WO2015019512A1 - Resin composition for optical waveguides, resin film for optical waveguides using same, optical waveguide and photoelectric composite wiring board - Google Patents

Resin composition for optical waveguides, resin film for optical waveguides using same, optical waveguide and photoelectric composite wiring board Download PDF

Info

Publication number
WO2015019512A1
WO2015019512A1 PCT/JP2013/079936 JP2013079936W WO2015019512A1 WO 2015019512 A1 WO2015019512 A1 WO 2015019512A1 JP 2013079936 W JP2013079936 W JP 2013079936W WO 2015019512 A1 WO2015019512 A1 WO 2015019512A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
resin composition
component
meth
waveguide according
Prior art date
Application number
PCT/JP2013/079936
Other languages
French (fr)
Japanese (ja)
Inventor
上山 健一
柴田 智章
貴紀 宮
阿部 紀大
増田 宏
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013165031A external-priority patent/JP2016180014A/en
Priority claimed from JP2013165032A external-priority patent/JP2016180015A/en
Priority claimed from JP2013165033A external-priority patent/JP2016180016A/en
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Publication of WO2015019512A1 publication Critical patent/WO2015019512A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Definitions

  • the present invention relates to a resin composition for an optical waveguide, a resin film for an optical waveguide, an optical waveguide using the same, and an optoelectric composite wiring board, and in particular, an optical waveguide having excellent transparency and low refractive index and low thermal expansion.
  • the present invention relates to a resin composition for an optical waveguide, an optical waveguide resin film comprising the resin composition, an optical waveguide using the resin film, and an optoelectric composite wiring board.
  • (meth) acrylic polymers see, for example, Patent Documents 1 and 2). It has been known.
  • (meth) acryl means acryl, methacryl, or acryl and methacryl
  • (meth) acryloyl means acryloyl, methacryloyl, or acryloyl and methacryloyl
  • (meth) acrylate means acrylate, methacrylate, Or acrylate and methacrylate are meant.
  • an alicyclic epoxy resin for example, refer patent document 3 is also known.
  • the photoelectric composite wiring board requires high levels of electrical insulation, chemical resistance, high glass transition temperature, low coefficient of thermal expansion, electrical wiring adhesion, etc., so conventional materials satisfy these requirements simultaneously.
  • the (meth) acrylic polymer as described in Patent Documents 1 and 2 has a problem that it is dissolved in a strong alkali such as a desmear liquid, and the glass transition temperature is 100. Since most of them are as low as °C or less, there is a problem that the thermal expansion coefficient increases accordingly. As the thermal expansion coefficient increases, cracks are likely to occur due to thermal history.
  • alicyclic epoxy resins such as those described in Patent Document 3 are mainly photocured using a photoacid generator, resulting in a problem of poor electrical insulation. In many cases, the refractive index is high, and the adhesiveness and reliability are insufficient.
  • the present invention has been made in order to solve the above-mentioned problems.
  • a resin composition layer is formed, the resin composition for an optical waveguide having high transparency, low refractive index property and low thermal expansion property, and this resin composition
  • the present invention provides the following (1) to (36).
  • An optical waveguide resin composition comprising (A) an epoxy compound having two or more epoxy groups, (B) an epoxy curing agent, and (C) silica particles having an average particle diameter of 1 nm to 70 nm.
  • the content of component (C) is 10 to 300 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B), according to any one of (1) to (5)
  • a resin composition for an optical waveguide is 10 to 300 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B), according to any one of (1) to (5)
  • a resin composition for an optical waveguide is 10 to 300 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B), according to any one of (1) to (5)
  • a resin composition for an optical waveguide is 10 to 300 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B), according to any one of (1) to (5)
  • a resin composition for an optical waveguide is 10 to 300 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B), according to any one of (1) to (5)
  • a resin composition for an optical waveguide is 10 to 300 parts by mass with respect to 100 parts
  • a silane coupling agent as the component (E).
  • 100% by mass of the (meth) acrylic polymer of component (F) is 10 to 80% by mass of (F-1) glycidyl (meth) acrylate, (F-2) alkyl (meth) acrylate (carbon of alkyl)
  • the (meth) acrylic polymer of the (F) component is composed only of (F-1) and (F-2) and does not contain the (F-3) component, (15) or (16) The resin composition for optical waveguides described in 1.
  • the content of the component (F) is 1 to 40 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B), according to any one of (15) to (17) A resin composition for an optical waveguide.
  • (21) The resin composition for an optical waveguide according to (19) or (20), wherein one of the components (G) is glycidyl methacrylate.
  • a resin film for an optical waveguide comprising: a base material; and a resin composition layer formed on the base material and made of the resin composition for an optical waveguide according to any one of (1) to (27).
  • An optical waveguide comprising a lower clad layer, a core portion, and an upper clad layer, wherein the lower clad layer, the optical waveguide resin composition according to any one of (1) to (27), An optical waveguide forming at least one of a core part and an upper cladding layer.
  • An optical waveguide comprising a lower clad layer, a core portion, and an upper clad layer, wherein the lower clad layer, the core portion, and the resin film according to any one of (28) to (30) are used.
  • An optical waveguide forming at least one of the upper cladding layers.
  • An optical waveguide comprising a lower cladding layer, a core portion, and an upper cladding layer, wherein the core member contains a (meth) acrylic compound, and the cladding material of the lower cladding layer or the upper cladding layer is (19)
  • An optical waveguide comprising the resin composition for an optical waveguide according to any one of (26) to (26), and formed from a core material and a clad material.
  • An optoelectric composite wiring board obtained by forming an electric circuit on the upper clad layer of the optical waveguide according to any one of (31) to (33).
  • a resin composition for an optical waveguide having high transparency, low refractive index and low thermal expansion when formed into a resin composition layer, an optical waveguide resin film using the same, and using these The manufactured optical waveguide and photoelectric composite wiring board can be provided.
  • the resin composition for an optical waveguide of the present invention contains (A) an epoxy compound containing two or more epoxy groups, (B) an epoxy curing agent, and (C) silica particles having an average particle diameter of 1 nm to 70 nm. To do.
  • the epoxy compound containing two or more epoxy groups as component (A) is not particularly limited as long as it has transparency at the target wavelength.
  • alicyclic epoxy compounds such as hydrogenated bisphenol A type epoxy compounds and hydrogenated bisphenol F type epoxy compounds, alkylphenol type epoxy compounds such as tertiary butylcatechol type epoxy compounds, or glycidyl methacrylate What contains many aliphatic skeletons, such as a containing acrylic polymer, is preferable.
  • a general index for determining the proportion of the aliphatic skeleton is, for example, an atom in which each atom is a single bond, focusing on a chemical bond formed by each atom with another adjacent atom. Is calculated. Specifically, regarding the carbon, nitrogen, and oxygen atoms constituting the component (A), where N is the total number of these atoms and n is the number of atoms in which all the chemical bonds with other atoms are single bonds, n Use / N as an index. In the present invention, n / N is preferably 0.6 or more and 1 or less, more preferably 0.7 or more, and particularly preferably 0.8 or more.
  • n / N By setting n / N to be 0.6 or more, the refractive index can be further reduced. From the above, it is more preferable to include a hydrogenated bifunctional liquid epoxy compound which is an alicyclic epoxy compound such as a hydrogenated bisphenol A type epoxy compound or a hydrogenated bisphenol F type epoxy compound.
  • the blending amount of the component (A) is preferably 50 to 95% by mass, more preferably 55 to 90% by mass, and more preferably 60 to 90% by mass with respect to the total amount of the components (A) and (B). % Is more preferable, and 60 to 85% by mass is particularly preferable. When it is 50% by mass or more, the refractive index tends to be lowered, and when it is 95% by mass or less, the glass transition temperature is improved and heat resistance tends to be improved.
  • the epoxy curing agent that is component (B) can be used without particular limitation as long as it can cure the epoxy resin.
  • a curing agent include compounds having a phenolic hydroxyl group, amines, imidazole compounds, acid anhydrides, organic phosphorus compounds and their halides, polyamides, polysulfides, boron trifluoride, and the like.
  • a compound having a phenolic hydroxyl group is preferable from the viewpoint of transparency of the obtained resin composition layer.
  • the compound having a phenolic hydroxyl group is not particularly limited as long as it has transparency at a target wavelength.
  • a phenol novolak resin, a cresol novolak resin, a biphenylaralkylene novolak type phenol resin, a naphthalene-containing novolak type Novolak resins such as phenol resin, bisphenol A novolac resin, aminotriazine novolak resin; monocyclic polyphenol compounds such as resorcin, catechol, phloroglucinol; bisphenol compounds such as bisphenol A, bisphenol F, bisphenol S; trisphenolmethane, Tetrakisphenolethane, dicyclopentadiene type phenolic compound, biphenyl type phenolic compound, phenolic compound having naphthalene structure, anthracene Phenol compounds having a structure, a phenolic compound having a pyrene structure, and the like other phenolic compounds phenol compounds having a mesogen skeleton.
  • monocyclic polyhydric phenol compounds such as resorcin, catechol, and phloroglucinol, which are compounds having a low phenol equivalent from the viewpoint of low refractive index, and polyfunctional phenol novolac resins and cresol novolacs from the viewpoint of heat resistance.
  • a novolak resin such as a resin, a biphenylaralkylene novolak type phenol resin, a naphthalene-containing novolak type phenol resin, a bisphenol A novolak resin, an aminotriazine novolak resin, and more preferably an aminotriazine novolak resin.
  • the blending amount of component (B) is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and more preferably 15 to 40% by mass with respect to the total amount of component (A) and component (B). % Is particularly preferred. If it is 5% by mass or more, the refractive index tends to be low, and if it is 50% by mass or less, the glass transition temperature tends to increase and the heat resistance tends to be good.
  • the silica particles having an average particle size of 1 nm to 70 nm as component (C) are not particularly limited, such as a production method or surface treatment, but tetraalkoxysilane is preferably used as a raw material from the viewpoint of electrical insulation.
  • the average particle size is preferably larger as long as the transparency is not impaired from the viewpoint of surface treatment and surface area reduction, preferably 3 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, and preferably 60 nm or less, more Preferably it is 55 nm or less, More preferably, it is 50 nm or less.
  • the average particle diameter exceeds 70 nm, it is difficult to ensure transparency.
  • a dynamic light scattering method can be used as a method for measuring the average particle diameter. Specifically, it can be measured using a device such as Nanotrac Particle Size Analyzer Nanotrac Wave-EX150 (Nikkiso Co., Ltd.).
  • the average particle diameter in the present invention means “volume average particle diameter”.
  • the degree of surface treatment of the silica particles is preferably as low as possible from the viewpoint of low refractive index.
  • surface treatment For example, the process by a silane coupling agent or silicone oil can be considered.
  • silane coupling agents include 3-glycidoxypropyltrimethoxysilane, epoxy functional silanes such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N- Amino-functional silanes such as 2- (aminoethyl) -3-aminopropyltrimethoxysilane and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyltrimethoxysilane, vinyltris Olefin-functional silanes such as (2-methoxyethoxy) silane, acrylic-functional silanes such as 3-acryloxypropyltrimethoxysilane, methacryl-functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxy Syrah And
  • Silicone oils include dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, amino / polyether modified silicone oil, aralkyl modified silicone oil, epoxy modified silicone oil, epoxy / aralkyl modified silicone oil, and epoxy / polyether modified.
  • Silicone oil carbinol modified silicone oil, carboxyl modified silicone oil, higher fatty acid amide modified silicone oil, higher fatty acid ester modified silicone oil, diamine modified silicone oil, diol modified silicone oil, alicyclic epoxy modified silicone oil, silanol modified silicone oil , Long chain alkyl modified silicone oil, long chain alkyl aralkyl modified silicone oil, Especially amino-modified silicone oil, hydrogen-modified silicone oil, phenyl-modified silicone oil, phenol-modified silicone oil, fluoroalkyl-modified silicone oil, polyether-modified silicone oil, polyether / long-chain alkyl / aralkyl-modified silicone oil, polyether / methoxy Modified silicone oil, methacryl-modified silicone oil, mercapto-modified silicone oil, monoamine-modified silicone oil, and the like. These may be used alone or in combination. In addition, when silicone oil is used as the surface treatment of the silica particles, it is included in the silicone oil as the component (D).
  • the content of the silica particles (C) is preferably 10 to 300 parts by weight, and preferably 20 to 200 parts by weight with respect to 100 parts by weight as the total amount of the components (A) and (B). It is particularly preferably 30 to 100 parts by mass. By setting it as 10 mass parts or more, it becomes easy to acquire the thermal expansion coefficient reduction effect and refractive index reduction effect by silica addition. It can prevent that a resin composition becomes weak by setting it as 300 mass parts or less.
  • the resin composition for an optical waveguide of the present invention preferably further contains silicone oil as the component (D).
  • silicone oil By using silicone oil as the component (D), a resin composition having high transparency, low refractive index and low thermal expansion when used as a resin composition layer, and a resin composition having these characteristics are used. Resin films, optical waveguides and opto-electric composite wiring boards manufactured using them can be provided.
  • the silicone oil as component (D) is not particularly limited as long as it does not impair the transparency at the target wavelength.
  • dimethyl silicone oil methylphenyl silicone oil, methyl hydro Gen silicone oil, etc.
  • side chain type silicone oil having functional groups at side chains
  • both end type silicone oils having functional groups at both ends
  • Type silicone oils side chain double-end type silicone oils having functional groups at both ends.
  • These functional groups include reactive functional groups and non-reactive functional groups, and reactive functional groups include monoamine groups, diamine groups, glycidyl groups, alicyclic epoxy groups, carbinol groups, methacryloyl groups, acryloyl groups, There are carboxylic anhydride groups, mercapto groups, carboxyl groups, hydrogen groups, silanol groups, etc., and non-reactive functional groups include polyether groups, diol groups, aralkyl groups, fluoroalkyl groups, long-chain alkyl groups, Examples thereof include a phenol group, a methoxy group, a higher fatty acid ester group, and a higher fatty acid amide group. These may be used alone or in combination of two or more.
  • the functional group preferably has a glycidyl group.
  • the silicone oil as component (D) is preferably a silicone oil having glycidyl groups at both ends.
  • an average molecular weight of (D) component Since compatibility with other components falls generally, so that it is high molecular weight, the one where an average molecular weight is lower is preferable from a viewpoint of bleeding out prevention. Specifically, if it is 700 or less, the transparency is often not impaired, more preferably 600 or less, and further preferably 500 or less.
  • the average molecular weight is preferably 100 or more, and more preferably 200 or more.
  • the average molecular weight is generally shown as a number average molecular weight, and can be determined by gel permeation chromatography and converted into standard polystyrene.
  • Component (D) is blended in an amount of preferably 1 to 30 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). More preferably, it is ⁇ 20 parts by mass. If it is 30 parts by mass or less, tackiness tends to be difficult to occur, and if it is 1 part by mass or more, the refractive index tends to be low.
  • the resin composition for an optical waveguide of the present invention preferably further contains a silane coupling agent as the component (E).
  • a silane coupling agent as a component, a resin composition having high transparency, low refractive index and low thermal expansion when formed into a resin composition layer, and a resin composition having these characteristics A resin film using the above, and an optical waveguide and an optoelectric composite wiring board manufactured using these can be provided.
  • the silane coupling agent as component (E) is not particularly limited as long as it does not impair transparency at the target wavelength, but is a trialkoxysilane having a reactive functional group from the viewpoint of reducing the thermal expansion coefficient. Preferably there is.
  • trialkoxysilane having a reactive functional group examples include epoxy-functional silanes such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-aminopropyltrimethoxy.
  • Silanes amino functional silanes such as N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, olefin functional silanes such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane And acrylic functional silanes such as 3-acryloxypropyltrimethoxysilane, methacrylic functional silanes such as 3-methacryloxypropyltrimethoxysilane, and mercaptofunctional silanes such as 3-mercaptopropyltrimethoxysilane.
  • amino functional silanes such as N-2- (aminoethyl) -3-aminopropyltrimethoxysilane
  • olefin functional silanes such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane
  • acrylic functional silanes such as 3-
  • a silane coupling agent having a glycidyl group, an acryloyl group, or a methacryloyl group is preferable because it has good reactivity with the component (A) and the component (B).
  • the content of component (E) is preferably 10 to 100 parts by weight, more preferably 20 to 90 parts by weight, and more preferably 30 to 80 parts by weight with respect to 100 parts by weight of component (C). More preferably. When it becomes 10 mass parts or more, there exists a tendency for adhesiveness with copper foil to increase, and practically sufficient adhesiveness is obtained at about 100 mass parts.
  • the resin composition for an optical waveguide of the present invention preferably further contains a (meth) acrylic polymer as the component (F).
  • (F) Resin composition having high transparency, high glass transition temperature, high temperature and high elasticity and low thermal expansion when it is made into a resin composition layer by containing (meth) acrylic polymer as component, and these properties A resin film using a resin composition comprising the above, and an optical waveguide and an optoelectric composite wiring board manufactured using these can be provided.
  • the (F) component (meth) acrylic polymer is composed of (F-1) glycidyl (meth) acrylate and (F-2) alkyl (meth) acrylate (alkyl having 1 to 6 carbon atoms). Accordingly, (F-3) other compounds may be incorporated into the polymer.
  • F-1 By containing glycidyl (meth) acrylate, it can react with the components (A) and (B), and (F-2) the alkyl (meth) acrylate has 1 to 6 carbon atoms. By making the following, flexibility can be imparted without inhibiting the reactivity of (F-1).
  • (F-2) alkyl (meth) acrylate includes methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, There are isobutyl (meth) acrylate, (t-butyl) (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, etc., but the reactivity of the glycidyl group in the polymer In view of the above, methyl (meth) acrylate or ethyl (meth) acrylate is preferred.
  • alkyl (meth) acrylates may be used alone or in combination of two or more.
  • F-3 Other compounds are not particularly limited as long as they can be incorporated into (meth) acrylic polymers such as (meth) acrylic acid, (meth) acrylic acid esters, and maleimide compounds.
  • (meth) acrylic acid esters examples include isodecyl (meth) acrylate, isobornyl (meth) acrylate, ethylhexyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, ( Stearyl methacrylate, trifluoroethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, (meth) acrylic Lauryl acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxye
  • maleimide compounds N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-isopropylmaleimide, N-2,2-dimethylpropylmaleimide, N-butylmaleimide, N-isobutylmaleimide, N-sec-butyl Maleimide, N-tert-butylmaleimide, N-2-methyl-2-butylmaleimide, N-pentylmaleimide, N-2-pentylmaleimide, N-3-pentylmaleimide, N-hexylmaleimide, N-2-hexylmaleimide N-3-hexylmaleimide, N-2-ethylhexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-nonylmaleimide, N-decylmaleimide, N-hydroxymethylmaleimide, N-2-hydroxyethylmaleimide, N Alky
  • the component ratio of (F-1) in 100% by mass of the (F) component (meth) acrylic polymer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and 30 to 60%. More preferably, it is mass%.
  • the component ratio of (F-2) is preferably 20 to 90% by mass, more preferably 30 to 80% by mass, and further preferably 40 to 70% by mass.
  • the component ratio of (F-3) is preferably 0 to 40% by mass, more preferably 0 to 30% by mass, and further preferably 0 to 20% by mass.
  • (F-3) is not essential, it can be provided with desired characteristics such as flame retardancy and compatibility by incorporating functional monomers to some extent, and a resin composition can be obtained by setting it to 40% by mass or less. There is a tendency not to impair transparency.
  • the (meth) acrylic polymer of the (F) component is composed only of (F-1) and (F-2) and does not contain the (F-3) component. preferable.
  • the (F) component (meth) acrylic polymer is not particularly limited in its synthesis method, but it can be obtained by copolymerizing a compound as a raw material of the polymer with heating using an appropriate thermal radical polymerization initiator. Can do. At this time, if necessary, an organic solvent and / or water can be used as a reaction solvent. Further, if necessary, a suitable chain transfer agent, dispersant, surfactant, emulsifier and the like can be used in combination.
  • the thermal radical polymerization initiator is not particularly limited, and examples thereof include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1 -Bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane Peroxyketals such as 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; ⁇ , ⁇ ′-bis (t-butyl Peroxy) diisopropylbenzene, dicumyl peroxide, t-butyl
  • the organic solvent used as the reaction solvent is not particularly limited as long as it can dissolve the (F) component (meth) acrylic polymer.
  • aromatic carbon such as toluene, xylene, mesitylene, cumene, p-cymene, etc. Hydrogen; chain ether such as diethyl ether, tert-butyl methyl ether, cyclopentyl methyl ether, dibutyl ether; cyclic ether such as tetrahydrofuran, 1,4-dioxane; methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, etc.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ⁇ -buty Esters such as lactones; Carbonates such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, Polyhydric alcohol alkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether,
  • the weight average molecular weight of the component (F) (meth) acrylic polymer is preferably 3,000 to 300,000. If it is 3,000 or more, the intensity
  • the weight average molecular weight of the component (F) is more preferably 5,000 to 200,000, further preferably 10,000 to 100,000, and 12,000 to 50,000. It is particularly preferred that The weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • the content of component (F) is preferably 1 to 40 parts by weight, preferably 5 to 35 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). More preferably, it is 30 parts by mass.
  • the amount is 1 part by mass or more, the glass transition temperature tends to be high, and when the amount is 40 parts by mass or less, chemical resistance and laminating properties tend to be ensured.
  • the resin composition for an optical waveguide of the present invention preferably further contains a monofunctional (meth) acrylic compound as the (G) component and a radical initiator as the (H) component.
  • a monofunctional (meth) acrylic compound as the component, and a radical initiator as the (H) component thereby making the resin composition excellent in low light propagation loss and reliability, particularly when an optical waveguide is produced, And the resin film using this, the optical waveguide manufactured using these, and an optoelectric composite wiring board can be provided.
  • the monofunctional (meth) acrylic compound as component (G) is not particularly limited as long as it does not impair transparency at the target wavelength.
  • the (meth) acryloyl group of these (meth) acrylic compounds starts reaction by the (G) component and reacts with a material combined with the resin composition of the present invention, particularly a material containing a (meth) acrylic compound, thereby interfacing with the material. This increases the adhesiveness of the structure and improves the reliability of the structure.
  • compounds having a (meth) acryloyl group and a glycidyl group in the same molecule, such as glycidyl (meth) acrylate react well with the component (A) and the component (B), and further improve the reliability. preferable.
  • glycidyl methacrylate is more preferable because it has the simplest structure and has little influence on other properties due to addition.
  • the blending amount of component (G) is preferably 1 to 30 parts by weight, more preferably 5 to 25 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). It is further more preferable that it is 20 mass parts. If it is 30 parts by mass or less, the reliability can be improved within a range that does not significantly affect other characteristics, and if it is 1 part by mass or more, the effect of improving the reliability tends to be recognized.
  • the radical initiator as the component (H) is not particularly limited as long as it does not impair the transparency at the target wavelength.
  • halogen molecules such as chlorine and bromine, 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyrate) Lonitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl) azo] formamide, 2,2′-azobis- [2- (2-imidazoline) -2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2'-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis (2-amidin
  • a method for generating radicals known methods such as heating and light irradiation can be used.
  • a transparent substrate such as polyethylene terephthalate or polyethylene naphthalate is used as the substrate.
  • the reaction is performed by light irradiation at room temperature (25 ° C.) using a photo-radical initiator in order to reduce the reaction between the generated radicals and oxygen in the air. Is preferably initiated.
  • component (A) or component (B) has strong absorption in the ultraviolet region, bis (eta (5) cyclopentadienyl) -bis (2,6-difluoro-) represented by the following formula (Chemical Formula 1) It is particularly preferred to use 3- (pyrrol-1-yl) phenyl) titanium.
  • the amount of component (H) is preferably 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight, and more preferably 3 to 7 parts by weight with respect to 100 parts by weight of component (G).
  • the resin composition of the present invention may further contain an imidazole compound as a curing accelerator.
  • imidazole compounds used as curing accelerators include imidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2 -Heptadecylimidazole, 4,5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl- Examples include 4-methylimidazole, 2-ethylimidazoline, 2-isopropylimidazoline, 2,4-dimethylimidazoline, 2-phenyl-4-methylimidazoline and the like.
  • a general curing accelerator other than imidazole for example, a nitrogen-containing compound such as amine or a phosphorus compound such as triphenylphosphine may be used together with or in place of the imidazole compound. it can.
  • the components that can be added to the resin composition are not particularly limited as long as the transparency and low refractive index are not impaired. Specific examples include antioxidants, heat stabilizers, antistatic agents, and ultraviolet absorbers. , Pigments, colorants, lubricants, inorganic fillers other than (C), and the like. These may be used alone or in combination of two or more.
  • the total content of components (A) to (H) contained in the resin composition of the present invention is preferably 50% by mass or more, more preferably Is 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
  • the resin composition of the present invention may be either a thermosetting resin composition that can be cured by heat or a photosensitive resin composition that can be cured by actinic rays.
  • a photosensitive resin composition the resin composition It is necessary to add a polymerization initiator such as a photoacid generator to the product.
  • the type of the photoacid generator is not particularly limited. Generally, onium salts having anions such as phosphorus-based PF 6 (hexafluoro acid) and antimony-based SbF 6 (hexafluoroantimonic acid) are used. Yes. Among these, antimony type is preferable in terms of curability.
  • the resin composition of the present invention is a mixture of the above-mentioned components, but it is usually preferable to mix them using an appropriate solvent to obtain a resin varnish.
  • an appropriate solvent such as a solvent
  • organic solvents include alcohols such as methanol, ethanol and butanol, ethers such as ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, carbitol and butyl carbitol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • Aromatic hydrocarbons such as toluene, xylene, mesitylene, esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N- And solvents such as nitrogen-containing compounds such as methyl-2-pyrrolidone.
  • the rotational speed of the propeller during stirring is not particularly limited, but is preferably 10 to 1000 revolutions / minute (rpm), more preferably 50 to 800 revolutions / minute (rpm), and 100 to 600 Particularly preferred is rotation / min (rpm). By setting it to 10 revolutions / minute (rpm) or more, each component is easily mixed, and by making it 1000 revolutions / minute (rpm) or less, entrainment of bubbles due to rotation of the propeller can be reduced.
  • the stirring time is not particularly limited, but is preferably 0.1 to 24 hours.
  • the blended resin varnish is preferably filtered using a filter.
  • the filter is not particularly limited, but the pore size is preferably 0.1 to 50 ⁇ m, more preferably 0.3 to 20 ⁇ m, and particularly preferably 1 to 5 ⁇ m. When the pore diameter is 50 ⁇ m or less, large foreign matters can be removed, and repelling at the time of varnish application and scattering at the time of light propagation in the optical waveguide can be prevented.
  • the blended resin varnish is preferably defoamed.
  • the pressure at the time of depressurization is not particularly limited, but is preferably such a pressure that the solvent contained in the resin varnish does not boil and the constituent components of the resin composition are not distilled off.
  • the defoaming time is not particularly limited but is preferably 3 to 60 minutes. By setting it to 3 minutes or more, defoaming is easily performed sufficiently, and by setting it to 60 minutes or less, it is possible to prevent a large amount of the solvent from volatilizing.
  • the refractive index at a wavelength of 850 nm of a cured product having a thickness of 50 ⁇ m obtained by curing the resin composition for an optical waveguide of the present invention at a temperature of 25 ° C. is as follows: It is preferably 250 to 1.700, more preferably 1.350 to 1.600, and particularly preferably 1.400 to 1.550.
  • Optical waveguides are often used in connection with optical fibers. However, if the refractive index of the optical waveguide material is about the same as that of the optical fiber, the reflection loss at the connection will be reduced. As the difference increases, the reflection loss increases.
  • the refractive index is measured using a prism-coupled refractometer.
  • the transmittance at a wavelength of 850 nm of a cured product having a thickness of 50 ⁇ m obtained by curing the resin composition for an optical waveguide of the present invention is preferably 95% or more, more preferably 98% or more, and 99% or more. It is particularly preferred that By setting it to 95% or more, it is possible to reduce the light propagation loss when the optical waveguide is formed. Note that the upper limit of the transmittance is not particularly limited.
  • the transmittance is measured using a spectrophotometer, and the transmittance measurement sample is a cured resin composition sandwiched from both sides with a slide glass.
  • permeability points out the value except the loss by the reflection on both surfaces of a slide glass instead of the measured value itself of the transmittance
  • the loss due to reflection may be obtained from the measured value of transmittance of the slide glass, or the transmittance of the sample may be measured with the slide glass placed on the reference.
  • loss due to reflection occurs at the interface between the slide glass and the film, but when the difference in refractive index is as small as 0.1 or less, the magnitude of loss due to reflection is negligible. If the difference in refractive index is large, the amount of loss is corrected by calculation, or a glass having a refractive index close to that of the resin composition is used by changing the type of slide glass.
  • the resin film for optical waveguides of the present invention comprises a base material and a resin composition layer made of the above optical waveguide resin composition formed on the base material.
  • the resin film can be formed, for example, by applying the resin varnish to a substrate and removing the solvent. Alternatively, the resin composition may be directly applied to the substrate to produce a resin film.
  • organic polymer films include polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyolefins such as polyethylene, polypropylene and polystyrene; polycarbonate, polyamide, polyimide, polyamideimide, polyetherimide, polyethersulfide, poly Examples include ether sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone, and liquid crystal polymer.
  • a copper foil when used as the base material, it is possible to use the copper foil with the resin composition as an upper clad layer and form an electrical wiring as it is by a known method such as a subtractive method.
  • a peeling layer is provided on a carrier such as copper or aluminum having a thickness of several tens to several hundreds ⁇ m, which is called a copper foil with a carrier, and a copper foil having a thickness of about several ⁇ m is provided thereon You may use what formed.
  • the carrier is removed in the process, and then the electric wiring can be formed by a known method such as a subtractive method or a semi-additive method.
  • the copper foil surface may be subjected to known rust prevention treatment and adhesion treatment using nickel, chromium, silane coupling agent or the like.
  • the thickness of the substrate may be appropriately changed depending on the intended flexibility, but is preferably 3 to 250 ⁇ m, more preferably 5 to 200 ⁇ m, and particularly preferably 10 to 100 ⁇ m.
  • a film strength is made favorable by setting it as 3 micrometers or more, and a softness
  • the resin film of this invention attaches a protective film to the surface on the opposite side to the base material side surface of a resin composition layer as needed, and consists of a base material, a resin composition layer, and a protective film 3 A layer structure may be used.
  • the protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene. Among these, from the viewpoint of flexibility and toughness, polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene are preferable.
  • the thickness of the protective film may be appropriately changed depending on the intended flexibility, but is preferably 10 to 250 ⁇ m, more preferably 15 to 200 ⁇ m, and particularly preferably 20 to 100 ⁇ m. When the thickness is 10 ⁇ m or more, sufficient film strength is obtained, and when the thickness is 250 ⁇ m or less, flexibility is improved.
  • the base material and the protective film are usually removed during the optical waveguide formation process, from the viewpoint of improving the peelability from the resin composition layer, a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like is used. You may use as needed.
  • the thickness of the resin composition layer of the resin film is not particularly limited, but it is usually preferably 1 to 100 ⁇ m. When the thickness is 1 ⁇ m or more, the adhesiveness is improved, and when the thickness is 100 ⁇ m or less, foaming is prevented when the solvent is removed, and the flatness of the film can be improved.
  • the resin film can be easily stored, for example, by winding it into a roll. Alternatively, a roll-shaped film can be cut into a suitable size and stored in a sheet shape. (Refractive index and transmittance) The refractive index at a wavelength of 850 nm at a temperature of 25 ° C.
  • the transmittance at a wavelength of 850 nm of a cured product obtained by curing the resin composition layer of the resin film is preferably 95% or more, more preferably 98% or more, particularly preferably for the same reason as the cured product of the resin composition. Is 99% or more.
  • refractive indexes and transmittances are measured except that a cured product of a resin composition layer from which a protective film and a substrate are removed is used instead of a cured product of a resin composition having a thickness of 50 ⁇ m. Same as above.
  • the resin film for optical waveguide of the present invention can be used as a resin film for forming a clad layer and a resin film for forming a core part.
  • a resin film for forming a core part When used as a resin film for forming a core part, the following modes are preferred.
  • the base part of the resin film for forming the core part may be any one that transmits the actinic ray for exposure used for the core pattern formation described later among the above-mentioned bases, and is not particularly limited.
  • polyethylene terephthalate examples thereof include polyesters such as polybutylene terephthalate and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; polycarbonates, polyphenylene ethers and polyarylates.
  • polyesters such as polyethylene terephthalate and polybutylene terephthalate; and polyolefins such as polypropylene are preferable from the viewpoints of the transmittance of exposure active light, flexibility, and toughness.
  • a highly transparent base film from the viewpoint of improving the transmittance of exposure actinic rays and reducing the roughness of the side wall of the core pattern.
  • examples of such a highly transparent base film include Cosmo Shine A1517 and Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.
  • the thickness of the base film of the resin film for forming the core part is preferably 5 to 50 ⁇ m, more preferably 10 to 40 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the thickness is 5 ⁇ m or more, the strength is sufficient as a support, and when the thickness is 50 ⁇ m or less, the gap between the photomask and the core portion-forming resin composition layer is not increased when the core pattern is formed, and the pattern formability is improved.
  • the core part-forming resin film produced by applying the optical waveguide resin composition varnish or the optical waveguide resin composition on the base film is formed on the base material side surface of the resin composition layer as necessary.
  • the thickness of the resin composition layer of the core portion forming resin film is not particularly limited, but it is usually preferably 1 to 100 ⁇ m. When the thickness is 1 ⁇ m or more, the adhesiveness is improved, and when the thickness is 100 ⁇ m or less, foaming is prevented when the solvent is removed, and the flatness of the film can be improved.
  • the core part-forming resin film thus obtained can be easily stored by, for example, winding it into a roll. Alternatively, a roll-shaped film can be cut into a suitable size and stored in a sheet shape.
  • FIG. 1 shows a cross-sectional view of the optical waveguide.
  • the optical waveguide 1 is formed on an optical waveguide substrate 2 and is made of a core part-forming resin composition having a relatively high refractive index, and a cladding layer-forming resin composition having a relatively low refractive index.
  • the lower clad layer 3 and the upper clad layer 5 are made of a material.
  • the core portion 4 is sandwiched between and embedded in a lower cladding layer 3 disposed on the lower side and an upper cladding layer 5 disposed on the upper side.
  • the resin composition for an optical waveguide and the resin film for an optical waveguide of the present invention are preferably used for at least one of the lower cladding layer 3, the core portion 4 and the upper cladding layer 5 of the optical waveguide 1.
  • a hard substrate such as a silicon substrate, a glass substrate, or a glass epoxy resin substrate such as FR-4 can be used.
  • flexibility and toughness as the base material 2 for optical waveguides.
  • the base film having flexibility and toughness organic polymer films similar to those exemplified for the base material of the resin film may be used.
  • the thickness of the lower cladding layer 3 is not particularly limited, but is preferably 2 to 200 ⁇ m. When the thickness is 2 ⁇ m or more, the propagation light is prevented from being absorbed or scattered by the optical waveguide substrate 2, and when the thickness is 200 ⁇ m or less, the entire optical waveguide 1 is prevented from becoming thick.
  • the thickness of the lower cladding layer 3 is a value from the boundary between the core portion 4 and the lower cladding layer 3 to the lower surface of the lower cladding layer 3. There is no restriction
  • the height of the core part 4 is not particularly limited, but is preferably 10 to 100 ⁇ m, more preferably 15 to 80 ⁇ m, and particularly preferably 20 to 70 ⁇ m.
  • the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed.
  • coupling efficiency becomes large in coupling
  • the thickness of the upper clad layer 5 is not particularly limited as long as the core portion 4 can be embedded, but the thickness after drying is preferably 12 to 500 ⁇ m.
  • the thickness of the upper clad layer 5 may be the same as or different from the thickness of the lower clad layer 3 that is initially formed, but is thicker than the thickness of the lower clad layer 3 from the viewpoint of embedding the core portion 4. It is preferable.
  • the thickness of the upper clad layer 5 is a value from the boundary between the core portion 4 and the lower clad layer 3 to the upper surface of the upper clad layer 5.
  • the optical waveguide of the present invention can be a photoelectric composite wiring board as shown in FIG.
  • the lower electrical wiring 6 is formed in advance on the optical waveguide substrate 2, and the lower cladding layer 3, the core portion 4, and the upper cladding layer 5 are laminated on the electrical circuit constituted by the lower electrical wiring 6.
  • the light propagation loss is preferably 0.3 dB / cm or less, and more preferably 0.2 dB / cm or less. By setting it to 0.3 dB / cm or less, it is possible to prevent the signal from being attenuated and becoming difficult to recognize.
  • the method for producing the optical waveguide 1 of the present invention is not particularly limited, but a method of producing the core portion forming resin composition and the clad layer forming resin composition varnish by spin coating or the like, Or the method etc. which are manufactured by the lamination method using the resin film for core part formation and the resin film for clad layer formation are mentioned. Moreover, it can also manufacture combining these methods. Among these, from the viewpoint that an optical waveguide manufacturing process with excellent productivity can be provided, a method of manufacturing by a laminating method using a resin film for an optical waveguide is preferable.
  • a lower clad layer-forming resin film is laminated on the optical waveguide substrate 2 to form the lower clad layer 3.
  • the laminating method in the first step includes a method of laminating by pressure bonding while heating using a roll laminator or a flat plate laminator, but from the viewpoint of adhesion and followability, using a flat plate laminator. It is preferable to laminate the resin film for lower clad layer formation under reduced pressure.
  • the flat plate type laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plate.
  • a vacuum pressurizing laminator can be suitably used.
  • the heating temperature here is preferably 40 to 130 ° C.
  • the pressure bonding pressure is preferably 0.1 to 1.0 MPa, but these conditions are not particularly limited.
  • a protective film exists in the resin film for forming the lower cladding layer, the protective film is laminated after removing the protective film.
  • stacking by a vacuum pressurization type laminator you may temporarily stick the resin film for lower clad layer formation on the base material 2 for optical waveguides previously using a roll laminator.
  • the laminating temperature is preferably 20 to 160 ° C., more preferably 20 to 130 ° C., and further preferably 40 to 100 ° C.
  • the temperature is set to 20 ° C. or higher, the resin film for forming the lower clad layer and the optical waveguide substrate 2 are easily adhered, and by setting the temperature to 160 ° C. or lower, more preferably 130 ° C. or lower, the resin composition flows during roll lamination. Thus, the film thickness is prevented from being reduced.
  • the pressure is preferably 0.2 to 0.9 MPa and the laminating speed is preferably 0.1 to 3.0 m / min, but these conditions are not particularly limited.
  • the resin composition layer of the lower clad layer forming resin film laminated on the optical waveguide substrate 2 is cured by light, heating, or light and heating. After curing, the base material of the lower clad layer forming resin film is removed, and the lower clad layer 3 is formed.
  • the optical waveguide resin film is a photosensitive resin film
  • the irradiation amount of the active light when forming the lower cladding layer 3 is preferably 0.1 to 5.0 J / cm 2, and the resin film is thermosetting.
  • the heating temperature is preferably 50 to 200 ° C., but these conditions are not particularly limited.
  • the resin film is a photosensitive resin film, it may be heated for 30 seconds to 10 minutes in the temperature range of 40 to 160 ° C. with or after irradiation with actinic rays.
  • the core portion forming resin film is laminated by the same method as in the first step.
  • the cured product of the resin composition layer of the core portion forming resin film is designed to have a higher refractive index than the cured product of the resin composition layer of the lower cladding layer forming resin film.
  • the resin composition for core formation consists of the photosensitive resin composition which can form a core pattern with actinic light.
  • a core part is exposed as a 3rd process, and the core pattern (core part 4) of an optical waveguide is formed. Specifically, actinic rays are irradiated in an image form through a negative or positive mask pattern called an artwork.
  • an active light beam may be directly irradiated on an image without passing through a photomask using laser direct drawing.
  • the active light source include known light sources that effectively emit ultraviolet rays, such as a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, and a xenon lamp.
  • the irradiation amount of actinic rays is preferably 0.01 to 10.0 J / cm 2 , more preferably 0.05 to 5.0 J / cm 2 , and 0.1 to 3.0 J / cm 2. / Cm 2 is particularly preferred.
  • the curing reaction is sufficiently performed, and the core portion 4 is prevented from being washed away by a development process described later.
  • the core portion 4 is prevented from becoming thick due to excessive exposure, and a fine pattern is formed.
  • the post-exposure heating temperature is preferably 40 to 160 ° C., and the time is preferably 30 seconds to 10 minutes.
  • the base film of the resin film for forming the core part is removed, and using a developer corresponding to the composition of the resin film for forming the core part, such as an alkaline aqueous solution or an aqueous developer, for example, spraying, rocking immersion Development is performed by a known method such as brushing, scraping, dipping or paddle. Moreover, you may use together 2 or more types of image development methods as needed.
  • a developer corresponding to the composition of the resin film for forming the core part such as an alkaline aqueous solution or an aqueous developer, for example, spraying, rocking immersion Development is performed by a known method such as brushing, scraping, dipping or paddle. Moreover, you may use together 2 or more types of image development methods as needed.
  • the base of the alkaline aqueous solution is not particularly limited.
  • alkali hydroxide such as lithium, sodium or potassium hydroxide
  • alkali carbonate such as lithium, sodium, potassium or ammonium carbonate or bicarbonate
  • phosphorus Alkali metal phosphates such as potassium phosphate and sodium phosphate
  • alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate
  • sodium salts such as borax and sodium metasilicate
  • tetramethylammonium hydroxide triethanolamine
  • organic bases such as ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, and 1,3-diaminopropanol-2-morpholine.
  • the pH of the alkaline aqueous solution used for development is preferably 9 to 11, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition layer. Further, in the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • the aqueous developer is not particularly limited as long as it is composed of water or an alkaline aqueous solution and one or more organic solvents.
  • the pH of the aqueous developer is preferably as low as possible within the range where the development of the core part-forming resin film can be sufficiently performed, preferably pH 8-12, and particularly preferably pH 9-10.
  • organic solvent examples include alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and 4-hydroxy-4-methyl-2-pentanone; ethylene glycol monomethyl ether and ethylene glycol mono
  • organic solvent examples include alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and 4-hydroxy-4-methyl-2-pentanone; ethylene glycol monomethyl ether and ethylene glycol mono
  • polyhydric alcohol alkyl ethers such as ethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether. These may be used alone or in combination of two or more.
  • the concentration of the organic solvent is usually preferably 2 to 95% by mass, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition. Further, a small amount of a surfactant, an antifoaming agent or the like may be mixed in the aqueous developer.
  • the core portion 4 of the optical waveguide may be cleaned using a cleaning liquid composed of water and the organic solvent as necessary.
  • the organic solvent may be used alone or in combination of two or more.
  • the concentration of the organic solvent is usually preferably 2 to 95% by mass, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition.
  • the core 4 may be further cured by performing heating at about 60 to 250 ° C. or exposure at about 0.1 to 1000 mJ / cm 2 as necessary.
  • the upper clad layer forming resin film is laminated by the same method as in the first and second steps to form the upper clad layer 5.
  • the resin composition of the resin film for forming the upper clad layer is designed such that the cured product has a lower refractive index than the cured product of the resin composition of the resin film for forming the core part.
  • the thickness of the upper cladding layer 5 is larger than the height of the core portion 4.
  • the upper clad layer 5 is formed by curing an upper clad layer forming resin film with light, heat, or light and heat in the same manner as in the first step.
  • the irradiation amount of active light is preferably 0.1 to 5.0 J / cm 2 .
  • the base material is polyethylene naphthalate, polyamide, polyimide, polyamideimide, polyetherimide, polyphenylene ether, polyether sulfide, polyethersulfone, polysulfone, etc.
  • an actinic ray having a short wavelength such as ultraviolet rays can be transmitted as compared with PET.
  • hard to irradiation of actinic ray is preferably 0.5 ⁇ 30J / cm 2, more preferably 3 ⁇ 27J / cm 2, particularly preferably 5 ⁇ 25J / cm 2 .
  • the curing reaction sufficiently proceeds, and by setting it to 30 J / cm 2 or less, meaningless light irradiation after the completion of the reaction is prevented, and economic efficiency is improved.
  • the double-sided exposure machine which can irradiate actinic light simultaneously from both surfaces can be used. Moreover, you may irradiate actinic light, heating.
  • the heating temperature during and / or after irradiation with actinic rays is preferably 50 to 200 ° C., but these conditions are not particularly limited.
  • the base film can be removed if necessary to produce the optical waveguide 1.
  • the optical waveguide of the present invention is excellent in heat resistance and transparency, it may be used as an optical transmission line of an optical module.
  • the optical module include an optical waveguide with an optical fiber in which optical fibers are connected to both ends of the optical waveguide, an optical waveguide with a connector in which connectors are connected to both ends of the optical waveguide, and a light in which the optical waveguide and the printed wiring board are combined.
  • Examples include an electrical composite substrate, an optical / electrical conversion module that combines an optical waveguide and an optical / electrical conversion element that converts an optical signal and an electrical signal, and a wavelength multiplexer / demultiplexer that combines an optical waveguide and a wavelength division filter.
  • the printed wiring board to be combined is not particularly limited, and either a rigid substrate such as a glass epoxy substrate or a flexible substrate such as a polyimide substrate may be used.
  • the optical waveguide resin composition varnish was applied on a slide glass so that the thickness after curing was 50 ⁇ m, and was cured by heating at 160 ° C. for 1 hour using a dryer.
  • the refractive index of this sample at a wavelength of 830 nm was measured using a prism-coupled refractometer (Model 2020, Metricon).
  • Tg glass transition temperature
  • elastic modulus The clad layer forming resin film was heated at 160 ° C. for 1 hour to remove the base film and the protective film, and then cut into a length of 35 mm and a width of 5 mm to prepare a measurement sample.
  • the Tg of this sample was measured using a dynamic viscoelasticity measuring device (RSA-II, Rheometrics) under the conditions of a distance between chucks of 20 mm and a heating rate of 5 ° C./min.
  • RSA-II dynamic viscoelasticity measuring device
  • the clad layer forming resin film was heated at 160 ° C. for 1 hour to remove the base film and the protective film, and then cut into a length of 30 mm and a width of 3 mm to prepare a measurement sample.
  • the thermal expansion coefficient of this sample was measured using a thermomechanical analyzer (TMA / SS6000, manufactured by Seiko Instruments Inc.) with a distance between chucks of 20 mm, a heating rate of 5 ° C./min, and a temperature range of 25 ° C. to 250 ° C. Measured under conditions.
  • the coefficient of thermal expansion ⁇ 1 was a value at about 50 to 100 ° C., which is a temperature range lower than Tg.
  • the optical propagation loss of the optical waveguide is as follows: a VCSEL (FLS-300-01-VCL, EXFO) having a wavelength of 850 nm as a light source, a light receiving sensor (Q82214, manufactured by Advantest), an incident fiber (GI-50 / 125 multimode fiber, NA: 0.20), and output fiber (SI-114 / 125, NA: 0.22).
  • the optical propagation loss was calculated by dividing the measured optical loss (dB) by the optical waveguide length (10 cm).
  • the copper foil peel strength was measured by using AC-100C manufactured by Shimadzu Corporation Autograph and measuring the vertical peel strength. The measurement was performed at 20 ° C., the peeling speed was 50 mm / min, and the test width was 5 mm.
  • the weight average molecular weight Mw (in terms of standard polystyrene) of the (F) component (meth) acrylic polymer was measured using GPC (SD-8022 / DP-8020 / RI-8020 manufactured by Tosoh Corporation). As the column, Gelpack GL-A150-S / GL-A160-S manufactured by Hitachi Chemical Co., Ltd. was used.
  • the solid content of the polymer solution, resin varnish, and the like was a value obtained by dividing the mass of the residue after the solution was dried at 180 ° C. for 1 hour by the mass of the original solution.
  • Examples 1 to 14 and Comparative Examples 1 to 8> [Preparation of Clad Layer Forming Resin Composition (Resin Composition for Optical Waveguide)]
  • the component (A), the component (B), the component (C), and the curing accelerator were placed in a polybottle according to Table 1, and diluted with methyl ethyl ketone as necessary. This was mixed until uniform, then pressure filtered using a polyflon filter (PF020, manufactured by Advantech Toyo Co., Ltd.) having a pore size of 2 ⁇ m, degassed under reduced pressure, and the resin composition for forming a cladding layer of the present invention A varnish was obtained.
  • PF020 manufactured by Advantech Toyo Co., Ltd.
  • HP-820, YX8034, and 850-S are represented by the following chemical formulas (2) to (4), respectively.
  • HP-820 has N of 36, n of 24, and n / N of 0.67.
  • YX8034 has both N and n of 25, and n / N is 1.00.
  • 850-S has N of 25, n of 13, and n / N of 0.52.
  • the varnish obtained above was applied to a PET film (Purex A31, thickness 25 ⁇ m, manufactured by Teijin DuPont Films Co., Ltd.) using a coating machine (Multicoater TM-MC, manufactured by Hirano Techseed Co., Ltd.). After drying at 2 ° C. for 2 minutes and at 140 ° C. for 2 minutes, the PET film was attached as a protective film to obtain a resin film for forming lower and upper clad layers. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this example, the thickness after curing is 25 ⁇ m for the lower clad layer forming resin film, The thickness of the clad layer forming resin film was adjusted to 70 ⁇ m.
  • an alicyclic epoxy-based clad material (CL-33, manufactured by Hitachi Chemical Co., Ltd.), which is composed of an alicyclic epoxy compound, a phenoxy resin, and a photoacid generator and does not contain silica, was used.
  • an acrylic clad material (AD-81, manufactured by Hitachi Chemical Co., Ltd.) composed of an acrylic polymer, an acrylic monomer, an epoxy resin, and a radical photoinitiator and not containing silica was used.
  • the mixture was filtered under pressure using a polyflon filter (PF020, manufactured by Advantech Toyo Co., Ltd.) having a pore size of 2 ⁇ m, and then degassed under reduced pressure to obtain a varnish of the core portion forming resin composition.
  • This varnish was applied on the non-treated surface of a PET film (Cosmo Shine A1517, thickness 16 ⁇ m, manufactured by Toyobo Co., Ltd.) using the coating machine, and dried at 80 ° C. for 10 minutes and at 100 ° C. for 10 minutes.
  • a surface release treatment PET film (Purex A31, thickness 25 ⁇ m, manufactured by Teijin DuPont Films Ltd.) was attached to obtain a resin film for forming a core part.
  • the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine, but in this example, the thickness after curing was adjusted to 50 ⁇ m.
  • the core part 4 (core pattern) was exposed by irradiating 700 mJ / cm ⁇ 2 > of ultraviolet rays (wavelength 365 nm) with an ultraviolet exposure machine through the negative photomask which has an optical waveguide formation pattern with a width of 50 micrometers.
  • the temperature is 30 ° C. and the spray pressure is 0.15 MPa with a 1 mass% sodium carbonate aqueous solution. Development was performed under the condition of a development time of 100 seconds.
  • Comparative Examples 7 and 8 when each of the lower cladding layer 3 and the upper cladding layer 5 was formed, the entire surface was exposed at 2000 mJ / cm 2 without a mask and photocured before heat curing. In the same manner as in Example 1, an optical waveguide was manufactured.
  • Table 2 shows the evaluation results of Examples 1 to 14 and Comparative Examples 1 to 8.
  • the resin composition for an optical waveguide of the present invention is excellent in transparency and low refractive index, and the optical waveguide produced using these is also excellent in transparency. Recognize. Moreover, Tg was comparatively high and the thermal expansion coefficient was comparatively small. On the other hand, Comparative Examples 1 to 4, 6, and 7 had a high refractive index, a sufficient difference in refractive index from the core portion could not be secured, and light did not propagate. Moreover, the comparative example 2 was inferior to transparency. Furthermore, Comparative Examples 5 and 8 had a low Tg and a large coefficient of thermal expansion, although there were no major problems with transparency and low refractive index.
  • component (D) 15 parts by mass of both ends glycidyl group-modified silicone oil (X-22-163, manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 400) is added as component (D) and mixed until uniform. After pressure filtration using a Freon filter (PF020, manufactured by Advantech Toyo Co., Ltd.), vacuum degassing was performed to obtain a varnish of the resin composition for forming a clad layer of the present invention. The amount of each component is shown in Table 3.
  • Example 15 except that the addition amount of the component (D) in the cladding layer forming resin composition was changed to the amount shown in Table 3, in the same manner as in Example 15, the cladding layer forming resin composition, A resin film for forming a cladding layer and an optical waveguide were obtained.
  • the resin composition of the present invention is excellent in transparency, low refractive index property and low thermal expansion property, and an optical waveguide produced using these is also excellent in transparency.
  • Examples 15 to 17 containing silicone oil as the component (D) were particularly excellent in light propagation loss.
  • the resin composition of the present invention is excellent in transparency, low refractive index property, low thermal expansion property, etc., especially for optical waveguides in fields where low light propagation loss and low refractive index property are required. It can be said that it is suitable for the material.
  • component (E) 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) is added as component (E) and mixed until uniform, and a polyfluorone filter (PF020, Advantech Toyo (pore size) with a pore size of 2 ⁇ m is mixed. After the pressure filtration using a product manufactured by Kogyo Co., Ltd.), vacuum degassing was performed to obtain a varnish of the resin composition of the present invention. Table 5 shows the amount of each component.
  • PF020 Advantech Toyo (pore size) with a pore size of 2 ⁇ m
  • the resin film used for the measurement of the peel strength of the copper foil was produced under the same conditions as in the above resin film for forming a clad layer except that a copper foil was used instead of the PEN film.
  • the film thickness was 70 ⁇ m.
  • the copper foils are 3EC-VLP-18 (18 ⁇ m thick low-roughened foil, manufactured by Mitsui Mining & Smelting Co., Ltd.), YGP-12 (12 ⁇ m thick general foil, manufactured by Nippon Electrolytic Co., Ltd.), GTS-MP-35 (35 ⁇ m thick). Three types of general foil, manufactured by Furukawa Electric Co., Ltd., were used.
  • the resin composition of the present invention is excellent in low refractive index property and low thermal expansion property, and an optical waveguide produced using these is also excellent in transparency. . Moreover, copper foil peeling strength is also improved by (E) component addition. From the above, the resin composition of the present invention is excellent in transparency, low refractive index property, low thermal expansion property, etc., and is particularly suitable for an optoelectric composite substrate material that requires adhesion to copper foil. It can be said.
  • Examples 32 to 51> [Composition of silica slurry] Nanosilica having an average particle size of 15 nm (MEK-EC-2102, manufactured by Nissan Chemical Industries, Ltd., solid content 30% by mass MEK solution) 100 parts by mass (solid content) and 3-glycidoxypropyltrimethoxysilane (KBM-403) , Manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed to obtain a silica slurry used in the following Examples and Comparative Examples.
  • MEK-EC-2102 manufactured by Nissan Chemical Industries, Ltd., solid content 30% by mass MEK solution
  • KBM-403 3-glycidoxypropyltrimethoxysilane
  • the silica slurry as a component (C) is blended in parts by mass as shown in Table 8, and 0.5 parts by mass of 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) is blended as a curing accelerator. Until the solid content was about 75% by mass using an evaporator. Then, after pressure-filtering using a polyflon filter (PF020, manufactured by Advantech Toyo Co., Ltd.) having a pore diameter of 2 ⁇ m, degassing was performed under reduced pressure to obtain a varnish of a resin composition for forming a cladding layer of the present invention. Table 8 shows the amount of each component.
  • PF020 manufactured by Advantech Toyo Co., Ltd.
  • the resin composition of the present invention is excellent in light propagation loss and low thermal expansion property.
  • Examples 32 to 46 containing (meth) acrylic polymer as component (F) are excellent in transparency, high glass transition temperature, high temperature and high elasticity, and low thermal expansibility, and optical waveguides manufactured using them. It turns out that it is excellent also in transparency.
  • the resin composition of the present invention is excellent in transparency, high glass transition temperature, high temperature and high elasticity, low thermal expansion property, etc., especially in fields where heat resistance reliability, wire bonding property, etc. are required. It can be said that it is suitable for a waveguide material.
  • a glass epoxy resin substrate (MCL-E-679FG (B), manufactured by Hitachi Chemical Co., Ltd., thickness 0.6 mm) from which the lower clad layer forming resin film from which the protective film has been removed has been previously removed by etching the entire surface of copper.
  • lamination was performed using a vacuum pressure laminator (MVLP-500 / 600, manufactured by Meiki Seisakusho Co., Ltd.).
  • the lamination conditions are as follows: pressures of 0.8 MPa and temperatures of 140 ° C. and pressurization time of 300 seconds in Examples 1 to 6 and Comparative Examples 1 and 2, pressures of 0.4 MPa and temperatures of 100 ° C. in Examples 7 to 13 and Comparative Examples 3 to 6.
  • the pressurization time was 90 seconds. Thereafter, the base film was peeled off, and in Examples 1 to 5, 7, and 9 to 13, exposure was performed with a halogen lamp (made by Eye Graphics Co., Ltd., idle fin 3000 lamp, type: MQE3002GV, compatible lamp: MQ3000LP) (1000 mJ). / Cm 2 ), and this was heat-cured at 160 ° C. for 30 minutes using a dryer to form the lower cladding layer 3.
  • a halogen lamp made by Eye Graphics Co., Ltd., idle fin 3000 lamp, type: MQE3002GV, compatible lamp: MQ3000LP
  • the core part-forming resin film from which the protective film was removed was placed on the lower cladding layer 3 at a pressure of 0.5 MPa and a temperature of 50 Lamination was performed under the conditions of ° C and a speed of 0.2 m / min.
  • the core part 4 (core pattern) was exposed by irradiating ultraviolet light (wavelength 365 nm) with 700 mJ / cm 2 with an ultraviolet exposure machine through a negative photomask having an optical waveguide forming pattern with a width of 50 ⁇ m.
  • the temperature is 30 ° C. and the spray pressure is 0.15 MPa with a 1 mass% sodium carbonate aqueous solution.
  • Development was performed under the condition of a development time of 100 seconds. Subsequently, it was washed with pure water, dried by heating at 80 ° C. for 10 minutes and at 160 ° C. for 1 hour.
  • the optical waveguide produced using the resin composition of the present invention is excellent in light propagation loss.
  • Examples 52 to 64 containing a monofunctional (meth) acryl compound and a radical initiator have little increase in light loss after the reliability test.
  • the resin composition of the present invention is excellent in low light propagation loss and reliability when an optical waveguide is produced, and particularly a material for an optoelectric composite substrate that requires reliability under high temperature and high humidity. It can be said that it is suitable for.
  • the resin composition of the present invention is excellent in transparency, low refractive index property, low thermal expansion property, etc., and particularly as an optical waveguide material in fields where heat resistance and low thermal expansion property are required. It can be said that it is preferable.

Abstract

The present invention relates to: a resin composition for optical waveguides, which has excellent transparency, excellently low refractive index and low thermal expansion; a resin film for optical waveguides, which is formed from this resin composition; an optical waveguide which uses this resin composition for optical waveguides or this resin film for optical waveguides; and a photoelectric composite wiring board. This resin composition for optical waveguides contains (A) an epoxy compound having two or more epoxy groups, (B) an epoxy curing agent and (C) silica particles having an average particle diameter of from 1 nm to 70 nm (inclusive).

Description

[規則37.2に基づきISAが決定した発明の名称] 光導波路用樹脂組成物、並びにそれを用いた光導波路用樹脂フィルム、光導波路及び光電気複合配線板[Name of invention determined by ISA based on Rule 37.2] Resin composition for optical waveguides, resin film for optical waveguides using the same, optical waveguides, and photoelectric composite wiring boards
 本発明は、光導波路用樹脂組成物、光導波路用樹脂フィルム、それらを用いた光導波路及び光電気複合配線板に関し、特に透明性と低屈折率性に優れ、かつ低熱膨張性を有する光導波路用樹脂組成物、この樹脂組成物からなる光導波路用樹脂フィルム、それらを用いた光導波路及び光電気複合配線板に関する。 The present invention relates to a resin composition for an optical waveguide, a resin film for an optical waveguide, an optical waveguide using the same, and an optoelectric composite wiring board, and in particular, an optical waveguide having excellent transparency and low refractive index and low thermal expansion. The present invention relates to a resin composition for an optical waveguide, an optical waveguide resin film comprising the resin composition, an optical waveguide using the resin film, and an optoelectric composite wiring board.
 近年、電子素子間や配線基板間の高速・高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めている。これを打ち破るため電子素子間や配線基板間を光で接続する技術、いわゆる光インタコネクションが検討されている。光の伝送路としては加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマ光導波路が注目を集めている。
 ポリマ光導波路の形態としては、光電気複合配線板への適用を想定した、ガラスエポキシ樹脂基板上に作製するタイプや、ボード同士の接続を想定した、硬い支持基板を持たないフレキシブルタイプが好適と考えられる。
In recent years, in high-speed and high-density signal transmission between electronic devices and between wiring boards, signal transmission interference and attenuation are barriers in conventional transmission using electric wiring, and the limits of high-speed and high-density have begun to appear. In order to overcome this problem, a technique for optically connecting electronic elements and wiring boards, so-called optical interconnection, has been studied. As an optical transmission line, a polymer optical waveguide has attracted attention because of its ease of processing, low cost, high flexibility in wiring, and high density.
As the form of the polymer optical waveguide, a type that is prepared on a glass epoxy resin substrate assuming application to an opto-electric composite wiring board, or a flexible type that does not have a rigid support substrate and that assumes connection between boards is suitable. Conceivable.
 従来、ポリマ光導波路には、透明性が高く低光伝搬損失であることが主として要求されてきたが、このような光導波路材として、(メタ)アクリル重合体(例えば特許文献1及び2参照)が知られている。なお、(メタ)アクリルは、アクリル、メタクリル、又は、アクリル及びメタクリルを意味し、(メタ)アクリロイルは、アクリロイル、メタクリロイル、又は、アクリロイル及びメタクリロイルを意味し、(メタ)アクリレートは、アクリレート、メタクリレート、又は、アクリレート及びメタクリレートを意味する。また、脂環式エポキシ樹脂を用いたもの(例えば特許文献3参照)も知られている。 Conventionally, polymer optical waveguides have been mainly required to have high transparency and low optical propagation loss. As such optical waveguide materials, (meth) acrylic polymers (see, for example, Patent Documents 1 and 2). It has been known. In addition, (meth) acryl means acryl, methacryl, or acryl and methacryl, (meth) acryloyl means acryloyl, methacryloyl, or acryloyl and methacryloyl, (meth) acrylate means acrylate, methacrylate, Or acrylate and methacrylate are meant. Moreover, what uses an alicyclic epoxy resin (for example, refer patent document 3) is also known.
特開平06-258537号公報Japanese Patent Laid-Open No. 06-258537 特開2003-195079号公報JP 2003-195079 A 特許第4715437号公報Japanese Patent No. 4715437
 しかしながら、光電気複合配線板では高いレベルの電気的絶縁性、耐薬品性、高ガラス転移温度、低熱膨張率、電気配線密着性などが要求されるため、従来材ではこれらの要求を同時に満足することができなかった。
 具体的には、特許文献1及び2に記載されているような(メタ)アクリル重合体は、特にデスミア液のような強アルカリに溶解してしまう点が問題になり、さらにガラス転移温度も100℃以下と低いものがほとんどであるため、それに伴って熱膨張率が大きくなるという問題点がある。熱膨張率が大きくなると、熱履歴によりクラックが生じ易くなる。
 また、特許文献3に記載されているような脂環式エポキシ樹脂は、光酸発生剤を用いた光硬化が主流であり、これにより電気的絶縁性が悪くなるという問題があり、さらに比較的高屈折率であったり、接着性や信頼性などが不十分であることが多い。
However, the photoelectric composite wiring board requires high levels of electrical insulation, chemical resistance, high glass transition temperature, low coefficient of thermal expansion, electrical wiring adhesion, etc., so conventional materials satisfy these requirements simultaneously. I couldn't.
Specifically, the (meth) acrylic polymer as described in Patent Documents 1 and 2 has a problem that it is dissolved in a strong alkali such as a desmear liquid, and the glass transition temperature is 100. Since most of them are as low as ℃ or less, there is a problem that the thermal expansion coefficient increases accordingly. As the thermal expansion coefficient increases, cracks are likely to occur due to thermal history.
In addition, alicyclic epoxy resins such as those described in Patent Document 3 are mainly photocured using a photoacid generator, resulting in a problem of poor electrical insulation. In many cases, the refractive index is high, and the adhesiveness and reliability are insufficient.
 本発明は、前記の課題を解決するためになされたものであり、樹脂組成物層を形成した時に高透明性、低屈折率性及び低熱膨張性を有する光導波路用樹脂組成物、この樹脂組成物からなる光導波路用樹脂フィルム、それらを用いた光導波路及び光電気複合配線板を提供することを課題とする。 The present invention has been made in order to solve the above-mentioned problems. When a resin composition layer is formed, the resin composition for an optical waveguide having high transparency, low refractive index property and low thermal expansion property, and this resin composition It is an object of the present invention to provide a resin film for an optical waveguide made of a material, an optical waveguide using the same, and an optoelectric composite wiring board.
 本発明者らは、上記課題を解決すべく鋭意検討の結果、エポキシ化合物とエポキシ硬化剤とを含有するエポキシ系樹脂において、シリカ粒子を配合することにより、高透明性、低屈折率及び低熱膨張率を有する樹脂が得られることを見出して本発明を完成させた。本発明は、以下の(1)~(36)を提供するものである。
(1)(A)2つ以上のエポキシ基を有するエポキシ化合物、(B)エポキシ硬化剤、及び(C)平均粒径が1nm以上70nm以下のシリカ粒子、を含有する光導波路用樹脂組成物。
(2)(B)成分がフェノール性水酸基を有する化合物である、(1)に記載の光導波路用樹脂組成物。
(3)(A)成分を構成する炭素、窒素、酸素の原子について、これら原子の総数をN、他原子との化学結合がすべて単結合からなる原子の数をnとしたとき、n/Nが0.6以上1以下である、(1)又は(2)に記載の光導波路用樹脂組成物。
(4)(A)成分が脂環式エポキシ化合物又はアルキルフェノール型エポキシ化合物である、(1)~(3)のいずれかに記載の光導波路用樹脂組成物。
(5)(A)成分の含有量が、(A)成分及び(B)成分の総量に対して50~95質量%である、(1)~(4)のいずれかに記載の光導波路用樹脂組成物。
(6)(C)成分の含有量が、(A)成分及び(B)成分の総量100質量部に対して10~300質量部である、(1)~(5)のいずれかに記載の光導波路用樹脂組成物。
(7)更に、(D)成分としてシリコーンオイルを含有する、(1)~(6)のいずれかに記載の光導波路用樹脂組成物。
(8)(D)成分のシリコーンオイルが、両末端にグリシジル基を有するシリコーンオイルである、(7)に記載の光導波路用樹脂組成物。
(9)(D)成分の平均分子量が、700以下である、(7)又は(8)に記載の光導波路用樹脂組成物。
(10)(D)成分の含有量が、(A)成分及び(B)成分の総量100質量部に対して1~30質量部である、(7)~(9)のいずれかに記載の光導波路用樹脂組成物。
As a result of intensive studies to solve the above problems, the inventors of the present invention have high transparency, low refractive index and low thermal expansion by blending silica particles in an epoxy resin containing an epoxy compound and an epoxy curing agent. The present invention was completed by finding that a resin having a ratio was obtained. The present invention provides the following (1) to (36).
(1) An optical waveguide resin composition comprising (A) an epoxy compound having two or more epoxy groups, (B) an epoxy curing agent, and (C) silica particles having an average particle diameter of 1 nm to 70 nm.
(2) The resin composition for an optical waveguide according to (1), wherein the component (B) is a compound having a phenolic hydroxyl group.
(3) For the carbon, nitrogen and oxygen atoms constituting the component (A), N / N, where N is the total number of these atoms and n is the number of atoms in which all the chemical bonds with other atoms are single bonds. The resin composition for optical waveguides according to (1) or (2), wherein is 0.6 or more and 1 or less.
(4) The resin composition for an optical waveguide according to any one of (1) to (3), wherein the component (A) is an alicyclic epoxy compound or an alkylphenol type epoxy compound.
(5) The optical waveguide according to any one of (1) to (4), wherein the content of the component (A) is 50 to 95% by mass with respect to the total amount of the components (A) and (B) Resin composition.
(6) The content of component (C) is 10 to 300 parts by mass with respect to 100 parts by mass of the total amount of component (A) and component (B), according to any one of (1) to (5) A resin composition for an optical waveguide.
(7) The resin composition for an optical waveguide according to any one of (1) to (6), further comprising silicone oil as the component (D).
(8) The resin composition for an optical waveguide according to (7), wherein the silicone oil as component (D) is a silicone oil having glycidyl groups at both ends.
(9) The resin composition for optical waveguides according to (7) or (8), wherein the average molecular weight of component (D) is 700 or less.
(10) The content of component (D) is 1 to 30 parts by mass relative to 100 parts by mass of the total amount of component (A) and component (B), according to any one of (7) to (9) A resin composition for an optical waveguide.
(11)更に、(E)成分としてシランカップリング剤を含有する、(1)~(10)のいずれかに記載の光導波路用樹脂組成物。
(12)(E)成分のシランカップリング剤が、反応性官能基を有するトリアルコキシシランである、(11)に記載の光導波路用樹脂組成物。
(13)(E)成分が、グリシジル基、アクリロイル基、メタクリロイル基の中から選択される少なくともいずれかの反応性官能基を有する、(11)又は(12)に記載の光導波路用樹脂組成物。
(14)(E)成分の含有量が、(C)成分100質量部に対して10~100質量部である、(11)~(13)のいずれかに記載の光導波路用樹脂組成物。
(15)更に、(F)成分として(メタ)アクリルポリマを含有する、(1)~(14)のいずれかに記載の光導波路用樹脂組成物。
(16)(F)成分の(メタ)アクリルポリマ100質量%が、(F-1)(メタ)アクリル酸グリシジル10~80質量%、(F-2)(メタ)アクリル酸アルキル(アルキルの炭素数1~6)20~90質量%、及び(F-3)その他の化合物0~40質量%から構成される、(15)に記載の光導波路用樹脂組成物。
(17)(F)成分の(メタ)アクリルポリマが、(F-1)及び(F-2)だけで構成されており、(F-3)成分を含まない、(15)又は(16)に記載の光導波路用樹脂組成物。
(18)(F)成分の含有量が、(A)成分及び(B)成分の総量100質量部に対して1~40質量部である、(15)~(17)のいずれかに記載の光導波路用樹脂組成物。
(19)更に、(G)成分として単官能(メタ)アクリル化合物、及び(H)成分としてラジカル開始剤を含有する、(1)~(18)のいずれかに記載の光導波路用樹脂組成物。
(20)(G)成分としてグリシジル基を有する化合物を含む、(19)に記載の光導波路用樹脂組成物。
(21)(G)成分のうちの一つがメタクリル酸グリシジルである、(19)又は(20)に記載の光導波路用樹脂組成物。
(22)(H)成分のうちの一つが過酸化物である、(19)~(21)のいずれかに記載の光導波路用樹脂組成物。
(23)(H)成分のうちの一つが光ラジカル開始剤である、(19)~(22)のいずれかに記載の光導波路用樹脂組成物。
(24)光ラジカル開始剤としてビス(エタ(5)シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピロール-1-イル)フェニル)チタニウムを含む、(23)に記載の光導波路用樹脂組成物。
(25)(A)成分の2つ以上のエポキシ基を有するエポキシ化合物が、水素添加ビスフェノールA型エポキシ樹脂である、(1)~(24)のいずれかに記載の光導波路用樹脂組成物。
(26)(B)成分のフェノール性水酸基を有する化合物が、アミノトリアジンノボラック樹脂である、(2)~(25)のいずれかに記載の光導波路用樹脂組成物。
(27)前記樹脂組成物の50μm厚の硬化物における波長850nmでの光透過率が、95%以上である、(1)~(26)のいずれかに記載の光導波路用樹脂組成物。
(11) The resin composition for an optical waveguide according to any one of (1) to (10), further comprising a silane coupling agent as the component (E).
(12) The resin composition for an optical waveguide according to (11), wherein the silane coupling agent of component (E) is a trialkoxysilane having a reactive functional group.
(13) The resin composition for an optical waveguide according to (11) or (12), wherein the component (E) has at least one reactive functional group selected from a glycidyl group, an acryloyl group, and a methacryloyl group. .
(14) The resin composition for an optical waveguide according to any one of (11) to (13), wherein the content of the component (E) is 10 to 100 parts by mass with respect to 100 parts by mass of the component (C).
(15) The resin composition for an optical waveguide according to any one of (1) to (14), further comprising (meth) acrylic polymer as the component (F).
(16) 100% by mass of the (meth) acrylic polymer of component (F) is 10 to 80% by mass of (F-1) glycidyl (meth) acrylate, (F-2) alkyl (meth) acrylate (carbon of alkyl) The resin composition for an optical waveguide according to (15), comprising: 1 to 6) 20 to 90% by mass; and (F-3) 0 to 40% by mass of other compounds.
(17) The (meth) acrylic polymer of the (F) component is composed only of (F-1) and (F-2) and does not contain the (F-3) component, (15) or (16) The resin composition for optical waveguides described in 1.
(18) The content of the component (F) is 1 to 40 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B), according to any one of (15) to (17) A resin composition for an optical waveguide.
(19) The optical waveguide resin composition according to any one of (1) to (18), further comprising a monofunctional (meth) acrylic compound as the component (G) and a radical initiator as the component (H). .
(20) The resin composition for an optical waveguide according to (19), comprising a compound having a glycidyl group as the component (G).
(21) The resin composition for an optical waveguide according to (19) or (20), wherein one of the components (G) is glycidyl methacrylate.
(22) The resin composition for an optical waveguide according to any one of (19) to (21), wherein one of the components (H) is a peroxide.
(23) The optical waveguide resin composition according to any one of (19) to (22), wherein one of the components (H) is a photoradical initiator.
(24) The light guide according to (23), comprising bis (eta (5) cyclopentadienyl) -bis (2,6-difluoro-3- (pyrrol-1-yl) phenyl) titanium as a photoradical initiator. A resin composition for a waveguide.
(25) The resin composition for an optical waveguide according to any one of (1) to (24), wherein the epoxy compound having two or more epoxy groups as the component (A) is a hydrogenated bisphenol A type epoxy resin.
(26) The resin composition for an optical waveguide according to any one of (2) to (25), wherein the compound having a phenolic hydroxyl group as component (B) is an aminotriazine novolak resin.
(27) The resin composition for an optical waveguide according to any one of (1) to (26), wherein a light transmittance at a wavelength of 850 nm in a cured product having a thickness of 50 μm of the resin composition is 95% or more.
(28)基材と、該基材上に形成され、(1)~(27)のいずれかに記載の光導波路用樹脂組成物からなる樹脂組成物層と、を備える光導波路用樹脂フィルム。
(29)前記基材がポリエチレンテレフタレート、ポリエチレンナフタレート、銅箔、及びキャリア付き銅箔から選択される少なくともいずれかである、(28)に記載の光導波路用樹脂フィルム。
(30)前記樹脂組成物層の前記基材が設けられる側の面とは反対側の面を覆う保護フィルムをさらに備える、(28)又は(29)に記載の光導波路用樹脂フィルム。
(31)下部クラッド層、コア部、及び上部クラッド層を備える光導波路であって、(1)~(27)のいずれかに記載の光導波路用樹脂組成物を用いて、前記下部クラッド層、コア部、及び上部クラッド層の少なくとも1つを形成する光導波路。
(32)下部クラッド層、コア部、及び上部クラッド層を備える光導波路であって、(28)~(30)のいずれかに記載の樹脂フィルムを用いて、前記下部クラッド層、コア部、及び上部クラッド層の少なくとも1つを形成する光導波路。
(33)下部クラッド層、コア部、及び上部クラッド層を備える光導波路であって、前記コア部材が(メタ)アクリル化合物を含有し、前記下部クラッド層又は上部クラッド層のクラッド材が(19)~(26)のいずれかに記載の光導波路用樹脂組成物からなり、これらのコア材とクラッド材から形成されなることを特徴とする光導波路。
(34)電気回路上に(31)~(33)のいずれかに記載の光導波路を形成してなる、光電気複合配線板。
(35)(31)~(33)のいずれかに記載の光導波路の前記上部クラッド層上に電気回路を形成してなる光電気複合配線板。
(36)電気回路の一部がクラッド層を貫いていることを特徴とする、(34)又は(35)に記載の光電気複合配線板。
(28) A resin film for an optical waveguide, comprising: a base material; and a resin composition layer formed on the base material and made of the resin composition for an optical waveguide according to any one of (1) to (27).
(29) The resin film for an optical waveguide according to (28), wherein the substrate is at least one selected from polyethylene terephthalate, polyethylene naphthalate, copper foil, and copper foil with carrier.
(30) The resin film for an optical waveguide according to (28) or (29), further comprising a protective film that covers a surface of the resin composition layer opposite to a surface on which the base material is provided.
(31) An optical waveguide comprising a lower clad layer, a core portion, and an upper clad layer, wherein the lower clad layer, the optical waveguide resin composition according to any one of (1) to (27), An optical waveguide forming at least one of a core part and an upper cladding layer.
(32) An optical waveguide comprising a lower clad layer, a core portion, and an upper clad layer, wherein the lower clad layer, the core portion, and the resin film according to any one of (28) to (30) are used. An optical waveguide forming at least one of the upper cladding layers.
(33) An optical waveguide comprising a lower cladding layer, a core portion, and an upper cladding layer, wherein the core member contains a (meth) acrylic compound, and the cladding material of the lower cladding layer or the upper cladding layer is (19) An optical waveguide comprising the resin composition for an optical waveguide according to any one of (26) to (26), and formed from a core material and a clad material.
(34) A photoelectric composite wiring board, wherein the optical waveguide according to any one of (31) to (33) is formed on an electric circuit.
(35) An optoelectric composite wiring board obtained by forming an electric circuit on the upper clad layer of the optical waveguide according to any one of (31) to (33).
(36) The photoelectric composite wiring board according to (34) or (35), wherein a part of the electric circuit penetrates the cladding layer.
 本発明によれば、樹脂組成物層とした時に高透明性、低屈折率性及び低熱膨張性を有する光導波路用樹脂組成物、及びこれを用いた光導波路用樹脂フィルム、並びにこれらを用いて製造した光導波路及び光電気複合配線板を提供することができる。 According to the present invention, a resin composition for an optical waveguide having high transparency, low refractive index and low thermal expansion when formed into a resin composition layer, an optical waveguide resin film using the same, and using these The manufactured optical waveguide and photoelectric composite wiring board can be provided.
本発明の光導波路の一実施形態を説明する断面図である。It is sectional drawing explaining one Embodiment of the optical waveguide of this invention. 本発明の光電気複合配線板の一実施形態を説明する断面図である。It is sectional drawing explaining one Embodiment of the photoelectric composite wiring board of this invention.
 以下本発明について実施形態を用いてさらに詳細に説明する。
[樹脂組成物]
 本発明の光導波路用樹脂組成物は、(A)2つ以上のエポキシ基を含有するエポキシ化合物、(B)エポキシ硬化剤、及び(C)平均粒径が1nm以上70nm以下のシリカ粒子を含有する。
Hereinafter, the present invention will be described in more detail using embodiments.
[Resin composition]
The resin composition for an optical waveguide of the present invention contains (A) an epoxy compound containing two or more epoxy groups, (B) an epoxy curing agent, and (C) silica particles having an average particle diameter of 1 nm to 70 nm. To do.
<(A)成分>
 (A)成分である2つ以上のエポキシ基を含有するエポキシ化合物としては、目的とする波長において透明性を有するものであれば特に制限はないが、例えばフェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、ビフェニルアラルキレンノボラック型エポキシ化合物、アラルキレンノボラック型エポキシ化合物、フェノールサリチルアルデヒドノボラック型エポキシ化合物、低級アルキル基置換フェノールサリチルアルデヒドノボラック型エポキシ化合物、ナフタレン含有ノボラック型エポキシ化合物、ビスフェノールAノボラック型エポキシ化合物、及び臭素化フェノールノボラック型エポキシ化合物等のノボラック型エポキシ化合物;ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、及び臭素化ビスフェノールA型エポキシ化合物等のビスフェノール型エポキシ化合物;アルキルカテコール型エポキシ化合物等のアルキルフェノール型エポキシ化合物;トリスフェノールメタン型エポキシ化合物、テトラキスフェノールエタン型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、結晶性エポキシ化合物、ビフェニル型エポキシ化合物、ナフタレン構造を有するエポキシ化合物、アントラセン構造を有するエポキシ化合物、ピレン構造を有するエポキシ化合物、メソゲン骨格を有するエポキシ化合物、グリシジルアミン型エポキシ化合物、グリシジルメタクリレート含有アクリルポリマ、例えば脂環式エポキシ化合物等となるこれらの水素添加物、並びにこれらの水素添加物以外の脂環式エポキシ化合物などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのエポキシ化合物のうち、流動性の観点からはビスフェノールAノボラック型エポキシ化合物、水素添加ビスフェノールAノボラック型エポキシ化合物、水素添加ビスフェノールF型エポキシ化合物などの液状エポキシ化合物を含むことが好ましい。また、低屈折率性の観点からは水素添加ビスフェノールA型エポキシ化合物や水素添加ビスフェノールF型エポキシ化合物等の脂環式エポキシ化合物、ターシャリーブチルカテコール型エポキシ化合物等のアルキルフェノール型エポキシ化合物、又はグリシジルメタクリレート含有アクリルポリマなど脂肪族骨格を多く含有するものが好ましい。
<(A) component>
The epoxy compound containing two or more epoxy groups as component (A) is not particularly limited as long as it has transparency at the target wavelength. For example, a phenol novolac epoxy compound, a cresol novolac epoxy Compound, biphenyl aralkylene novolak type epoxy compound, aralkylene novolak type epoxy compound, phenol salicylaldehyde novolak type epoxy compound, lower alkyl group-substituted phenol salicylaldehyde novolak type epoxy compound, naphthalene-containing novolak type epoxy compound, bisphenol A novolak type epoxy compound , And novolak epoxy compounds such as brominated phenol novolac epoxy compounds; bisphenol A epoxy compounds, bisphenol F epoxy compounds Bisphenol type epoxy compounds such as bisphenol S type epoxy compounds and brominated bisphenol A type epoxy compounds; alkylphenol type epoxy compounds such as alkylcatechol type epoxy compounds; trisphenol methane type epoxy compounds, tetrakisphenol ethane type epoxy compounds, dicyclo Pentadiene type epoxy compound, crystalline epoxy compound, biphenyl type epoxy compound, epoxy compound having naphthalene structure, epoxy compound having anthracene structure, epoxy compound having pyrene structure, epoxy compound having mesogenic skeleton, glycidylamine type epoxy compound, glycidyl These hydrogenated products that become methacrylate-containing acrylic polymers, such as alicyclic epoxy compounds, etc., and these hydrogenated products Etc. outside the alicyclic epoxy compounds. These may be used alone or in combination of two or more.
Among these epoxy compounds, from the viewpoint of fluidity, it is preferable to include a liquid epoxy compound such as a bisphenol A novolak epoxy compound, a hydrogenated bisphenol A novolak epoxy compound, or a hydrogenated bisphenol F epoxy compound. From the viewpoint of low refractive index, alicyclic epoxy compounds such as hydrogenated bisphenol A type epoxy compounds and hydrogenated bisphenol F type epoxy compounds, alkylphenol type epoxy compounds such as tertiary butylcatechol type epoxy compounds, or glycidyl methacrylate What contains many aliphatic skeletons, such as a containing acrylic polymer, is preferable.
 (A)成分中、前記脂肪族骨格の割合を判別する一般的な指標は、例えば各原子が隣接する他原子と形成している化学結合に着目し、該化学結合が全て単結合である原子の割合を算出することが挙げられる。具体的には、(A)成分を構成する炭素、窒素、酸素の原子について、これら原子の総数をN、他原子との化学結合が全て単結合からなる原子の数をnとしたとき、n/Nを指標とする。本発明においては、n/Nが0.6以上1以下であることが好ましく、0.7以上であることがより好ましく、0.8以上であることが特に好ましい。n/Nを0.6以上とすることで、屈折率をより低くすることができる。
 以上のことから、水素添加ビスフェノールA型エポキシ化合物や水素添加ビスフェノールF型エポキシ化合物などの脂環式エポキシ化合物である水素添加型2官能液状エポキシ化合物を含むことがより好ましい。
In the component (A), a general index for determining the proportion of the aliphatic skeleton is, for example, an atom in which each atom is a single bond, focusing on a chemical bond formed by each atom with another adjacent atom. Is calculated. Specifically, regarding the carbon, nitrogen, and oxygen atoms constituting the component (A), where N is the total number of these atoms and n is the number of atoms in which all the chemical bonds with other atoms are single bonds, n Use / N as an index. In the present invention, n / N is preferably 0.6 or more and 1 or less, more preferably 0.7 or more, and particularly preferably 0.8 or more. By setting n / N to be 0.6 or more, the refractive index can be further reduced.
From the above, it is more preferable to include a hydrogenated bifunctional liquid epoxy compound which is an alicyclic epoxy compound such as a hydrogenated bisphenol A type epoxy compound or a hydrogenated bisphenol F type epoxy compound.
 (A)成分の配合量は、(A)成分及び(B)成分の総量に対して50~95質量%であることが好ましく、55~90質量%であることがより好ましく、60~90質量%であることが更に好ましく、60~85質量%であることが特に好ましい。50質量%以上とすることで屈折率を低くしやすい傾向にあり、95質量%以下とすることでガラス転移温度を向上させ、耐熱性を良好にしやすい傾向にある。 The blending amount of the component (A) is preferably 50 to 95% by mass, more preferably 55 to 90% by mass, and more preferably 60 to 90% by mass with respect to the total amount of the components (A) and (B). % Is more preferable, and 60 to 85% by mass is particularly preferable. When it is 50% by mass or more, the refractive index tends to be lowered, and when it is 95% by mass or less, the glass transition temperature is improved and heat resistance tends to be improved.
<(B)成分>
 (B)成分であるエポキシ硬化剤としては、エポキシ樹脂を硬化させることが可能なものであれば、特に限定することなく使用可能である。このような硬化剤としては、例えば、フェノール性水酸基を有する化合物、アミン類、イミダゾール化合物、酸無水物、有機リン化合物およびこれらのハロゲン化物、ポリアミド、ポリスルフィド、三フッ化ホウ素などが挙げられる。これらの中でも、得られる樹脂組成物層の透明性の観点から、フェノール性水酸基を有する化合物が好ましい。
 前記フェノール性水酸基を有する化合物としては、目的とする波長において透明性を有するものであれば特に制限はないが、例えばフェノールノボラック樹脂、クレゾールノボラック樹脂、ビフェニルアラルキレンノボラック型フェノール樹脂、ナフタレン含有ノボラック型フェノール樹脂、ビスフェノールAノボラック樹脂、アミノトリアジンノボラック樹脂等のノボラック樹脂;レゾルシン、カテコール、フロログルシノール等の単環多価フェノール化合物;ビスフェノールA、ビスフェノールF、ビスフェノールS等のビスフェノール化合物;トリスフェノールメタン、テトラキスフェノールエタン、ジシクロペンタジエン型フェノール化合物、ビフェニル型フェノール化合物、ナフタレン構造を有するフェノール化合物、アントラセン構造を有するフェノール化合物、ピレン構造を有するフェノール化合物、メソゲン骨格を有するフェノール化合物等のその他フェノール化合物などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのうち、低屈折率性の観点からフェノール当量が小さい化合物であるレゾルシン、カテコール、フロログルシノール等の単環多価フェノール化合物を、耐熱性の観点から多官能であるフェノールノボラック樹脂、クレゾールノボラック樹脂、ビフェニルアラルキレンノボラック型フェノール樹脂、ナフタレン含有ノボラック型フェノール樹脂、ビスフェノールAノボラック樹脂、アミノトリアジンノボラック樹脂等のノボラック樹脂を用いることが好ましく、アミノトリアジンノボラック樹脂を用いることがより好ましい。
 (B)成分の配合量は、(A)成分及び(B)成分の総量に対して5~50質量%であることが好ましく、10~45質量%であることがより好ましく、15~40質量%であることが特に好ましい。5質量%以上だと屈折率が低くなる傾向にあり、50質量%以下とするとガラス転移温度が上がり耐熱性が良好になる傾向にある。
<(B) component>
The epoxy curing agent that is component (B) can be used without particular limitation as long as it can cure the epoxy resin. Examples of such a curing agent include compounds having a phenolic hydroxyl group, amines, imidazole compounds, acid anhydrides, organic phosphorus compounds and their halides, polyamides, polysulfides, boron trifluoride, and the like. Among these, a compound having a phenolic hydroxyl group is preferable from the viewpoint of transparency of the obtained resin composition layer.
The compound having a phenolic hydroxyl group is not particularly limited as long as it has transparency at a target wavelength. For example, a phenol novolak resin, a cresol novolak resin, a biphenylaralkylene novolak type phenol resin, a naphthalene-containing novolak type Novolak resins such as phenol resin, bisphenol A novolac resin, aminotriazine novolak resin; monocyclic polyphenol compounds such as resorcin, catechol, phloroglucinol; bisphenol compounds such as bisphenol A, bisphenol F, bisphenol S; trisphenolmethane, Tetrakisphenolethane, dicyclopentadiene type phenolic compound, biphenyl type phenolic compound, phenolic compound having naphthalene structure, anthracene Phenol compounds having a structure, a phenolic compound having a pyrene structure, and the like other phenolic compounds phenol compounds having a mesogen skeleton. These may be used alone or in combination of two or more.
Of these, monocyclic polyhydric phenol compounds such as resorcin, catechol, and phloroglucinol, which are compounds having a low phenol equivalent from the viewpoint of low refractive index, and polyfunctional phenol novolac resins and cresol novolacs from the viewpoint of heat resistance. It is preferable to use a novolak resin such as a resin, a biphenylaralkylene novolak type phenol resin, a naphthalene-containing novolak type phenol resin, a bisphenol A novolak resin, an aminotriazine novolak resin, and more preferably an aminotriazine novolak resin.
The blending amount of component (B) is preferably 5 to 50% by mass, more preferably 10 to 45% by mass, and more preferably 15 to 40% by mass with respect to the total amount of component (A) and component (B). % Is particularly preferred. If it is 5% by mass or more, the refractive index tends to be low, and if it is 50% by mass or less, the glass transition temperature tends to increase and the heat resistance tends to be good.
<(C)成分>
 (C)成分である平均粒径が1nm以上70nm以下のシリカ粒子としては、製造法や表面処理など特に制限はないが、電気的絶縁性の観点からテトラアルコキシシランを原料とすることが好ましい。平均粒径は表面処理及び表面積を少なくする観点から透明性を損なわない限り大きいほうが好ましく、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは10nm以上であり、そして、好ましくは60nm以下、より好ましくは55nm以下、更に好ましくは50nm以下である。平均粒径が70nmを超えると透明性確保が困難になり、1nm未満になると表面積が大きすぎて凝集が発生しやすくなり、また表面処理量が増加して屈折率が比較的高くなる。
 平均粒径の測定方法としては、動的光散乱法を用いることができる。具体的には、ナノトラック粒度分析計Nanotrac Wave-EX150(日機装(株)製)などの装置を用いて測定できる。
 なお、本発明における平均粒径とは「体積平均粒子径」のことをいう。
<(C) component>
The silica particles having an average particle size of 1 nm to 70 nm as component (C) are not particularly limited, such as a production method or surface treatment, but tetraalkoxysilane is preferably used as a raw material from the viewpoint of electrical insulation. The average particle size is preferably larger as long as the transparency is not impaired from the viewpoint of surface treatment and surface area reduction, preferably 3 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, and preferably 60 nm or less, more Preferably it is 55 nm or less, More preferably, it is 50 nm or less. When the average particle diameter exceeds 70 nm, it is difficult to ensure transparency. When the average particle diameter is less than 1 nm, the surface area is too large and aggregation is likely to occur, and the surface treatment amount increases to increase the refractive index relatively.
A dynamic light scattering method can be used as a method for measuring the average particle diameter. Specifically, it can be measured using a device such as Nanotrac Particle Size Analyzer Nanotrac Wave-EX150 (Nikkiso Co., Ltd.).
The average particle diameter in the present invention means “volume average particle diameter”.
 シリカ粒子の表面処理は(A)成分及び(B)成分に対する分散性が確保される限り、低屈折率性の観点からその程度は低いほうが好ましい。表面処理としては特に限定されないが、例えばシランカップリング剤やシリコーンオイルによる処理が考えられる。
 シランカップリング剤の例としては、3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性シラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン等のアミノ官能性シラン、ビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等のオレフィン官能性シラン、3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シラン、3-メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランなどが挙げられる。なお、シリカ粒子の表面処理としてシランカップリング剤を用いた場合、(E)成分のシランカップリング剤は、その中に含めるものとする。
 シリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル、アミノ・ポリエーテル変性シリコーンオイル、アラルキル変性シリコーンオイル、エポキシ変性シリコーンオイル、エポキシ・アラルキル変性シリコーンオイル、エポキシ・ポリエーテル変性シリコーンオイル、カルビノール変性シリコーンオイル、カルボキシル変性シリコーンオイル、高級脂肪酸アミド変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、ジアミン変性シリコーンオイル、ジオール変性シリコーンオイル、脂環式エポキシ変性シリコーンオイル、シラノール変性シリコーンオイル、長鎖アルキル変性シリコーンオイル、長鎖アルキル・アラルキル変性シリコーンオイル、特殊アミノ変性シリコーンオイル、ハイドロジェン変性シリコーンオイル、フェニル変性シリコーンオイル、フェノール変性シリコーンオイル、フロロアルキル変性シリコーンオイル、ポリエーテル変性シリコーンオイル、ポリエーテル・長鎖アルキル・アラルキル変性シリコーンオイル、ポリエーテル・メトキシ変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、モノアミン変性シリコーンオイル、などが挙げられる。これらは単独で用いても良いし、複数を混合して用いても良い。なお、シリカ粒子の表面処理としてシリコーンオイルを用いた場合、(D)成分のシリコーンオイルの中に含めるものとする。
As long as the dispersibility with respect to the component (A) and the component (B) is ensured, the degree of surface treatment of the silica particles is preferably as low as possible from the viewpoint of low refractive index. Although it does not specifically limit as surface treatment, For example, the process by a silane coupling agent or silicone oil can be considered.
Examples of silane coupling agents include 3-glycidoxypropyltrimethoxysilane, epoxy functional silanes such as 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-aminopropyltrimethoxysilane, N- Amino-functional silanes such as 2- (aminoethyl) -3-aminopropyltrimethoxysilane and N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylphenyltrimethoxysilane, vinyltris Olefin-functional silanes such as (2-methoxyethoxy) silane, acrylic-functional silanes such as 3-acryloxypropyltrimethoxysilane, methacryl-functional silanes such as 3-methacryloxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxy Syrah And mercapto-functional silane and the like. In addition, when a silane coupling agent is used as the surface treatment of the silica particles, the silane coupling agent of component (E) is included therein.
Silicone oils include dimethyl silicone oil, methylphenyl silicone oil, methyl hydrogen silicone oil, amino / polyether modified silicone oil, aralkyl modified silicone oil, epoxy modified silicone oil, epoxy / aralkyl modified silicone oil, and epoxy / polyether modified. Silicone oil, carbinol modified silicone oil, carboxyl modified silicone oil, higher fatty acid amide modified silicone oil, higher fatty acid ester modified silicone oil, diamine modified silicone oil, diol modified silicone oil, alicyclic epoxy modified silicone oil, silanol modified silicone oil , Long chain alkyl modified silicone oil, long chain alkyl aralkyl modified silicone oil, Especially amino-modified silicone oil, hydrogen-modified silicone oil, phenyl-modified silicone oil, phenol-modified silicone oil, fluoroalkyl-modified silicone oil, polyether-modified silicone oil, polyether / long-chain alkyl / aralkyl-modified silicone oil, polyether / methoxy Modified silicone oil, methacryl-modified silicone oil, mercapto-modified silicone oil, monoamine-modified silicone oil, and the like. These may be used alone or in combination. In addition, when silicone oil is used as the surface treatment of the silica particles, it is included in the silicone oil as the component (D).
 (C)のシリカ粒子の含有量は、(A)成分及び(B)成分の総量100質量部に対して10~300質量部であることが好ましく、20~200質量部であることが好ましく、30~100質量部であることが特に好ましい。10質量部以上とすることでシリカ添加による熱膨張率低減効果や屈折率低減効果を得やすくなる。300質量部以下とすることで樹脂組成物が脆くなることを防止できる。 The content of the silica particles (C) is preferably 10 to 300 parts by weight, and preferably 20 to 200 parts by weight with respect to 100 parts by weight as the total amount of the components (A) and (B). It is particularly preferably 30 to 100 parts by mass. By setting it as 10 mass parts or more, it becomes easy to acquire the thermal expansion coefficient reduction effect and refractive index reduction effect by silica addition. It can prevent that a resin composition becomes weak by setting it as 300 mass parts or less.
<(D)成分>
 本発明の光導波路用樹脂組成物は、さらに(D)成分としてシリコーンオイルを含有することが好ましい。(D)成分としてシリコーンオイルを含有することにより、樹脂組成物層とした時に高透明性、低屈折率性及び低熱膨張性を有する樹脂組成物、及びこれ等の特性を備える樹脂組成物を用いた樹脂フィルム、並びにこれらを用いて製造した光導波路及び光電気複合配線板を提供することができる。
 (D)成分であるシリコーンオイルとしては、目的とする波長において透明性を損なわないものであれば特に制限はないが、例えば主鎖の種類の違いでジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイルなどがあり、さらにこれらを変性したものとして、側鎖に官能基を有する側鎖型シリコーンオイル、両末端に官能基を有する両末端型シリコーンオイル、片末端に官能基を有する片末端型シリコーンオイル、側鎖と両末端に官能基を有する側鎖両末端型シリコーンオイルなどがある。これらの官能基としては反応性官能基と非反応性官能基があり、反応性官能基としてはモノアミン基、ジアミン基、グリシジル基、脂環式エポキシ基、カルビノール基、メタクリロイル基、アクリロイル基、カルボン酸無水物基、メルカプト基、カルボキシル基、ハイドロジェン基、シラノール基、などがあり、非反応性官能基としては、ポリエーテル基、ジオール基、アラルキル基、フロロアルキル基、長鎖アルキル基、フェノール基、メトキシ基、高級脂肪酸エステル基、高級脂肪酸アミド基、などが挙げられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうち、ブリードアウト防止の観点から両末端型又は側鎖両末端型のシリコーンオイルを用いることが好ましく、官能基としてはグリジシル基を有するものが好ましい。特に、(D)成分のシリコーンオイルが、両末端にグリシジル基を有するシリコーンオイルであると好ましい。
 (D)成分の平均分子量としては特に制限はないが、一般的に高分子量になるほど他成分との相溶性が低下するため、ブリードアウト防止の観点からは平均分子量は低いほうが好ましい。具体的には700以下であると透明性を損なわないことが多く、600以下であるとより好ましく、500以下であるとさらに好ましい。また、低熱膨張率の観点からは、平均分子量は100以上であることが好ましく、200以上であることがより好ましい。平均分子量は、一般に数平均分子量として示され、ゲルパーミエーションクロマトグラフィー法により測定し、標準ポリスチレン換算して求めることができる。
 (D)成分の配合量は、(A)成分及び(B)成分の総量100質量部に対して1~30質量部であることが好ましく、1~20質量部であることがより好ましく、5~20質量部であることが更に好ましい。30質量部以下とするとタック性が出にくい傾向にあり、1質量部以上だと屈折率が低くなる傾向にある。
<(D) component>
The resin composition for an optical waveguide of the present invention preferably further contains silicone oil as the component (D). By using silicone oil as the component (D), a resin composition having high transparency, low refractive index and low thermal expansion when used as a resin composition layer, and a resin composition having these characteristics are used. Resin films, optical waveguides and opto-electric composite wiring boards manufactured using them can be provided.
The silicone oil as component (D) is not particularly limited as long as it does not impair the transparency at the target wavelength. For example, dimethyl silicone oil, methylphenyl silicone oil, methyl hydro Gen silicone oil, etc., and further modified side chain type silicone oil having functional groups at side chains, both end type silicone oils having functional groups at both ends, one end having functional groups at one end Type silicone oils, side chain double-end type silicone oils having functional groups at both ends. These functional groups include reactive functional groups and non-reactive functional groups, and reactive functional groups include monoamine groups, diamine groups, glycidyl groups, alicyclic epoxy groups, carbinol groups, methacryloyl groups, acryloyl groups, There are carboxylic anhydride groups, mercapto groups, carboxyl groups, hydrogen groups, silanol groups, etc., and non-reactive functional groups include polyether groups, diol groups, aralkyl groups, fluoroalkyl groups, long-chain alkyl groups, Examples thereof include a phenol group, a methoxy group, a higher fatty acid ester group, and a higher fatty acid amide group. These may be used alone or in combination of two or more. Of these, from the viewpoint of preventing bleed-out, it is preferable to use a double-ended or side-chain double-ended silicone oil, and the functional group preferably has a glycidyl group. In particular, the silicone oil as component (D) is preferably a silicone oil having glycidyl groups at both ends.
Although there is no restriction | limiting in particular as an average molecular weight of (D) component, Since compatibility with other components falls generally, so that it is high molecular weight, the one where an average molecular weight is lower is preferable from a viewpoint of bleeding out prevention. Specifically, if it is 700 or less, the transparency is often not impaired, more preferably 600 or less, and further preferably 500 or less. Further, from the viewpoint of a low coefficient of thermal expansion, the average molecular weight is preferably 100 or more, and more preferably 200 or more. The average molecular weight is generally shown as a number average molecular weight, and can be determined by gel permeation chromatography and converted into standard polystyrene.
Component (D) is blended in an amount of preferably 1 to 30 parts by weight, more preferably 1 to 20 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). More preferably, it is ˜20 parts by mass. If it is 30 parts by mass or less, tackiness tends to be difficult to occur, and if it is 1 part by mass or more, the refractive index tends to be low.
<(E)成分>
 本発明の光導波路用樹脂組成物は、更に(E)成分としてシランカップリング剤を含有することが好ましい。(E)成分としてシランカップリング剤を含有することにより、樹脂組成物層とした時に高透明性、低屈折率性及び低熱膨張性を有する樹脂組成物、及びこれ等の特性を備える樹脂組成物を用いた樹脂フィルム、並びにこれらを用いて製造した光導波路及び光電気複合配線板を提供することができる。
 (E)成分であるシランカップリング剤としては、目的とする波長において透明性を損なわないものであれば特に制限はないが、熱膨張率低減の観点から反応性官能基を有するトリアルコキシシランであることが好ましい。反応性官能基を有するトリアルコキシシランとしては、例えば3-グリシドキシプロピルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシ官能性シラン、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン等のアミノ官能性シラン、ビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン等のオレフィン官能性シラン、3-アクリロキシプロピルトリメトキシシラン等のアクリル官能性シラン、3-メタクリロキシプロピルトリメトキシシラン等のメタクリル官能性シラン、3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランなどが挙げられる。これらのうち、グリシジル基、アクリロイル基、メタクリロイル基を有するシランカップリング剤は(A)成分及び(B)成分との反応性が良好であり好ましい。
 (E)成分の含有量としては、(C)成分100質量部に対して10~100質量部であることが好ましく、20~90質量部であることがより好ましく、30~80質量部であることがさらに好ましい。10質量部以上になると銅箔との接着性が増加する傾向にあり、100質量部程度で実用上十分な接着性が得られる。
<(E) component>
The resin composition for an optical waveguide of the present invention preferably further contains a silane coupling agent as the component (E). (E) By containing a silane coupling agent as a component, a resin composition having high transparency, low refractive index and low thermal expansion when formed into a resin composition layer, and a resin composition having these characteristics A resin film using the above, and an optical waveguide and an optoelectric composite wiring board manufactured using these can be provided.
The silane coupling agent as component (E) is not particularly limited as long as it does not impair transparency at the target wavelength, but is a trialkoxysilane having a reactive functional group from the viewpoint of reducing the thermal expansion coefficient. Preferably there is. Examples of trialkoxysilane having a reactive functional group include epoxy-functional silanes such as 3-glycidoxypropyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-aminopropyltrimethoxy. Silanes, amino functional silanes such as N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, olefin functional silanes such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane And acrylic functional silanes such as 3-acryloxypropyltrimethoxysilane, methacrylic functional silanes such as 3-methacryloxypropyltrimethoxysilane, and mercaptofunctional silanes such as 3-mercaptopropyltrimethoxysilane. Among these, a silane coupling agent having a glycidyl group, an acryloyl group, or a methacryloyl group is preferable because it has good reactivity with the component (A) and the component (B).
The content of component (E) is preferably 10 to 100 parts by weight, more preferably 20 to 90 parts by weight, and more preferably 30 to 80 parts by weight with respect to 100 parts by weight of component (C). More preferably. When it becomes 10 mass parts or more, there exists a tendency for adhesiveness with copper foil to increase, and practically sufficient adhesiveness is obtained at about 100 mass parts.
<(F)成分>
 本発明の光導波路用樹脂組成物は、更に(F)成分として(メタ)アクリルポリマを含有することが好ましい。(F)成分として(メタ)アクリルポリマを含有することにより、樹脂組成物層とした時に高透明性、高ガラス転移温度、高温高弾性及び低熱膨張性を有する樹脂組成物、及びこれ等の特性を備える樹脂組成物を用いた樹脂フィルム、並びにこれらを用いて製造した光導波路及び光電気複合配線板を提供することができる。
<(F) component>
The resin composition for an optical waveguide of the present invention preferably further contains a (meth) acrylic polymer as the component (F). (F) Resin composition having high transparency, high glass transition temperature, high temperature and high elasticity and low thermal expansion when it is made into a resin composition layer by containing (meth) acrylic polymer as component, and these properties A resin film using a resin composition comprising the above, and an optical waveguide and an optoelectric composite wiring board manufactured using these can be provided.
(F)成分である(メタ)アクリルポリマは(F-1)(メタ)アクリル酸グリシジル、(F-2)(メタ)アクリル酸アルキル(アルキルの炭素数1~6)から構成され、必要に応じてポリマ中に(F-3)その他の化合物を組み込むこともできる。(F-1)(メタ)アクリル酸グリシジルが含まれることで(A)成分や(B)成分と反応することができ、(F-2)(メタ)アクリル酸アルキルの炭素数を1以上6以下とすることで、(F-1)の反応性を阻害せずに柔軟性を付与することができる。
 (F-2)の(メタ)アクリル酸アルキルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸-t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸シクロヘキシル等があるが、ポリマ中のグリシジル基の反応性の観点から、(メタ)アクリル酸メチル又は(メタ)アクリル酸エチルが好ましい。これらの(メタ)アクリル酸アルキルは単独で用いても2種類以上組み合わせて用いてもよい。
(F-3)その他の化合物としては、(メタ)アクリル酸や(メタ)アクリル酸エステル、マレイミド化合物など、(メタ)アクリルポリマに組み込めるものであれば特に制限はない。(メタ)アクリル酸エステルの例としては、(メタ)アクリル酸イソデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸ジエチルアミノエチル、(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸トリフロロエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシブチル、(メタ)アクリル酸フェノキシエチル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ラウリル、2-(メタ)アクリロイルオキシエチルコハク酸、2-(メタ)アクリロイルオキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイルオキシエチルフタル酸、2-(メタ)アクリロイルオキシエチルアシッドホスフェート、ネオペンチルグリコール-(メタ)アクリル酸-安息香酸エステル等が挙げられる。マレイミド化合物としては、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-イソプロピルマレイミド、N-2,2-ジメチルプロピルマレイミド、N-ブチルマレイミド、N-イソブチルマレイミド、N-sec-ブチルマレイミド、N-tert-ブチルマレイミド、N-2-メチル-2-ブチルマレイミド、N-ペンチルマレイミド、N-2-ペンチルマレイミド、N-3-ペンチルマレイミド、N-ヘキシルマレイミド、N-2-ヘキシルマレイミド、N-3-ヘキシルマレイミド、N-2-エチルヘキシルマレイミド、N-ヘプチルマレイミド、N-オクチルマレイミド、N-ノニルマレイミド、N-デシルマレイミド、N-ヒドロキシメチルマレイミド、N-2-ヒドロキシエチルマレイミド、N-2-ヒドロキシプロピルマレイミド等のアルキルマレイミド;N-シクロペンチルマレイミド、N-シクロヘキシルマレイミド、N-シクロヘプチルマレイミド、N-シクロオクチルマレイミド、N-2-メチルシクロヘキシルマレイミド、N-2-エチルシクロヘキシルマレイミド、N-2-クロロシクロヘキシルマレイミド等のシクロアルキルマレイミド;N-フェニルマレイミド、N-2-メチルフェニルマレイミド、N-2-エチルフェニルマレイミド、N-2-クロロフェニルマレイミド、N-ベンジルマレイミド等のアリールマレイミドなどが挙げられる。これらの化合物は単独で用いても2種類以上組み合わせて用いてもよい。
The (F) component (meth) acrylic polymer is composed of (F-1) glycidyl (meth) acrylate and (F-2) alkyl (meth) acrylate (alkyl having 1 to 6 carbon atoms). Accordingly, (F-3) other compounds may be incorporated into the polymer. (F-1) By containing glycidyl (meth) acrylate, it can react with the components (A) and (B), and (F-2) the alkyl (meth) acrylate has 1 to 6 carbon atoms. By making the following, flexibility can be imparted without inhibiting the reactivity of (F-1).
(F-2) alkyl (meth) acrylate includes methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, There are isobutyl (meth) acrylate, (t-butyl) (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, cyclohexyl (meth) acrylate, etc., but the reactivity of the glycidyl group in the polymer In view of the above, methyl (meth) acrylate or ethyl (meth) acrylate is preferred. These alkyl (meth) acrylates may be used alone or in combination of two or more.
(F-3) Other compounds are not particularly limited as long as they can be incorporated into (meth) acrylic polymers such as (meth) acrylic acid, (meth) acrylic acid esters, and maleimide compounds. Examples of (meth) acrylic acid esters include isodecyl (meth) acrylate, isobornyl (meth) acrylate, ethylhexyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, ( Stearyl methacrylate, trifluoroethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxybutyl (meth) acrylate, phenoxyethyl (meth) acrylate, benzyl (meth) acrylate, (meth) acrylic Lauryl acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl phthalic acid, 2- (meth) acryloyloxyethyl acid phosphate, neopentyl Recall - (meth) acrylic acid - benzoic acid esters. As maleimide compounds, N-methylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-isopropylmaleimide, N-2,2-dimethylpropylmaleimide, N-butylmaleimide, N-isobutylmaleimide, N-sec-butyl Maleimide, N-tert-butylmaleimide, N-2-methyl-2-butylmaleimide, N-pentylmaleimide, N-2-pentylmaleimide, N-3-pentylmaleimide, N-hexylmaleimide, N-2-hexylmaleimide N-3-hexylmaleimide, N-2-ethylhexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-nonylmaleimide, N-decylmaleimide, N-hydroxymethylmaleimide, N-2-hydroxyethylmaleimide, N Alkyl maleimides such as 2-hydroxypropylmaleimide; N-cyclopentylmaleimide, N-cyclohexylmaleimide, N-cycloheptylmaleimide, N-cyclooctylmaleimide, N-2-methylcyclohexylmaleimide, N-2-ethylcyclohexylmaleimide, N- Cycloalkylmaleimides such as 2-chlorocyclohexylmaleimide; arylmaleimides such as N-phenylmaleimide, N-2-methylphenylmaleimide, N-2-ethylphenylmaleimide, N-2-chlorophenylmaleimide, and N-benzylmaleimide It is done. These compounds may be used alone or in combination of two or more.
 (F)成分の(メタ)アクリルポリマ100質量%中の(F-1)の構成比率は10~80質量%であることが好ましく、20~70質量%であることがより好ましく、30~60質量%であることがさらに好ましい。(F-1)の構成比率を10質量%以上とすることで熱膨張率が低く、かつガラス転移温度、高温弾性率が高くなる傾向にあり、80質量%以下とすることで柔軟性を確保できる傾向にある。
 (F-2)の構成比率は20~90質量%であることが好ましく、30~80質量%であることがより好ましく、40~70質量%であることがさらに好ましい。(F-2)の構成比率を20質量%とすることで柔軟性を確保できる傾向にあり、90質量%以下であればガラス転移温度が高く、熱膨張率が低くなる傾向にある。
 (F-3)の構成比率は0~40質量%であることが好ましく、0~30質量%であることがより好ましく、0~20質量%であることがさらに好ましい。(F-3)は必須ではないが、機能性モノマをある程度組み込むことで例えば難燃性や相溶性など所望の特性を持たせることができ、40質量%以下とすることで樹脂組成物としたときの透明性を損なわない傾向にある。
 また、耐熱性の観点からは、(F)成分の(メタ)アクリルポリマは、(F-1)及び(F-2)だけで構成されており、(F-3)成分を含まないことが好ましい。
The component ratio of (F-1) in 100% by mass of the (F) component (meth) acrylic polymer is preferably 10 to 80% by mass, more preferably 20 to 70% by mass, and 30 to 60%. More preferably, it is mass%. When the component ratio of (F-1) is 10% by mass or more, the coefficient of thermal expansion tends to be low, and the glass transition temperature and the high temperature elastic modulus tend to be high. It tends to be possible.
The component ratio of (F-2) is preferably 20 to 90% by mass, more preferably 30 to 80% by mass, and further preferably 40 to 70% by mass. When the component ratio of (F-2) is 20% by mass, flexibility tends to be secured, and when it is 90% by mass or less, the glass transition temperature tends to be high and the thermal expansion coefficient tends to be low.
The component ratio of (F-3) is preferably 0 to 40% by mass, more preferably 0 to 30% by mass, and further preferably 0 to 20% by mass. Although (F-3) is not essential, it can be provided with desired characteristics such as flame retardancy and compatibility by incorporating functional monomers to some extent, and a resin composition can be obtained by setting it to 40% by mass or less. There is a tendency not to impair transparency.
From the viewpoint of heat resistance, the (meth) acrylic polymer of the (F) component is composed only of (F-1) and (F-2) and does not contain the (F-3) component. preferable.
(F)成分の(メタ)アクリルポリマは、その合成方法に特に制限はないが、適切な熱ラジカル重合開始剤を用いて、ポリマ構成原料となる化合物を加熱しながら共重合させることにより得ることができる。このとき、必要に応じて有機溶剤及び/又は水を反応溶媒として用いることができる。また、必要に応じて適切な連鎖移動剤、分散剤、界面活性剤、乳化剤などを組み合わせて用いることもできる。
 熱ラジカル重合開始剤としては特に制限はないが、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のパーオキシケタール;p-メンタンヒドロパーオキシド等のヒドロパーオキシド;α、α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート等のパーオキシエステル;2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2’-ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。
The (F) component (meth) acrylic polymer is not particularly limited in its synthesis method, but it can be obtained by copolymerizing a compound as a raw material of the polymer with heating using an appropriate thermal radical polymerization initiator. Can do. At this time, if necessary, an organic solvent and / or water can be used as a reaction solvent. Further, if necessary, a suitable chain transfer agent, dispersant, surfactant, emulsifier and the like can be used in combination.
The thermal radical polymerization initiator is not particularly limited, and examples thereof include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1 -Bis (t-butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane Peroxyketals such as 1,1-bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; α, α′-bis (t-butyl Peroxy) diisopropylbenzene, dicumyl peroxide, t-butyl Dialkyl peroxides such as mill peroxide and di-t-butyl peroxide; diacyl peroxides such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide and benzoyl peroxide; bis (4-t-butylcyclohexyl) peroxy Peroxycarbonates such as dicarbonate, di-2-ethoxyethyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-3-methoxybutyl peroxycarbonate; t-butyl peroxypivalate, t-hexyl Peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t- Hexylperoxy-2- Ethylhexanoate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropylmonocarbonate, t-butylperoxy-3,5,5-trimethylhexa Noate, t-butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxybenzoate, t-hexyl peroxybenzoate, 2,5- Peroxyesters such as dimethyl-2,5-bis (benzoylperoxy) hexane and t-butylperoxyacetate; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl) Valeronitrile), 2,2'-azobis (4-methoxy) Such as 2'-dimethylvaleronitrile) azo compounds, and the like.
 反応溶媒として用いる有機溶剤としては(F)成分の(メタ)アクリルポリマを溶解し得るものであれば特に制限はないが、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;ジエチルエーテル、tert-ブチルメチルエーテル、シクロペンチルメチルエーテル、ジブチルエーテル等の鎖状エーテル;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミドなどが挙げられる。これらの有機溶剤は、単独で用いても2種類以上を組み合わせて用いてもよい。 The organic solvent used as the reaction solvent is not particularly limited as long as it can dissolve the (F) component (meth) acrylic polymer. For example, aromatic carbon such as toluene, xylene, mesitylene, cumene, p-cymene, etc. Hydrogen; chain ether such as diethyl ether, tert-butyl methyl ether, cyclopentyl methyl ether, dibutyl ether; cyclic ether such as tetrahydrofuran, 1,4-dioxane; methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol, etc. Alcohol: ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl-2-pentanone; methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, γ-buty Esters such as lactones; Carbonates such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether Polyhydric alcohol alkyl ethers such as propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether; Polyhydric alcohol alkyl ether acetates such as recall monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate; Examples thereof include amides such as N, N-dimethylformamide, N, N-dimethylacetamide and N-methylpyrrolidone. These organic solvents may be used alone or in combination of two or more.
(F)成分の(メタ)アクリルポリマの重量平均分子量は、3,000~300,000であることが好ましい。3,000以上であれば樹脂組成物とした場合の硬化物の強度が十分で、300,000以下であれば樹脂組成物の透明性が良好な傾向にある。以上の観点から、(F)成分の重量平均分子量は5,000~200,000とすることがよりに好ましく、10,000~100,000であることが更に好ましく、12,000~50,000であることが特に好ましい。なお、本発明における重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値である。
(F)成分の含有量は、(A)成分及び(B)成分の総量100質量部に対して1~40質量部であることが好ましく、5~35質量部であることが好ましく、10~30質量部であることがさらに好ましい。1質量部以上とすることでガラス転移温度が高くなる傾向にあり、40質量部以下とすることで耐薬品性やラミネート性が確保できる傾向にある。
The weight average molecular weight of the component (F) (meth) acrylic polymer is preferably 3,000 to 300,000. If it is 3,000 or more, the intensity | strength of the hardened | cured material at the time of setting it as a resin composition will be enough, and if it is 300,000 or less, there exists a tendency for the transparency of a resin composition to be favorable. In view of the above, the weight average molecular weight of the component (F) is more preferably 5,000 to 200,000, further preferably 10,000 to 100,000, and 12,000 to 50,000. It is particularly preferred that The weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
The content of component (F) is preferably 1 to 40 parts by weight, preferably 5 to 35 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). More preferably, it is 30 parts by mass. When the amount is 1 part by mass or more, the glass transition temperature tends to be high, and when the amount is 40 parts by mass or less, chemical resistance and laminating properties tend to be ensured.
<(G)成分>
 本発明の光導波路用樹脂組成物は、更に、(G)成分として単官能(メタ)アクリル化合物、及び(H)成分としてラジカル開始剤を含有することが好ましい。(G)成分として単官能(メタ)アクリル化合物、及び(H)成分としてラジカル開始剤を含有することにより、特に光導波路を作製したときに低光伝搬損失性及び信頼性に優れる樹脂組成物、及びこれを用いた樹脂フィルム、並びにこれらを用いて製造した光導波路及び光電気複合配線板を提供することができる。
(G)成分である単官能(メタ)アクリル化合物としては、目的とする波長において透明性を損なわないものであれば特に制限はないが、例えば(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルサクシネート、1-アダマンチル(メタ)アクリレート、イソステアリル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、イソボルニル(メタ)アクリレート、エチル(メタ)アクリレート、2-エチル-2-アダマンチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート、グリシジル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリデシル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、ノニルフェニル(メタ)アクリレート、ノニルフェニルカルビトール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエチレングリコール(メタ)アクリレート、フェノキシヒドロキシプロピル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、n-プロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ボルニル(メタ)アクリレート、メチル(メタ)アクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、などが挙げられる。これらは単独で用いても良いし、複数を混合して用いても良い。
 これら(メタ)アクリル化合物の(メタ)アクリロイル基は(G)成分によって反応を開始し、本発明の樹脂組成物と組み合わせる材料、特に(メタ)アクリル化合物を含有する材料と反応することで材料界面の接着性が増し、構造体としての信頼性を向上させる。これらのうち、グリシジル(メタ)アクリレートなどの(メタ)アクリロイル基とグリシジル基を同一分子内に有する化合物は、(A)成分や(B)成分とも良好に反応し、信頼性をいっそう向上させるため好ましい。その中でもメタクリル酸グリシジルは構造が最も単純であり、添加による他の特性への影響が少ないため、さらに好ましい。
(G)成分の配合量は(A)成分及び(B)成分の総量100質量部に対して1~30質量部であることが好ましく、5~25質量部であることがより好ましく、10~20質量部であることが特に更に好ましい。30質量部以下とすると他の特性にあまり影響を与えない範囲で信頼性向上が可能であり、1質量部以上にすることで信頼性向上の効果が認められる傾向にある。
<(G) component>
The resin composition for an optical waveguide of the present invention preferably further contains a monofunctional (meth) acrylic compound as the (G) component and a radical initiator as the (H) component. (G) A monofunctional (meth) acrylic compound as the component, and a radical initiator as the (H) component, thereby making the resin composition excellent in low light propagation loss and reliability, particularly when an optical waveguide is produced, And the resin film using this, the optical waveguide manufactured using these, and an optoelectric composite wiring board can be provided.
The monofunctional (meth) acrylic compound as component (G) is not particularly limited as long as it does not impair transparency at the target wavelength. For example, (meth) acrylate, 2- (meth) acryloyloxyethyl Succinate, 1-adamantyl (meth) acrylate, isostearyl (meth) acrylate, isobutyl (meth) acrylate, isopropyl (meth) acrylate, isobornyl (meth) acrylate, ethyl (meth) acrylate, 2-ethyl-2-adamantyl ( (Meth) acrylate, 2-ethylhexyl (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate, glycidyl (meth) acrylate, glycerin mono (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopenta (Meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, stearyl (meth) acrylate, tetradecyl (meth) acrylate, tricyclodecanyl (Meth) acrylate, tridecyl (meth) acrylate, trifluoroethyl (meth) acrylate, nonylphenyl (meth) acrylate, nonylphenyl carbitol (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, hydroxyethyl (meth) acrylate , Hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, phenyl (meth) acrylate, phenyl carbitol (meth) acrylate Phenoxyethyl (meth) acrylate, phenoxyethylene glycol (meth) acrylate, phenoxyhydroxypropyl (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, n-propyl (meth) acrylate, benzyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, bornyl (meth) acrylate, methyl (meth) acrylate, 2-methyl-2-adamantyl (Meth) acrylate, methylcyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, lauryl (Meth) acrylate, etc. are mentioned. These may be used alone or in combination.
The (meth) acryloyl group of these (meth) acrylic compounds starts reaction by the (G) component and reacts with a material combined with the resin composition of the present invention, particularly a material containing a (meth) acrylic compound, thereby interfacing with the material. This increases the adhesiveness of the structure and improves the reliability of the structure. Among these, compounds having a (meth) acryloyl group and a glycidyl group in the same molecule, such as glycidyl (meth) acrylate, react well with the component (A) and the component (B), and further improve the reliability. preferable. Among them, glycidyl methacrylate is more preferable because it has the simplest structure and has little influence on other properties due to addition.
The blending amount of component (G) is preferably 1 to 30 parts by weight, more preferably 5 to 25 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). It is further more preferable that it is 20 mass parts. If it is 30 parts by mass or less, the reliability can be improved within a range that does not significantly affect other characteristics, and if it is 1 part by mass or more, the effect of improving the reliability tends to be recognized.
<(H)成分>
(H)成分であるラジカル開始剤としては、目的とする波長において透明性を損なわないものであれば特に制限はなく、例えば塩素、臭素等等のハロゲン分子、2,2´-アゾビス(2,4-ジメチルバレロニトリル)、2,2´-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2´-アゾビスイソブチロニトリル、2,2´-アゾビス(2-メチルブチロニトリル)、1,1´-アゾビス(シクロヘキサン-1-カルボニトリル)、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、2,2´-アゾビス-[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロライド、2,2´-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジサルフェートジハイドレート、2,2´-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2´-アゾビス(2-アミジノプロパン)ジヒドロクロライド、2,2´-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]n-ハイドレート、2,2´-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2´-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2´-アゾビス(N-ブチル-2-メチルプロピオンアミド)、ジメチル2,2´-アゾビス(イソブチレート)、4,4´-アゾビス(4-シアノペンタン酸)等のアゾ化合物、ビス(エタ(5)シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピロール-1-イル)フェニル)チタニウム等の金属錯体、ジイソブチルペルオキシド、クミルペルオキシネオデカノエート、ジ-n-プロピルペルオキシジカーボネート、ジイソプロピルペルオキシジカーボネート、ジ-sec-ブチルペルオキシジカーボネート、1,1,3,3-テトラメチルブチルペルオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)ペルオキシジカーボネート、ジ(2-エチルヘキシル)ペルオキシジカーボネート、t-ヘキシルペルオキシネオデカノエート、t-ブチルペルオキシネオデカノエート、t-ブチルペルオキシネオヘプタノエート、t-ヘキシルペルオキシピバレート、t-ブチルペルオキシピバレート、ジ(3,5,5-トリメチルヘキサノイル)ペルオキシド、ジラウロイルペルオキシド、1,1,3,3-テトラメチルブチルペルオキシ-2-エチルヘキサノエート、ビス(3-カルボキシプロピオニル)ペルオキシド、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルペルオキシ)ヘキサン、t-ヘキシルペルオキシ-2-エチルヘキサノエート、ジ(4-メチルベンゾイル)ペルオキシド、t-ブチルペルオキシ-2-エチルヘキサノエート、ジベンゾイルペルオキシド、1,1-ジ(t-ブチルペルオキシ)-2-メチルシクロヘキサン、1,1-ジ(t-ヘキシルペルオキシ)-3,3,5-トリメチルシクロヘキサン等の過酸化物などが挙げられる。ラジカル発生の方法としては加熱、光照射など既知の手法が使用できる。本発明の樹脂フィルムの基材に銅箔を用いる場合には過酸化物を用いて熱により反応を開始させるのがよく、基材にポリエチレンテレフタレートやポリエチレンナフタレートなどの透明性のある基材を用いる場合、または基材を除去した後に反応させる場合には、発生したラジカルと空気中の酸素との反応を少なくするために、光ラジカル開始剤を用いて室温(25℃)で光照射により反応を開始させることが好ましい。特に(A)成分や(B)成分が紫外領域に強い吸収を持つ場合には、下記式(化1)に示すビス(エタ(5)シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピロール-1-イル)フェニル)チタニウムを用いることが特に好ましい。
 (H)成分の配合量は、(G)成分100質量部に対して、0.1~20質量部が好ましく、1~10質量部がより好ましく、3~7質量部がより好ましい。
<(H) component>
The radical initiator as the component (H) is not particularly limited as long as it does not impair the transparency at the target wavelength. For example, halogen molecules such as chlorine and bromine, 2,2′-azobis (2, 4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyrate) Lonitrile), 1,1′-azobis (cyclohexane-1-carbonitrile), 1-[(1-cyano-1-methylethyl) azo] formamide, 2,2′-azobis- [2- (2-imidazoline) -2-yl) propane] dihydrochloride, 2,2'-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2'-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis (2-amidinopropane) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] n -Hydrate, 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2 , 2′-azobis (N-butyl-2-methylpropionamide), dimethyl 2,2′-azobis (isobutyrate), 4,4′-azobis (4-cyanopentanoic acid) and the like, bis (eta ( 5) Metal complexes such as cyclopentadienyl) -bis (2,6-difluoro-3- (pyrrol-1-yl) phenyl) titanium, diisobutylperoxy , Cumylperoxyneodecanoate, di-n-propylperoxydicarbonate, diisopropylperoxydicarbonate, di-sec-butylperoxydicarbonate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-t-butylcyclohexyl) peroxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, t-hexylperoxyneodecanoate, t-butylperoxyneodecanoate, t-butylperoxyneoheptanoate, t -Hexylperoxypivalate, t-butylperoxypivalate, di (3,5,5-trimethylhexanoyl) peroxide, dilauroyl peroxide, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate Bis (3-carboxypropionyl) peroxide, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane, t-hexylperoxy-2-ethylhexanoate, di (4-methylbenzoyl) ) Peroxide, t-butylperoxy-2-ethylhexanoate, dibenzoyl peroxide, 1,1-di (t-butylperoxy) -2-methylcyclohexane, 1,1-di (t-hexylperoxy) -3, Examples thereof include peroxides such as 3,5-trimethylcyclohexane. As a method for generating radicals, known methods such as heating and light irradiation can be used. When using copper foil as the substrate of the resin film of the present invention, it is preferable to start the reaction with heat using a peroxide, and a transparent substrate such as polyethylene terephthalate or polyethylene naphthalate is used as the substrate. When used or when the reaction is performed after removing the substrate, the reaction is performed by light irradiation at room temperature (25 ° C.) using a photo-radical initiator in order to reduce the reaction between the generated radicals and oxygen in the air. Is preferably initiated. In particular, when component (A) or component (B) has strong absorption in the ultraviolet region, bis (eta (5) cyclopentadienyl) -bis (2,6-difluoro-) represented by the following formula (Chemical Formula 1) It is particularly preferred to use 3- (pyrrol-1-yl) phenyl) titanium.
The amount of component (H) is preferably 0.1 to 20 parts by weight, more preferably 1 to 10 parts by weight, and more preferably 3 to 7 parts by weight with respect to 100 parts by weight of component (G).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
<硬化促進剤>
 本発明の樹脂組成物には、さらに硬化促進剤としてイミダゾール化合物が添加されていてもよい。硬化促進剤として用いられるイミダゾール化合物の具体例としてはイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-ヘプタデシルイミダゾール、4,5-ジフェニルイミダゾール、2-メチルイミダゾリン、2-フェニルイミダゾリン、2-ウンデシルイミダゾリン、2-ヘプタデシルイミダゾリン、2-イソプロピルイミダゾール、2,4-ジメチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチルイミダゾリン、2-イソプロピルイミダゾリン、2,4-ジメチルイミダゾリン、2-フェニル-4-メチルイミダゾリン等が挙げられる。
 また、硬化促進剤としては、上記イミダゾール化合物とともに或いは上記イミダゾール化合物に代えて、イミダゾール以外の一般的な硬化促進剤、例えばアミン等の窒素含有化合物やトリフェニルホスフィンなどのリン系化合物を用いることもできる。
<Curing accelerator>
The resin composition of the present invention may further contain an imidazole compound as a curing accelerator. Specific examples of imidazole compounds used as curing accelerators include imidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2 -Heptadecylimidazole, 4,5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl- Examples include 4-methylimidazole, 2-ethylimidazoline, 2-isopropylimidazoline, 2,4-dimethylimidazoline, 2-phenyl-4-methylimidazoline and the like.
As the curing accelerator, a general curing accelerator other than imidazole, for example, a nitrogen-containing compound such as amine or a phosphorus compound such as triphenylphosphine may be used together with or in place of the imidazole compound. it can.
<その他添加剤>
 この他に樹脂組成物に添加することのできる成分としては透明性や低屈折率性を損なわない限り特に限定されないが、具体例としては酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、顔料、着色剤、滑剤、(C)以外の無機フィラー等が挙げられる。これらは単独で用いてもよいし、二種類以上を併用してもよい。
 本発明の樹脂組成物がこれらの他の成分を含有する場合、本発明の樹脂組成物中に含まれる成分(A)~(H)の総含有量は、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、より更に好ましくは90質量%以上である。
 また、本発明の樹脂組成物は、熱硬化可能な熱硬化性樹脂組成物、活性光線で硬化可能な感光性樹脂組成物のいずれでもよいが、感光性樹脂組成物の場合には、樹脂組成物に光酸発生剤等の重合開始剤を添加する必要がある。光酸発生剤の種類は特に限定されないが、一般的にはリン系のPF6(ヘキサフルオロ酸)、アンチモン系のSbF6(六フッ化アンチモン酸)などをアニオンとするオニウム塩が使用されている。そのなかでもアンチモン系のものが硬化性の点で好ましい。
<Other additives>
In addition to this, the components that can be added to the resin composition are not particularly limited as long as the transparency and low refractive index are not impaired. Specific examples include antioxidants, heat stabilizers, antistatic agents, and ultraviolet absorbers. , Pigments, colorants, lubricants, inorganic fillers other than (C), and the like. These may be used alone or in combination of two or more.
When the resin composition of the present invention contains these other components, the total content of components (A) to (H) contained in the resin composition of the present invention is preferably 50% by mass or more, more preferably Is 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
The resin composition of the present invention may be either a thermosetting resin composition that can be cured by heat or a photosensitive resin composition that can be cured by actinic rays. In the case of a photosensitive resin composition, the resin composition It is necessary to add a polymerization initiator such as a photoacid generator to the product. The type of the photoacid generator is not particularly limited. Generally, onium salts having anions such as phosphorus-based PF 6 (hexafluoro acid) and antimony-based SbF 6 (hexafluoroantimonic acid) are used. Yes. Among these, antimony type is preferable in terms of curability.
<樹脂ワニス>
 本発明の樹脂組成物は上記各成分を混合したものであるが、通常は適切な溶剤を用いて混合し樹脂ワニスとすることが好ましい。溶剤としては特に限定されないが溶解性や取り扱い性、経済性などの点で有機溶剤を用いることが好ましい。有機溶剤の例としては、メタノール、エタノール、ブタノール等のアルコール類、エチルセロソルブ、ブチルセロソルブ、エチレングリコールモノメチルエーテル、カルビトール、ブチルカルビトール等のエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、メシチレン等の芳香族炭化水素類、メトキシエチルアセテート、エトキシエチルアセテート、ブトキシエチルアセテート、酢酸エチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等の含窒素類などの溶剤が挙げられる。
<Resin varnish>
The resin composition of the present invention is a mixture of the above-mentioned components, but it is usually preferable to mix them using an appropriate solvent to obtain a resin varnish. Although it does not specifically limit as a solvent, It is preferable to use an organic solvent at points, such as solubility, a handleability, and economical efficiency. Examples of organic solvents include alcohols such as methanol, ethanol and butanol, ethers such as ethyl cellosolve, butyl cellosolve, ethylene glycol monomethyl ether, carbitol and butyl carbitol, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. , Aromatic hydrocarbons such as toluene, xylene, mesitylene, esters such as methoxyethyl acetate, ethoxyethyl acetate, butoxyethyl acetate, ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, N- And solvents such as nitrogen-containing compounds such as methyl-2-pyrrolidone.
 樹脂ワニスを配合する際は、撹拌により混合することが好ましい。撹拌方法には特に制限はないが、撹拌効率の観点からプロペラを用いた撹拌が好ましい。撹拌する際のプロペラの回転速度には特に制限はないが、10~1000回転/分(rpm)であることが好ましく、50~800回転/分(rpm)であることがより好ましく、100~600回転/分(rpm)であることが特に好ましい。10回転/分(rpm)以上とすることで各成分が十分に混合されやすくなり、1000回転/分(rpm)以下とすることでプロペラの回転による気泡の巻き込みを少なくすることができる。撹拌時間には特に制限はないが、0.1~24時間であることが好ましい。0.1時間以上とすることで各成分が十分に混合されやすくなり、また配合内容にもよるが多くの場合24時間以下で十分に混合される。
 配合した樹脂ワニスは、フィルタを用いて濾過するのが好ましい。フィルタについては特に制限はないが、孔径は0.1~50μmが好ましく、0.3~20μmがより好ましく、1~5μmが特に好ましい。孔径が50μm以下であると、大きな異物などを除去でき、ワニス塗布時のはじきや、光導波路における光伝播時の散乱を防止できる。
 配合した樹脂ワニスは、脱泡することが好ましい。脱泡方法には特に制限はないが、具体例として真空ポンプとベルジャー、真空装置付き脱泡装置を用いる方法が挙げられる。減圧時の圧力には特に制限はないが、樹脂ワニスに含まれる溶剤が沸騰したり、樹脂組成物の構成成分が留去されたりしないような圧力が好ましい。脱泡時間には特に制限はないが、3~60分であることが好ましい。3分以上とすることで脱泡が十分に行われやすくなり、60分以下とすることで溶剤が多量に揮発するのを防止できる。
When blending the resin varnish, it is preferable to mix by stirring. Although there is no restriction | limiting in particular in the stirring method, From the viewpoint of stirring efficiency, stirring using a propeller is preferable. The rotational speed of the propeller during stirring is not particularly limited, but is preferably 10 to 1000 revolutions / minute (rpm), more preferably 50 to 800 revolutions / minute (rpm), and 100 to 600 Particularly preferred is rotation / min (rpm). By setting it to 10 revolutions / minute (rpm) or more, each component is easily mixed, and by making it 1000 revolutions / minute (rpm) or less, entrainment of bubbles due to rotation of the propeller can be reduced. The stirring time is not particularly limited, but is preferably 0.1 to 24 hours. By setting it to 0.1 hours or more, each component is easily mixed, and in many cases, it is sufficiently mixed in 24 hours or less depending on the content of the blend.
The blended resin varnish is preferably filtered using a filter. The filter is not particularly limited, but the pore size is preferably 0.1 to 50 μm, more preferably 0.3 to 20 μm, and particularly preferably 1 to 5 μm. When the pore diameter is 50 μm or less, large foreign matters can be removed, and repelling at the time of varnish application and scattering at the time of light propagation in the optical waveguide can be prevented.
The blended resin varnish is preferably defoamed. Although there is no restriction | limiting in particular in the defoaming method, The method of using a vacuum pump, a bell jar, and the defoaming apparatus with a vacuum apparatus as a specific example is mentioned. The pressure at the time of depressurization is not particularly limited, but is preferably such a pressure that the solvent contained in the resin varnish does not boil and the constituent components of the resin composition are not distilled off. The defoaming time is not particularly limited but is preferably 3 to 60 minutes. By setting it to 3 minutes or more, defoaming is easily performed sufficiently, and by setting it to 60 minutes or less, it is possible to prevent a large amount of the solvent from volatilizing.
<屈折率・透過率>
 本発明の光導波路用樹脂組成物を硬化してなる50μm厚さの硬化物の温度25℃における波長850nmでの屈折率は、光ファイバと光導波路の接続部における反射損失低減の観点から1.250~1.700であることが好ましく、1.350~1.600であることがより好ましく、1.400~1.550であることが特に好ましい。光導波路は光ファイバと接続して用いられることが多いが、光導波路材の屈折率が光ファイバと同程度であれば接続部における反射損失が少なくなり、逆に光導波路と光ファイバの屈折率差が大きくなると反射損失が増大する。屈折率はプリズム結合式屈折率計を用いて測定する。波長850nmの光源の代わりに830nmを用いてもよい。
 本発明の光導波路用樹脂組成物を硬化してなる50μm厚さの硬化物の波長850nmにおける透過率は、95%以上であることが好ましく、98%以上であることがさらに好ましく、99%以上であることが特に好ましい。95%以上とすることで、光導波路にしたときの光伝播損失を小さくすることができる。なお、透過率の上限については特に制限されない。
 透過率は分光光度計を用いて測定し、透過率測定サンプルは樹脂組成物をスライドガラスで両面から挟んだ状態で硬化させたものを使用する。これにより、サンプル表面の荒れによる散乱を防止でき、透過率を正確に測定できる。そして、透過率は、透過率測定サンプルの850nmにおける透過率の測定値そのものではなく、スライドガラスの両面での反射による損失を除いた値を指す。具体的には一般的なスライドガラスであればこの値は92~93%になる。反射による損失はスライドガラスの透過率測定値から求めてもよく、またリファレンスにスライドガラスを置いた状態でサンプルの透過率測定を行ってもよい。厳密にはスライドガラスとフィルムの界面でも反射による損失が発生しているが、屈折率差が0.1以下と小さい場合には反射による損失の大きさは無視できるレベルである。屈折率差が大きい場合には計算によって損失量を補正するか、スライドガラスの種類を変更して樹脂組成物に近い屈折率を持つものを使用する。
<Refractive index and transmittance>
The refractive index at a wavelength of 850 nm of a cured product having a thickness of 50 μm obtained by curing the resin composition for an optical waveguide of the present invention at a temperature of 25 ° C. is as follows: It is preferably 250 to 1.700, more preferably 1.350 to 1.600, and particularly preferably 1.400 to 1.550. Optical waveguides are often used in connection with optical fibers. However, if the refractive index of the optical waveguide material is about the same as that of the optical fiber, the reflection loss at the connection will be reduced. As the difference increases, the reflection loss increases. The refractive index is measured using a prism-coupled refractometer. 830 nm may be used instead of the light source having a wavelength of 850 nm.
The transmittance at a wavelength of 850 nm of a cured product having a thickness of 50 μm obtained by curing the resin composition for an optical waveguide of the present invention is preferably 95% or more, more preferably 98% or more, and 99% or more. It is particularly preferred that By setting it to 95% or more, it is possible to reduce the light propagation loss when the optical waveguide is formed. Note that the upper limit of the transmittance is not particularly limited.
The transmittance is measured using a spectrophotometer, and the transmittance measurement sample is a cured resin composition sandwiched from both sides with a slide glass. Thereby, scattering due to roughness of the sample surface can be prevented, and the transmittance can be measured accurately. And the transmittance | permeability points out the value except the loss by the reflection on both surfaces of a slide glass instead of the measured value itself of the transmittance | permeability in 850 nm of the transmittance | permeability measurement sample. Specifically, for a general slide glass, this value is 92 to 93%. The loss due to reflection may be obtained from the measured value of transmittance of the slide glass, or the transmittance of the sample may be measured with the slide glass placed on the reference. Strictly speaking, loss due to reflection occurs at the interface between the slide glass and the film, but when the difference in refractive index is as small as 0.1 or less, the magnitude of loss due to reflection is negligible. If the difference in refractive index is large, the amount of loss is corrected by calculation, or a glass having a refractive index close to that of the resin composition is used by changing the type of slide glass.
[光導波路用樹脂フィルム]
 本発明の光導波路用樹脂フィルムは、基材と、該基材上に形成された上記の光導波路用樹脂組成物からなる樹脂組成物層とを備えるものである。
 樹脂フィルムは、例えば、前記樹脂ワニスを基材に塗布して溶剤を除去することで形成できる。また、樹脂組成物を直接基材に塗布して樹脂フィルムを製造してもよい。
[Resin film for optical waveguide]
The resin film for optical waveguides of the present invention comprises a base material and a resin composition layer made of the above optical waveguide resin composition formed on the base material.
The resin film can be formed, for example, by applying the resin varnish to a substrate and removing the solvent. Alternatively, the resin composition may be directly applied to the substrate to produce a resin film.
(基材の種類)
 前記基材としては特に制限はなく、例えば有機高分子フィルムや銅箔などが挙げられる。有機高分子フィルムの例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン、ポリスチレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマなどが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホンであることが好ましく、経済性の点でポリエチレンテレフタレート、ポリスチレンが、耐熱性の点でポリエチレンナフタレートやポリイミドがより好ましい。種々の観点から、これらのうちポリエチレンテレフタレート、ポリエチレンナフタレート、ポリスチレンが特に好ましい。
(Type of base material)
There is no restriction | limiting in particular as said base material, For example, an organic polymer film, copper foil, etc. are mentioned. Examples of organic polymer films include polyesters such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate; polyolefins such as polyethylene, polypropylene and polystyrene; polycarbonate, polyamide, polyimide, polyamideimide, polyetherimide, polyethersulfide, poly Examples include ether sulfone, polyether ketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone, and liquid crystal polymer. Among these, from the viewpoints of flexibility and toughness, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polystyrene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, and polysulfone. It is preferable that polyethylene terephthalate and polystyrene are more preferable in terms of economy, and polyethylene naphthalate and polyimide are more preferable in terms of heat resistance. Among these, polyethylene terephthalate, polyethylene naphthalate, and polystyrene are particularly preferable among these.
 また、基材に銅箔を用いた場合、前記樹脂組成物が付いた銅箔を上部クラッド層に使用し、そのままサブトラクティブ法などの既知の方法で電気配線を形成することが可能となる。また、基材としては、キャリア付き銅箔と呼ばれる、数十~数百μm程度の厚さの銅やアルミニウムなどのキャリア上に剥離層を設け、その上に数μm程度の厚さの銅箔を形成したものを用いてもよい。その場合、キャリアはプロセス中で除去され、その後サブトラクティブ法やセミアディティブ法などの既知の方法で電気配線を形成することが可能である。いずれの場合も、銅箔表面にニッケルやクロム、シランカップリング剤などを用いた既知の防錆処理及び接着処理などが施されていてもよい。 Further, when a copper foil is used as the base material, it is possible to use the copper foil with the resin composition as an upper clad layer and form an electrical wiring as it is by a known method such as a subtractive method. In addition, as a base material, a peeling layer is provided on a carrier such as copper or aluminum having a thickness of several tens to several hundreds μm, which is called a copper foil with a carrier, and a copper foil having a thickness of about several μm is provided thereon You may use what formed. In that case, the carrier is removed in the process, and then the electric wiring can be formed by a known method such as a subtractive method or a semi-additive method. In any case, the copper foil surface may be subjected to known rust prevention treatment and adhesion treatment using nickel, chromium, silane coupling agent or the like.
(基材の厚み)
 基材の厚さは、目的とする柔軟性により適宜変えてよいが、3~250μmであることが好ましく、5~200μmであることがより好ましく、10~100μmであることが特に好ましい。3μm以上とすることでフィルム強度を良好にし、250μm以下とすることで柔軟性を良好なものとすることができる。
(保護フィルム)
 また、本発明の樹脂フィルムは、必要に応じて樹脂組成物層の基材側の面とは反対側の面に、保護フィルムを貼り付け、基材、樹脂組成物層及び保護フィルムからなる3層構造としてもよい。保護フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンなどが挙げられる。これらの中で、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンであることが好ましい。
 保護フィルムの厚さは、目的とする柔軟性により適宜変えてよいが、10~250μmであることが好ましく、15~200μmであることがより好ましく、20~100μmであることが特に好ましい。10μm以上とすることで十分なフィルム強度が得られ、250μm以下とすることで柔軟性が良好になる。基材及び保護フィルムは通常、光導波路形成プロセス中で除去されるため、樹脂組成物層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
(Thickness of base material)
The thickness of the substrate may be appropriately changed depending on the intended flexibility, but is preferably 3 to 250 μm, more preferably 5 to 200 μm, and particularly preferably 10 to 100 μm. A film strength is made favorable by setting it as 3 micrometers or more, and a softness | flexibility can be made favorable by setting it as 250 micrometers or less.
(Protective film)
Moreover, the resin film of this invention attaches a protective film to the surface on the opposite side to the base material side surface of a resin composition layer as needed, and consists of a base material, a resin composition layer, and a protective film 3 A layer structure may be used. The protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene. Among these, from the viewpoint of flexibility and toughness, polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene are preferable.
The thickness of the protective film may be appropriately changed depending on the intended flexibility, but is preferably 10 to 250 μm, more preferably 15 to 200 μm, and particularly preferably 20 to 100 μm. When the thickness is 10 μm or more, sufficient film strength is obtained, and when the thickness is 250 μm or less, flexibility is improved. Since the base material and the protective film are usually removed during the optical waveguide formation process, from the viewpoint of improving the peelability from the resin composition layer, a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like is used. You may use as needed.
(樹脂組成物層の厚み)
 樹脂フィルムの樹脂組成物層の厚さについては特に限定されないが、通常は1~100μmであることが好ましい。1μm以上とすることで接着性が良好になり、100μm以下とすることで溶剤除去時に発泡が生じることが防止され、フィルムの平坦性を良好にすることができる。
 樹脂フィルムは、例えばロール状に巻き取ることによって容易に保存することができる。または、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。
(屈折率、及び透過率)
 樹脂フィルムの樹脂組成物層を硬化してなる硬化物の温度25℃における波長850nmでの屈折率は、樹脂組成物の硬化物と同様の理由で、1.250~1.700であることが好ましく、1.350~1.600であることがより好ましく、1.400~1.550であることが特に好ましい。また、樹脂フィルムの樹脂組成物層を硬化してなる硬化物の波長850nmにおける透過率は、樹脂組成物の硬化物と同様の理由で、好ましく95%以上、さらに好ましくは98%以上、特に好ましくは99%以上である。これらの屈折率、透過率の測定方法は、厚さ50μmの樹脂組成物の硬化物の代わりに、保護フィルム、基材が除かれた樹脂組成物層の硬化物が使用される点を除いて前記と同様である。
(Thickness of resin composition layer)
The thickness of the resin composition layer of the resin film is not particularly limited, but it is usually preferably 1 to 100 μm. When the thickness is 1 μm or more, the adhesiveness is improved, and when the thickness is 100 μm or less, foaming is prevented when the solvent is removed, and the flatness of the film can be improved.
The resin film can be easily stored, for example, by winding it into a roll. Alternatively, a roll-shaped film can be cut into a suitable size and stored in a sheet shape.
(Refractive index and transmittance)
The refractive index at a wavelength of 850 nm at a temperature of 25 ° C. of the cured product obtained by curing the resin composition layer of the resin film is 1.250 to 1.700 for the same reason as the cured product of the resin composition. It is preferably 1.350 to 1.600, more preferably 1.400 to 1.550. Further, the transmittance at a wavelength of 850 nm of a cured product obtained by curing the resin composition layer of the resin film is preferably 95% or more, more preferably 98% or more, particularly preferably for the same reason as the cured product of the resin composition. Is 99% or more. These refractive indexes and transmittances are measured except that a cured product of a resin composition layer from which a protective film and a substrate are removed is used instead of a cured product of a resin composition having a thickness of 50 μm. Same as above.
 本発明の光導波路用樹脂フィルムは、クラッド層形成用樹脂フィルム、及びコア部形成用樹脂フィルムとして用いることができるが、コア部形成用樹脂フィルムとして用いる場合は、以下の態様が好ましい。 The resin film for optical waveguide of the present invention can be used as a resin film for forming a clad layer and a resin film for forming a core part. When used as a resin film for forming a core part, the following modes are preferred.
<コア部形成用樹脂フィルム>
(基材の種類)
 コア部形成用樹脂フィルムの基材は、上述の基材の中でも後述のコアパターン形成に用いる露光用活性光線を透過するものが使用されればよく、特に制限はないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリフェニレンエーテル、ポリアリレートなどが挙げられる。
 これらの中で、露光用活性光線の透過率、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリプロピレン等のポリオレフィンであることが好ましい。さらに、露光用活性光線の透過率向上及びコアパターンの側壁荒れ低減の観点から、高透明タイプの基材フィルムを用いることがさらに好ましい。このような高透明タイプの基材フィルムとしては、東洋紡績(株)製コスモシャインA1517、コスモシャインA4100が挙げられる。なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物などにより離型処理が施されたフィルムを必要に応じて用いてもよい。
<Core part forming resin film>
(Type of base material)
The base part of the resin film for forming the core part may be any one that transmits the actinic ray for exposure used for the core pattern formation described later among the above-mentioned bases, and is not particularly limited. For example, polyethylene terephthalate, Examples thereof include polyesters such as polybutylene terephthalate and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene; polycarbonates, polyphenylene ethers and polyarylates.
Of these, polyesters such as polyethylene terephthalate and polybutylene terephthalate; and polyolefins such as polypropylene are preferable from the viewpoints of the transmittance of exposure active light, flexibility, and toughness. Furthermore, it is more preferable to use a highly transparent base film from the viewpoint of improving the transmittance of exposure actinic rays and reducing the roughness of the side wall of the core pattern. Examples of such a highly transparent base film include Cosmo Shine A1517 and Cosmo Shine A4100 manufactured by Toyobo Co., Ltd. In addition, you may use the film in which the mold release process was given with the silicone type compound, the fluorine-containing compound, etc. from a viewpoint of peelability improvement with a resin layer as needed.
(基材の厚み)
 コア部形成用樹脂フィルムの基材フィルムの厚さは、5~50μmであることが好ましく、10~40μmであることがさらに好ましく、15~30μmであることが特に好ましい。5μm以上とすることで支持体として強度が十分となり、50μm以下とすることでコアパターン形成時にフォトマスクとコア部形成用樹脂組成物層のギャップが大きくならず、パターン形成性が良好になる。
(保護フィルム)
 上記基材フィルム上に光導波路用樹脂組成物のワニス又は光導波路用樹脂組成物を塗布して製造したコア部形成用樹脂フィルムは、必要に応じて樹脂組成物層の基材側の面とは反対側の面に、前記保護フィルムを貼り付け、基材、樹脂層及び保護フィルムからなる3層構造としてもよい。保護フィルムとしては、上記した保護フィルムと同様のものが使用できる。
(樹脂組成物層の厚み)
 コア部形成用樹脂フィルムの樹脂組成物層の厚さについては特に限定されないが、通常は1~100μmであることが好ましい。1μm以上とすることで接着性が良好になり、100μm以下とすることで溶剤除去時に発泡が生じることが防止され、フィルムの平坦性を良好にすることができる。
 このようにして得られたコア部形成用樹脂フィルムは、例えばロール状に巻き取ることによって容易に保存することができる。または、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。
(Thickness of base material)
The thickness of the base film of the resin film for forming the core part is preferably 5 to 50 μm, more preferably 10 to 40 μm, and particularly preferably 15 to 30 μm. When the thickness is 5 μm or more, the strength is sufficient as a support, and when the thickness is 50 μm or less, the gap between the photomask and the core portion-forming resin composition layer is not increased when the core pattern is formed, and the pattern formability is improved.
(Protective film)
The core part-forming resin film produced by applying the optical waveguide resin composition varnish or the optical waveguide resin composition on the base film is formed on the base material side surface of the resin composition layer as necessary. May have a three-layer structure comprising a base material, a resin layer, and a protective film by attaching the protective film to the opposite surface. As the protective film, the same protective film as described above can be used.
(Thickness of resin composition layer)
The thickness of the resin composition layer of the core portion forming resin film is not particularly limited, but it is usually preferably 1 to 100 μm. When the thickness is 1 μm or more, the adhesiveness is improved, and when the thickness is 100 μm or less, foaming is prevented when the solvent is removed, and the flatness of the film can be improved.
The core part-forming resin film thus obtained can be easily stored by, for example, winding it into a roll. Alternatively, a roll-shaped film can be cut into a suitable size and stored in a sheet shape.
[光導波路]
 以下、本発明の光導波路について説明する。
 図1に光導波路の断面図を示す。光導波路1は光導波路用基材2上に形成され、相対的に屈折率が高いコア部形成用樹脂組成物からなるコア部4、並びに、相対的に屈折率が低いクラッド層形成用樹脂組成物からなる下部クラッド層3及び上部クラッド層5で構成されている。図1に示すように、コア部4は、下側に配置される下部クラッド層3と上側に配置される上部クラッド層5に挟み込まれ、かつこれらに埋め込まれるように配置される。
[Optical waveguide]
Hereinafter, the optical waveguide of the present invention will be described.
FIG. 1 shows a cross-sectional view of the optical waveguide. The optical waveguide 1 is formed on an optical waveguide substrate 2 and is made of a core part-forming resin composition having a relatively high refractive index, and a cladding layer-forming resin composition having a relatively low refractive index. The lower clad layer 3 and the upper clad layer 5 are made of a material. As shown in FIG. 1, the core portion 4 is sandwiched between and embedded in a lower cladding layer 3 disposed on the lower side and an upper cladding layer 5 disposed on the upper side.
 本発明の光導波路用樹脂組成物及び光導波路用樹脂フィルムは、光導波路1の下部クラッド層3、コア部4及び上部クラッド層5のうち、少なくとも1つに用いることが好ましい。その中で、低屈折率性及び絶縁性、高耐熱信頼性の観点から、これらのうち少なくとも下部クラッド層3又は上部クラッド層5に用いることがさらに好ましく、下部クラッド層3及び上部クラッド層5の両方に用いることが特に好ましい。
 光導波路用基材2としてはシリコン基板、ガラス基板又はFR-4などのガラスエポキシ樹脂基板のような硬い基板を用いることができる。また、光導波路用基材2として柔軟性及び強靭性のある基材フィルムを用いて、フレキシブル光導波路としてもよい。柔軟性及び強靭性のある基材フィルムとしては、樹脂フィルムの基材で例示されたものと同様の有機高分子フィルムが使用されてもよい。
The resin composition for an optical waveguide and the resin film for an optical waveguide of the present invention are preferably used for at least one of the lower cladding layer 3, the core portion 4 and the upper cladding layer 5 of the optical waveguide 1. Among these, it is more preferable to use at least the lower clad layer 3 or the upper clad layer 5 among these from the viewpoint of low refractive index property, insulating properties, and high heat resistance reliability. It is particularly preferable to use both.
As the optical waveguide substrate 2, a hard substrate such as a silicon substrate, a glass substrate, or a glass epoxy resin substrate such as FR-4 can be used. Moreover, it is good also as a flexible optical waveguide using the base film with a softness | flexibility and toughness as the base material 2 for optical waveguides. As the base film having flexibility and toughness, organic polymer films similar to those exemplified for the base material of the resin film may be used.
 下部クラッド層3の厚さについて特に制限はないが、2~200μmであることが好ましい。2μm以上とすることで伝搬光が光導波路用基材2に吸収又は散乱されることが防止され、200μm以下とすることで光導波路1全体が厚くなることが防止される。なお、下部クラッド層3の厚さとは、コア部4と下部クラッド層3との境界から下部クラッド層3の下面までの値である。下部クラッド層形成用樹脂フィルムの厚さについては特に制限はなく、硬化後の下部クラッド層3の厚さが上記の範囲となるように調整される。 The thickness of the lower cladding layer 3 is not particularly limited, but is preferably 2 to 200 μm. When the thickness is 2 μm or more, the propagation light is prevented from being absorbed or scattered by the optical waveguide substrate 2, and when the thickness is 200 μm or less, the entire optical waveguide 1 is prevented from becoming thick. The thickness of the lower cladding layer 3 is a value from the boundary between the core portion 4 and the lower cladding layer 3 to the lower surface of the lower cladding layer 3. There is no restriction | limiting in particular about the thickness of the resin film for lower clad layer formation, It adjusts so that the thickness of the lower clad layer 3 after hardening may become said range.
 コア部4の高さについても特に制限はないが、10~100μmであることが好ましく、15~80μmであることがさらに好ましく、20~70μmであることが特に好ましい。コア部の高さが10μm以上となることで光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスを大きくできる。また、100μm以下とすることで光導波路形成後の受発光素子又は光ファイバとの結合において結合効率が大きくなる。コア部形成用樹脂フィルムの厚さについては特に制限はなく、硬化後のコア部4の高さが上記の範囲となるように調整される。 The height of the core part 4 is not particularly limited, but is preferably 10 to 100 μm, more preferably 15 to 80 μm, and particularly preferably 20 to 70 μm. When the height of the core portion is 10 μm or more, the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed. Moreover, coupling efficiency becomes large in coupling | bonding with the light emitting / receiving element or optical fiber after optical waveguide formation by setting it as 100 micrometers or less. There is no restriction | limiting in particular about the thickness of the resin film for core part formation, It adjusts so that the height of the core part 4 after hardening may become said range.
 上部クラッド層5の厚さは、コア部4を埋め込むことができる範囲であれば、特に制限はないが、乾燥後の厚さで、12~500μmであることが好ましい。上部クラッド層5の厚さは最初に形成される下部クラッド層3の厚さと同一であっても異なってもよいが、コア部4を埋め込むという観点から、下部クラッド層3の厚さよりも厚くすることが好ましい。なお、上部クラッド層5の厚さとは、コア部4と下部クラッド層3との境界から上部クラッド層5の上面までの値である。上部クラッド層形成用樹脂フィルムの厚さについては特に制限はなく、硬化後の上部クラッド層5の厚さが上記の範囲となるように調整される。 The thickness of the upper clad layer 5 is not particularly limited as long as the core portion 4 can be embedded, but the thickness after drying is preferably 12 to 500 μm. The thickness of the upper clad layer 5 may be the same as or different from the thickness of the lower clad layer 3 that is initially formed, but is thicker than the thickness of the lower clad layer 3 from the viewpoint of embedding the core portion 4. It is preferable. The thickness of the upper clad layer 5 is a value from the boundary between the core portion 4 and the lower clad layer 3 to the upper surface of the upper clad layer 5. There is no restriction | limiting in particular about the thickness of the resin film for upper clad layer formation, It adjusts so that the thickness of the upper clad layer 5 after hardening may become said range.
[光電気複合配線板]
 また、本発明の光導波路は図2のように光電気複合配線板とすることもできる。この場合、光導波路用基材2上に予め下部電気配線6を形成し、その下部電気配線6によって構成される電気回路上に、下部クラッド層3、コア部4、及び上部クラッド層5を積層させることができる。また、光導波路1形成後に上部クラッド層5の上部に、電気回路を形成するための上部電気配線7を形成することも可能である。
 また、電気回路の一部が図2に示すようにクラッド層を貫いていることもでき、上下の電気回路の導通を図ることもできる。
 本発明の光導波路において、光伝搬損失は0.3dB/cm以下であることが好ましく、0.2dB/cm以下であることがさらに好ましい。0.3dB/cm以下とすることで、信号が減衰して認識困難となることが防止される。
[Optoelectric composite wiring board]
In addition, the optical waveguide of the present invention can be a photoelectric composite wiring board as shown in FIG. In this case, the lower electrical wiring 6 is formed in advance on the optical waveguide substrate 2, and the lower cladding layer 3, the core portion 4, and the upper cladding layer 5 are laminated on the electrical circuit constituted by the lower electrical wiring 6. Can be made. It is also possible to form an upper electric wiring 7 for forming an electric circuit on the upper clad layer 5 after the optical waveguide 1 is formed.
Further, a part of the electric circuit can penetrate through the clad layer as shown in FIG. 2, and conduction between the upper and lower electric circuits can be achieved.
In the optical waveguide of the present invention, the light propagation loss is preferably 0.3 dB / cm or less, and more preferably 0.2 dB / cm or less. By setting it to 0.3 dB / cm or less, it is possible to prevent the signal from being attenuated and becoming difficult to recognize.
[光導波路の製造方法]
 以下、光導波路用樹脂組成物のワニス及び/又は光導波路用樹脂フィルムを用いて光導波路1を形成するための製造方法について説明する。
 本発明の光導波路1を製造する方法としては、特に制限はないが、コア部形成用樹脂組成物のワニス及びクラッド層形成用樹脂組成物のワニスを用いてスピンコート法などにより製造する方法、又はコア部形成用樹脂フィルム及びクラッド層形成用樹脂フィルムを用いて積層法により製造する方法などが挙げられる。また、これらの方法を組み合わせて製造することもできる。これらの中では、生産性に優れた光導波路製造プロセスが提供可能という観点から、光導波路用樹脂フィルムを用いて積層法により製造する方法が好ましい。
[Optical Waveguide Manufacturing Method]
Hereinafter, the manufacturing method for forming the optical waveguide 1 using the varnish of the resin composition for optical waveguides and / or the resin film for optical waveguides is demonstrated.
The method for producing the optical waveguide 1 of the present invention is not particularly limited, but a method of producing the core portion forming resin composition and the clad layer forming resin composition varnish by spin coating or the like, Or the method etc. which are manufactured by the lamination method using the resin film for core part formation and the resin film for clad layer formation are mentioned. Moreover, it can also manufacture combining these methods. Among these, from the viewpoint that an optical waveguide manufacturing process with excellent productivity can be provided, a method of manufacturing by a laminating method using a resin film for an optical waveguide is preferable.
 以下、本発明の光導波路用樹脂フィルムを下部クラッド層、コア部及び上部クラッド層に用いて光導波路1を形成する製造方法の一例について説明する。
 まず、第1の工程として下部クラッド層形成用樹脂フィルムを光導波路用基材2上に積層して下部クラッド層3を形成する。
 第1の工程における積層方式としては、ロールラミネータ、または平板型ラミネータを用いて加熱しながら圧着することにより積層する方法が挙げられるが、密着性および追従性の観点から、平板型ラミネータを用いて減圧下で下部クラッド層形成用樹脂フィルムを積層することが好ましい。なお、本発明において平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ここでの加熱温度は、40~130℃であることが好ましく、圧着圧力は0.1~1.0MPaであることが好ましいが、これらの条件には特に制限はない。下部クラッド層形成用樹脂フィルムに保護フィルムが存在する場合には、保護フィルムを除去した後に積層する。
 なお、真空加圧式ラミネータによる積層の前に、ロールラミネータを用いてあらかじめ下部クラッド層形成用樹脂フィルムを光導波路用基材2上に仮貼りしておいてもよい。ここで、密着性および追従性向上の観点から、圧着しながら仮貼りすることが好ましく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行ってもよい。ラミネート温度は20~160℃であることが好ましく、20~130℃であることがより好ましく、40~100℃であることが更に好ましい。20℃以上とすることで下部クラッド層形成用樹脂フィルムと光導波路用基材2とが密着しやすくなり、160℃以下、より好ましくは130℃以下とすることで樹脂組成物がロールラミネート時に流動して膜厚が薄くなることが防止される。圧力は0.2~0.9MPaであることが好ましく、ラミネート速度は0.1~3.0m/minであることが好ましいが、これらの条件には特に制限はない。
 続いて、光導波路用基材2上に積層された下部クラッド層形成用樹脂フィルムの樹脂組成物層を光、加熱、又は光及び加熱により硬化する。硬化後、下部クラッド層形成用樹脂フィルムの基材を除去し、下部クラッド層3を形成する。
 光導波路用樹脂フィルムが感光性樹脂フィルムの場合、下部クラッド層3を形成する際の活性光線の照射量は0.1~5.0J/cm2とすることが好ましく、樹脂フィルムが熱硬化性樹脂フィルムの場合、加熱温度は50~200℃とすることが好ましいが、これらの条件には特に制限はない。樹脂フィルムが感光性樹脂フィルムの場合、活性光線の照射と共に、または、照射後、40~160℃の温度範囲で、30秒~10分加熱を施してもよい。
Hereinafter, an example of the manufacturing method which forms the optical waveguide 1 using the resin film for optical waveguides of this invention for a lower clad layer, a core part, and an upper clad layer is demonstrated.
First, as a first step, a lower clad layer-forming resin film is laminated on the optical waveguide substrate 2 to form the lower clad layer 3.
The laminating method in the first step includes a method of laminating by pressure bonding while heating using a roll laminator or a flat plate laminator, but from the viewpoint of adhesion and followability, using a flat plate laminator. It is preferable to laminate the resin film for lower clad layer formation under reduced pressure. In the present invention, the flat plate type laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plate. For example, a vacuum pressurizing laminator can be suitably used. The heating temperature here is preferably 40 to 130 ° C., and the pressure bonding pressure is preferably 0.1 to 1.0 MPa, but these conditions are not particularly limited. When a protective film exists in the resin film for forming the lower cladding layer, the protective film is laminated after removing the protective film.
In addition, before lamination | stacking by a vacuum pressurization type laminator, you may temporarily stick the resin film for lower clad layer formation on the base material 2 for optical waveguides previously using a roll laminator. Here, from the viewpoint of improving adhesion and followability, it is preferable to perform temporary bonding while pressure bonding, and may be performed while heating using a laminator having a heat roll. The laminating temperature is preferably 20 to 160 ° C., more preferably 20 to 130 ° C., and further preferably 40 to 100 ° C. By setting the temperature to 20 ° C. or higher, the resin film for forming the lower clad layer and the optical waveguide substrate 2 are easily adhered, and by setting the temperature to 160 ° C. or lower, more preferably 130 ° C. or lower, the resin composition flows during roll lamination. Thus, the film thickness is prevented from being reduced. The pressure is preferably 0.2 to 0.9 MPa and the laminating speed is preferably 0.1 to 3.0 m / min, but these conditions are not particularly limited.
Subsequently, the resin composition layer of the lower clad layer forming resin film laminated on the optical waveguide substrate 2 is cured by light, heating, or light and heating. After curing, the base material of the lower clad layer forming resin film is removed, and the lower clad layer 3 is formed.
When the optical waveguide resin film is a photosensitive resin film, the irradiation amount of the active light when forming the lower cladding layer 3 is preferably 0.1 to 5.0 J / cm 2, and the resin film is thermosetting. In the case of a resin film, the heating temperature is preferably 50 to 200 ° C., but these conditions are not particularly limited. When the resin film is a photosensitive resin film, it may be heated for 30 seconds to 10 minutes in the temperature range of 40 to 160 ° C. with or after irradiation with actinic rays.
 次いで、第2の工程としてコア部形成用樹脂フィルムを第1の工程と同様な方法で積層する。ここで、コア部形成用樹脂フィルムの樹脂組成物層の硬化物は、下部クラッド層形成用樹脂フィルムの樹脂組成物層の硬化物より高屈折率であるように設計される。また、コア部形成用の樹脂組成物は、活性光線によりコアパターンを形成し得る感光性樹脂組成物からなることが好ましい。
 次に、第3の工程としてコア部を露光し、光導波路のコアパターン(コア部4)を形成する。具体的には、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線が画像状に照射される。また、レーザ直接描画を用いてフォトマスクを通さずに直接活性光線を画像上に照射してもよい。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプなどの紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプなどの可視光を有効に放射するものが挙げられる。
 ここでの活性光線の照射量は、0.01~10.0J/cm2であることが好ましく、0.05~5.0J/cm2であることがより好ましく、0.1~3.0J/cm2であることが特に好ましい。0.01J/cm2以上とすると硬化反応が十分に行われ、後述する現像工程によりコア部4が流失することが防止される。10J/cm2以下とすることで露光量過多によりコア部4が太ることが防止され、微細なパターンが形成される。
 なお露光後に、コア部4の解像度及び密着性向上の観点から露光後加熱を行ってもよい。露光後加熱の温度は40~160℃であることが好ましく、時間は30秒~10分であることが好ましい。
Next, as a second step, the core portion forming resin film is laminated by the same method as in the first step. Here, the cured product of the resin composition layer of the core portion forming resin film is designed to have a higher refractive index than the cured product of the resin composition layer of the lower cladding layer forming resin film. Moreover, it is preferable that the resin composition for core formation consists of the photosensitive resin composition which can form a core pattern with actinic light.
Next, a core part is exposed as a 3rd process, and the core pattern (core part 4) of an optical waveguide is formed. Specifically, actinic rays are irradiated in an image form through a negative or positive mask pattern called an artwork. In addition, an active light beam may be directly irradiated on an image without passing through a photomask using laser direct drawing. Examples of the active light source include known light sources that effectively emit ultraviolet rays, such as a carbon arc lamp, a mercury vapor arc lamp, an ultrahigh pressure mercury lamp, a high pressure mercury lamp, and a xenon lamp. In addition, there are those that effectively emit visible light, such as a photographic flood light bulb and a solar lamp.
Here, the irradiation amount of actinic rays is preferably 0.01 to 10.0 J / cm 2 , more preferably 0.05 to 5.0 J / cm 2 , and 0.1 to 3.0 J / cm 2. / Cm 2 is particularly preferred. When it is 0.01 J / cm 2 or more, the curing reaction is sufficiently performed, and the core portion 4 is prevented from being washed away by a development process described later. By setting it to 10 J / cm 2 or less, the core portion 4 is prevented from becoming thick due to excessive exposure, and a fine pattern is formed.
In addition, after exposure, you may perform post-exposure heating from a viewpoint of the resolution of the core part 4 and adhesiveness improvement. The post-exposure heating temperature is preferably 40 to 160 ° C., and the time is preferably 30 seconds to 10 minutes.
 露光後、コア部形成用樹脂フィルムの基材フィルムを除去し、アルカリ性水溶液、水系現像液などの前記コア部形成用樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング、ディップ及びパドルなどの公知の方法により現像する。また、必要に応じて2種類以上の現像方法を併用してもよい。
 上記アルカリ性水溶液の塩基としては特に制限はないが、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ;リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ;リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩;ホウ砂、メタケイ酸ナトリウム等のナトリウム塩;水酸化テトラメチルアンモニウム、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール、1,3-ジアミノプロパノール-2-モルホリン等の有機塩基などが挙げられる。現像に用いるアルカリ性水溶液のpHは9~11であることが好ましく、その温度はコア部形成用樹脂組成物層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤などを混入させてもよい。
 前記水系現像液としては、水又はアルカリ性水溶液と1種類以上の有機溶剤からなるものであれば特に制限はない。水系現像液のpHは、前記コア部形成用樹脂フィルムの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8~12であることが好ましく、pH9~10であることが特に好ましい。
 上記有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等の多価アルコールアルキルエーテルなどが挙げられる。
 これらは単独でも、2種類以上を組み合わせて使用してもよい。有機溶剤の濃度は、通常2~95質量%であることが好ましく、その温度はコア部形成用樹脂組成物の現像性に合わせて調節される。また、水系現像液中には、界面活性剤、消泡剤などを少量混入させてもよい。
After exposure, the base film of the resin film for forming the core part is removed, and using a developer corresponding to the composition of the resin film for forming the core part, such as an alkaline aqueous solution or an aqueous developer, for example, spraying, rocking immersion Development is performed by a known method such as brushing, scraping, dipping or paddle. Moreover, you may use together 2 or more types of image development methods as needed.
The base of the alkaline aqueous solution is not particularly limited. For example, alkali hydroxide such as lithium, sodium or potassium hydroxide; alkali carbonate such as lithium, sodium, potassium or ammonium carbonate or bicarbonate; phosphorus Alkali metal phosphates such as potassium phosphate and sodium phosphate; alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate; sodium salts such as borax and sodium metasilicate; tetramethylammonium hydroxide, triethanolamine, And organic bases such as ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, and 1,3-diaminopropanol-2-morpholine. The pH of the alkaline aqueous solution used for development is preferably 9 to 11, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition layer. Further, in the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
The aqueous developer is not particularly limited as long as it is composed of water or an alkaline aqueous solution and one or more organic solvents. The pH of the aqueous developer is preferably as low as possible within the range where the development of the core part-forming resin film can be sufficiently performed, preferably pH 8-12, and particularly preferably pH 9-10.
Examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and 4-hydroxy-4-methyl-2-pentanone; ethylene glycol monomethyl ether and ethylene glycol mono Examples thereof include polyhydric alcohol alkyl ethers such as ethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether.
These may be used alone or in combination of two or more. The concentration of the organic solvent is usually preferably 2 to 95% by mass, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition. Further, a small amount of a surfactant, an antifoaming agent or the like may be mixed in the aqueous developer.
 現像後の処理として、必要に応じて水と上記有機溶剤からなる洗浄液を用いて光導波路のコア部4を洗浄してもよい。有機溶剤は単独でも、2種類以上を組み合わせて使用してもよい。有機溶剤の濃度は、通常2~95質量%とすることが好ましく、その温度はコア部形成用樹脂組成物の現像性に合わせて調節される。
 現像又は洗浄後の処理として、必要に応じて60~250℃程度の加熱又は0.1~1000mJ/cm2程度の露光を行うことによりコア部4をさらに硬化してもよい。
As the processing after development, the core portion 4 of the optical waveguide may be cleaned using a cleaning liquid composed of water and the organic solvent as necessary. The organic solvent may be used alone or in combination of two or more. The concentration of the organic solvent is usually preferably 2 to 95% by mass, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition.
As processing after development or washing, the core 4 may be further cured by performing heating at about 60 to 250 ° C. or exposure at about 0.1 to 1000 mJ / cm 2 as necessary.
 続いて、第4の工程として上部クラッド層形成用樹脂フィルムを第1及び第2の工程と同様の方法で積層して上部クラッド層5を形成する。
 ここで、上部クラッド層形成用樹脂フィルムの樹脂組成物は、その硬化物が、コア部形成用樹脂フィルムの樹脂組成物の硬化物よりも低屈折率になるように設計されている。また、上部クラッド層5の厚さは、コア部4の高さより大きくすることが好ましい。上部クラッド層5は、第1の工程と同様な方法で上部クラッド層形成用樹脂フィルムを光、熱、又は光及び熱によって硬化して形成する。
 上記クラッド層形成用樹脂フィルムの基材が感光性樹脂フィルムであり、その基材がPETの場合、活性光線の照射量は、0.1~5.0J/cm2であることが好ましい。一方、基材がポリエチレンナフタレート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフィド、ポリエーテルスルホン、ポリスルホンなどの場合、PETに比べて紫外線などの短波長の活性光線を通しにくいことから、活性光線の照射量は、0.5~30J/cm2であることが好ましく、3~27J/cm2であることがより好ましく、5~25J/cm2であることが特に好ましい。0.5J/cm2以上とすることで硬化反応が十分に進行し、30J/cm2以下とすることで反応完了後の無意味な光線照射を防止し、経済性が向上する。
 なお、より硬化させるために、両面から同時に活性光線を照射することが可能な両面露光機を使用することができる。また、加熱をしながら活性光線を照射してもよい。活性光線照射中及び/又は照射後の加熱温度は50~200℃であることが好ましいが、これらの条件には特に制限はない。
 上部クラッド層5を形成後、必要であれば基材フィルムを除去して、光導波路1を作製することができる。
Subsequently, as a fourth step, the upper clad layer forming resin film is laminated by the same method as in the first and second steps to form the upper clad layer 5.
Here, the resin composition of the resin film for forming the upper clad layer is designed such that the cured product has a lower refractive index than the cured product of the resin composition of the resin film for forming the core part. Further, it is preferable that the thickness of the upper cladding layer 5 is larger than the height of the core portion 4. The upper clad layer 5 is formed by curing an upper clad layer forming resin film with light, heat, or light and heat in the same manner as in the first step.
When the base material of the resin film for forming a clad layer is a photosensitive resin film and the base material is PET, the irradiation amount of active light is preferably 0.1 to 5.0 J / cm 2 . On the other hand, when the base material is polyethylene naphthalate, polyamide, polyimide, polyamideimide, polyetherimide, polyphenylene ether, polyether sulfide, polyethersulfone, polysulfone, etc., an actinic ray having a short wavelength such as ultraviolet rays can be transmitted as compared with PET. since hard to irradiation of actinic ray is preferably 0.5 ~ 30J / cm 2, more preferably 3 ~ 27J / cm 2, particularly preferably 5 ~ 25J / cm 2 . By setting it to 0.5 J / cm 2 or more, the curing reaction sufficiently proceeds, and by setting it to 30 J / cm 2 or less, meaningless light irradiation after the completion of the reaction is prevented, and economic efficiency is improved.
In addition, in order to make it harden | cure, the double-sided exposure machine which can irradiate actinic light simultaneously from both surfaces can be used. Moreover, you may irradiate actinic light, heating. The heating temperature during and / or after irradiation with actinic rays is preferably 50 to 200 ° C., but these conditions are not particularly limited.
After forming the upper cladding layer 5, the base film can be removed if necessary to produce the optical waveguide 1.
 本発明の光導波路は、耐熱性、および透明性に優れているために光モジュールの光伝送路として用いてもよい。光モジュールの形態としては、例えば光導波路の両端に光ファイバを接続した光ファイバ付き光導波路、光導波路の両端にコネクタを接続したコネクタ付き光導波路、光導波路とプリント配線板とを複合化した光電気複合基板、光導波路と光信号と電気信号を相互に変換する光/電気変換素子を組み合わせた光電気変換モジュール、光導波路と波長分割フィルタを組み合わせた波長合分波器などが挙げられる。なお、光電気複合基板において、複合化するプリント配線板としては特に制限はなく、ガラスエポキシ基板などのリジッド基板、ポリイミド基板などのフレキシブル基板のどちらを用いてもよい。 Since the optical waveguide of the present invention is excellent in heat resistance and transparency, it may be used as an optical transmission line of an optical module. Examples of the optical module include an optical waveguide with an optical fiber in which optical fibers are connected to both ends of the optical waveguide, an optical waveguide with a connector in which connectors are connected to both ends of the optical waveguide, and a light in which the optical waveguide and the printed wiring board are combined. Examples include an electrical composite substrate, an optical / electrical conversion module that combines an optical waveguide and an optical / electrical conversion element that converts an optical signal and an electrical signal, and a wavelength multiplexer / demultiplexer that combines an optical waveguide and a wavelength division filter. In the photoelectric composite substrate, the printed wiring board to be combined is not particularly limited, and either a rigid substrate such as a glass epoxy substrate or a flexible substrate such as a polyimide substrate may be used.
 以下、実施例において本発明の内容をさらに具体的に説明するが、本発明はこれらの実施例になんら限定されるものではない。なお、各種物性等の測定は、以下の方法により行った。 Hereinafter, the contents of the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. Various physical properties were measured by the following methods.
[波長850nmにおける光線透過率の測定]
 光導波路用樹脂組成物のワニスをスライドガラス上に、硬化後の厚さが50μmとなるように塗布し、真空乾燥機で減圧しながら120℃で10分程度加熱乾燥して溶剤を揮発させた。その後樹脂層の上からもう1枚のスライドガラスをかぶせ、乾燥機を用いて160℃で1時間加熱硬化した。このサンプルの波長850nmにおける光線透過率Tsを、分光光度計(U-3310、(株)日立ハイテクノロージーズ製)を用いて測定した。スライドガラス単体での光線透過率Trも測定し、Ts/Trを樹脂組成物の透過率の値とした。
[Measurement of light transmittance at a wavelength of 850 nm]
The optical waveguide resin composition varnish was applied onto a slide glass so that the thickness after curing was 50 μm, and the solvent was volatilized by heating and drying at 120 ° C. for about 10 minutes while reducing the pressure with a vacuum dryer. . Thereafter, another slide glass was placed over the resin layer, and heat-cured at 160 ° C. for 1 hour using a dryer. The light transmittance Ts of this sample at a wavelength of 850 nm was measured using a spectrophotometer (U-3310, manufactured by Hitachi High-Technologies Corporation). The light transmittance Tr of the slide glass alone was also measured, and Ts / Tr was taken as the transmittance value of the resin composition.
[屈折率の測定]
 光導波路用樹脂組成物のワニスをスライドガラス上に、硬化後の厚さが50μmとなるように塗布し、乾燥機を用いて160℃で1時間加熱硬化した。このサンプルの波長830nmにおける屈折率を、プリズム結合式屈折率計(Model2020、Metricon社)を用いて測定した。
[Measurement of refractive index]
The optical waveguide resin composition varnish was applied on a slide glass so that the thickness after curing was 50 μm, and was cured by heating at 160 ° C. for 1 hour using a dryer. The refractive index of this sample at a wavelength of 830 nm was measured using a prism-coupled refractometer (Model 2020, Metricon).
[ガラス転移温度(Tg)及び弾性率の測定]
 クラッド層形成用樹脂フィルムを160℃で1時間加熱し、基材フィルムと保護フィルムを除去してから長さ35mm、幅5mmに切り出して測定用のサンプルを作製した。このサンプルのTgを動的粘弾性測定装置(RSA-II、Rheometrics社)を用い、チャック間距離20mm、昇温速度5℃/minの条件で測定した。なおTgはtanδが極大値を示すときの温度とし、常温弾性率は50℃、高温弾性率は250℃でのE’の値とした。
[Measurement of glass transition temperature (Tg) and elastic modulus]
The clad layer forming resin film was heated at 160 ° C. for 1 hour to remove the base film and the protective film, and then cut into a length of 35 mm and a width of 5 mm to prepare a measurement sample. The Tg of this sample was measured using a dynamic viscoelasticity measuring device (RSA-II, Rheometrics) under the conditions of a distance between chucks of 20 mm and a heating rate of 5 ° C./min. Tg is the temperature at which tan δ exhibits the maximum value, the room temperature elastic modulus is 50 ° C., and the high temperature elastic modulus is the value of E ′ at 250 ° C.
[熱膨張率の測定]
 クラッド層形成用樹脂フィルムを160℃で1時間加熱し、基材フィルムと保護フィルムを除去してから長さ30mm、幅3mmに切り出して測定用のサンプルを作製した。このサンプルの熱膨張率を、熱機械的分析装置(TMA/SS6000、セイコーインスツル(株)製)を用い、チャック間距離20mm、昇温速度5℃/min、温度範囲25℃~250℃の条件にて測定した。熱膨張率α1はTgより低い温度領域である約50~100℃での値とした。
[Measurement of thermal expansion coefficient]
The clad layer forming resin film was heated at 160 ° C. for 1 hour to remove the base film and the protective film, and then cut into a length of 30 mm and a width of 3 mm to prepare a measurement sample. The thermal expansion coefficient of this sample was measured using a thermomechanical analyzer (TMA / SS6000, manufactured by Seiko Instruments Inc.) with a distance between chucks of 20 mm, a heating rate of 5 ° C./min, and a temperature range of 25 ° C. to 250 ° C. Measured under conditions. The coefficient of thermal expansion α1 was a value at about 50 to 100 ° C., which is a temperature range lower than Tg.
[光伝搬損失の測定]
 光導波路の光伝搬損失は、光源に波長850nmを中心波長とするVCSEL(FLS-300-01-VCL、EXFO社)、受光センサ(Q82214、(株)アドバンテスト製)、入射ファイバ(GI-50/125マルチモードファイバ、NA:0.20)、及び出射ファイバ(SI-114/125、NA:0.22)を用いて測定した。光伝搬損失は、光損失測定値(dB)を光導波路長(10cm)で割ることにより算出した。
[Measurement of optical propagation loss]
The optical propagation loss of the optical waveguide is as follows: a VCSEL (FLS-300-01-VCL, EXFO) having a wavelength of 850 nm as a light source, a light receiving sensor (Q82214, manufactured by Advantest), an incident fiber (GI-50 / 125 multimode fiber, NA: 0.20), and output fiber (SI-114 / 125, NA: 0.22). The optical propagation loss was calculated by dividing the measured optical loss (dB) by the optical waveguide length (10 cm).
[銅箔引き剥がし強さの測定]
 銅箔引き剥がし強さの測定は(株)島津製作所製オートグラフ製、AC-100Cを用い、垂直引き剥がし強さを測定した。測定は20℃で行い、引き剥がし速度は50mm/min、試験幅は5mmとした。
[Measurement of peel strength of copper foil]
The copper foil peel strength was measured by using AC-100C manufactured by Shimadzu Corporation Autograph and measuring the vertical peel strength. The measurement was performed at 20 ° C., the peeling speed was 50 mm / min, and the test width was 5 mm.
[重量平均分子量Mwの測定]
 (F)成分の(メタ)アクリルポリマの重量平均分子量Mw(標準ポリスチレン換算)をGPC(東ソー(株)製SD-8022/DP-8020/RI-8020)を用いて測定した。カラムは日立化成(株)製Gelpack GL-A150-S/GL-A160-Sを使用した。
[Measurement of weight average molecular weight Mw]
The weight average molecular weight Mw (in terms of standard polystyrene) of the (F) component (meth) acrylic polymer was measured using GPC (SD-8022 / DP-8020 / RI-8020 manufactured by Tosoh Corporation). As the column, Gelpack GL-A150-S / GL-A160-S manufactured by Hitachi Chemical Co., Ltd. was used.
[固形分の測定]
 ポリマ溶液や樹脂ワニスなどの固形分は、溶液を180℃で1時間乾燥した後の残存物の質量を、もとの溶液の質量で除した値とした。
[Measurement of solid content]
The solid content of the polymer solution, resin varnish, and the like was a value obtained by dividing the mass of the residue after the solution was dried at 180 ° C. for 1 hour by the mass of the original solution.
[煮沸試験後の光伝搬損失増加量の測定]
 信頼性試験の一つとして、煮沸試験を行った。ビーカーに純水を入れ、加熱して沸騰させたところに光導波路を1時間浸漬し、その後取り出して水分を拭き取ってから再び光損失を測定した。煮沸前の光損失測定値(dB)をLa、煮沸後の光損失測定値(dB)をLbとしたとき、光伝搬損失増加量は光損失の増加量(Lb-La)を光導波路長(10cm)で割ることにより算出した。
[Measurement of increase in light propagation loss after boiling test]
A boiling test was performed as one of the reliability tests. The optical waveguide was immersed in a beaker where it was heated and boiled for 1 hour, then taken out, wiped off the moisture, and light loss was measured again. When the measured optical loss before boiling (dB) is La and the measured optical loss after boiling (dB) is Lb, the increase in light propagation loss is the increase in optical loss (Lb-La) as the optical waveguide length ( It was calculated by dividing by 10 cm).
<実施例1~14、比較例1~8>
[クラッド層形成用樹脂組成物(光導波路用樹脂組成物)の作製]
 各実施例1~14、比較例1~6において、表1に従って(A)成分、(B)成分、(C)成分、硬化促進剤をポリびんに入れ、必要に応じてメチルエチルケトンで希釈した。これを均一になるまで混ぜ、その後孔径2μmのポリフロンフィルタ(PF020、アドバンテック東洋(株)製)を用いて加圧濾過したあとに減圧脱泡し、本発明のクラッド層形成用樹脂組成物のワニスを得た。
<Examples 1 to 14 and Comparative Examples 1 to 8>
[Preparation of Clad Layer Forming Resin Composition (Resin Composition for Optical Waveguide)]
In each of Examples 1 to 14 and Comparative Examples 1 to 6, the component (A), the component (B), the component (C), and the curing accelerator were placed in a polybottle according to Table 1, and diluted with methyl ethyl ketone as necessary. This was mixed until uniform, then pressure filtered using a polyflon filter (PF020, manufactured by Advantech Toyo Co., Ltd.) having a pore size of 2 μm, degassed under reduced pressure, and the resin composition for forming a cladding layer of the present invention A varnish was obtained.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、HP-820、YX8034、850-Sは、それぞれ以下の化学式(2)~(4)の通りである。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
 HP-820は、上記化学式(2)から明らかなように、Nが36であるとともに、nが24であり、n/Nは0.67となる。YX8034は、上記化学式(3)から明らかなように、N、nがともに25であり、n/Nは1.00となる。850-Sは、上記化学式(4)から明らかなように、Nが25であるとともに、nが13であり、n/Nは0.52となる。
HP-820, YX8034, and 850-S are represented by the following chemical formulas (2) to (4), respectively.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
As is clear from the chemical formula (2), HP-820 has N of 36, n of 24, and n / N of 0.67. As is clear from the chemical formula (3), YX8034 has both N and n of 25, and n / N is 1.00. As is clear from the chemical formula (4), 850-S has N of 25, n of 13, and n / N of 0.52.
[クラッド層形成用樹脂フィルムの作製]
 上記で得たワニスを、PETフィルム(ピューレックスA31、厚さ25μm、帝人デュポンフィルム(株)製)に塗工機(マルチコーターTM-MC、(株)ヒラノテクシード製)を用いて塗布し、110℃で2分、140℃で2分乾燥後、保護フィルムとして前記PETフィルムを貼り付け、下部、上部クラッド層形成用樹脂フィルムを得た。この時、樹脂層の厚さは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が、下部クラッド層形成用樹脂フィルムでは25μm、上部クラッド層形成用樹脂フィルムでは70μmとなるように調節した。
[Preparation of resin film for forming cladding layer]
The varnish obtained above was applied to a PET film (Purex A31, thickness 25 μm, manufactured by Teijin DuPont Films Co., Ltd.) using a coating machine (Multicoater TM-MC, manufactured by Hirano Techseed Co., Ltd.). After drying at 2 ° C. for 2 minutes and at 140 ° C. for 2 minutes, the PET film was attached as a protective film to obtain a resin film for forming lower and upper clad layers. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this example, the thickness after curing is 25 μm for the lower clad layer forming resin film, The thickness of the clad layer forming resin film was adjusted to 70 μm.
 比較例7としては、脂環式エポキシ化合物とフェノキシ樹脂、及び光酸発生剤からなり、シリカが配合されない、脂環式エポキシ系クラッド材(CL-33、日立化成(株)製)を用いた。比較例8としては、アクリルポリマとアクリルモノマ、エポキシ樹脂、及びラジカル系光開始剤からなり、シリカが配合されないアクリル系クラッド材(AD-81、日立化成(株)製)を用いた。 As Comparative Example 7, an alicyclic epoxy-based clad material (CL-33, manufactured by Hitachi Chemical Co., Ltd.), which is composed of an alicyclic epoxy compound, a phenoxy resin, and a photoacid generator and does not contain silica, was used. . As Comparative Example 8, an acrylic clad material (AD-81, manufactured by Hitachi Chemical Co., Ltd.) composed of an acrylic polymer, an acrylic monomer, an epoxy resin, and a radical photoinitiator and not containing silica was used.
[コア部形成用樹脂フィルムの作製]
 酸変性BPA/ウレタン型エポキシアクリレート(KAYARAD UXE-3024、日本化薬(株)製)60質量部、エトキシ化ビスフェノールAジアクリレート(ファンクリルFA-324A、日立化成(株)製)15質量部及びエトキシ化ビスフェノールAジアクリレート(ファンクリルFA-321A、日立化成(株)製)15質量部、フェノールビフェニレン型エポキシ樹脂(NC-3000、日本化薬(株)製)10質量部、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(イルガキュア2959、チバ・ジャパン(株)製)1質量部、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(イルガキュア819、チバ・ジャパン(株)製)1質量部、及び希釈溶剤としてプロピレングリコールモノメチルエーテルアセテート20質量部を攪拌しながら混合した。その後、孔径2μmのポリフロンフィルタ(PF020、アドバンテック東洋(株)製)を用いて加圧濾過したあとに減圧脱泡し、コア部形成用樹脂組成物のワニスを得た。
 このワニスをPETフィルム(コスモシャインA1517、厚さ16μm、東洋紡績(株)製)の非処理面上に前記塗工機を用いて塗布し、80℃で10分、100℃で10分乾燥後、保護フィルムとして表面離型処理PETフィルム(ピューレックスA31、厚さ25μm、帝人デュポンフィルム(株)製)を貼り付け、コア部形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が50μmとなるように調節した。
[Preparation of core part-forming resin film]
60 parts by mass of acid-modified BPA / urethane type epoxy acrylate (KAYARAD UXE-3024, manufactured by Nippon Kayaku Co., Ltd.), 15 parts by mass of ethoxylated bisphenol A diacrylate (Fancryl FA-324A, manufactured by Hitachi Chemical Co., Ltd.) 15 parts by mass of ethoxylated bisphenol A diacrylate (Fancryl FA-321A, manufactured by Hitachi Chemical Co., Ltd.), 10 parts by mass of phenol biphenylene type epoxy resin (NC-3000, manufactured by Nippon Kayaku Co., Ltd.), 1- [4 -(2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (Irgacure 2959, manufactured by Ciba Japan KK), 1 part by weight, bis (2,4,6-trimethyl) Benzoyl) phenylphosphine oxide (Irgacure 819, manufactured by Ciba Japan) An amount of 20 parts by mass of propylene glycol monomethyl ether acetate as a diluent solvent was mixed with stirring. Thereafter, the mixture was filtered under pressure using a polyflon filter (PF020, manufactured by Advantech Toyo Co., Ltd.) having a pore size of 2 μm, and then degassed under reduced pressure to obtain a varnish of the core portion forming resin composition.
This varnish was applied on the non-treated surface of a PET film (Cosmo Shine A1517, thickness 16 μm, manufactured by Toyobo Co., Ltd.) using the coating machine, and dried at 80 ° C. for 10 minutes and at 100 ° C. for 10 minutes. As a protective film, a surface release treatment PET film (Purex A31, thickness 25 μm, manufactured by Teijin DuPont Films Ltd.) was attached to obtain a resin film for forming a core part. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine, but in this example, the thickness after curing was adjusted to 50 μm.
[光導波路の作製]
 実施例1~14、比較例1~6においては以下のように作製した。
(下部クラッド3の形成)
 保護フィルムを除去した前記下部クラッド層形成用樹脂フィルムを、あらかじめ銅を全面エッチングにより除去したガラスエポキシ樹脂基板(MCL-E-679FG(B)、日立化成(株)製、板厚0.6mm)上に、真空加圧式ラミネータ(MVLP-500/600、(株)名機製作所製)を用いて圧力0.4MPa、温度70℃及び加圧時間30秒の条件で積層した。これを乾燥機を用いて160℃で30分加熱硬化し、下部クラッド層3を形成した。
(下部クラッド層3上へのコア部形成用樹脂フィルムの積層)
 続いて、ロールラミネータ(HLM-1500、日立化成テクノプラント(株)製)を用い、保護フィルムを除去した前記コア部形成用樹脂フィルムを、下部クラッド層3上に、圧力0.5MPa、温度50℃、速度0.2m/minの条件で積層した。
(コアパターンの形成)
 次いで、幅50μmの光導波路形成用パターンを有するネガ型フォトマスクを介し、紫外線露光機で紫外線(波長365nm)を700mJ/cm2照射して、コア部4(コアパターン)を露光した。コア部形成用樹脂フィルムの基材を除去した後、スプレー式現像装置(RX-40D、(株)山縣機械製)を用い、1質量%炭酸ナトリウム水溶液にて温度30℃、スプレー圧0.15MPa、現像時間100秒の条件で現像した。続いて、純水にて洗浄し、80℃で1時間加熱乾燥した。
(上部クラッド層5の形成)
 次に、前記真空加圧式ラミネータを用い、上部クラッド層形成用樹脂フィルムを下部クラッドと同様の方法でコア部4及び下部クラッド層3上に積層、加熱硬化して上部クラッド層5を形成し、図1に示す光導波路1を得た。その後、ダイシングソー(DAD-341、(株)ディスコ製)を用いて長さ10cmのリジッド光導波路を切り出した。
 比較例7、8では、下部クラッド層3及び上部クラッド層5それぞれを形成する際には、加熱硬化の前に、マスク無しで2000mJ/cm2で全面露光して光硬化も行った点を除いて、実施例1と同様にして光導波路を作製した。
[Fabrication of optical waveguide]
In Examples 1 to 14 and Comparative Examples 1 to 6, they were produced as follows.
(Formation of lower clad 3)
A glass epoxy resin substrate (MCL-E-679FG (B), manufactured by Hitachi Chemical Co., Ltd., thickness 0.6 mm) from which the lower clad layer forming resin film from which the protective film has been removed has been previously removed by etching the entire surface of copper. On top of this, lamination was performed using a vacuum pressure laminator (MVLP-500 / 600, manufactured by Meiki Seisakusho Co., Ltd.) under the conditions of a pressure of 0.4 MPa, a temperature of 70 ° C., and a pressurization time of 30 seconds. This was heat-cured at 160 ° C. for 30 minutes using a drier to form the lower cladding layer 3.
(Lamination of core portion forming resin film on lower clad layer 3)
Subsequently, using a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.), the core part-forming resin film from which the protective film was removed was placed on the lower cladding layer 3 at a pressure of 0.5 MPa and a temperature of 50 Lamination was performed under the conditions of ° C and a speed of 0.2 m / min.
(Formation of core pattern)
Subsequently, the core part 4 (core pattern) was exposed by irradiating 700 mJ / cm < 2 > of ultraviolet rays (wavelength 365 nm) with an ultraviolet exposure machine through the negative photomask which has an optical waveguide formation pattern with a width of 50 micrometers. After removing the base of the resin film for forming the core part, using a spray developing device (RX-40D, manufactured by Yamagata Kikai Co., Ltd.), the temperature is 30 ° C. and the spray pressure is 0.15 MPa with a 1 mass% sodium carbonate aqueous solution. Development was performed under the condition of a development time of 100 seconds. Then, it wash | cleaned with the pure water and heat-dried at 80 degreeC for 1 hour.
(Formation of upper clad layer 5)
Next, using the vacuum pressurizing laminator, the upper clad layer forming resin film is laminated on the core portion 4 and the lower clad layer 3 in the same manner as the lower clad, and heat cured to form the upper clad layer 5; The optical waveguide 1 shown in FIG. 1 was obtained. Thereafter, a rigid optical waveguide having a length of 10 cm was cut out using a dicing saw (DAD-341, manufactured by DISCO Corporation).
In Comparative Examples 7 and 8, when each of the lower cladding layer 3 and the upper cladding layer 5 was formed, the entire surface was exposed at 2000 mJ / cm 2 without a mask and photocured before heat curing. In the same manner as in Example 1, an optical waveguide was manufactured.
 実施例1~14及び比較例1~8の評価結果を表2に示す。 Table 2 shows the evaluation results of Examples 1 to 14 and Comparative Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1~14に示したように、本発明の光導波路用樹脂組成物は透明性、低屈折率性に優れており、これらを用いて製造した光導波路も透明性に優れていることがわかる。また、Tgが比較的高く、熱膨張率は比較的小さかった。
 一方、比較例1~4、6、7は屈折率が高く、コア部との屈折率差が十分に確保できず、光が伝播しなかった。また、比較例2は透明性に劣っていた。さらに、比較例5、8は、透明性や低屈折率性について大きな問題はないものの、Tgが低く、熱膨張率も大きかった。
As shown in Examples 1 to 14, the resin composition for an optical waveguide of the present invention is excellent in transparency and low refractive index, and the optical waveguide produced using these is also excellent in transparency. Recognize. Moreover, Tg was comparatively high and the thermal expansion coefficient was comparatively small.
On the other hand, Comparative Examples 1 to 4, 6, and 7 had a high refractive index, a sufficient difference in refractive index from the core portion could not be secured, and light did not propagate. Moreover, the comparative example 2 was inferior to transparency. Furthermore, Comparative Examples 5 and 8 had a low Tg and a large coefficient of thermal expansion, although there were no major problems with transparency and low refractive index.
<実施例15>
[クラッド層形成用樹脂組成物(光導波路用樹脂組成物)の作製]
 (A)成分として水素添加ビスフェノールA型エポキシ樹脂(YX8034、三菱化学(株)製)100質量部、(B)成分としてアミノトリアジンノボラック(LA-1356、DIC(株)製、固形分60質量%MEK溶液)50質量部(固形分)、(C)成分として平均粒径15nmのナノシリカ(MEK-EC-2102、日産化学工業(株)製)50質量部(固形分)、硬化促進剤として2-エチル-4-メチルイミダゾール(四国化成工業(株)製)1質量部をポリびんに入れ、これを均一になるまで混ぜ、エバポレータで固形分が約75質量%になるまで濃縮した。その後(D)成分として両末端グリシジル基変性シリコーンオイル(X-22-163、信越化学工業(株)製、数平均分子量 400 )を15質量部加えてから均一になるまで混ぜ、孔径2μmのポリフロンフィルタ(PF020、アドバンテック東洋(株)製)を用いて加圧濾過したあとに減圧脱泡し、本発明のクラッド層形成用樹脂組成物のワニスを得た。各成分の配合量を表3に示した。
<Example 15>
[Preparation of Clad Layer Forming Resin Composition (Resin Composition for Optical Waveguide)]
(A) 100 parts by mass of hydrogenated bisphenol A type epoxy resin (YX8034, manufactured by Mitsubishi Chemical Corp.) as component (A), aminotriazine novolak (LA-1356, manufactured by DIC Corp.), solid content 60% by mass as component (B) MEK solution) 50 parts by mass (solid content), nanosilica (MEK-EC-2102, manufactured by Nissan Chemical Industries, Ltd.) having an average particle size of 15 nm as component (C), 2 parts as a curing accelerator 1 part by weight of ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) was placed in a plastic bottle, mixed until uniform, and concentrated with an evaporator until the solid content was about 75% by weight. Thereafter, 15 parts by mass of both ends glycidyl group-modified silicone oil (X-22-163, manufactured by Shin-Etsu Chemical Co., Ltd., number average molecular weight 400) is added as component (D) and mixed until uniform. After pressure filtration using a Freon filter (PF020, manufactured by Advantech Toyo Co., Ltd.), vacuum degassing was performed to obtain a varnish of the resin composition for forming a clad layer of the present invention. The amount of each component is shown in Table 3.
[クラッド層形成用樹脂フィルムの作製]
 上記で得たワニスを、PENフィルム(ピューレックスQ31M、厚さ50μm、帝人デュポンフィルム(株)製)に塗工機(マルチコーターTM-MC、(株)ヒラノテクシード製)を用いて塗布し、110℃で2分、140℃で2分乾燥後、保護フィルムとしてPETフィルム(ピューレックスA31、厚さ25μm、帝人デュポンフィルム(株)製)を貼り付け、実施例1の下部及び上部クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では硬化後の膜厚が、下部クラッド層形成用樹脂フィルムでは25μm、上部クラッド層形成用樹脂フィルムでは70μmとなるように調節した。
[Preparation of resin film for forming cladding layer]
The varnish obtained above was applied to a PEN film (Purex Q31M, thickness 50 μm, manufactured by Teijin DuPont Films Co., Ltd.) using a coating machine (Multicoater TM-MC, manufactured by Hirano Tech Seed Co., Ltd.). After drying at 140 ° C. for 2 minutes and at 140 ° C. for 2 minutes, a PET film (Purex A31, thickness 25 μm, manufactured by Teijin DuPont Films Ltd.) is pasted as a protective film to form the lower and upper cladding layers of Example 1 A resin film was obtained. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this example, the film thickness after curing is 25 μm for the resin film for forming the lower cladding layer, and the upper cladding. In the resin film for layer formation, it adjusted so that it might be set to 70 micrometers.
[コア部形成用樹脂フィルムの作製]
 実施例1と同様にして、コア部形成用樹脂フィルムを作製した。
[Preparation of core part-forming resin film]
In the same manner as in Example 1, a core part-forming resin film was produced.
[光導波路の作製]
 実施例1のコアパターンの形成において、洗浄後、80℃で1時間加熱乾燥する工程を、80℃で10分、160℃で1時間加熱乾燥する工程に変えた以外は、実施例1と同様にして、光導波路を作製した。
[Fabrication of optical waveguide]
In the formation of the core pattern of Example 1, after washing, the process of heating and drying at 80 ° C. for 1 hour was changed to the process of heating and drying at 80 ° C. for 10 minutes and 160 ° C. for 1 hour, as in Example 1. Thus, an optical waveguide was produced.
<実施例16~18>
 実施例15において、クラッド層形成用樹脂組成物の(D)成分の添加量を表3に示す量に変更にしたこと以外は、実施例15と同様にして、クラッド層形成用樹脂組成物、クラッド層形成用樹脂フィルム、及び光導波路を得た。
<Examples 16 to 18>
In Example 15, except that the addition amount of the component (D) in the cladding layer forming resin composition was changed to the amount shown in Table 3, in the same manner as in Example 15, the cladding layer forming resin composition, A resin film for forming a cladding layer and an optical waveguide were obtained.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例15~18の評価結果を表4に示す。 The evaluation results of Examples 15 to 18 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例15~18に示したように、本発明の樹脂組成物は透明性、低屈折率性、低熱膨張率性に優れており、これらを用いて製造した光導波路も透明性に優れていることがわかる。なかでも、(D)成分としてシリコーンオイルを含有する実施例15~17は、特に光伝播損失に優れていた。
 以上のことから、本発明の樹脂組成物は透明性、低屈折率性、低熱膨張率性などに優れており、特に低光伝搬損失と低屈折率性が要求される分野での光導波路用材料に好適であるといえる。
As shown in Examples 15 to 18, the resin composition of the present invention is excellent in transparency, low refractive index property and low thermal expansion property, and an optical waveguide produced using these is also excellent in transparency. I understand that. Among them, Examples 15 to 17 containing silicone oil as the component (D) were particularly excellent in light propagation loss.
From the above, the resin composition of the present invention is excellent in transparency, low refractive index property, low thermal expansion property, etc., especially for optical waveguides in fields where low light propagation loss and low refractive index property are required. It can be said that it is suitable for the material.
<実施例19~31>
[クラッド層形成用樹脂組成物(光導波路用樹脂組成物)の作製]
 (A)成分として水素添加ビスフェノールA型エポキシ(YX8034、三菱化学(株)製)、(B)成分としてアミノトリアジンノボラック樹脂(LA-1356、DIC(株)製、固形分60質量%MEK溶液)、(C)成分として平均粒径15nmのナノシリカ(MEK-EC-2102、日産化学工業(株)製)、硬化促進剤として2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株)製)をポリびんに入れ、これを均一になるまで混ぜ、エバポレータで固形分が約75質量%になるまで濃縮した。その後(E)成分として3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)を加えてから均一になるまで混ぜ、孔径2μmのポリフロンフィルタ(PF020、アドバンテック東洋(株)製)を用いて加圧濾過したあとに減圧脱泡し、本発明の樹脂組成物のワニスを得た。各成分の配合量を表5に示した。
<Examples 19 to 31>
[Preparation of Clad Layer Forming Resin Composition (Resin Composition for Optical Waveguide)]
Hydrogenated bisphenol A type epoxy as component (A) (YX8034, manufactured by Mitsubishi Chemical Corporation), aminotriazine novolak resin as component (B) (LA-1356, manufactured by DIC Corporation, solid content 60 mass% MEK solution) (C) Nanosilica having an average particle diameter of 15 nm (MEK-EC-2102, manufactured by Nissan Chemical Industries, Ltd.) as component (C), 2-ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Chemicals Co., Ltd.) as a curing accelerator ) Was placed in a poly bottle, mixed until uniform, and concentrated with an evaporator until the solid content was about 75% by weight. Thereafter, 3-glycidoxypropyltrimethoxysilane (KBM-403, manufactured by Shin-Etsu Chemical Co., Ltd.) is added as component (E) and mixed until uniform, and a polyfluorone filter (PF020, Advantech Toyo (pore size) with a pore size of 2 μm is mixed. After the pressure filtration using a product manufactured by Kogyo Co., Ltd.), vacuum degassing was performed to obtain a varnish of the resin composition of the present invention. Table 5 shows the amount of each component.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
[クラッド層形成用樹脂フィルムの作製]
 実施例15と同様にして、クラッド層形成用樹脂フィルムを作製した。
[コア部形成用樹脂フィルムの作製]
 実施例1と同様にして、コア部形成用樹脂フィルムを作製した。
[Preparation of resin film for forming cladding layer]
A resin film for forming a cladding layer was produced in the same manner as in Example 15.
[Preparation of core part-forming resin film]
In the same manner as in Example 1, a core part-forming resin film was produced.
[光導波路の作製]
 実施例15の下部クラッド3の形成において、圧力0.4MPa、温度70℃及び加圧時間30秒の条件で積層する工程を、圧力0.8MPa、温度140℃及び加圧時間300秒の条件で積層する工程に変えた以外は、実施例15と同様にして、光導波路を作製した。
[Fabrication of optical waveguide]
In the formation of the lower clad 3 of Example 15, the step of laminating under the conditions of pressure 0.4 MPa, temperature 70 ° C., and pressurization time 30 seconds is performed under the conditions of pressure 0.8 MPa, temperature 140 ° C. and pressurization time 300 seconds. An optical waveguide was produced in the same manner as in Example 15 except that the step of laminating was changed.
[銅箔付上部クラッド層形成用樹脂フィルムの作製]
 銅箔引き剥がし強さの測定に用いた樹脂フィルムは、前記クラッド層形成用樹脂フィルムにおいて、基材としてPENフィルムの代わりに銅箔を用いたほかは同様の条件で作製した。膜厚は70μmとした。銅箔は3EC-VLP-18(18μm厚低粗化箔、三井金属鉱業(株)製)、YGP-12(12μm厚一般箔、日本電解(株)製)、GTS-MP-35(35μm厚一般箔、古河電気工業(株)製)の3種類を用いた。
[Preparation of resin film for forming upper clad layer with copper foil]
The resin film used for the measurement of the peel strength of the copper foil was produced under the same conditions as in the above resin film for forming a clad layer except that a copper foil was used instead of the PEN film. The film thickness was 70 μm. The copper foils are 3EC-VLP-18 (18 μm thick low-roughened foil, manufactured by Mitsui Mining & Smelting Co., Ltd.), YGP-12 (12 μm thick general foil, manufactured by Nippon Electrolytic Co., Ltd.), GTS-MP-35 (35 μm thick). Three types of general foil, manufactured by Furukawa Electric Co., Ltd., were used.
 実施例19~31の評価結果を表6に示す。 The evaluation results of Examples 19 to 31 are shown in Table 6.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例19~31に示したように、本発明の樹脂組成物は低屈折率性、低熱膨張率性に優れており、これらを用いて製造した光導波路も透明性に優れていることがわかる。また、銅箔引き剥がし強さも(E)成分添加により向上している。以上のことから、本発明の樹脂組成物は透明性、低屈折率性、低熱膨張率性などに優れており、特に銅箔との接着性が必要な光電気複合基板用材料に好適であるといえる。 As shown in Examples 19 to 31, it can be seen that the resin composition of the present invention is excellent in low refractive index property and low thermal expansion property, and an optical waveguide produced using these is also excellent in transparency. . Moreover, copper foil peeling strength is also improved by (E) component addition. From the above, the resin composition of the present invention is excellent in transparency, low refractive index property, low thermal expansion property, etc., and is particularly suitable for an optoelectric composite substrate material that requires adhesion to copper foil. It can be said.
<合成実施例1~14>
[(メタ)アクリルポリマの合成]
 撹拌機、ジムロート冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、メチルエチルケトン(MEK)77質量部を秤量し、窒素ガスを導入しながら30分間撹拌を行った。液温を75℃に上昇させてから、(F-1)及び(F-2)、(F-3)成分として表7の「滴下物」に示す内容を秤量し、滴下ろうとに入れて混合し、これを2時間かけて滴下した。その後、30分撹拌してからMEK8質量部に溶解させた2,2’-アゾビス(2,4-ジメチルバレロニトリル)0.4質量部を添加することを、3回繰り返した。さらに30分撹拌後、シクロヘキサノン18質量部を加え、100℃に昇温してから1時間撹拌を続け、その後室温まで冷却し、(F)成分となる(メタ)アクリルポリマ溶液を得た。各成分の配合量、及び得られた(メタ)アクリルポリマの重量平均分子量を表7に示した。
<Synthesis Examples 1 to 14>
[Synthesis of (meth) acrylic polymer]
77 parts by mass of methyl ethyl ketone (MEK) was weighed in a flask equipped with a stirrer, a Dimroth condenser, a gas inlet tube, a dropping funnel and a thermometer, and stirred for 30 minutes while introducing nitrogen gas. After the liquid temperature was raised to 75 ° C., the contents shown in “Drip” in Table 7 as the components (F-1), (F-2), and (F-3) were weighed and mixed in a dropping funnel. This was added dropwise over 2 hours. Then, after stirring for 30 minutes, adding 0.4 part by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) dissolved in 8 parts by mass of MEK was repeated three times. Further, after stirring for 30 minutes, 18 parts by mass of cyclohexanone was added, the temperature was raised to 100 ° C., and stirring was continued for 1 hour, followed by cooling to room temperature to obtain a (meth) acrylic polymer solution as component (F). Table 7 shows the blending amount of each component and the weight average molecular weight of the obtained (meth) acrylic polymer.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<実施例32~51>
[シリカスラリーの配合]
 平均粒径15nmのナノシリカ(MEK-EC-2102、日産化学工業(株)製、固形分30質量%MEK溶液)100質量部(固形分)と3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)50質量部を混合し、以下の実施例及び比較例で使用するシリカスラリーを得た。
<Examples 32 to 51>
[Composition of silica slurry]
Nanosilica having an average particle size of 15 nm (MEK-EC-2102, manufactured by Nissan Chemical Industries, Ltd., solid content 30% by mass MEK solution) 100 parts by mass (solid content) and 3-glycidoxypropyltrimethoxysilane (KBM-403) , Manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed to obtain a silica slurry used in the following Examples and Comparative Examples.
[クラッド層形成用樹脂組成物(光導波路用樹脂組成物)の作製]
 (A)成分として水素添加ビスフェノールA型エポキシ樹脂(YX8034、三菱化学(株)製)100質量部、(B)成分としてアミノトリアジンノボラック(LA-1356、DIC(株)製、固形分60質量%MEK溶液)45質量部(固形分)、(F)成分として表8に示す各ポリマ29質量部(固形分)をポリびんに入れ混合した(ただし実施例47はポリマなし)。さらに(C)成分として前記シリカスラリーを表8に示す質量部、硬化促進剤として2-エチル-4-メチルイミダゾール(四国化成工業(株)製)を0.5質量部配合し、これを均一になるまで混ぜ、エバポレータで固形分が約75質量%になるまで濃縮した。その後、孔径2μmのポリフロンフィルタ(PF020、アドバンテック東洋(株)製)を用いて加圧濾過したあとに減圧脱泡し、本発明のクラッド層形成用樹脂組成物のワニスを得た。各成分の配合量を表8に示した。
[Preparation of Clad Layer Forming Resin Composition (Resin Composition for Optical Waveguide)]
(A) 100 parts by mass of hydrogenated bisphenol A type epoxy resin (YX8034, manufactured by Mitsubishi Chemical Corp.) as component (A), aminotriazine novolak (LA-1356, manufactured by DIC Corp.), solid content 60% by mass as component (B) (MEK solution) 45 parts by mass (solid content) and 29 parts by mass (solid content) of each polymer shown in Table 8 as component (F) were mixed in a plastic bottle (however, Example 47 had no polymer). Further, the silica slurry as a component (C) is blended in parts by mass as shown in Table 8, and 0.5 parts by mass of 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd.) is blended as a curing accelerator. Until the solid content was about 75% by mass using an evaporator. Then, after pressure-filtering using a polyflon filter (PF020, manufactured by Advantech Toyo Co., Ltd.) having a pore diameter of 2 μm, degassing was performed under reduced pressure to obtain a varnish of a resin composition for forming a cladding layer of the present invention. Table 8 shows the amount of each component.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[クラッド層形成用樹脂フィルムの作製]
 実施例15と同様にして、クラッド層形成用樹脂フィルムを作製した。
[コア部形成用樹脂フィルムの作製]
 実施例15と同様にして、コア部形成用樹脂フィルムを作製した。
[Preparation of resin film for forming cladding layer]
A resin film for forming a cladding layer was produced in the same manner as in Example 15.
[Preparation of core part-forming resin film]
In the same manner as in Example 15, a core part-forming resin film was produced.
[光導波路の作製]
 実施例19のコアパターン形成において、紫外線(波長365nm)を700mJ/cm2照射する工程を、紫外線(波長365nm)を800mJ/cm2照射する工程に変えた以外は、実施例19と同様にして、光導波路を作製した。
 実施例32~51の評価結果を表9に示した。
[Fabrication of optical waveguide]
In core pattern formation in Example 19, ultraviolet rays 700 mJ / cm 2 step of irradiating (wavelength 365 nm), except for changing the ultraviolet (wavelength 365 nm) to 800 mJ / cm 2 steps to be irradiated, in the same manner as in Example 19 An optical waveguide was produced.
Table 9 shows the evaluation results of Examples 32-51.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 実施例32~51に示したように、本発明の樹脂組成物は光伝播損失、低熱膨張率性に優れていることがわかる。特に、(F)成分として(メタ)アクリルポリマを含有する実施例32~46は、透明性と高ガラス転移温度、高温高弾性、低熱膨張性に優れており、これらを用いて製造した光導波路も透明性に優れていることがわかる。以上のことから、本発明の樹脂組成物は透明性と高ガラス転移温度、高温高弾性、低熱膨張性などに優れており、特に耐熱信頼性、ワイヤボンディング性などが要求される分野での光導波路用材料に好適であるといえる。 As shown in Examples 32-51, it can be seen that the resin composition of the present invention is excellent in light propagation loss and low thermal expansion property. In particular, Examples 32 to 46 containing (meth) acrylic polymer as component (F) are excellent in transparency, high glass transition temperature, high temperature and high elasticity, and low thermal expansibility, and optical waveguides manufactured using them. It turns out that it is excellent also in transparency. From the above, the resin composition of the present invention is excellent in transparency, high glass transition temperature, high temperature and high elasticity, low thermal expansion property, etc., especially in fields where heat resistance reliability, wire bonding property, etc. are required. It can be said that it is suitable for a waveguide material.
<実施例52~70>
[クラッド層形成用樹脂組成物(光導波路用樹脂組成物)の作製]
(A)成分として水素添加ビスフェノールA型エポキシ(YX8034又はYX8000、三菱化学(株)製)、(B)成分としてアミノトリアジンノボラック(LA-1356、DIC(株)製)、(C)成分として平均粒径15nmのナノシリカ(MEK-EC-2102、日産化学工業(株)製)にその固形分質量部の半分量の3-グリシドキシプロピルトリメトキシシラン(KBM-403、信越化学工業(株)製)を混ぜて表面処理したもの、硬化促進剤として2-エチル-4-メチルイミダゾール(2E4MZ、四国化成工業(株)製)をポリびんに入れ、これを均一になるまで混ぜ、エバポレータで固形分が約75質量%になるまで濃縮した。その後(G)成分としてGMA(メタクリル酸グリシジル、和光純薬工業(株)製)及びEMA(メタクリル酸エチル、和光純薬工業(株)製)を、(H)成分として光開始剤I-2959(イルガキュア2959、チバ・ジャパン(株)製、「イルガキュア」は登録商標)、光開始剤I-819(イルガキュア819、チバ・ジャパン(株)製)、光開始剤I-784(イルガキュア784、チバ・ジャパン(株)製)、光開始剤I-OXE01(イルガキュアOXE01、チバ・ジャパン(株)製)、光開始剤NCI-831((株)ADEKA製)、過酸化物PB-P(パーブチルP、日本油脂(株)製、「パーブチル」は登録商標)を加えてから均一になるまで混ぜ、孔径2μmのポリフロンフィルタ(PF020、アドバンテック東洋(株)製)を用いて加圧濾過したあとに減圧脱泡し、本発明のクラッド層形成用樹脂組成物のワニスを得た。各成分の配合量を表10に示した。
<Examples 52 to 70>
[Preparation of Clad Layer Forming Resin Composition (Resin Composition for Optical Waveguide)]
Hydrogenated bisphenol A type epoxy (YX8034 or YX8000, manufactured by Mitsubishi Chemical Corporation) as component (A), aminotriazine novolak (LA-1356, manufactured by DIC Corporation) as component (B), average as component (C) Nano-silica with a particle size of 15 nm (MEK-EC-2102, manufactured by Nissan Chemical Industries, Ltd.) and 3-glycidoxypropyltrimethoxysilane (KBM-403, Shin-Etsu Chemical Co., Ltd.), which is half the solid content by mass. 2) -ethyl-4-methylimidazole (2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator, put in a poly bottle, mix until uniform, and solidify with an evaporator It was concentrated until the content was about 75% by mass. Thereafter, GMA (glycidyl methacrylate, manufactured by Wako Pure Chemical Industries, Ltd.) and EMA (ethyl methacrylate, manufactured by Wako Pure Chemical Industries, Ltd.) are used as component (G), and photoinitiator I-2959 as component (H). (Irgacure 2959, manufactured by Ciba Japan, "Irgacure" is a registered trademark), photoinitiator I-819 (Irgacure 819, manufactured by Ciba Japan), photoinitiator I-784 (Irgacure 784, Ciba・ Japan Co., Ltd.), photoinitiator I-OXE01 (Irgacure OXE01, Ciba Japan Co., Ltd.), photoinitiator NCI-831 (manufactured by ADEKA), peroxide PB-P (perbutyl P) , Manufactured by Nippon Oil & Fats Co., Ltd., “Perbutyl” is a registered trademark) and then mixed until uniform, and a 2 μm pore size polyflon filter (PF020, Advantech) Vacuum defoamed after the was pressure filtered using a Western Co.) to obtain a varnish of the cladding layer-forming resin composition of the present invention. Table 10 shows the amount of each component.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
[クラッド層形成用樹脂フィルムの作製]
 実施例15と同様にして、クラッド層形成用樹脂フィルムを作製した。
[コア部形成用樹脂フィルムの作製]
 実施例15と同様にして、コア部形成用樹脂フィルムを作製した。
[Preparation of resin film for forming cladding layer]
A resin film for forming a cladding layer was produced in the same manner as in Example 15.
[Preparation of core part-forming resin film]
In the same manner as in Example 15, a core part-forming resin film was produced.
[光導波路の作製]
 保護フィルムを除去した前記下部クラッド層形成用樹脂フィルムを、あらかじめ銅を全面エッチングにより除去したガラスエポキシ樹脂基板(MCL-E-679FG(B)、日立化成(株)製、板厚0.6mm)上に、真空加圧式ラミネータ(MVLP-500/600、(株)名機製作所製)を用いて積層した。積層条件は実施例1~6及び比較例1~2では圧力0.8MPa、温度140℃、加圧時間300秒、実施例7~13及び比較例3~6では圧力0.4MPa、温度100℃、加圧時間90秒とした。
 その後基材フィルムを剥離し、実施例1~5、7、9~13についてはハロゲンランプ(アイグラフィックス(株)製、アイドルフィン3000灯具、形式:MQE3002GV、適合ランプ:MQ3000LP)で露光(1000mJ/cm2)してから、これを、乾燥機を用いて160℃で30分加熱硬化し、下部クラッド層3を形成した。
 続いて、ロールラミネータ(HLM-1500、日立化成テクノプラント(株)製)を用い、保護フィルムを除去した前記コア部形成用樹脂フィルムを、下部クラッド層3上に、圧力0.5MPa、温度50℃、速度0.2m/minの条件で積層した。
 次いで、幅50μmの光導波路形成用パターンを有するネガ型フォトマスクを介し、紫外線露光機で紫外線(波長365nm)を700mJ/cm2照射して、コア部4(コアパターン)を露光した。コア部形成用樹脂フィルムの基材を除去した後、スプレー式現像装置(RX-40D、(株)山縣機械製)を用い、1質量%炭酸ナトリウム水溶液にて温度30℃、スプレー圧0.15MPa、現像時間100秒の条件で現像した。続いて、純水にて洗浄し、80℃で10分、160℃で1時間加熱乾燥した。
[Fabrication of optical waveguide]
A glass epoxy resin substrate (MCL-E-679FG (B), manufactured by Hitachi Chemical Co., Ltd., thickness 0.6 mm) from which the lower clad layer forming resin film from which the protective film has been removed has been previously removed by etching the entire surface of copper. On top of this, lamination was performed using a vacuum pressure laminator (MVLP-500 / 600, manufactured by Meiki Seisakusho Co., Ltd.). The lamination conditions are as follows: pressures of 0.8 MPa and temperatures of 140 ° C. and pressurization time of 300 seconds in Examples 1 to 6 and Comparative Examples 1 and 2, pressures of 0.4 MPa and temperatures of 100 ° C. in Examples 7 to 13 and Comparative Examples 3 to 6. The pressurization time was 90 seconds.
Thereafter, the base film was peeled off, and in Examples 1 to 5, 7, and 9 to 13, exposure was performed with a halogen lamp (made by Eye Graphics Co., Ltd., idle fin 3000 lamp, type: MQE3002GV, compatible lamp: MQ3000LP) (1000 mJ). / Cm 2 ), and this was heat-cured at 160 ° C. for 30 minutes using a dryer to form the lower cladding layer 3.
Subsequently, using a roll laminator (HLM-1500, manufactured by Hitachi Chemical Technoplant Co., Ltd.), the core part-forming resin film from which the protective film was removed was placed on the lower cladding layer 3 at a pressure of 0.5 MPa and a temperature of 50 Lamination was performed under the conditions of ° C and a speed of 0.2 m / min.
Next, the core part 4 (core pattern) was exposed by irradiating ultraviolet light (wavelength 365 nm) with 700 mJ / cm 2 with an ultraviolet exposure machine through a negative photomask having an optical waveguide forming pattern with a width of 50 μm. After removing the base of the resin film for forming the core part, using a spray developing device (RX-40D, manufactured by Yamagata Kikai Co., Ltd.), the temperature is 30 ° C. and the spray pressure is 0.15 MPa with a 1 mass% sodium carbonate aqueous solution. Development was performed under the condition of a development time of 100 seconds. Subsequently, it was washed with pure water, dried by heating at 80 ° C. for 10 minutes and at 160 ° C. for 1 hour.
 実施例52~70の評価結果を表11に示す。 The evaluation results of Examples 52 to 70 are shown in Table 11.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 実施例52~70に示したように、本発明の樹脂組成物を用いて作製した光導波路は光伝播損失性に優れていることがわかる。特に、単官能(メタ)アクリル化合物、及びラジカル開始剤を含有する、実施例52~64は信頼性試験後の光損失増加が少ないことがわかる。
 以上のことから、本発明の樹脂組成物は光導波路を作製したときに低光伝搬損失性及び信頼性に優れており、特に高温高湿下での信頼性が必要な光電気複合基板用材料に好適であるといえる。
As shown in Examples 52 to 70, it can be seen that the optical waveguide produced using the resin composition of the present invention is excellent in light propagation loss. In particular, it can be seen that Examples 52 to 64 containing a monofunctional (meth) acryl compound and a radical initiator have little increase in light loss after the reliability test.
From the above, the resin composition of the present invention is excellent in low light propagation loss and reliability when an optical waveguide is produced, and particularly a material for an optoelectric composite substrate that requires reliability under high temperature and high humidity. It can be said that it is suitable for.
 以上のことから、本発明の樹脂組成物は透明性、低屈折率性、低熱膨張率性などに優れており、特に耐熱性や低熱膨張率性が要求される分野での光導波路用材料に好適であるといえる。 From the above, the resin composition of the present invention is excellent in transparency, low refractive index property, low thermal expansion property, etc., and particularly as an optical waveguide material in fields where heat resistance and low thermal expansion property are required. It can be said that it is preferable.
1 光導波路
2 基材
3 下部クラッド層
4 コア部
5 上部クラッド層
6 下部電気配線
7 上部電気配線
DESCRIPTION OF SYMBOLS 1 Optical waveguide 2 Base material 3 Lower clad layer 4 Core part 5 Upper clad layer 6 Lower electric wiring 7 Upper electric wiring

Claims (36)

  1.  (A)2つ以上のエポキシ基を有するエポキシ化合物、(B)エポキシ硬化剤、及び(C)平均粒径が1nm以上70nm以下のシリカ粒子、を含有する光導波路用樹脂組成物。 A resin composition for an optical waveguide containing (A) an epoxy compound having two or more epoxy groups, (B) an epoxy curing agent, and (C) silica particles having an average particle diameter of 1 nm to 70 nm.
  2.  (B)成分がフェノール性水酸基を有する化合物である、請求項1に記載の光導波路用樹脂組成物。 The resin composition for optical waveguides according to claim 1, wherein the component (B) is a compound having a phenolic hydroxyl group.
  3.  (A)成分を構成する炭素、窒素、酸素の原子について、これら原子の総数をN、他原子との化学結合がすべて単結合からなる原子の数をnとしたとき、n/Nが0.6以上1以下である、請求項1又は2に記載の光導波路用樹脂組成物。 Regarding the carbon, nitrogen, and oxygen atoms constituting the component (A), when the total number of these atoms is N, and the number of atoms in which all the chemical bonds with other atoms are single bonds is n, n / N is 0.00. The resin composition for an optical waveguide according to claim 1, wherein the resin composition is 6 or more and 1 or less.
  4.  (A)成分が脂環式エポキシ化合物又はアルキルフェノール型エポキシ化合物である、請求項1~3のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 1 to 3, wherein the component (A) is an alicyclic epoxy compound or an alkylphenol type epoxy compound.
  5.  (A)成分の含有量が、(A)成分及び(B)成分の総量に対して50~95質量%である、請求項1~4のいずれかに記載の光導波路用樹脂組成物。 5. The resin composition for an optical waveguide according to claim 1, wherein the content of the component (A) is 50 to 95% by mass with respect to the total amount of the components (A) and (B).
  6.  (C)成分の含有量が、(A)成分及び(B)成分の総量100質量部に対して10~300質量部である、請求項1~5のいずれかに記載の光導波路用樹脂組成物。 6. The resin composition for an optical waveguide according to claim 1, wherein the content of the component (C) is 10 to 300 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). object.
  7.  更に、(D)成分としてシリコーンオイルを含有する、請求項1~6のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 1 to 6, further comprising silicone oil as component (D).
  8.  (D)成分のシリコーンオイルが、両末端にグリシジル基を有するシリコーンオイルである、請求項7に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 7, wherein the silicone oil as component (D) is a silicone oil having glycidyl groups at both ends.
  9.  (D)成分の平均分子量が、700以下である、請求項7又は8に記載の光導波路用樹脂組成物。 The resin composition for optical waveguides of Claim 7 or 8 whose average molecular weight of (D) component is 700 or less.
  10.  (D)成分の含有量が、(A)成分及び(B)成分の総量100質量部に対して1~30質量部である、請求項7~9のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 7 to 9, wherein the content of the component (D) is 1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). object.
  11.  更に、(E)成分としてシランカップリング剤を含有する、請求項1~10のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 1, further comprising a silane coupling agent as component (E).
  12.  (E)成分のシランカップリング剤が、反応性官能基を有するトリアルコキシシランである、請求項11に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 11, wherein the silane coupling agent of component (E) is a trialkoxysilane having a reactive functional group.
  13.  (E)成分が、グリシジル基、アクリロイル基、メタクリロイル基の中から選択される少なくともいずれかの反応性官能基を有する、請求項11又は12に記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 11 or 12, wherein the component (E) has at least one reactive functional group selected from a glycidyl group, an acryloyl group, and a methacryloyl group.
  14.  (E)成分の含有量が、(C)成分100質量部に対して10~100質量部である、請求項11~13のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 11 to 13, wherein the content of the component (E) is 10 to 100 parts by mass with respect to 100 parts by mass of the component (C).
  15.  更に、(F)成分として(メタ)アクリルポリマを含有する、請求項1~14のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to claim 1, further comprising (meth) acrylic polymer as component (F).
  16.  (F)成分の(メタ)アクリルポリマ100質量%が、(F-1)(メタ)アクリル酸グリシジル10~80質量%、(F-2)(メタ)アクリル酸アルキル(アルキルの炭素数1~6)20~90質量%、及び(F-3)その他の化合物0~40質量%から構成される、請求項15に記載の光導波路用樹脂組成物。 (F) component (meth) acrylic polymer 100% by mass is (F-1) glycidyl (meth) acrylate 10-80% by mass, (F-2) alkyl (meth) acrylate (alkyl having 1 to The resin composition for an optical waveguide according to claim 15, comprising 6) 20 to 90% by mass and (F-3) other compounds 0 to 40% by mass.
  17.  (F)成分の(メタ)アクリルポリマが、(F-1)及び(F-2)だけで構成されており、(F-3)成分を含まない、請求項15又は16に記載の光導波路用樹脂組成物。 The optical waveguide according to claim 15 or 16, wherein the (F) component (meth) acrylic polymer comprises only (F-1) and (F-2) and does not contain the (F-3) component. Resin composition.
  18.  (F)成分の含有量が、(A)成分及び(B)成分の総量100質量部に対して1~40質量部である、請求項15~17のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 15 to 17, wherein the content of the component (F) is 1 to 40 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). object.
  19.  更に、(G)成分として単官能(メタ)アクリル化合物、及び(H)成分としてラジカル開始剤を含有する、請求項1~18のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 1 to 18, further comprising a monofunctional (meth) acrylic compound as the component (G) and a radical initiator as the component (H).
  20.  (G)成分としてグリシジル基を有する単官能(メタ)アクリル化合物を含む、請求項19に記載の光導波路用樹脂組成物。 The resin composition for optical waveguides of Claim 19 containing the monofunctional (meth) acrylic compound which has a glycidyl group as (G) component.
  21.  (G)成分のうちの一つがメタクリル酸グリシジルである、請求項19又は20に記載の光導波路用樹脂組成物。 21. The resin composition for an optical waveguide according to claim 19 or 20, wherein one of the components (G) is glycidyl methacrylate.
  22.  (H)成分のうちの一つが過酸化物である、請求項19~21のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 19 to 21, wherein one of the components (H) is a peroxide.
  23.  (H)成分のうちの一つが光ラジカル開始剤である、請求項19~22のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 19 to 22, wherein one of the components (H) is a photo radical initiator.
  24.  光ラジカル開始剤としてビス(エタ(5)シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-(ピロール-1-イル)フェニル)チタニウムを含む、請求項23に記載の光導波路用樹脂組成物。 24. The optical waveguide resin according to claim 23, comprising bis (eta (5) cyclopentadienyl) -bis (2,6-difluoro-3- (pyrrol-1-yl) phenyl) titanium as a photoradical initiator. Composition.
  25.  (A)成分の2つ以上のエポキシ基を有するエポキシ化合物が、水素添加ビスフェノールA型エポキシ樹脂である、請求項1~24のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 1 to 24, wherein the epoxy compound having two or more epoxy groups as the component (A) is a hydrogenated bisphenol A type epoxy resin.
  26.  (B)成分のフェノール性水酸基を有する化合物が、アミノトリアジンノボラック樹脂である、請求項2~25のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 2 to 25, wherein the compound (B) having a phenolic hydroxyl group is an aminotriazine novolak resin.
  27.  前記樹脂組成物の50μm厚の硬化物における波長850nmでの光透過率が、95%以上である、請求項1~26のいずれかに記載の光導波路用樹脂組成物。 The resin composition for an optical waveguide according to any one of claims 1 to 26, wherein a light transmittance at a wavelength of 850 nm in a cured product having a thickness of 50 μm of the resin composition is 95% or more.
  28.  基材と、該基材上に形成され、請求項1~27のいずれかに記載の光導波路用樹脂組成物からなる樹脂組成物層と、を備える光導波路用樹脂フィルム。 A resin film for an optical waveguide, comprising: a base material; and a resin composition layer formed on the base material and comprising the resin composition for an optical waveguide according to any one of claims 1 to 27.
  29.  前記基材がポリエチレンテレフタレート、ポリエチレンナフタレート、銅箔、及びキャリア付き銅箔から選択される少なくともいずれかである、請求項28に記載の光導波路用樹脂フィルム。 The resin film for an optical waveguide according to claim 28, wherein the substrate is at least one selected from polyethylene terephthalate, polyethylene naphthalate, copper foil, and copper foil with carrier.
  30.  前記樹脂組成物層の前記基材が設けられる側の面とは反対側の面を覆う保護フィルムをさらに備える、請求項28又は29に記載の光導波路用樹脂フィルム。 30. The resin film for an optical waveguide according to claim 28 or 29, further comprising a protective film that covers a surface of the resin composition layer opposite to a surface on which the base material is provided.
  31.  下部クラッド層、コア部、及び上部クラッド層を備える光導波路であって、請求項1~27のいずれかに記載の光導波路用樹脂組成物を用いて、前記下部クラッド層、コア部、及び上部クラッド層の少なくとも1つを形成する光導波路。 An optical waveguide comprising a lower cladding layer, a core portion, and an upper cladding layer, wherein the lower cladding layer, the core portion, and the upper portion are formed using the resin composition for an optical waveguide according to any one of claims 1 to 27. An optical waveguide forming at least one of the cladding layers.
  32.  下部クラッド層、コア部、及び上部クラッド層を備える光導波路であって、請求項28~30のいずれかに記載の樹脂フィルムを用いて、前記下部クラッド層、コア部、及び上部クラッド層の少なくとも1つを形成する光導波路。 An optical waveguide comprising a lower clad layer, a core portion, and an upper clad layer, wherein at least one of the lower clad layer, the core portion, and the upper clad layer is formed using the resin film according to any one of claims 28 to 30. An optical waveguide forming one.
  33.  下部クラッド層、コア部、及び上部クラッド層を備える光導波路であって、前記コア部材が(メタ)アクリル化合物を含有し、前記下部クラッド層又は上部クラッド層のクラッド材が請求項19~26のいずれかに記載の光導波路用樹脂組成物からなり、これらのコア材とクラッド材から形成されなることを特徴とする光導波路。 27. An optical waveguide comprising a lower clad layer, a core portion, and an upper clad layer, wherein the core member contains a (meth) acrylic compound, and the clad material of the lower clad layer or the upper clad layer is according to any one of claims 19 to 26. An optical waveguide comprising the resin composition for an optical waveguide according to any one of the above, and formed from these core material and clad material.
  34.  電気回路上に請求項31~33のいずれかに記載の光導波路を形成してなる、光電気複合配線板。 A photoelectric composite wiring board comprising the optical waveguide according to any one of claims 31 to 33 formed on an electrical circuit.
  35.  請求項31~33のいずれかに記載の光導波路の前記上部クラッド層上に電気回路を形成してなる光電気複合配線板。 34. A photoelectric composite wiring board obtained by forming an electric circuit on the upper clad layer of the optical waveguide according to claim 31.
  36.  電気回路の一部がクラッド層を貫いていることを特徴とする、請求項34又は35に記載の光電気複合配線板。 36. The photoelectric composite wiring board according to claim 34 or 35, wherein a part of the electric circuit penetrates the cladding layer.
PCT/JP2013/079936 2013-08-08 2013-11-05 Resin composition for optical waveguides, resin film for optical waveguides using same, optical waveguide and photoelectric composite wiring board WO2015019512A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-165031 2013-08-08
JP2013165031A JP2016180014A (en) 2013-08-08 2013-08-08 Resin composition, resin film, and optical waveguide and photoelectric composite wiring board prepared therewith
JP2013-165033 2013-08-08
JP2013165032A JP2016180015A (en) 2013-08-08 2013-08-08 Resin composition, resin film, and optical waveguide and photoelectric composite wiring board prepared therewith
JP2013-165032 2013-08-08
JP2013165033A JP2016180016A (en) 2013-08-08 2013-08-08 Resin composition, resin film, and optical waveguide and photoelectric composite wiring board prepared therewith

Publications (1)

Publication Number Publication Date
WO2015019512A1 true WO2015019512A1 (en) 2015-02-12

Family

ID=52460877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079936 WO2015019512A1 (en) 2013-08-08 2013-11-05 Resin composition for optical waveguides, resin film for optical waveguides using same, optical waveguide and photoelectric composite wiring board

Country Status (2)

Country Link
TW (1) TW201506050A (en)
WO (1) WO2015019512A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113396170A (en) * 2019-02-18 2021-09-14 住友电气工业株式会社 Optical fiber
US11415888B2 (en) 2016-08-31 2022-08-16 Tokyo Ohka Kogyo Co., Ltd. Negative type photosensitive resin composition, photosensitive resist film, pattern forming method, cured film, and method of producing cured film
WO2023008350A1 (en) * 2021-07-26 2023-02-02 味の素株式会社 Transparent resin composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI655097B (en) 2017-12-27 2019-04-01 財團法人工業技術研究院 Optical waveguide element and method of manufacturing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169038A (en) * 2000-11-30 2002-06-14 Toyota Central Res & Dev Lab Inc Method for producing optical transmission line
JP2005062364A (en) * 2003-08-08 2005-03-10 Toyota Central Res & Dev Lab Inc Self-forming optical waveguide and its manufacturing method
JP2007031555A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Epoxy resin composition, epoxy resin film, optical waveguide and photo/electric hybrid wiring board and electronic device
JP2007163655A (en) * 2005-12-12 2007-06-28 Konica Minolta Opto Inc Optical resin material and optical device
JP2009116291A (en) * 2007-10-15 2009-05-28 Hitachi Chem Co Ltd Resin composition for forming clad layer, resin film for forming clad layer using it, light guide using them, and optical module
JP2009199076A (en) * 2008-01-24 2009-09-03 Hitachi Chem Co Ltd Resin composition for forming clad layer, resin film for forming clad layer using the same, and optical waveguide and optical module using them
JP2009265298A (en) * 2008-04-24 2009-11-12 Toray Ind Inc Non-hardened sheet for optical waveguide, member for optical waveguide using the same, and optical waveguide
JP2010018717A (en) * 2008-07-10 2010-01-28 Hitachi Chem Co Ltd Clad forming resin composition, resin film, and optical waveguide using thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169038A (en) * 2000-11-30 2002-06-14 Toyota Central Res & Dev Lab Inc Method for producing optical transmission line
JP2005062364A (en) * 2003-08-08 2005-03-10 Toyota Central Res & Dev Lab Inc Self-forming optical waveguide and its manufacturing method
JP2007031555A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Epoxy resin composition, epoxy resin film, optical waveguide and photo/electric hybrid wiring board and electronic device
JP2007163655A (en) * 2005-12-12 2007-06-28 Konica Minolta Opto Inc Optical resin material and optical device
JP2009116291A (en) * 2007-10-15 2009-05-28 Hitachi Chem Co Ltd Resin composition for forming clad layer, resin film for forming clad layer using it, light guide using them, and optical module
JP2009199076A (en) * 2008-01-24 2009-09-03 Hitachi Chem Co Ltd Resin composition for forming clad layer, resin film for forming clad layer using the same, and optical waveguide and optical module using them
JP2009265298A (en) * 2008-04-24 2009-11-12 Toray Ind Inc Non-hardened sheet for optical waveguide, member for optical waveguide using the same, and optical waveguide
JP2010018717A (en) * 2008-07-10 2010-01-28 Hitachi Chem Co Ltd Clad forming resin composition, resin film, and optical waveguide using thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11415888B2 (en) 2016-08-31 2022-08-16 Tokyo Ohka Kogyo Co., Ltd. Negative type photosensitive resin composition, photosensitive resist film, pattern forming method, cured film, and method of producing cured film
CN113396170A (en) * 2019-02-18 2021-09-14 住友电气工业株式会社 Optical fiber
CN113396170B (en) * 2019-02-18 2023-08-08 住友电气工业株式会社 Optical fiber
WO2023008350A1 (en) * 2021-07-26 2023-02-02 味の素株式会社 Transparent resin composition

Also Published As

Publication number Publication date
TW201506050A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
TWI382054B (en) Resin compound for optics material,resin film for optics material and optical waveguide
JP5381097B2 (en) Phenoxy resin for optical material, resin composition for optical material, resin film for optical material, and optical waveguide using the same
WO2015033893A1 (en) Photosensitive resin composition for forming member having curved shape, photosensitive resin film for forming member having curved shape using said composition, and lens member manufactured using said composition or said film
JP2009300688A (en) Resin composition for forming cladding layer, resin film for forming cladding layer using the same, and optical waveguide and optical module using these
WO2015019512A1 (en) Resin composition for optical waveguides, resin film for optical waveguides using same, optical waveguide and photoelectric composite wiring board
WO2015029261A1 (en) Resin composition for forming optical waveguide, resin film for forming optical waveguide, and optical waveguide using same
WO2012026435A1 (en) Resin composition for formation of optical waveguide, resin film for formation of optical waveguide which comprises the resin composition, and optical waveguide produced using the resin composition or the resin film
JP5526740B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film using the same, and optical waveguide using the same
JP5585578B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide
JP5257090B2 (en) Optical waveguide
JP5515219B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these
JP5003506B2 (en) Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP2009175244A (en) Resin composition for optical material, resin film for optical material, and optical waveguide using them
JP5433959B2 (en) Optical waveguide manufacturing method and optical waveguide obtained by the manufacturing method
JP5904362B2 (en) Resin composition for optical material, resin film for optical material, and optical waveguide
JP2016180014A (en) Resin composition, resin film, and optical waveguide and photoelectric composite wiring board prepared therewith
JP2009167353A (en) Resin composition for optical material, resin film for optical material, and optical waveguide path using them
JP2018048277A (en) Resin composition for optical material, resin film for optical material using the same, and optical waveguide and production method of the optical waveguide
JP2017138495A (en) Method for producing optical waveguide using photosensitive resin composition
JP2016180016A (en) Resin composition, resin film, and optical waveguide and photoelectric composite wiring board prepared therewith
JP2015146000A (en) Resin composition for optical waveguide formation, resin film for optical waveguide formation, and optical waveguide using the resin composition and the resin film
WO2017022055A1 (en) Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same
JP2017187653A (en) Optical waveguide cladding material, optical waveguide cladding layer-forming resin film, and optical waveguide
JP2013174776A (en) Resin composition for optical material, resin film for optical material and optical waveguide using the same
JP2017187652A (en) Optical waveguide cladding material, optical waveguide cladding layer-forming resin film, and optical waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP