結果、数平均分子量3,800、質量平均分子量303,000、水酸基価41、酸価5.1である油長45のアルキド樹脂を得た。これをアルキド樹脂(Y4)とする。
 活性エネルギー線硬化型樹脂組成物の調製
 表1に示す固形分比率(質量比)でアルキド樹脂(A)、(メタ)アクリロイル基を有する化合物(B)、必要に応じてアミン化合物を使用し、光重合開始剤(C)と、表面調整剤と、溶剤とを表1に示す固形分比率(質量比)で混合して、液状の樹脂組成物を調製した。
 なお、比較例3については、表1に示す塗料組成物の固形分質量比で混合した後、イオン交換水を固形分が30%になるまで徐々に加え転相乳化させて、液状の組成物を調製した。
 カヤラッドTMPTA:トリメチロールプロパントリアクリレート(日本化薬株式会社製)
 アロニックスM-305:ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートの混合物(東亞合成株式会社製)
 NK-エステルAPG-200:トリプロピレングリコールジアクリレート(新中村化学工業製)
 アロニックスM-5300:ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート(東亞合成株式会社製)
 サイメル303:メラミン樹脂(日本サイテックインダストリーズ株式会社製)
 サイメル307:メラミン樹脂(日本サイテックインダストリーズ株式会社製)
 イルガキュア651:光重合開始剤(BASF社製)
 カヤキュアDETX-S:光重合開始剤(日本化薬株式会社製)
 イルガキュア184:光重合開始剤(BASF社製製)
 メガファックF-477:表面改質剤(DIC株式会社製)
 貯蔵安定性の評価
 得られた組成物を40℃で3カ月間保存し、その貯蔵安定性を目視にて観察し、以下に示す評価基準にて評価した。結果を表1に示す。
 ○:溶液の外観変化が無く、塗装可能である。
 ×:ゲルの発生あるいは分離しており、塗装不可である。
 反射材の製造
 基材として、BMC(バルクモールディングコンパウンド)、PPS(ポリフェニレンサルファイド)、PBT(ポリブチレンテレフタレート)/PET(ポリエチレンテレフタレート)アロイ、PC(ポリカーボネート)を用いた。
 各基材の表面に、先に調製した組成物をエアースプレー塗装した。その後、80℃×10分の条件で溶剤乾燥し、80W/cmの高圧水銀灯で、照射量1000mJ/cmの紫外線を照射することにより、基材上に膜厚が10~15μmの下塗り層(アンダーコート層)を形成した。
 次に、形成したアンダーコート層の表面にアルミニウムを真空蒸着した後、アルミニウム表面に、ユピカコート3002A(日本ユピカ株式会社製)を20部と、トルエンを35部と、ソルベッソ#100を40部と、n-ブタノールを5部の組成によって調整した上塗り塗料を、エアースプレー塗装した。その後、120℃×10分の条件で焼き付けることにより、膜厚が3~5μmの保護膜を形成することで、反射板を製造した。なお、基材として、BMCを用いて得られた反射板を「反射板1」、PPSを用いて得られた反射板を「反射板2」、PBT/PETアロイを用いて得られた反射板を「反射板3」、PCを用いて得られた反射板を「反射板4」とする。
 反射板1について、反射板作成後、及び耐熱試験及び耐湿試験を実施した後の平滑性を評価した。反射板1~4について、反射板作成後、及び耐熱試験及び耐湿試験を実施した後の外観状態、密着性を評価した。結果を表1に示した。
 平滑性の評価
 反射板の平滑性について、以下の評価基準にて目視で評価した。
 〇:液タレやユズ肌が見られず、平滑である。
 △:わずかに液タレやユズ肌見られるが、使用可能な範囲である。
 ×:明らかに液タレやユズ肌が見られる。
 外観状態の評価
 反射板の外観状態について、以下の評価基準にて目視で評価した。
 ○:クラックやフクレ、白化等の欠陥がない。
 △:僅かにクラックやフクレ、白化等の欠陥がある。
 ×:はっきりとクラックやフクレ等の欠陥がある。
 密着性の評価
 反射板の保護膜上に、2mm幅で10×10の碁盤目状にカッターナイフで切れ目を入れ、その上からセロハン粘着テープを貼着した後、急速に剥がす操作を行い、剥離せずに残存した碁盤目の数を数え、以下の評価基準にて評価した。
 ○:碁盤目の残存数が100個。
 △:碁盤目の残存数が91~99個。
 ×:碁盤目の残存数が90個以下。
 耐熱試験方法
 反射板1~4を以下の温度の熱風乾燥炉に入れ、96時間放置した後の、外観状態、密着性について評価した。
 反射板1:180℃
 反射板2:230℃
 反射板3:200℃
 反射板4:120℃
 耐湿性の評価
 反射板1を温度50℃、湿度95RH%の恒温恒湿器の中で240時間放置した後の、外観状態、密着性について評価した。
Figure JPOXMLDOC01-appb-T000001

Claims (10)

  1. 油変性アルキド樹脂(A)と、(メタ)アクリロイル基を有する化合物(B)とを含有する活性エネルギー線硬化型樹脂組成物であって、
    前記油変性アルキド樹脂(A)が、ヨウ素価が100以上の油脂(a1)を2種以上併用して得られる、油長が30~70、質量平均分子量が3万~20万の油変性アルキド樹脂であることを特徴とする活性エネルギー線硬化型樹脂組成物。
  2. 前記油変性アルキド樹脂(A)の水酸基価が60~140の範囲である請求項1記載の活性エネルギー線硬化型樹脂組成物。
  3. 前記ヨウ素化が100以上の油脂(a1)が、亜麻仁油、大豆油、サフラワー油及びトール油からなる群から選ばれる油脂である請求項1又は2記載の活性エネルギー線硬化型樹脂組成物。
  4. 前記油変性アルキド樹脂(A)が、分子内にエーテル結合を有するポリオール(a2)と、分子内に環状不飽和基を有する多塩基酸(a3)とを用いて得られるものである請求項1~3の何れか1項記載の活性エネルギー線硬化型樹脂組成物。
  5. 前記分子内にエーテル結合を有するポリオール(a2)が、ポリアルキレングリコールを含むものである請求項4記載の活性エネルギー線硬化型樹脂組成物。
  6. 前記(メタ)アクリロイル基を有する化合物(B)が、(メタ)アクリレートモノマー、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート及びアクリルアクリレートからなる群から選ばれる1種以上の化合物である請求項1~5の何れか1項記載の活性エネルギー線硬化型樹脂組成物。
  7. 前記油変性アルキド樹脂(A)と、前記(メタ)アクリロイル基を有する化合物(B)との質量比〔(A)/(B)〕が20/80~80/20の範囲である請求項1~6の何れか1項記載の活性エネルギー線硬化型樹脂組成物。
  8. 更に光重合開始剤(C)を含有する請求項1~7の何れか1項記載の活性エネルギー線硬化型樹脂組成物。
  9. 請求項1~8の何れか1項記載の活性エネルギー線硬化型樹脂組成物を含んでなることを特徴とする金属蒸着用活性エネルギー線硬化型下塗り用コーティング剤。
  10. 請求項9記載の下塗り用コーティング剤からなるアンダーコート層を有することを特徴とする成形体。
PCT/JP2014/069912 2013-08-07 2014-07-29 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体 WO2015019898A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480008626.5A CN105073805B (zh) 2013-08-07 2014-07-29 活性能量射线固化型树脂组合物、含有其的底涂用涂布剂及成型体
JP2014555002A JP5713156B1 (ja) 2013-08-07 2014-07-29 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
US14/772,206 US20160017177A1 (en) 2013-08-07 2014-07-29 Actinic-radiation-curable resin composition, primer contianing the same, and shaped article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-164111 2013-08-07
JP2013164111 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015019898A1 true WO2015019898A1 (ja) 2015-02-12

Family

ID=52461236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069912 WO2015019898A1 (ja) 2013-08-07 2014-07-29 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体

Country Status (4)

Country Link
US (1) US20160017177A1 (ja)
JP (1) JP5713156B1 (ja)
CN (1) CN105073805B (ja)
WO (1) WO2015019898A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039791A (ja) * 2015-08-17 2017-02-23 Dic株式会社 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP2017039792A (ja) * 2015-08-17 2017-02-23 Dic株式会社 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
WO2022145375A1 (ja) * 2020-12-28 2022-07-07 日本ペイント・オートモーティブコーティングス株式会社 Frp用活性エネルギー線硬化性下塗り塗料組成物
WO2022145376A1 (ja) * 2020-12-28 2022-07-07 日本ペイント・オートモーティブコーティングス株式会社 Frp用活性エネルギー線硬化性下塗り塗料組成物
JP7341388B1 (ja) 2022-12-26 2023-09-11 東洋インキScホールディングス株式会社 金属印刷用活性エネルギー線硬化型インキ組成物およびその積層体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180111890A (ko) * 2016-03-11 2018-10-11 디아이씨 가부시끼가이샤 적층체의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814668B1 (ja) * 1970-03-31 1973-05-09
JPS5425941A (en) * 1977-07-30 1979-02-27 Dainippon Ink & Chem Inc Ultraviolet curing film-forming composition
JPS58118863A (ja) * 1981-12-29 1983-07-15 アクゾ・エヌ・ヴエ− 酸化的に乾燥する水性被覆組成物
JPS6264813A (ja) * 1985-09-10 1987-03-23 Nippon Shokubai Kagaku Kogyo Co Ltd 活性エネルギ−線硬化型組成物
WO1995032250A1 (fr) * 1994-05-24 1995-11-30 Nippon Paint Co., Ltd. Composition pour sous-couche durcissant aux uv pour plastiques renforces metallises, revetements et reflecteurs d'automobiles
JP2009149735A (ja) * 2007-12-19 2009-07-09 Mitsubishi Rayon Co Ltd 被覆材組成物及びその硬化物が被覆された成型品
JP2012505276A (ja) * 2008-10-09 2012-03-01 サイテク サーフェイス スペシャルティーズ エス.エー. 水分散ポリエステル樹脂組成物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521936B2 (ja) * 2010-09-22 2014-06-18 Dic株式会社 活性エネルギー線硬化型樹脂組成物、frp金属蒸着用活性エネルギー線硬化型樹脂組成物、及び塗装物に関する。

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4814668B1 (ja) * 1970-03-31 1973-05-09
JPS5425941A (en) * 1977-07-30 1979-02-27 Dainippon Ink & Chem Inc Ultraviolet curing film-forming composition
JPS58118863A (ja) * 1981-12-29 1983-07-15 アクゾ・エヌ・ヴエ− 酸化的に乾燥する水性被覆組成物
JPS6264813A (ja) * 1985-09-10 1987-03-23 Nippon Shokubai Kagaku Kogyo Co Ltd 活性エネルギ−線硬化型組成物
WO1995032250A1 (fr) * 1994-05-24 1995-11-30 Nippon Paint Co., Ltd. Composition pour sous-couche durcissant aux uv pour plastiques renforces metallises, revetements et reflecteurs d'automobiles
JP2009149735A (ja) * 2007-12-19 2009-07-09 Mitsubishi Rayon Co Ltd 被覆材組成物及びその硬化物が被覆された成型品
JP2012505276A (ja) * 2008-10-09 2012-03-01 サイテク サーフェイス スペシャルティーズ エス.エー. 水分散ポリエステル樹脂組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017039791A (ja) * 2015-08-17 2017-02-23 Dic株式会社 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP2017039792A (ja) * 2015-08-17 2017-02-23 Dic株式会社 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
WO2022145375A1 (ja) * 2020-12-28 2022-07-07 日本ペイント・オートモーティブコーティングス株式会社 Frp用活性エネルギー線硬化性下塗り塗料組成物
WO2022145376A1 (ja) * 2020-12-28 2022-07-07 日本ペイント・オートモーティブコーティングス株式会社 Frp用活性エネルギー線硬化性下塗り塗料組成物
JP2022104104A (ja) * 2020-12-28 2022-07-08 日本ペイント・オートモーティブコーティングス株式会社 Frp用活性エネルギー線硬化性下塗り塗料組成物
JP7341388B1 (ja) 2022-12-26 2023-09-11 東洋インキScホールディングス株式会社 金属印刷用活性エネルギー線硬化型インキ組成物およびその積層体

Also Published As

Publication number Publication date
JPWO2015019898A1 (ja) 2017-03-02
US20160017177A1 (en) 2016-01-21
CN105073805A (zh) 2015-11-18
CN105073805B (zh) 2017-11-14
JP5713156B1 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5713156B1 (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP5692624B1 (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
CN1228358C (zh) 涂布塑料模制品的方法、用以蒸发金属的可紫外光固化底漆及塑料模制品
JP6252714B1 (ja) アクリル変性アルキド樹脂及び無機材料薄膜下塗り用コーティング剤
JP2015013933A (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP4863464B2 (ja) 虹彩色を発現する積層物の製造方法
EP3486262B1 (en) Active-energy-ray-curable resin composition and metal-thin-film undercoat agent
JP6075614B2 (ja) 被覆材組成物、及び積層物の製造方法
JP6617912B2 (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP2009149735A (ja) 被覆材組成物及びその硬化物が被覆された成型品
JP4480970B2 (ja) 被覆材組成物、およびこの組成物を用いて得られる物品
JP2017039792A (ja) 活性エネルギー線硬化型樹脂組成物、これを含有する下塗り用コーティング剤及び成形体
JP2003221408A (ja) 紫外線硬化型樹脂組成物、塗膜形成方法及びその用途
JP2002348498A (ja) 金属蒸着用活性エネルギー線硬化型アンダーコート組成物
JP3568497B2 (ja) 紫外線硬化型樹脂組成物、塗膜形成方法及びその用途
JP2004107653A6 (ja) 被覆材組成物、およびこの組成物を用いて得られる物品
JP3760818B2 (ja) Frp用金属蒸着用紫外線硬化型下塗り液状組成物、塗装方法および自動車反射鏡
JP5005924B2 (ja) 錫膜のアンダーコート層成形用組成物、錫膜のアンダーコート層及び錫膜被覆樹脂成型品
JP5757062B2 (ja) 活性エネルギー線硬化性塗料及び成型品
JP5280096B2 (ja) 薄膜金属層を有する塗膜表面に凹凸を生じさせる方法
TW202233774A (zh) Frp用活性能量線硬化性底塗塗料組成物
TW202235505A (zh) Frp用活性能量線硬化性底塗塗料組成物
JP2001064542A (ja) 被覆成形品およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480008626.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014555002

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201504577

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14772206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834541

Country of ref document: EP

Kind code of ref document: A1