WO2017022055A1 - Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same - Google Patents

Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same Download PDF

Info

Publication number
WO2017022055A1
WO2017022055A1 PCT/JP2015/071973 JP2015071973W WO2017022055A1 WO 2017022055 A1 WO2017022055 A1 WO 2017022055A1 JP 2015071973 W JP2015071973 W JP 2015071973W WO 2017022055 A1 WO2017022055 A1 WO 2017022055A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
forming
component
meth
compound
Prior art date
Application number
PCT/JP2015/071973
Other languages
French (fr)
Japanese (ja)
Inventor
雅夫 内ヶ崎
大地 酒井
黒田 敏裕
裕 川上
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2015/071973 priority Critical patent/WO2017022055A1/en
Publication of WO2017022055A1 publication Critical patent/WO2017022055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation

Definitions

  • the present invention relates to a resin composition for forming an optical waveguide, a resin film for forming an optical waveguide, an optical waveguide using the same, and a method for producing the same, and in particular, it is excellent in transparency and environmental reliability by a high temperature and high humidity leaving test, and is alkaline.
  • the present invention relates to a resin composition for forming an optical waveguide soluble in an aqueous solution, a resin film for forming an optical waveguide, an optical waveguide using them, and a method for producing the same.
  • a rigid optical waveguide manufactured on a hard support substrate such as a glass epoxy resin that is assumed to be applied to an opto-electric hybrid substrate, or a flexible optical device that does not have a rigid support substrate assumed to be connected between boards Waveguides are considered suitable. Furthermore, by using an opto-electric composite flexible wiring board in which a flexible wiring board and an optical waveguide are integrally combined, the degree of mounting freedom can be further improved.
  • Polymer optical waveguides are required to have heat resistance and environmental reliability as well as transparency (low light propagation loss) from the viewpoint of the environment in which the equipment is used, component mounting, and the like.
  • the demand for toughness is increasing from the viewpoint of the strength and handleability of the optical waveguide.
  • a method capable of easily forming a pattern is required, and one of the methods is a pattern forming method by exposure and development widely used in a printed wiring board manufacturing process. Can do.
  • optical waveguide materials containing (meth) acrylic polymers described in Patent Documents 1 to 4 are known.
  • the optical waveguide materials described in Patent Documents 1 and 2 can be patterned by exposure and development, are transparent at a wavelength of 850 nm, and have good light propagation loss after a high temperature and high humidity test, but are required. This number is still insufficient for high-speed and high-density signal transmission by light.
  • the optical waveguide material described in Patent Document 3 exhibits excellent optical transmission loss and has good heat resistance, it is brittle and does not satisfy the toughness.
  • optical waveguide materials described in Patent Documents 4 and 5 have transparency at a wavelength of 850 nm and are excellent in toughness and the like, concrete examples such as light propagation loss in environmental reliability evaluation by a high temperature and high humidity standing test There is no specific description of the test results, and it is still not satisfactory.
  • the present invention provides a resin composition for an optical waveguide that is excellent in transparency at a wavelength of 850 nm and environmental reliability by a high-temperature and high-humidity standing test (hereinafter also simply referred to as “environmental reliability”), and formation of the optical waveguide.
  • An object of the present invention is to provide an optical waveguide-forming resin film formed using a resin composition, an optical waveguide using the same, and a method for producing the same.
  • the present inventors have found that the above problem can be solved by using a resin composition for forming an optical waveguide containing a polymer having an alkali-soluble group, a compound having a specific ethylenically unsaturated group, and a polymerization initiator.
  • a resin composition for forming an optical waveguide containing a polymer having an alkali-soluble group, a compound having a specific ethylenically unsaturated group, and a polymerization initiator.
  • An optical waveguide forming resin composition comprising (A) a polymer having an alkali-soluble group, (B) a compound having an ethylenically unsaturated group in the molecule, and (C) a polymerization initiator,
  • the component (B) is at least one compound selected from the following (B1-1) to (B1-3) as the component (B1) and the alkali-soluble group of the component (A) in the molecule as the component (B2)
  • a resin composition for forming an optical waveguide comprising a group that reacts with a compound and a compound having an ethylenically unsaturated group.
  • (B1-1) Compound having three or more ethylenically unsaturated groups
  • (B1-2) Compound having carboxy group and two or more ethylenically unsaturated groups (B1-3) Urethane bond and one or more ethylene
  • the component [B1-2] is a compound having two or more carboxy groups in the molecular chain and one or more ethylenically unsaturated groups at the molecular chain terminals.
  • the component [B1-2] is a compound having a urethane bond and at least one ring structure selected from an alicyclic structure, an aromatic ring structure and a heterocyclic structure in the molecule.
  • a resin composition for forming an optical waveguide according to item 1. [9] The resin composition for forming an optical waveguide according to the above [8], wherein the component (B2-1) is a compound further having an alicyclic structure or an aromatic ring structure in the molecule. [10] The resin composition for forming an optical waveguide according to the above [8] or [9], wherein the component (B2-1) is a compound further having a bisphenol skeleton in the molecule.
  • the content of component (A) is 10 to 85% by mass relative to the total amount of components (A) and (B), and the content of component (B) is the total amount of components (A) and (B).
  • the mass ratio [(B1) / (B2)] of the component (B1) to the component (B2) is 50/50 to 85/15, and the content of the component (C)
  • An optical waveguide manufacturing method including the following steps 1 to 4, wherein at least one of the lower clad layer, the core portion, and the upper clad layer is used for the optical waveguide forming resin film described in [15] above.
  • a method for manufacturing an optical waveguide Step 1: A step of laminating a resin film for forming a lower clad layer on a substrate to form a lower clad layer
  • Step 3 The core portion Step of forming the core part after exposing the forming resin film through a photomask and then developing
  • Step 4 The upper clad layer-forming resin film is laminated on the lower clad layer and the core part.
  • an optical waveguide resin composition excellent in transparency and environmental reliability at a wavelength of 850 nm, an optical waveguide forming resin film formed using this optical waveguide forming resin composition, an optical waveguide using them, and A manufacturing method thereof can be provided.
  • the resin composition for forming an optical waveguide of the present invention comprises (A) a polymer having an alkali-soluble group, (B) a compound having an ethylenically unsaturated group in the molecule, and (C) an optical waveguide containing a polymerization initiator.
  • a resin composition for The component (B) is at least one compound selected from the following (B1-1) to (B1-3) as the component (B1) and the alkali-soluble group of the component (A) in the molecule as the component (B2) And a compound having an ethylenically unsaturated group.
  • the resin composition for forming an optical waveguide of the present invention is preferably a resin composition that is cured by heating or irradiation with actinic rays.
  • each component used in the present invention will be described.
  • the resin composition for forming an optical waveguide of the present invention contains a polymer having an alkali-soluble group (hereinafter, also simply referred to as “component (A)”) as the component (A).
  • component (A) has a property of being dissolved in an alkaline aqueous solution by having the alkali-soluble group, and a developer such as an alkaline aqueous solution or an aqueous developer (hereinafter also simply referred to as “developer”).
  • developer such as an alkaline aqueous solution or an aqueous developer
  • the component (A) was obtained by applying a solution containing the component (A) to a substrate so that the film thickness after drying was 50 ⁇ m and then drying from the viewpoint of enabling development with an alkaline aqueous solution.
  • the coating When the coating is immersed in a 1% by mass aqueous potassium carbonate solution at 30 ° C. for 30 minutes and then washed with pure water, it may have alkali solubility to such an extent that the coating does not remain.
  • the alkali-soluble group include acidic substituents having a free hydrogen atom such as a carboxy group, a sulfonic acid group, a phenolic hydroxyl group, and an alcoholic hydroxyl group, and an amino group. From the viewpoint of solubility in an alkaline aqueous solution, an acidic substituent is preferable, and a carboxy group is more preferable.
  • an alkali-soluble (meth) acrylic polymer is preferable.
  • the alkali-soluble (meth) acrylic polymer of component (A) include (meth) acrylic acid; (meth) acrylic acid esters such as (meth) acrylic alkyl ester and (meth) acrylic acid hydroxyalkyl ester; Polymer having structural unit derived from (meth) acrylic monomer such as acrylamide, structural unit derived from (meth) acrylic monomer, and styrene, ⁇ -methylstyrene, maleic anhydride, N-substituted or unsubstituted maleimide Preferred is a copolymer having a structural unit derived from a polymerizable unsaturated group-containing monomer other than the (meth) acrylic monomer such as a monomer.
  • (meth) acrylic acid such as (meth) acrylic alkyl ester and (meth) acrylic acid hydroxyalkyl ester
  • Polymer having structural unit derived from (meth) acrylic monomer
  • a polymer having a maleimide skeleton derived from an N-substituted maleimide monomer in the main chain is preferable, and a polymer having a maleimide skeleton derived from an N-substituted maleimide monomer in the main chain.
  • a (meth) acrylic polymer is more preferable, and a copolymer of a structural unit derived from an N-substituted maleimide monomer and a structural unit derived from another (meth) acrylic monomer is more preferable.
  • the (meth) acrylic polymer having a maleimide skeleton derived from an N-substituted maleimide monomer in the main chain is represented by the structural unit (A-1) represented by the following general formula (1) and the following general formula (2) in the main chain.
  • R 1 to R 3 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • R 4 to R 6 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • R 7 represents an organic group having 1 to 20 carbon atoms.
  • R 8 to R 10 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • R 11 to R 13 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.
  • X 1 represents a divalent organic group having 1 to 20 carbon atoms. Show.
  • Examples of the organic group having 1 to 20 carbon atoms in the general formulas (1) to (4) include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a carbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, and a carbamoyl group.
  • monovalent or divalent groups such as They are further hydroxy groups, halogen atoms, alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, carbonyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, carbamoyl groups, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups.
  • An amino group, a silyl group and the like may be substituted.
  • the content of the structural unit (A-1) in the alkali-soluble (meth) acrylic polymer is preferably 3 to 50% by mass. When it is 3% by mass or more, heat resistance derived from maleimide is obtained, and when it is 50% by mass or less, the brittleness of the resulting resin pattern can be suppressed while sufficiently ensuring transparency. From the above viewpoint, 5 to 40% by mass is more preferable, and 10 to 30% by mass is further preferable.
  • the structural unit (A-1) is not particularly limited as long as it is represented by the general formula (1).
  • Examples of the maleimide as a raw material for the structural unit (A-1) include all those described in paragraph [0017] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776).
  • alkylmaleimides such as N-methylmaleimide and N-ethylmaleimide
  • alicyclic rings such as N-cyclopropylmaleimide and N-cyclobutylmaleimide
  • alicyclic maleimide is preferably used, and N-cyclohexylmaleimide or N-2-methylcyclohexylmaleimide is more preferably used. These compounds can be used alone or in combination of two or more.
  • the content of the structural unit (A-2) in the alkali-soluble (meth) acrylic polymer is preferably 20 to 90% by mass. When it is 20% by mass or more, transparency derived from (meth) acrylate is obtained, and when it is 90% by mass or less, heat resistance is sufficient. From the above viewpoint, the content is more preferably 25 to 85% by mass, and further preferably 30 to 80% by mass.
  • the structure of the structural unit (A-2) is not particularly limited as long as it is represented by the general formula (2).
  • Examples of the (meth) acrylate used as the raw material for the structural unit (A-2) include all those described in paragraph [0020] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776).
  • aliphatic (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate
  • alicyclic (meth) acrylates such as cyclopentyl (meth) acrylate and cyclohexyl (meth) acrylate
  • benzyl (meth) Aromatic (meth) acrylates such as acrylate and phenyl (meth) acrylate
  • heterocyclic (meth) acrylates such as 2-tetrahydrofurfuryl (meth) acrylate and N- (meth) acryloyloxyethyl hexahydrophthalimide
  • Examples thereof include hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; modified caprolactone thereof.
  • aliphatic (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, the alicyclic
  • the formula (meth) acrylate, the aromatic (meth) acrylate, the heterocyclic (meth) acrylate, or the hydroxyalkyl (meth) acrylate is preferable, and the aromatic (meth) acrylate or hydroxyalkyl (meth) acrylate is more preferable.
  • These compounds can be used alone or in combination of two or more.
  • the total content of the structural units (A-3) and (A-4) derived from the compound having a carboxy group and an ethylenically unsaturated group is preferably 3 to 60% by mass. . If it is 3% by mass or more, it is easy to dissolve in the developer, and if it is 60% by mass or less, in the development step of selectively removing the layer of the photosensitive resin composition by development described later, The property (the property that the portion that becomes a pattern without being removed by development is not attacked by the developer) is improved. From the above viewpoint, the content is more preferably 5 to 50% by mass, and further preferably 10 to 40% by mass.
  • the structural unit (A-3) derived from the compound having a carboxy group and an ethylenically unsaturated group is not particularly limited as long as it is represented by the general formula (3).
  • Examples of the compound having a carboxy group and an ethylenically unsaturated group as a raw material for the structural unit (A-3) include (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, and mesaconic acid. , Cinnamic acid, and the like. Among these, (meth) acrylic acid, maleic acid, fumaric acid, or crotonic acid are preferable, and (meth) acrylic acid is more preferable from the viewpoint of transparency and alkali solubility.
  • maleic anhydride may be used as a raw material, and after the polymerization, ring opening may be performed with an appropriate alcohol such as methanol, ethanol, propanol, or the like to convert the structure into the structure of the structural unit (A-3).
  • an appropriate alcohol such as methanol, ethanol, propanol, or the like to convert the structure into the structure of the structural unit (A-3).
  • the structural unit (A-4) derived from the compound having a carboxy group and an ethylenically unsaturated group is not particularly limited as long as it is represented by the general formula (4).
  • Examples of the compound having a carboxy group and an ethylenically unsaturated group as a raw material for the structural unit (A-4) include those described in paragraph [0023] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776). Are all listed.
  • mono (2- (meth) acryloyloxyethyl) succinate mono (2- (meth) acryloyloxyethyl) tetrahydrophthalate, mono (2- (meth) acrylic acid). It is preferably leuoxyethyl) hexahydrophthalate, mono (2- (meth) acryloyloxyethyl) hexahydroisophthalate, mono (2- (meth) acryloyloxyethyl) hexahydroterephthalate, and the like. These compounds can be used alone or in combination of two or more.
  • the alkali-soluble (meth) acrylic polymer may contain structural units other than the structural units (A-1) to (A-4) as necessary.
  • the compound having an ethylenically unsaturated group as a raw material for such a structural unit is not particularly limited.
  • styrene ⁇ -methylstyrene, vinyltoluene, and N-vinylcarbazole are preferably used from the viewpoint of heat resistance and transparency. These compounds can be used alone or in combination of two or more.
  • the polymer having an alkali-soluble group is not particularly limited in its synthesis method.
  • an alkali-soluble (meth) acrylic polymer for example, a raw material for the structural unit (A-1) A maleimide, a (meth) acrylate as a raw material of the structural unit (A-2), a carboxy group and an ethylenically unsaturated group as at least one raw material of the structural units (A-3) and (A-4) It can be obtained by copolymerization using a compound having a suitable polymerization initiator and a compound having another ethylenically unsaturated group as required.
  • an organic solvent can be used as a reaction solvent as needed.
  • the polymerization initiator is not particularly limited, but is preferably a radical polymerization initiator, such as various ketone peroxides, peroxyketals, dialkyl peroxides, diacyl peroxides, peroxycarbonates, peroxyesters, azo Compounds and the like.
  • the organic solvent used as the reaction solvent is not particularly limited as long as it can dissolve the alkali-soluble (meth) acrylic polymer, and various aromatic hydrocarbons, cyclic ethers, ketones, esters, carbonates, polyhydric alcohols. Examples include alkyl ethers, polyhydric alcohol alkyl ether acetates, and amides. These organic solvents can be used alone or in combination of two or more.
  • the alkali-soluble (meth) acrylic polymer may contain an ethylenically unsaturated group in the side chain as necessary.
  • the composition, synthesis method, etc. are not particularly limited.
  • the alkali-soluble (meth) acrylic polymer includes at least one ethylenically unsaturated group and an epoxy group, an oxetanyl group, an isocyanate group, a hydroxy group, a carboxy group, and the like.
  • An ethylenically unsaturated group can be introduced into the side chain by addition reaction of a compound having two functional groups.
  • Patent Document 5 Japanese Patent Laid-Open No. 2013-174776. Namely, compounds having various ethylenically unsaturated groups and epoxy groups, compounds having ethylenically unsaturated groups and oxetanyl groups, compounds having ethylenically unsaturated groups and isocyanate groups, compounds having ethylenically unsaturated groups and hydroxy groups And compounds having an ethylenically unsaturated group and a carboxy group.
  • the polymer having an alkali-soluble group preferably has a weight average molecular weight of 6,000 to 300,000.
  • the molecular weight is 6,000 or more, the strength of the cured product is sufficient when the resin composition is used, and when it is 300,000 or less, the solubility in the developer and the compatibility with the component (B) are high. It is good. From the above viewpoint, it is more preferably 6,000 to 200,000, and further preferably 10,000 to 100,000.
  • the weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • the polymer having an alkali-soluble group has an acid value so that it can be developed with various known developing solutions in the step of selectively removing a layer of the photosensitive resin composition by development described later.
  • the acid value of the polymer (A) having an alkali-soluble group is 20 to 300 mgKOH / g. It is preferable. When it is 20 mgKOH / g or more, development is easy, and when it is 300 mgKOH / g or less, a decrease in developer resistance can be suppressed. From the above viewpoint, it is more preferably 30 to 250 mgKOH / g, and further preferably 40 to 200 mgKOH / g.
  • the acid value of the polymer (A) having an alkali-soluble group is preferably 10 to 260 mgKOH / g. .
  • the acid value is 10 mgKOH / g or more, development is easy, and when it is 260 mgKOH / g or less, the developer resistance is not lowered. From the above viewpoint, it is more preferably 20 to 250 mgKOH / g, and further preferably 30 to 200 mgKOH / g.
  • the content of the component (A) is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B). If it is 10% by mass or more, the strength and flexibility of the cured product of the resin composition for forming an optical waveguide are sufficient, and if it is 85% by mass or less, the polymer of the component (A) is formed by the component (B) during exposure. It is easily entangled and hardened, and the developer resistance is not insufficient. From the above viewpoint, it is more preferably 15% by mass or more, and further preferably 20% by mass or more. Moreover, it is more preferable that it is 75 mass% or less, and it is further more preferable that it is 65 mass% or less. Further, from the viewpoint of low light loss, the range of 10 to 65% by mass is particularly preferable.
  • the resin composition for forming an optical waveguide of the present invention contains (B) a compound having an ethylenically unsaturated group in the molecule (hereinafter, also simply referred to as “component (B)”).
  • the component (B) comprises at least one compound selected from the following (B1-1) to (B1-3) as the component (B1) and an alkali of the polymer of the component (A) in the molecule as the component (B2) Combined use of a group that reacts with a soluble group and a compound having an ethylenically unsaturated group can improve the toughness of the cured film, and further, a bleed out during a reliability test using a high temperature and high humidity standing test. Can be suppressed.
  • (B1-1) Compound having three or more ethylenically unsaturated groups
  • (B1-2) Compound having carboxy group and two or more ethylenically unsaturated groups (B1-3) Urethane bond and one or more ethylene Compound having an unsaturated group
  • the ethylenically unsaturated group include a vinyl group, an allyl group, a butenyl group, a cyclohexenyl group, a cyclopentadienyl group, a (meth) acryloyloxyalkyl group, and the like. At least one selected from (meth) acryloyloxyalkyl groups is preferred.
  • “(meth) acryloyloxyalkyl group” means “acryloyloxyalkyl group” or “methacryloyloxyalkyl group”. The same applies to the following.
  • the content of the component (B) in the optical waveguide forming resin composition of the present invention is preferably 15 to 90% by mass relative to the total amount of the components (A) and (B). If it is 15% by mass or more, bleeding out during a reliability test can be suppressed, and if it is 90% by mass or less, the toughness of the cured film can be maintained. From the above viewpoint, it is more preferably 25% by mass or more, and further preferably 35% by mass or more. Moreover, it is more preferable that it is 85 mass% or less, and it is further more preferable that it is 80 mass% or less. From the viewpoint of low light loss, the range of 35 to 90% by mass is particularly preferable.
  • the mass ratio [(B1) / (B2)] of the component (B1) to the component (B2) in the optical waveguide forming resin composition of the present invention is preferably 50/50 to 85/15. If it is 50/50 or more, bleed-out during the reliability test can be suppressed, and if it is 85/15 or less, the toughness of the cured film can be maintained. From the above viewpoint, the ratio is more preferably 60/40 to 80/20, and further preferably 65/35 to 75/25. From the viewpoint of low light loss, the range of 65/35 to 75/25 is particularly preferable.
  • (B1-1) a compound having three or more ethylenically unsaturated groups and as the component (B2) react with the alkali-soluble group of the component (A) in the molecule.
  • the toughness of the cured film can be improved.
  • component (B1-1) The compound having three or more ethylenically unsaturated groups (hereinafter, also simply referred to as “component (B1-1)”) is not particularly limited, and examples thereof include trimethylolpropane tri (meth) acrylate.
  • heterocyclic such as ethoxylated isocyanuric acid tri (meth) acrylate, propoxylated isocyanuric acid tri (meth) acrylate, ethoxylated propoxylated isocyanuric acid tri (meth) acrylate
  • a compound having three ethylenically unsaturated groups such as aromatic epoxy (meth) acrylates such as a phenol novolac type epoxy (meth) acrylate and a cresol novolac type epoxy tri (meth) acrylate;
  • aromatic epoxy (meth) acrylates such as a phenol novolac type epoxy (meth) acrylate and a cresol novolac type epoxy tri (meth) acrylate
  • a compound having an over preparative ring, ethoxylated isocyanuric acid tri (meth) acrylate is more preferred.
  • These compounds can be used alone or in combination of two or more kinds, and can also be used in combination with other compounds having three or more ethylenically unsaturated groups.
  • a compound having a urethane bond in the molecule is preferable, urethane (meth) acrylate is more preferable, and ethoxylated isocyanuric acid tri ( More preferably, the (meth) acrylate (a1) and the urethane (meth) acrylate (a2) having three or more ethylenically unsaturated groups are used in combination.
  • the mass ratio [(a1) / (a2)] of the (a1) component to the (a2) component in the resin composition for forming an optical waveguide of the present invention is preferably 20/80 to 70/30.
  • the ratio is more preferably 30/70 to 65/35, and further preferably 40/60 to 60/40.
  • the component (B1-1) is preferably a mixture of two or more compounds having different molecular weights. Specifically, the component (a3) having a weight average molecular weight of 100 or more and less than 1,000 is combined with the component (a4) having a weight average molecular weight of 1,000 to 10,000. Is more preferable. By using the said mixture, the softness
  • the mass ratio [(a3) / (a4)] of the (a3) component to the (a4) component in the resin composition for forming an optical waveguide of the present invention is preferably 20/80 to 70/30.
  • the ratio is more preferably 30/70 to 65/35, and further preferably 40/60 to 60/40.
  • the content of the component (B1-1) in the optical waveguide forming resin composition of the present invention is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B).
  • the content is 10% by mass or more, crosslinking due to photocuring becomes high density, and precipitation of unreacted substances during an environmental reliability test (hereinafter also simply referred to as “environmental reliability test”) by a high temperature and high humidity standing test is small.
  • environmental reliability test environmental reliability test
  • the film strength and flexibility of a cured film are enough.
  • the content is more preferably 13 to 70% by mass, and further preferably 15 to 50% by mass. Further, from the viewpoint of suppressing the warp of the cured film, the range of 15 to 30% by mass is particularly preferable.
  • the compound (B1-2) having a carboxy group and two or more ethylenically unsaturated groups as the component (B1) and the alkali-soluble group of the component (A) in the molecule as the component (B2) By using in combination with a group having an ethylenically unsaturated group, the toughness of the cured film can be improved, and bleeding out during a reliability test can be suppressed.
  • a compound having a carboxy group and two or more ethylenically unsaturated groups includes a carboxy group and two or more ethylenic groups in the molecule.
  • component (B1-2) includes a carboxy group and two or more ethylenic groups in the molecule.
  • component (B1-2) includes a carboxy group and two or more ethylenic groups in the molecule.
  • an esterified product of an epoxy compound (b1) and an unsaturated monocarboxylic acid (b2) is saturated with an unsaturated polybasic acid anhydride (b3).
  • An addition reaction product to which is added) can be used. These can be obtained by a two-step reaction.
  • first reaction the epoxy compound (b1) and the unsaturated monocarboxylic acid (b2) react.
  • second reaction the esterified product formed in the first reaction and the saturated or unsaturated polybasic acid anhydride (b3) react.
  • EA-6340, EA-7140, EA-7440 (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.), CCR-1218H, CCR-1159H, CCR- 1222H, PCR-1050, TCR-1335H, ZAR-1035, ZAR-2001H, ZFR-1185, UXE-3024 and ZCR-1569H (Nippon Kayaku Co., Ltd., trade name), UE-EXP-2810, UE EXP-3073 (trade name, manufactured by DIC Corporation) is commercially available.
  • the acid value of the component (B1-2) can be regulated so that it can be developed with a developer.
  • the acid value of the component (B1-2) is preferably 5 to 200 mgKOH / g. When it is 5 mgKOH / g or more, the solubility in a developer is good, and when it is 200 mgKOH / g or less, the developer resistance is good. From the above viewpoint, the acid value of the component (B1-2) is more preferably 10 to 150 mgKOH / g, further preferably 15 to 100 mgKOH / g, and particularly preferably 20 to 50 mgKOH / g. preferable.
  • the weight average molecular weight of the component (B1-2) is preferably 1,000 to 100,000.
  • the strength of the cured product is sufficient, and if it is 100,000 or less, the solubility in the developer and the compatibility with other compounds contained in the component (B) Becomes better. From the above viewpoints, it is more preferably 2,000 to 50,000, further preferably 3,000 to 25,000, particularly preferably 3,000 to 10,000, and 3,000. It is particularly preferred that the number is less than 6,000.
  • the weight average molecular weight of the component (B1-2) is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
  • Component (B1-2) is a compound having two or more carboxy groups in the molecular chain and one or more ethylenically unsaturated groups at the molecular chain ends from the viewpoint of solubility in a developer. It is more preferable that the compound has two or more carboxy groups in the molecular chain and has an ethylenically unsaturated group at both ends of the molecular chain.
  • the component (B1-2) has two or more ethylenically unsaturated groups in the molecule from the viewpoint of improving the toughness of the cured film and suppressing bleed out during the reliability test. The number is preferably one or less, and more preferably two.
  • the compound having a carboxy group and two or more ethylenically unsaturated groups those having a urethane bond in the molecule may be used from the viewpoint of flexibility.
  • the compound having a carboxy group, two or more ethylenically unsaturated groups, and a urethane bond is not particularly limited, and examples thereof include urethane (meth) acrylates represented by the following (I) to (IV). .
  • any raw material compound has a carboxy group.
  • urethane (meth) having a urethane bond and at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure in the molecule. Acrylate is preferred.
  • ring structure an alicyclic structure is preferable and a cyclohexane ring is more preferable.
  • Examples of the bifunctional alcohol compound that is, the diol compound, include a carboxy group-containing diol compound, and may further include a polyether diol compound, a polyester diol compound, a polycarbonate diol compound, a polycaprolactone diol compound, and the like. .
  • the carboxy group-containing diol compound is not particularly limited, and examples thereof include 2,2-dimethylolbutanoic acid, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpentanoic acid, and the like. Is mentioned. These compounds can be used alone or in combination of two or more.
  • the polyether diol compound is not particularly limited, and examples thereof include ethylene oxide, propylene oxide, isobutene oxide, butyl glycidyl ether, butene-1-oxide, 3,3-bischloromethyloxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 3
  • An alicyclic diol compound such as tricyclodecane dimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F or the like is selected from the above cyclic ether compounds.
  • Polyether diol compound obtained by ring-opening addition of one kind at least selected from the above cyclic ether compounds as a bifunctional phenol compound such as hydroquinone, resorcinol, catechol, bisphenol A, bisphenol F, bisphenol AF, biphenol, and fluorene bisphenol Examples include polyether diol compounds obtained by ring-opening addition of one kind.
  • the polyester diol compound is not particularly limited.
  • malonic acid succinic acid, glutaric acid, adipic acid, sebacic acid, tetrahydrophthalic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, Bifunctional carboxylic acid compounds such as fumaric acid and itaconic acid, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butanediol, dibutanediol, polybutanediol, pentanediol, neopentylglycol, 3-methyl-1,5-pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclohexanedimethanol,
  • the polycarbonate diol compound is not particularly limited, and examples thereof include phosgene, triphosgene, dialkyl carbonate, diaryl carbonate and the like, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butanediol, dibutanediol.
  • Polybutanediol pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclohexanedimethanol, tricyclodecanedimethanol, hydrogenated Polycarbonatediol obtained by copolymerizing diol compounds such as bisphenol A and hydrogenated bisphenol F Such compounds.
  • the polycaprolactone diol compound is not particularly limited.
  • ⁇ -caprolactone and ethylene glycol diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butanediol, dibutanediol, polybutanediol, and pentane.
  • Copolymerizes with diol compounds such as diol, neopentyl glycol, 3-methyl-1,5-pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclohexanedimethanol, and tricyclodecanedimethanol.
  • diol compounds such as diol, neopentyl glycol, 3-methyl-1,5-pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclohexanedimethanol, and tricyclodecanedimethanol.
  • diol compounds such as diol, neopentyl glycol, 3-methyl-1,5-pentanediol,
  • diol compounds examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, dibutanediol, pentanediol, neopentylglycol, 3-methyl-1,5-pentanediol, hexanediol, and heptane.
  • Aliphatic diol compounds such as diol, octanediol, nonanediol, decanediol; cycloaliphatic diol compounds such as cyclohexanedimethanol, tricyclodecanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F; polybutadiene-modified diol compounds, water Examples thereof include modified diol compounds such as an additive polybutadiene-modified diol compound and diricone-modified diol compound. These diol compounds can be used alone or in combination of two or more.
  • the bifunctional isocyanate compound is not particularly limited, and examples thereof include aliphatic bifunctional isocyanate compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, decamethylene diisocyanate, and dodecamethylene diisocyanate.
  • the (meth) acrylate having a hydroxyl group is not particularly limited, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2- Hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl (meth) acrylate Monofunctional (meth) acrylates such as 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate and 2-hydroxy-3- (2-naphthoxy) propyl (meth) acrylate, ethoxylated products thereof, and the like The propoxylated form of this Ethoxylated propoxy compounds thereof, and modified caprolactone thereof; bifunctional (meth) acrylates such as bis (2
  • the (meth) acrylate ethoxylated product, propoxylated product, and ethoxylated propoxylated product are the above alcohol compound or phenol compound instead of the alcohol compound or phenol compound used as the raw material of (meth) acrylate, respectively.
  • An alcohol compound having a structure in which one or more ethylene oxides are added, an alcohol compound having a structure in which one or more propylene oxides are added, or an alcohol compound having a structure in which one or more ethylene oxides and propylene oxide are added are used as raw materials ( (Meth) acrylate is shown.
  • the caprolactone-modified product refers to (meth) acrylate obtained by using, as a raw material, an alcohol compound obtained by modifying an alcohol compound that is a raw material for (meth) acrylate with ⁇ -caprolactone.
  • an alcohol compound obtained by modifying an alcohol compound that is a raw material for (meth) acrylate with ⁇ -caprolactone for example, in the case of a caprolactone modified product of monofunctional (meth) acrylate, CH 2 ⁇ CH (R 14 ) —COO — ((CH 2 ) 5 COO) q —R 15 (q, R 14 , R 15 are the same as above. ).
  • the (meth) acrylate having an isocyanate group is not particularly limited.
  • N- (meth) acryloyl isocyanate, (meth) acryloyloxymethyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, 2- (meth) Examples include acryloyloxyethoxyethyl isocyanate and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate. These compounds can be used alone or in combination of two or more.
  • the polyfunctional isocyanate compound is not particularly limited, and examples thereof include bifunctional isocyanate compounds; multimers such as uretdione dimers, isocyanurate types, biuret trimers of the bifunctional isocyanate compounds, and the like. .
  • the two or three bifunctional isocyanate compounds constituting the multimer may be the same or different. These compounds can be used alone or in combination of two or more.
  • the polyfunctional alcohol compound is not particularly limited.
  • the bifunctional alcohol compound trifunctional or more functional groups such as trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tris (2-hydroxyethyl) isocyanurate Alcohol compounds, adducts obtained by ring-opening addition of at least one selected from the cyclic ether compounds to these, caprolactone-modified products thereof; cyclic compounds with trifunctional or higher functional phenol compounds such as phenol novolac and cresol novolak Examples include alcohol compounds obtained by ring-opening addition of at least one selected from ether compounds, and modified caprolactones thereof. These compounds can be used alone or in combination of two or more.
  • the component (B1-2) has a carboxy group and two or more ethylenically unsaturated groups from the viewpoint of improving the toughness of the cured film and suppressing bleed out during a reliability test,
  • a compound having a urethane bond therein and at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure is preferable.
  • As said ring structure an alicyclic structure is preferable and a cyclohexane ring is more preferable.
  • (I) a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having a hydroxyl group are reacted from the viewpoint of improving the toughness of the cured film and suppressing bleed-out during a reliability test.
  • the urethane (meth) acrylate obtained is preferable, and in the (I), the carboxy group-containing diol compound as a bifunctional alcohol compound, the aliphatic bifunctional isocyanate compound as a bifunctional isocyanate compound, and a (meth) acrylate having a hydroxyl group More preferred is urethane (meth) acrylate obtained by reacting the monofunctional (meth) acrylate.
  • the component (B1-2) has a carboxy group and two ethylenically unsaturated groups from the viewpoint of improving the toughness of the cured film and suppressing bleed-out during a reliability test, and further in its molecule.
  • a urethane (meth) acrylate having a urethane bond and at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure is preferable.
  • ring structure an alicyclic structure is preferable and a cyclohexane ring is more preferable.
  • the content of the component (B1-2) in the optical waveguide forming resin composition of the present invention is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B).
  • the content is more preferably 13 to 70% by mass, further preferably 15 to 50% by mass, and particularly preferably 15 to 30% by mass.
  • (B1-3) component In the present invention, (B1) component (B1-3) has a urethane bond and one or more ethylenically unsaturated groups as component (B1), and (B2) component reacts with the alkali-soluble group of component (A) in the molecule.
  • (B1) component (B1-3) has a urethane bond and one or more ethylenically unsaturated groups as component (B1)
  • (B2) component reacts with the alkali-soluble group of component (A) in the molecule.
  • the compound having a urethane bond and one or more ethylenically unsaturated groups (hereinafter also simply referred to as “component (B1-3)”) is not particularly limited, and examples thereof include the following (V) to And urethane (meth) acrylate represented by (VIII).
  • V Urethane (meth) acrylate obtained by reacting a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having a hydroxyl group.
  • VI Urethane (meth) acrylate obtained by reacting a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having an isocyanate group.
  • VIII Urethane (meth) acrylate obtained by reacting a polyfunctional isocyanate compound and a (meth) acrylate having a hydroxyl group.
  • VIII A urethane (meth) acrylate obtained by reacting a polyfunctional alcohol compound and a (meth) acrylate having an isocyanate group.
  • the above-mentioned compounds are preferred as the bifunctional alcohol compound, the bifunctional isocyanate compound, the (meth) acrylate having the hydroxyl group, the (meth) acrylate having the isocyanate group, and the polyfunctional isocyanate compound.
  • a compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure and a heterocyclic structure in the molecule is preferable, and a urethane having a heterocyclic structure (Meth) acrylate is more preferable, and urethane (meth) acrylate having an isocyanurate ring is more preferable.
  • the component (B1-3) preferably has two or more ethylenically unsaturated groups in the molecule from the viewpoint of developer resistance and environmental reliability, and preferably three or more. More preferably, the number is three. Furthermore, it is preferable to include a compound having a urethane bond and three or more ethylenically unsaturated groups as the component (B1-3), and urethane (meth) acrylate (c1) having two ethylenically unsaturated groups in the molecule. And a mixed system with urethane (meth) acrylate (c2) having three ethylenically unsaturated groups.
  • the mass ratio [(c1) / (c2)] of the (c1) component to the (c2) component in the optical waveguide forming resin composition of the present invention is preferably 50/50 to 85/15. If it is 50/50 or more, bleeding out during the reliability test can be suppressed and the toughness of the cured film can be maintained, and if it is 85/15 or less, the flexibility of the cured film is maintained. can do. From the above viewpoint, the ratio is more preferably 60/40 to 80/20, and further preferably 65/35 to 75/25.
  • the component (B1-3) may further have a carboxy group in the molecule as necessary from the viewpoint of heat resistance and solubility in a developer.
  • the (meth) acrylate having a carboxy group and a urethane bond as (B1-3) is not particularly limited.
  • the carboxy group-containing diol compound is combined with the diol compound. Examples thereof include urethane (meth) acrylate obtained in combination or in place of the diol compound.
  • the carboxy group-containing diol compound is not particularly limited, and examples thereof include 2,2-dimethylolbutanoic acid, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpentanoic acid, and the like. Can be mentioned. These compounds can be used alone or in combination of two or more.
  • the acid value of the (meth) acrylate having a carboxyl group and a urethane bond as (B1-3) can be regulated so that it can be developed with a developer.
  • the acid value of the component (B1-3) is preferably 5 to 200 mgKOH / g. When it is 5 mgKOH / g or more, the solubility in a developer is good, and when it is 200 mgKOH / g or less, the developer resistance is good.
  • the acid value of the (meth) acrylate having a carboxy group and a urethane bond as the component (B1-3) is more preferably 10 to 150 mgKOH / g, and more preferably 15 to 100 mgKOH / g. Further preferred is 20 to 50 mg KOH / g.
  • the content of the component (B1-3) in the resin composition for forming an optical waveguide of the present invention is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B).
  • the content is more preferably 13 to 70% by mass, further preferably 15 to 50% by mass, and particularly preferably 20 to 50% by mass.
  • the component (B1) is a compound (b1-1) having three ethylenically unsaturated groups as the component (B1-1) (excluding those having a urethane bond, hereinafter, simply referred to as “component (b1-1)”. And a compound (b1-2) having a carboxy group and two ethylenically unsaturated groups as components (B1-2) (hereinafter also simply referred to as “component (b1-2)”), (B1- It is preferable to use a compound (b1-3) having a urethane bond and three ethylenically unsaturated groups (hereinafter also simply referred to as “(b1-3) component”) as the component 3).
  • the total amount of the component (b1-1), the component (b1-2) and the component (b1-3) is preferably 80% by mass or more, more preferably 90% by mass or more based on the total amount of the component (B1). More preferably, it is 100 mass%.
  • the content of the component (b1-2) is from 100 to 100 parts by mass with respect to 100 parts by mass of the component (b1-1) from the viewpoint of improving the toughness of the cured film and suppressing bleed out during the reliability test. 300 parts by mass is preferable, and 150 to 250 parts by mass is more preferable.
  • the content of the component (b1-3) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the component (b1-1), from the viewpoint of toughness and flexibility of the cured film. 150 parts by mass is more preferable.
  • the component (b1-1) is preferably a compound having an isocyanurate ring in its molecule, and more preferably ethoxylated isocyanuric acid tri (meth) acrylate.
  • the component (b1-2) is preferably a compound having two or more carboxy groups in the molecular chain and one or more ethylenically unsaturated groups at the molecular chain ends, and further having a urethane bond in the molecule, A compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure is more preferable, and a urethane (meth) acrylate having an alicyclic structure is more preferable.
  • a cyclohexane ring is preferable.
  • the component (b1-3) is preferably a compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure in the molecule, and a urethane (meth) acrylate having a heterocyclic structure. Is more preferable.
  • the ring structure is more preferably an isocyanurate ring.
  • the resin composition for forming an optical waveguide of the present invention is a compound having an ethylenically unsaturated group and a group that reacts with the alkali-soluble group of the component (A) in the molecule as the component (B2) together with the component (B1).
  • component (B2) is a compound other than the component (B1).
  • the group that reacts with the alkali-soluble group is preferably an epoxy group
  • the component (B2) includes (B2-1) a compound having one or more epoxy groups and one or more ethylenically unsaturated groups in the molecule. Is preferably used.
  • an epoxy (meth) acrylate obtained by reacting an epoxy resin having two or more epoxy groups in one molecule with a (meth) acrylic acid compound is mentioned, and a (meth) acrylic acid compound with respect to 1 equivalent of the epoxy group Is preferably reacted with 0.1 to 0.9 equivalent, more preferably 0.2 to 0.8 equivalent, and still more preferably 0.4 to 0.6 equivalent.
  • bisphenol A type epoxy (meth) acrylate tetrabromobisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, bisphenol AF type epoxy (meth) acrylate, bisphenol AD type epoxy (meth) acrylate , Epoxy (meth) acrylates derived from bifunctional phenol glycidyl ethers such as biphenyl type epoxy (meth) acrylate, naphthalene type epoxy (meth) acrylate, fluorene type epoxy (meth) acrylate; hydrogenated bisphenol A type epoxy (meth) acrylate, Hydrogenated bisphenol F type epoxy (meth) acrylate, hydrogenated 2,2'-biphenol type epoxy (meth) acrylate, hydrogenated 4,4'-biphenol type epoxy ( A) Epoxy (meth) acrylate derived from hydrogenated bifunctional phenol glycidyl ether such as acrylate; phenol novolac type epoxy (meth)
  • compounds having an alicyclic structure or an aromatic ring structure in the molecule are preferred, and bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meta ) Acrylate, bisphenol AF type epoxy (meth) acrylate, bisphenol AD type epoxy (meth) acrylate, biphenyl type epoxy (meth) acrylate, naphthalene type epoxy (meth) acrylate, fluorene type epoxy (meth) acrylate, etc.
  • phenol novolac type epoxy (meth) acrylate phenol novolac type epoxy (meth) acrylate
  • cresol novolac type epoxy (meth) acrylate In at least one molecule selected from bifunctional alicyclic alcohol glycidyl ether-derived epoxy (meth) acrylates such as acrylate, cyclohexanedimethanol type epoxy (meth) acrylate, and tricyclodecane dimethanol type epoxy (meth) acrylate
  • An epoxy (meth) acrylate having an alicyclic structure or an aromatic ring structure is more preferable, and a compound having a bisphenol skeleton in the molecule is more preferable.
  • the content of the component (B2) in the resin composition for forming an optical waveguide of the present invention is preferably 1 to 40% by mass with respect to the total amount of the components (A) and (B).
  • it is 1% by mass or more, it is easy to entangle and cure the polymer having an alkali-soluble group of component (A), and there is little precipitation of unreacted substances during the environmental reliability test.
  • it is 40 mass% or less, the film strength and flexibility of a cured film are enough. From the above viewpoint, the content is more preferably 10 to 30% by mass.
  • the resin composition of the present invention contains, as a component (B3), in a molecule other than the components (B1) and (B2) from the viewpoint of developability and heat resistance.
  • a compound having two or more ethylenically unsaturated groups (hereinafter, also simply referred to as “component (B3)”) may be contained.
  • Examples of the compound having two or more ethylenically unsaturated groups in the molecule other than the components (B1) and (B2) as the component (B3) include (meth) acrylate, vinylidene halide, vinyl ether, vinyl ester, Examples thereof include vinyl pyridine, vinyl amide, and arylated vinyl. Among these, (meth) acrylate and arylated vinyl are preferable from the viewpoint of transparency. As the (meth) acrylate, bifunctional (meth) acrylate or polyfunctional (meth) acrylate may be used.
  • Examples of the bifunctional (meth) acrylate include all those described in paragraph [0040] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776).
  • the alicyclic (meth) acrylates; aromatic (meth) acrylates; complex mentioned in paragraph [0040] of Patent Document 5 Japanese Patent Application Laid-Open No. 2013-174776
  • Cyclic (meth) acrylates; alicyclic epoxy (meth) acrylates; aromatic epoxy (meth) acrylates are preferred.
  • These compounds can be used alone or in combination of two or more. Furthermore, it can also be used in combination with other compounds having an ethylenically unsaturated group.
  • Examples of the trifunctional or higher polyfunctional (meth) acrylate include all those described in paragraph [0041] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776).
  • the heterocyclic (meth) acrylates mentioned in paragraph [0041] of Patent Document 5 Japanese Patent Laid-Open No. 2013-174776
  • aromatic epoxy (meth) acrylates Preferably there is.
  • These compounds can be used alone or in combination of two or more. Furthermore, it can also be used in combination with other compounds having an ethylenically unsaturated group.
  • the resin composition for forming an optical waveguide of the present invention contains a polymerization initiator (hereinafter also simply referred to as “component (C)”) as the component (C).
  • component (C) a polymerization initiator
  • the polymerization initiator is not particularly limited as long as it initiates polymerization by heating, irradiation with ultraviolet rays or the like, and examples thereof include a thermal radical polymerization initiator and a photo radical polymerization initiator.
  • a radical photopolymerization initiator is preferred because of its high curing rate and room temperature curing.
  • thermal radical polymerization initiator examples include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-Butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1- Peroxyketals such as bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; ⁇ , ⁇ ′-bis (t-butylperoxy) diisopropylbenzene , Dicumyl peroxide, t-butylcumylperoxy Dial
  • radical photopolymerization initiators include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- ⁇ -hydroxy ketones such as 1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1 ⁇ -amino ketones such as-(4-morpholinophenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; Oxime esters such as (4-phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis (2,4,6-tri Phosphine oxides such as methylbenzoyl) phenylphosphine oxide
  • the substituents of the aryl groups at the two triarylimidazole sites may give the same and symmetric compounds, but give differently asymmetric compounds. May be. Also.
  • a thioxanthone compound and a tertiary amine may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
  • the ⁇ -hydroxyketone and the phosphine oxide are preferable.
  • These radical polymerization initiators can be used alone or in combination of two or more. Furthermore, it can also be used in combination with an appropriate sensitizer.
  • cationic polymerization initiators such as a thermal cationic polymerization initiator and a photocationic polymerization initiator.
  • a cationic photopolymerization initiator is preferred because it has a high curing rate and can be cured at room temperature.
  • thermal cationic polymerization initiator examples include benzylsulfonium salts such as p-alkoxyphenylbenzylmethylsulfonium hexafluoroantimonate; benzyl-p-cyanopyridinium hexafluoroantimonate, 1-naphthylmethyl-o-cyanopyridinium hexafluoroantimony And pyridinium salts such as cinnamyl-o-cyanopyridinium hexafluoroantimonate; and benzylammonium salts such as benzyldimethylphenylammonium hexafluoroantimonate.
  • the benzylsulfonium salt is preferable from the viewpoint of curability, transparency, and heat resistance.
  • Examples of the cationic photopolymerization initiator include aryl diazonium salts such as p-methoxybenzenediazonium hexafluorophosphate, diaryliodonium salts such as diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate; triphenylsulfonium hexafluorophosphate, triphenyl Triarylsulfonium salts such as sulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium hexafluorophosphate, diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium pentafluorohydroxyantimonate ; Triphenylselenonium hexa Triarylselenonium salt
  • cationic polymerization initiators can be used alone or in combination of two or more. Furthermore, it can also be used in combination with an appropriate sensitizer.
  • the content of the component (C) in the resin composition for forming an optical waveguide of the present invention is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). . Curing is sufficient when it is 0.01 parts by mass or more, and sufficient light transmission is obtained when it is 10 parts by mass or less. From the above viewpoint, the content is more preferably 0.1 to 10 parts by mass, further preferably 0.3 to 7 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
  • the resin composition for forming an optical waveguide of the present invention comprises an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, and a filling agent. You may contain what is called additives, such as an agent, in the range which does not inhibit the effect of this invention.
  • the resin composition for forming an optical waveguide of the present invention may be diluted with an organic solvent and used as a resin varnish for forming an optical waveguide.
  • the organic solvent is not particularly limited as long as it can dissolve each raw material constituting the resin composition for forming an optical waveguide of the present invention.
  • an aromatic such as toluene, xylene, mesitylene, cumene, p-cymene, etc.
  • Aromatic hydrocarbons such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl -2- ketones such as pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate and ⁇ -butyrolactone; carbonates such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl
  • organic solvents can be used alone or in combination of two or more.
  • the solid content concentration in the optical waveguide forming resin varnish is preferably 20 to 80% by mass.
  • the stirring method When preparing the resin varnish for forming an optical waveguide, it is preferable to mix by stirring. Although there is no restriction
  • the stirring time is not particularly limited, but is preferably 1 to 24 hours. When it is 1 hour or longer, the components (A) to (C), other components, and the organic solvent are sufficiently mixed, and when it is 24 hours or shorter, the varnish preparation time can be shortened.
  • the prepared resin varnish for forming an optical waveguide is preferably filtered using a filter having a pore diameter of 50 ⁇ m or less.
  • a filter having a pore diameter of 50 ⁇ m or less When the pore diameter is 50 ⁇ m or less, large foreign matters and the like are removed, and no repelling or the like occurs during varnish application, and scattering of light propagating through the core portion is suppressed. From the above viewpoint, it is more preferable to filter using a filter having a pore diameter of 30 ⁇ m or less, and it is more preferable to filter using a filter having a pore diameter of 10 ⁇ m or less.
  • the prepared resin varnish for forming an optical waveguide is preferably degassed under reduced pressure.
  • limiting in particular in the defoaming method As a specific example, a degassing apparatus with a vacuum pump and a bell jar and a vacuum apparatus can be used.
  • the pressure which the organic solvent contained in a resin varnish does not boil is preferable.
  • the vacuum degassing time There is no particular limitation on the vacuum degassing time, but it is preferably 3 to 60 minutes. If it is 3 minutes or longer, bubbles dissolved in the resin varnish can be removed. If it is 60 minutes or less, the organic solvent contained in the resin varnish will not volatilize.
  • the refractive index of the cured film obtained by polymerizing and curing the optical waveguide forming resin composition of the present invention in the wavelength range of 830 to 850 nm at a temperature of 25 ° C. is preferably 1.400 to 1.700. If the refractive index is 1.400 to 1.700, the refractive index is not significantly different from that of a normal resin composition for forming an optical waveguide, so that versatility as an optical waveguide forming material is not impaired. From the above viewpoints, it is more preferably 1.425 to 1.675, and further preferably 1.450 to 1.650.
  • the transmittance at a wavelength of 850 nm of a 50 ⁇ m thick cured film obtained by polymerizing and curing the optical waveguide forming resin composition of the present invention is preferably 80% or more. If it is 80% or more, the amount of transmitted light is sufficient. From the above viewpoint, it is more preferably 85% or more, and further preferably 90% or more. Note that the upper limit of the transmittance is not particularly limited.
  • the resin film for forming an optical waveguide of the present invention has a resin layer for forming an optical waveguide (hereinafter also simply referred to as “resin layer”) obtained using the resin composition for forming an optical waveguide of the present invention.
  • the resin film for forming an optical waveguide of the present invention is used as at least one of a lower cladding layer, a core portion, and an upper cladding layer from the viewpoint of suppressing light propagation loss at 850 nm of the optical waveguide and improving environmental reliability. it can. From the above viewpoint, it is preferable to use as at least one of the lower clad layer and the upper clad layer.
  • the resin film for forming an optical waveguide of the present invention can be easily produced by applying the resin composition for forming an optical waveguide of the present invention to a substrate film and removing the solvent as necessary. Further, from the viewpoint of productivity, the resin varnish for forming an optical waveguide may be directly applied to a base film to remove the solvent.
  • Polyester such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate
  • Polyolefin such as polyethylene and a polypropylene
  • Polycarbonate polyamide, polyimide, polyamideimide, polyetherimide, polyether sulfide , Polyethersulfone, polyetherketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone, liquid crystal polymer and the like.
  • polyethylene terephthalate polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone. preferable.
  • the thickness of the base film may be appropriately changed depending on the intended flexibility, but is preferably 3 to 250 ⁇ m. When it is 3 ⁇ m or more, the film strength is sufficient, and when it is 250 ⁇ m or less, sufficient flexibility is obtained. From the above viewpoint, the thickness is more preferably 5 to 200 ⁇ m, further preferably 7 to 150 ⁇ m. In addition, from the viewpoint of improving the peelability from the resin layer, a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
  • the resin film for forming an optical waveguide of the present invention may have a structure including a three-layer structure having a base film, a resin layer, and a protective film in this order, if necessary. Is a structure composed of the three-layer structure.
  • the protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene. Among these, from the viewpoints of flexibility and toughness, polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene are preferable. In addition, from the viewpoint of improving the peelability from the resin layer, a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
  • the thickness of the protective film may be appropriately changed depending on the intended flexibility, but is preferably 10 to 250 ⁇ m.
  • the thickness is more preferably 15 to 200 ⁇ m, and further preferably 20 to 150 ⁇ m.
  • the thickness of the resin layer of the resin film for forming an optical waveguide of the present invention is not particularly limited, but the thickness after drying is preferably 5 to 500 ⁇ m. If the thickness is 5 ⁇ m or more, the resin film or the cured product of the film has sufficient strength because the thickness is sufficient, and if it is 500 ⁇ m or less, the drying can be performed sufficiently and the amount of residual solvent in the resin film increases. Without foaming when the cured product of the film is heated.
  • the resin film for forming an optical waveguide thus obtained can be used as a film for forming at least one of a lower clad layer, a core portion, and an upper clad layer, and can be easily stored by, for example, winding in a roll shape. can do.
  • a roll-shaped film can be cut into a suitable size and stored in a sheet shape.
  • the optical waveguide of the present invention is an optical waveguide in which at least one of the lower cladding layer, the core portion, and the upper cladding layer is formed using the optical waveguide forming resin composition of the present invention or the optical waveguide forming resin film of the present invention. It is.
  • the resin composition for forming an optical waveguide of the present invention is used as at least one of a lower cladding layer, a core portion, and an upper cladding layer from the viewpoint of suppressing light propagation loss at 850 nm of the optical waveguide and improving environmental reliability. Can do. From the above viewpoint, it is preferable to use as at least one of the lower clad layer and the upper clad layer.
  • FIG. 1A is a sectional view of the optical waveguide 1 of the present invention.
  • the optical waveguide 1 is formed on a substrate 5 and is formed of a core part 2 formed from a core part-forming resin composition having a high refractive index, and a lower part formed from a resin composition for forming a cladding layer having a low refractive index.
  • the clad layer 4 and the upper clad layer 3 are configured.
  • the resin composition for forming an optical waveguide or the resin film for forming an optical waveguide of the present invention can be used for at least one of the lower cladding layer 4, the core portion 2 and the upper cladding layer 3 of the optical waveguide 1.
  • a pattern can be formed with a developer, it can be suitably used for the core part 2, and because of excellent heat resistance and environmental reliability, it is also suitable for a clad layer that covers and protects the core periphery. It is.
  • the optical waveguide forming resin composition of the present invention By using the optical waveguide forming resin composition of the present invention, it is possible to further improve the interlayer adhesion between the clad and the core, the pattern formability (correspondence between fine lines or narrow lines) at the time of forming the optical waveguide core pattern, and the like. Thus, it is possible to form a small fine pattern such as a line width and a line spacing. In addition, it is possible to provide a process with excellent productivity in which a large-area optical waveguide can be manufactured at one time.
  • the optical waveguide 1 a hard substrate such as a silicon substrate, a glass substrate, or a glass epoxy resin substrate such as FR-4 can be used as the base material 5.
  • the optical waveguide 1 is good also as a flexible optical waveguide using the said base film with a softness
  • FIG. 5 When the base film having flexibility and toughness is used as the base material 5, the base film may function as a cover film for the optical waveguide 1. By disposing a base film serving as a cover film, flexibility and toughness can be imparted to the optical waveguide 1. In addition, since the optical waveguide 1 is not damaged or scratched, the handleability is improved.
  • a base film 5 serving as a cover film is disposed outside the upper clad layer 3 as shown in FIG. 1B, or the lower clad layer 4 and the upper portion as shown in FIG.
  • a base film 5 serving as a cover film may be disposed on both outer sides of the clad layer 3. Further, when the optical waveguide 1 has sufficient flexibility and toughness, the base film 5 serving as the cover film may not be disposed as shown in FIG.
  • the thickness of the lower cladding layer 4 is not particularly limited, but is preferably 2 to 200 ⁇ m, more preferably 5 to 100 ⁇ m, and even more preferably 7 to 80 ⁇ m. When it is 2 ⁇ m or more, it becomes easy to confine propagating light inside the core, and when it is 200 ⁇ m or less, it is possible to suppress an excessive increase in the thickness of the entire optical waveguide 1.
  • the thickness of the lower cladding layer 4 is a value from the boundary between the core portion 2 and the lower cladding layer 4 to the lower surface of the lower cladding layer 4.
  • the thickness of the optical waveguide forming resin film used for forming the lower clad layer 4 is not particularly limited, and may be appropriately adjusted so that the thickness of the lower clad layer 4 after curing falls within the above range.
  • the height of the core part 2 is not particularly limited, but is preferably 10 to 100 ⁇ m.
  • the height of the core portion is 10 ⁇ m or more, the alignment tolerance is not reduced in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed. In the coupling with the light emitting / receiving element or the optical fiber, the coupling efficiency is not reduced.
  • the height of the core part is more preferably 15 to 80 ⁇ m, and further preferably 20 to 70 ⁇ m.
  • the thickness of the resin film for forming an optical waveguide used for forming the core part 2 is not particularly limited, and may be appropriately adjusted so that the height of the core part 2 after curing is in the above range.
  • the thickness of the upper cladding layer 3 is not particularly limited as long as the core portion 2 can be embedded, but the thickness after drying is preferably 12 to 500 ⁇ m, more preferably 20 to 150 ⁇ m. preferable.
  • the thickness of the upper clad layer 3 may be the same as or different from the thickness of the lower clad layer 4 that is formed first, but is thicker than the thickness of the lower clad layer 4 from the viewpoint of embedding the core portion 2. It is preferable.
  • the thickness of the upper cladding layer 3 is a value from the boundary between the core portion 2 and the lower cladding layer 4 to the upper surface of the upper cladding layer 3.
  • the thickness of the resin film for forming an optical waveguide used for forming the upper cladding layer 3 is not particularly limited, and may be appropriately adjusted so that the thickness of the upper cladding layer 3 after curing is in the above range.
  • the light propagation loss at a wavelength of 850 nm is preferably 0.25 dB / cm or less, and more preferably 0.15 dB / cm or less.
  • the light propagation loss is 0.25 dB / cm or less, the light loss is reduced and the strength of the transmission signal is sufficient.
  • the method for producing the optical waveguide of the present invention is not particularly limited.
  • the resin composition for forming an optical waveguide of the present invention or the resin varnish for forming an optical waveguide of the present invention is used for forming a resin varnish for forming a core part and a cladding layer.
  • a resin varnish a method of producing by a spin coating method, etc.
  • it can also manufacture combining these methods.
  • the optical waveguide manufacturing method of the present invention is an optical waveguide manufacturing method having the following steps 1 to 4 from the viewpoint that an optical waveguide manufacturing process with excellent productivity can be provided, and includes a lower cladding layer, a core portion, and an upper portion. At least one of the cladding layers is preferably formed using the resin film for forming an optical waveguide of the present invention.
  • Step 1 A step of laminating a resin film for forming a lower clad layer on a substrate to form a lower clad layer
  • Step 2 A step of laminating a resin film for forming a core portion on the lower clad layer
  • Step 3 The core portion Step of forming the core part after exposing the forming resin film through a photomask and then developing
  • Step 4 The upper clad layer-forming resin film is laminated on the lower clad layer and the core part.
  • the base material used in the process of producing the core portion forming resin film is not particularly limited as long as it can transmit the actinic ray for exposure used in the core pattern formation described later.
  • the base material used in the process of producing the core portion forming resin film is not particularly limited as long as it can transmit the actinic ray for exposure used in the core pattern formation described later.
  • Polyester such as phthalate; polyolefin such as polyethylene and polypropylene; polycarbonate, polyphenylene ether, polyarylate and the like.
  • polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyolefins such as polypropylene are preferable from the viewpoints of the transmittance of exposure actinic rays, flexibility, and toughness.
  • a highly transparent base film from the viewpoint of improving the transmittance of exposure actinic rays and reducing the side wall roughness of the core pattern.
  • highly transparent base film examples include Cosmo Shine A1517 and Cosmo Shine A4100 manufactured by Toyobo Co., Ltd.
  • a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
  • the thickness of the base film of the core portion forming resin film is preferably 5 to 50 ⁇ m. If it is 5 ⁇ m or more, the strength as a support is sufficient, and if it is 50 ⁇ m or less, the gap between the photomask and the resin composition layer for forming the core part does not increase when the core pattern is formed, and the pattern formability is good. is there. From the above viewpoint, the thickness of the base film is more preferably 10 to 40 ⁇ m, and further preferably 15 to 30 ⁇ m.
  • An optical waveguide-forming resin film produced by applying an optical waveguide-forming resin composition or an optical waveguide-forming resin varnish on the base film is prepared by applying the protective film on the resin layer as necessary. It is good also as a 3 layer structure which consists of a material film, a resin layer, and a protective film.
  • the core part-forming resin film thus obtained can be easily stored by, for example, winding it into a roll.
  • a roll-shaped film can be cut into a suitable size and stored in a sheet shape.
  • FIG. 2 is a process cross-sectional view illustrating the method of manufacturing an optical waveguide according to the present invention.
  • a lower cladding layer 4 is formed by laminating a resin film for forming a lower cladding layer on a substrate 5.
  • Examples of the laminating method in Step 1 include a method of laminating by heating and pressure bonding using a roll laminator or a flat plate laminator, but from the viewpoint of adhesion and followability, using a flat plate laminator under reduced pressure. It is preferable to laminate a resin film for forming a lower clad layer.
  • the flat plate type laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plate.
  • a vacuum pressurizing laminator can be suitably used.
  • the heating temperature here is preferably 40 to 130 ° C.
  • the pressing pressure is preferably 0.1 to 1.0 MPa, but these conditions are not particularly limited.
  • a resin film for forming a lower clad layer may be temporarily pasted on the substrate 5 in advance using a roll laminator before lamination with a vacuum pressure laminator.
  • the laminating temperature is preferably 20 to 130 ° C. When it is 20 ° C. or higher, the adhesion between the resin film for forming the lower clad layer 4 and the substrate 5 is improved, and when it is 130 ° C. or lower, the resin layer does not flow too much during roll lamination, and the required film Thickness is obtained.
  • the laminating temperature is more preferably 40 to 100 ° C.
  • the pressure is preferably 0.2 to 0.9 MPa and the laminating speed is preferably 0.1 to 3 m / min, but these conditions are not particularly limited.
  • the lower clad layer forming resin film laminated on the base material 5 is cured by light or heating, the base film of the lower clad layer forming resin film is removed, and the lower clad layer 4 is formed.
  • the irradiation amount of actinic rays when forming the lower cladding layer 4 is preferably 0.1 to 5 J / cm 2, and the heating temperature is preferably 50 to 200 ° C. There is no limit.
  • the core portion forming resin film 7 is laminated by the same method as in step 1.
  • the core part-forming resin film 7 is preferably made of a photosensitive resin composition that is designed to have a higher refractive index than that of the lower clad layer-forming resin film and can form a core pattern with actinic rays. Since the resin composition for forming an optical waveguide of the present invention has photosensitivity, it is suitable as a resin film for forming a core part.
  • step 3 as shown in FIG. 2 (c), the core portion-forming resin film is exposed through a photomask and then developed, and then the optical waveguide core pattern (core portion 2) is formed.
  • actinic rays are irradiated in an image form through a photomask 6 having a negative or positive mask pattern called an artwork.
  • the active light beam may be directly irradiated on the image without passing through the photomask 6 by using laser direct drawing.
  • the active light source include known light sources that effectively emit ultraviolet rays, such as carbon arc lamps, mercury vapor arc lamps, ultrahigh pressure mercury lamps, high pressure mercury lamps, and xenon lamps.
  • there are those that effectively radiate visible light such as a photographic flood bulb and a solar lamp.
  • the irradiation amount of actinic rays is preferably 0.01 to 10 J / cm 2 .
  • the curing reaction proceeds sufficiently, and the core portion 2 is not washed away by the development process described later, and when it is 10 J / cm 2 or less, the core portion 2 is caused by excessive exposure.
  • It is suitable for forming a fine pattern without being fat. From the above viewpoint, it is more preferably 0.05 to 5 J / cm 2 , and further preferably 0.1 to 3 J / cm 2 .
  • the time from ultraviolet irradiation to post-exposure heating is preferably within 10 minutes. Within 10 minutes, the active species generated by ultraviolet irradiation will not be deactivated.
  • the post-exposure heating temperature is preferably 40 to 160 ° C., and the time is preferably 30 seconds to 10 minutes.
  • the base film of the core portion forming resin film 7 is removed, and development corresponding to the composition of the core portion forming resin film such as an alkaline aqueous solution or an aqueous developer is performed.
  • development is performed by a known method such as spraying, rocking dipping, brushing, scraping, dipping or paddle.
  • the base of the alkaline aqueous solution is not particularly limited.
  • alkali hydroxide such as lithium, sodium or potassium hydroxide
  • alkali carbonate such as lithium, sodium, potassium or ammonium carbonate or bicarbonate
  • Alkali metal phosphates such as potassium phosphate and sodium phosphate
  • Alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate
  • Sodium salts such as borax and sodium metasilicate
  • Tetramethylammonium hydroxide Triethanolamine And organic bases such as ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, 1,3-diaminopropanol-2-morpholine, and the like.
  • the pH of the alkaline aqueous solution used for development is preferably 9 to 11, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition layer.
  • a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
  • the aqueous developer is not particularly limited as long as it is composed of water or an alkaline aqueous solution and one or more organic solvents.
  • the pH of the aqueous developer is preferably as low as possible within the range where the development of the core part-forming resin film can be sufficiently performed, more preferably from 8 to 12, and even more preferably from 9 to 10.
  • organic solvent used in the aqueous developer examples include alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and 4-hydroxy-4-methyl-2-pentanone; ethylene glycol
  • organic solvent used in the aqueous developer examples include alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and 4-hydroxy-4-methyl-2-pentanone; ethylene glycol
  • polyhydric alcohol alkyl ethers such as monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol monobutyl ether. These can be used alone or in combination of two or more.
  • the concentration of the organic solvent in the aqueous developer is usually preferably 2 to 90% by mass.
  • the temperature of the aqueous developer is adjusted in accordance with the developability of the core portion forming resin composition. Further, a small amount of a surfactant, an antifoaming agent or the like may be mixed in the aqueous developer.
  • the core portion 2 of the optical waveguide may be cleaned using a cleaning liquid composed of water and the organic solvent as necessary.
  • An organic solvent can be used individually or in combination of 2 or more types.
  • the concentration of the organic solvent in the cleaning liquid is usually preferably 2 to 90% by mass.
  • the temperature of the cleaning liquid is adjusted in accordance with the developability of the core portion forming resin composition.
  • the core 2 may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.1 to 1000 mJ / cm 2 as necessary.
  • step 4 as shown in FIG. 2E, an upper clad layer forming resin film is laminated on the lower clad layer 4 and the core portion 2 in the same manner as in steps 1 and 2.
  • the upper cladding layer 3 is formed.
  • the upper clad layer forming resin film is designed to have a lower refractive index than the core portion forming resin film.
  • the thickness of the upper cladding layer 3 is preferably larger than the height of the core portion 2.
  • the upper clad layer-forming resin film is cured by light or heat in the same manner as in step 1 to form the upper clad layer 3.
  • the irradiation amount of active light is preferably 0.1 to 5 J / cm 2 .
  • the base film is polyethylene naphthalate, polyamide, polyimide, polyamideimide, polyetherimide, polyphenylene ether, polyether sulfide, polyethersulfone, polysulfone, etc.
  • actinic rays having a short wavelength such as ultraviolet rays are used compared to PET. Since it is difficult to pass through, the irradiation amount of actinic rays is preferably 0.5 to 30 J / cm 2 .
  • the curing reaction proceeds sufficiently, and when it is 30 J / cm 2 or less, the time of light irradiation does not take too long. From the above viewpoint, it is more preferably 3 to 27 J / cm 2 , and further preferably 5 to 25 J / cm 2 .
  • the double-sided exposure machine which can irradiate actinic light simultaneously from both surfaces can be used.
  • the heating temperature during or after irradiation with actinic rays is preferably 50 to 200 ° C., but these conditions are not particularly limited.
  • the optical waveguide of the present invention may be used as an optical transmission path of an optical module because it is excellent in transparency and light propagation.
  • the optical module include an optical waveguide with an optical fiber in which optical fibers are connected to both ends of the optical waveguide, an optical waveguide with a connector in which connectors are connected to both ends of the optical waveguide, and an opto-electrical device in which the optical waveguide and the printed wiring board are combined.
  • Examples include a composite substrate, an optical / electrical conversion module that combines an optical waveguide and an optical / electrical conversion element that mutually converts an optical signal and an electrical signal, and a wavelength multiplexer / demultiplexer that combines an optical waveguide and a wavelength division filter.
  • the printed wiring board to be combined is not particularly limited, and either a rigid substrate such as a glass epoxy substrate or a flexible substrate such as a polyimide substrate may be used.
  • the acid value was calculated from the amount of 0.1 mol / L potassium hydroxide aqueous solution required to neutralize the polymer solution obtained in the synthesis example. At this time, the point at which the phenolphthalein added as an indicator changed color from colorless to pink was defined as the neutralization point.
  • the weight average molecular weight (standard polystyrene conversion) was measured under the following conditions by gel permeation chromatography (GPC). The calibration curve was approximated by a cubic equation using a standard polystyrene 5 sample set (product number PStQuick B, manufactured by Tosoh Corporation).
  • Apparatus “SD-8022” (Degasser), “DP-8020” (Pump), and “RI-8020” (Detector) (trade name, manufactured by Tosoh Corporation) Column: Gelpack (registered trademark) GL-A150-S and Gelpack (registered trademark) GL-A160-S (two in total) (trade name, manufactured by Hitachi Chemical Co., Ltd.) Eluent: Tetrahydrofuran Sample concentration: 0.5 mg / ml Elution rate: 1 ml / min Measurement temperature: 25 ° C In addition, unless otherwise indicated, the molecular weight measurement in a present Example was performed on the same conditions as the above.
  • the solution was prepared by stirring for 6 hours.
  • the obtained solution was subjected to a temperature of 25 ° C. and a pressure of 0 ° C. using a polyflon filter having a pore size of 2 ⁇ m (“PF020” manufactured by Advantech Toyo Co., Ltd.) and a membrane filter having a pore size of 0.5 ⁇ m (“J050A” manufactured by Advantech Toyo Co., Ltd.).
  • Pressure filtration was performed under the condition of 4 MPa.
  • vacuum degassing was performed for 15 minutes under the condition of a reduced pressure of 50 mmHg using a vacuum pump and a bell jar to obtain a core part forming resin varnish COV-1.
  • Example 1 [Preparation of resin varnish CLV-1 for forming cladding layer]
  • component (A) 111 parts by mass of the P-1 solution (solid content: 45% by mass) (solid content: 50 parts by mass), and as component (B1), urethane (meth) acrylate having a carboxy group (manufactured by Hitachi Chemical Co., Ltd.) "Hitaroid 9082-95") 20 parts by mass, 5 parts by mass of isocyanurate type urethane (meth) acrylate ("UA-21” manufactured by Shin-Nakamura Chemical Co., Ltd.) having three methacryloyloxyalkyl groups, EO (ethylene oxide) modified isocyania 10 parts by weight of a nurate type triacrylate (“Fancryl FA-731A” manufactured by Hitachi Chemical Co., Ltd.) and a bisphenol A type epoxy acrylate represented by the following formula as the component (B2) (“EA-1010N manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • the obtained solution was subjected to pressure filtration using a polyflon filter having a pore diameter of 2 ⁇ m (“PF020” manufactured by Advantech Toyo Co., Ltd.) and then degassed under reduced pressure to obtain a resin varnish CLV-1 for forming a cladding layer.
  • PF020 a polyflon filter having a pore diameter of 2 ⁇ m
  • Clad layer forming resin varnish CLV-1 obtained above was used on the non-treated surface of a PET film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m) as a base film. After coating at 100 ° C. for 20 minutes, a surface release treated PET film (“Purex A31” manufactured by Teijin DuPont Films Ltd., thickness 25 ⁇ m) is pasted as a protective film, and a resin film CLF-1 for forming a clad layer is applied. Obtained. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine.
  • the film thickness after curing is 20 ⁇ m for the resin film for forming the lower cladding layer, and the upper cladding. It adjusted so that it might be set to 60 micrometers with the resin film for layer formation. In addition, it adjusted so that it might be set to 50 micrometers about the film for light transmittance measurement and the film for toughness evaluation in wavelength 850nm mentioned later.
  • the clad layer-forming resin film CLF-1 from which the protective film (Purex A31) has been removed is pressure-treated using the vacuum laminator on a polyimide film (Kapton 200EN) (size: 80 mm ⁇ 26 mm, thickness: 1 mm). Lamination was performed under the conditions of 0.4 MPa, a temperature of 50 ° C., and a pressing time of 30 seconds. Next, ultraviolet rays (wavelength 365 nm) were irradiated at 1000 mJ / cm 2 with the ultraviolet exposure machine, and further heated at 160 ° C. for 1 hour, to prepare samples for toughness evaluation. The toughness of this sample was evaluated according to the following criteria by winding it around a rod with a radius of 1 mm. (Evaluation criteria) A: No change B ... Crack generation or breakage was observed
  • MAP-1200-L manufactured by Dainippon Screen Co., Ltd.
  • the support film Cosmo Shine A4100
  • the lower clad layer 4 was formed by heat treatment for 1 hour.
  • the optical propagation loss was calculated by dividing the optical loss measurement value (dB) by the optical waveguide length (10 cm), and was used as the optical loss amount (initial).
  • Examples 2 and 3 and Comparative Examples 1 and 2 According to the composition shown in Table 1, clad layer forming resin varnishes CLV-2 to 5 were prepared, and clad layer forming resin films CLF-2 to 5 were produced in the same manner as in Example 1. Thereafter, an optical waveguide was produced in the same manner as in Example 1.
  • FA-731A Tris (2-acryloyloxyethyl) isocyanurate (manufactured by Hitachi Chemical Co., Ltd., trade name: funcryl FA-731A, molecular weight 423)
  • HT9082-95 Urethane acrylate having two carboxy groups (manufactured by Hitachi Chemical Co., Ltd., trade name: Hitaroid HT9082-95 (compound having acryloyloxymethyl groups via cyclohexyl groups at both ends), weight average molecular weight 4,000 , Acid value 22mgKOH / g) UA-21: Tris (methacryloyloxytetraethylene glycol isocyanate hexamethylene) isocyanurate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: UA-21, weight average molecular weight 1290)
  • EA-1010N acrylic acid modified bisphenol A type epoxy
  • the optical waveguide-forming film obtained using the optical waveguide-forming resin composition of the present invention is excellent in transparency and toughness, and the optical waveguide produced using this has a low optical loss amount, It turns out that it is excellent in environmental reliability and toughness by a high temperature and high humidity leaving test.
  • the optical waveguide manufactured using the resin composition for forming an optical waveguide which does not belong to the present invention shown in Comparative Examples 1 and 2 has a high light loss and is inferior in environmental reliability.
  • the resin composition for forming an optical waveguide and the resin film for forming an optical waveguide of the present invention are excellent in transparency (low light propagation loss) and toughness, and an optical waveguide produced using these has excellent transparency and toughness. Are better. Furthermore, no deterioration of light loss was observed after the reliability test by the high temperature and high humidity leaving test, and the environmental reliability was excellent. Therefore, the optical waveguide resin composition of the present invention is suitable as a resin composition for forming an optical waveguide used for optical interconnection or the like.

Abstract

The present invention pertains to an optical waveguide forming resin composition containing: (A) a polymer having an alkali-soluble group; (B) a compound having an ethylenically unsaturated group within the molecule thereof; and (C) a polymerization initiator, wherein component (B) contains at least one compound selected from (B1-1) to (B1-3) as component (B1), and a compound having, within the molecule thereof, an ethylenically unsaturated group and a group that reacts with the alkali-soluble group of component (A) as component (B2). (B1-1): A compound having three or more ethylenically unsaturated groups. (B1-2): A compound having a carboxy group and two or more ethylenically unsaturated groups. (B1-3): A compound having a urethane bond and one or more ethylenically unsaturated groups.

Description

光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法Optical waveguide forming resin composition, optical waveguide forming resin film, optical waveguide using them, and method for producing the same
 本発明は、光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法に関し、特に、透明性及び高温高湿放置試験による環境信頼性に優れ、かつアルカリ性水溶液に可溶な光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法に関する。 The present invention relates to a resin composition for forming an optical waveguide, a resin film for forming an optical waveguide, an optical waveguide using the same, and a method for producing the same, and in particular, it is excellent in transparency and environmental reliability by a high temperature and high humidity leaving test, and is alkaline. The present invention relates to a resin composition for forming an optical waveguide soluble in an aqueous solution, a resin film for forming an optical waveguide, an optical waveguide using them, and a method for producing the same.
 電子素子間、配線基板間等の高速及び高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉及び減衰が障壁となり、高速及び高密度化の限界が見え始めている。これを打ち破るため電子素子間、配線基板間等を光で接続する技術、いわゆる光インターコネクション技術の開発が進められている。光伝送路としては、加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマー光導波路が注目を集めている。 In high-speed and high-density signal transmission between electronic elements, between wiring boards, etc., in conventional transmission using electrical wiring, mutual interference and attenuation of signals become barriers, and the limits of high-speed and high-density are beginning to appear. In order to overcome this, development of a technique for optically connecting electronic elements, wiring boards, etc., a so-called optical interconnection technique is underway. As an optical transmission line, a polymer optical waveguide has attracted attention because of its ease of processing, low cost, high degree of freedom of wiring, and high density.
 ポリマー光導波路の形態としては、光電気混載基板への適用を想定したガラスエポキシ樹脂等の硬い支持基板上に作製するリジッド光導波路や、ボード同士の接続を想定した硬い支持基板を持たないフレキシブル光導波路が好適と考えられている。
 さらにフレキシブル配線板と光導波路を一体複合化した光電気複合フレキシブル配線板とすることで、実装の自由度をより一層向上することが可能となる。
As a form of the polymer optical waveguide, a rigid optical waveguide manufactured on a hard support substrate such as a glass epoxy resin that is assumed to be applied to an opto-electric hybrid substrate, or a flexible optical device that does not have a rigid support substrate assumed to be connected between boards Waveguides are considered suitable.
Furthermore, by using an opto-electric composite flexible wiring board in which a flexible wiring board and an optical waveguide are integrally combined, the degree of mounting freedom can be further improved.
 ポリマー光導波路には、適用される機器の使用環境、部品実装等の観点から、透明性(低光伝搬損失)と共に耐熱性及び環境信頼性も要求される。また、光導波路の強度及び取扱い性の観点から、強靭性への要求も高まりつつある。さらに、光導波路作製プロセスに関しては、パターンを簡便に形成可能な方法が求められており、その方法の一つとして、プリント配線板製造プロセスで広く用いられている露光現像によるパターン形成法を挙げることができる。このような材料として、例えば、特許文献1~4に記載されている(メタ)アクリルポリマーを含む光導波路材料が知られている。 Polymer optical waveguides are required to have heat resistance and environmental reliability as well as transparency (low light propagation loss) from the viewpoint of the environment in which the equipment is used, component mounting, and the like. In addition, the demand for toughness is increasing from the viewpoint of the strength and handleability of the optical waveguide. Furthermore, regarding the optical waveguide manufacturing process, a method capable of easily forming a pattern is required, and one of the methods is a pattern forming method by exposure and development widely used in a printed wiring board manufacturing process. Can do. As such a material, for example, optical waveguide materials containing (meth) acrylic polymers described in Patent Documents 1 to 4 are known.
 しかしながら、特許文献1及び2に記載の光導波路材料は露光現像によりパターン形成可能で、波長850nmにおいて透明性を有し、かつ高温高湿放置試験後の光伝搬損失も良好であるものの、求められる光による高速及び高密度信号伝送において、この数値は未だ不十分である。また、特許文献3に記載の光導波路材料は優れた光伝送損失を示し、耐熱性が良好であるものの、脆く、強靭性が満足できるものではない。また、特許文献4及び5に記載の光導波路材料は波長850nmにおいて透明性を有し、強靭性等に優れているものの、高温高湿放置試験による環境信頼性評価の光伝搬損失等の具体的な試験結果に関する具体的な記述はなく、未だ満足できるものではない。 However, the optical waveguide materials described in Patent Documents 1 and 2 can be patterned by exposure and development, are transparent at a wavelength of 850 nm, and have good light propagation loss after a high temperature and high humidity test, but are required. This number is still insufficient for high-speed and high-density signal transmission by light. Moreover, although the optical waveguide material described in Patent Document 3 exhibits excellent optical transmission loss and has good heat resistance, it is brittle and does not satisfy the toughness. Further, although the optical waveguide materials described in Patent Documents 4 and 5 have transparency at a wavelength of 850 nm and are excellent in toughness and the like, concrete examples such as light propagation loss in environmental reliability evaluation by a high temperature and high humidity standing test There is no specific description of the test results, and it is still not satisfactory.
特開2006-146162号公報JP 2006-146162 A 特開2008-33239号公報JP 2008-33239 A 特開2006-71880号公報JP 2006-71880 A 特開2007-122023号公報JP 2007-1222023 A 特開2013-174776号公報JP 2013-174776 A
 本発明は、前記した問題に鑑み、波長850nmにおける透明性及び高温高湿放置試験による環境信頼性(以下、単に「環境信頼性」ともいう)に優れる光導波路用樹脂組成物、この光導波路形成用樹脂組成物を用いて形成した光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法を提供することを目的とする。 In view of the above-described problems, the present invention provides a resin composition for an optical waveguide that is excellent in transparency at a wavelength of 850 nm and environmental reliability by a high-temperature and high-humidity standing test (hereinafter also simply referred to as “environmental reliability”), and formation of the optical waveguide. An object of the present invention is to provide an optical waveguide-forming resin film formed using a resin composition, an optical waveguide using the same, and a method for producing the same.
 本発明者らは鋭意検討を重ねた結果、アルカリ可溶性基を有するポリマー、特定のエチレン性不飽和基を有する化合物、及び重合開始剤を含む光導波路形成用樹脂組成物を用いることにより、上記課題を解決することを見出し、本発明に至った。 As a result of intensive studies, the present inventors have found that the above problem can be solved by using a resin composition for forming an optical waveguide containing a polymer having an alkali-soluble group, a compound having a specific ethylenically unsaturated group, and a polymerization initiator. Has been found to solve the problem, and the present invention has been achieved.
 すなわち、本発明は、以下の[1]~[18]に関する。
[1] (A)アルカリ可溶性基を有するポリマー、(B)分子中にエチレン性不飽和基を有する化合物、及び(C)重合開始剤を含有する光導波路形成用樹脂組成物であって、
 (B)成分が、(B1)成分として下記の(B1-1)~(B1-3)から選ばれる少なくとも1種の化合物と、(B2)成分として分子中に(A)成分のアルカリ可溶性基と反応する基及びエチレン性不飽和基を有する化合物とを含有してなる、光導波路形成用樹脂組成物。
 (B1-1)3つ以上のエチレン性不飽和基を有する化合物
 (B1-2)カルボキシ基及び2つ以上のエチレン性不飽和基を有する化合物
 (B1-3)ウレタン結合及び1つ以上のエチレン性不飽和基を有する化合物
[2] (B1-1)成分が、さらにその分子中にイソシアヌレート環を有する化合物である、上記[1]に記載の光導波路形成用樹脂組成物。
[3] (B1-1)成分が、分子量の異なる2種以上の化合物の混合物である、上記[1]又は[2]に記載の光導波路形成用樹脂組成物。
[4] (B1-2)成分が、分子鎖中に2つ以上のカルボキシ基を有し、分子鎖末端に1つ以上のエチレン性不飽基を有する化合物である、上記[1]~[3]のいずれか1項に記載の光導波路形成用樹脂組成物。
[5] (B1-2)成分が、さらにその分子中にウレタン結合と、脂環構造、芳香環構造及び複素環構造から選ばれる少なくとも1種の環構造とを有する化合物である、上記[1]~[4]のいずれか1項に記載の光導波路形成用樹脂組成物。
[6] (B1-3)成分が、さらにその分子中に脂環構造、芳香環構造及び複素環構造から選ばれる少なくとも1種の環構造を有する化合物である、上記[1]~[5]のいずれか1項に記載の光導波路形成用樹脂組成物。
[7] (B1-3)成分が、ウレタン結合及び3つ以上のエチレン性不飽和基を有する化合物を含む、上記[1]~[6]のいずれか1項に記載の光導波路形成用樹脂組成物。
[8] (B2)成分が、(B2-1)分子中に1つ以上のエポキシ基及び1つ以上のエチレン性不飽和基を有する化合物である、上記[1]~[7]のいずれか1項に記載の光導波路形成用樹脂組成物。
[9] (B2-1)成分が、さらにその分子中に脂環構造又は芳香環構造を有する化合物である、上記[8]に記載の光導波路形成用樹脂組成物。
[10] (B2-1)成分が、さらにその分子中にビスフェノール骨格を有する化合物である、上記[8]又は[9]に記載の光導波路形成用樹脂組成物。
[11] (A)成分が、重量平均分子量6,000~300,000のポリマーである、上記[1]~[10]のいずれか1項に記載の光導波路形成用樹脂組成物。
[12] (A)成分が、主鎖にマレイミド骨格を有するポリマーである、上記[1]~[11]のいずれか1項に記載の光導波路形成用樹脂組成物。
[13] (A)成分の含有量が(A)及び(B)成分の総量に対して10~85質量%であり、(B)成分の含有量が(A)及び(B)成分の総量に対して15~90質量%であり、(B1)成分の(B2)成分に対する質量比〔(B1)/(B2)〕が50/50~85/15であり、(C)成分の含有量が(A)及び(B)成分の総量100質量部に対して0.01~10質量部である、上記[1]~[12]のいずれか1項に記載の光導波路形成用樹脂組成物。
[14] 下部クラッド層、コア部及び上部クラッド層の少なくとも1つを上記[1]~[13]のいずれか1項に記載の光導波路形成用樹脂組成物を用いて形成した、光導波路。
[15] 上記[1]~[13]のいずれか1項に記載の光導波路形成用樹脂組成物を用いて得られる樹脂層を有する、光導波路形成用樹脂フィルム。
[16] 下部クラッド層、コア部及び上部クラッド層の少なくとも1つを上記[15]に記載の光導波路形成用樹脂フィルムを用いて形成した、光導波路。
[17] 波長850nmにおける光伝搬損失が0.25dB/cm以下である、上記[14]又は[16]に記載の光導波路。
[18] 下記工程1~4を有する光導波路の製造方法であって、下部クラッド層、コア部及び上部クラッド層の少なくとも1つを、上記[15]に記載の光導波路形成用樹脂フィルムを用いて形成する、光導波路の製造方法。
 工程1:下部クラッド層形成用樹脂フィルムを基材上に積層して下部クラッド層を形成する工程
 工程2:前記下部クラッド層上にコア部形成用樹脂フィルムを積層する工程
 工程3:前記コア部形成用樹脂フィルムを、フォトマスクを介して露光し、次いで現像した後、コア部を形成する工程
 工程4:前記下部クラッド層及びコア部上に、上部クラッド層形成用樹脂フィルムを積層して上部クラッド層を形成する工程
That is, the present invention relates to the following [1] to [18].
[1] An optical waveguide forming resin composition comprising (A) a polymer having an alkali-soluble group, (B) a compound having an ethylenically unsaturated group in the molecule, and (C) a polymerization initiator,
The component (B) is at least one compound selected from the following (B1-1) to (B1-3) as the component (B1) and the alkali-soluble group of the component (A) in the molecule as the component (B2) A resin composition for forming an optical waveguide, comprising a group that reacts with a compound and a compound having an ethylenically unsaturated group.
(B1-1) Compound having three or more ethylenically unsaturated groups (B1-2) Compound having carboxy group and two or more ethylenically unsaturated groups (B1-3) Urethane bond and one or more ethylene The resin composition for forming an optical waveguide according to the above [1], wherein the component [2] (B1-1) having an unsaturated group is a compound further having an isocyanurate ring in its molecule.
[3] The resin composition for forming an optical waveguide according to the above [1] or [2], wherein the component (B1-1) is a mixture of two or more compounds having different molecular weights.
[4] The component [B1-2] is a compound having two or more carboxy groups in the molecular chain and one or more ethylenically unsaturated groups at the molecular chain terminals. [3] The resin composition for forming an optical waveguide according to any one of [3].
[5] The component [B1-2] is a compound having a urethane bond and at least one ring structure selected from an alicyclic structure, an aromatic ring structure and a heterocyclic structure in the molecule. ] The resin composition for forming an optical waveguide according to any one of [4] to [4].
[6] The above [1] to [5], wherein the component (B1-3) is a compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure and a heterocyclic structure in the molecule. The resin composition for forming an optical waveguide according to any one of the above.
[7] The resin for forming an optical waveguide according to any one of the above [1] to [6], wherein the component (B1-3) includes a compound having a urethane bond and three or more ethylenically unsaturated groups. Composition.
[8] Any of the above [1] to [7], wherein the component (B2) is a compound having (B2-1) one or more epoxy groups and one or more ethylenically unsaturated groups in the molecule 2. A resin composition for forming an optical waveguide according to item 1.
[9] The resin composition for forming an optical waveguide according to the above [8], wherein the component (B2-1) is a compound further having an alicyclic structure or an aromatic ring structure in the molecule.
[10] The resin composition for forming an optical waveguide according to the above [8] or [9], wherein the component (B2-1) is a compound further having a bisphenol skeleton in the molecule.
[11] The resin composition for forming an optical waveguide according to any one of the above [1] to [10], wherein the component (A) is a polymer having a weight average molecular weight of 6,000 to 300,000.
[12] The resin composition for forming an optical waveguide according to any one of the above [1] to [11], wherein the component (A) is a polymer having a maleimide skeleton in the main chain.
[13] The content of component (A) is 10 to 85% by mass relative to the total amount of components (A) and (B), and the content of component (B) is the total amount of components (A) and (B). The mass ratio [(B1) / (B2)] of the component (B1) to the component (B2) is 50/50 to 85/15, and the content of the component (C) The resin composition for forming an optical waveguide according to any one of the above [1] to [12], wherein is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B) .
[14] An optical waveguide in which at least one of the lower cladding layer, the core portion, and the upper cladding layer is formed using the optical waveguide forming resin composition described in any one of [1] to [13].
[15] A resin film for forming an optical waveguide having a resin layer obtained by using the resin composition for forming an optical waveguide according to any one of [1] to [13].
[16] An optical waveguide in which at least one of the lower cladding layer, the core portion, and the upper cladding layer is formed using the optical waveguide forming resin film described in [15].
[17] The optical waveguide according to the above [14] or [16], wherein the light propagation loss at a wavelength of 850 nm is 0.25 dB / cm or less.
[18] An optical waveguide manufacturing method including the following steps 1 to 4, wherein at least one of the lower clad layer, the core portion, and the upper clad layer is used for the optical waveguide forming resin film described in [15] above. A method for manufacturing an optical waveguide.
Step 1: A step of laminating a resin film for forming a lower clad layer on a substrate to form a lower clad layer Step 2: A step of laminating a resin film for forming a core portion on the lower clad layer Step 3: The core portion Step of forming the core part after exposing the forming resin film through a photomask and then developing Step 4: The upper clad layer-forming resin film is laminated on the lower clad layer and the core part. Step of forming the cladding layer
 本発明によると、波長850nmにおける透明性及び環境信頼性に優れる光導波路用樹脂組成物、この光導波路形成用樹脂組成物を用いて形成した光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造方法を提供することができる。 According to the present invention, an optical waveguide resin composition excellent in transparency and environmental reliability at a wavelength of 850 nm, an optical waveguide forming resin film formed using this optical waveguide forming resin composition, an optical waveguide using them, and A manufacturing method thereof can be provided.
本発明の光導波路の構成例を示す断面図である。It is sectional drawing which shows the structural example of the optical waveguide of this invention. 本発明の光導波路形成用樹脂フィルムを、下部クラッド層、コア部及び上部クラッド層に用いて光導波路を形成する光導波路の製造方法を示す工程断面図である。It is process sectional drawing which shows the manufacturing method of the optical waveguide which forms an optical waveguide using the resin film for optical waveguide formation of this invention for a lower clad layer, a core part, and an upper clad layer. 本発明の光導波路と従来の光導波路の断面を示す電子顕微鏡写真であり、(a)が本発明、(b)が従来技術である。(b)の断面にはブリードが観察される。It is the electron micrograph which shows the cross section of the optical waveguide of this invention, and the conventional optical waveguide, (a) is this invention, (b) is a prior art. Bleed is observed in the cross section of (b).
[光導波路形成用樹脂組成物]
 本発明の光導波路形成用樹脂組成物は、(A)アルカリ可溶性基を有するポリマー、(B)分子中にエチレン性不飽和基を有する化合物、及び(C)重合開始剤を含有する光導波路形成用樹脂組成物であって、
 (B)成分が、(B1)成分として下記の(B1-1)~(B1-3)から選ばれる少なくとも1種の化合物と、(B2)成分として分子中に(A)成分のアルカリ可溶性基と反応する基及びエチレン性不飽和基を有する化合物とを含有してなる。
 (B1-1)3つ以上のエチレン性不飽和基を有する化合物
 (B1-2)カルボキシ基及び2つ以上のエチレン性不飽和基を有する化合物
 (B1-3)ウレタン結合及び1つ以上のエチレン性不飽和基を有する化合物
 本発明の光導波路形成用樹脂組成物は、加熱又は活性光線の照射によって硬化する樹脂組成物であることが好ましい。
 以下、本発明に用いられる各成分について説明する。
[Resin composition for optical waveguide formation]
The resin composition for forming an optical waveguide of the present invention comprises (A) a polymer having an alkali-soluble group, (B) a compound having an ethylenically unsaturated group in the molecule, and (C) an optical waveguide containing a polymerization initiator. A resin composition for
The component (B) is at least one compound selected from the following (B1-1) to (B1-3) as the component (B1) and the alkali-soluble group of the component (A) in the molecule as the component (B2) And a compound having an ethylenically unsaturated group.
(B1-1) Compound having three or more ethylenically unsaturated groups (B1-2) Compound having carboxy group and two or more ethylenically unsaturated groups (B1-3) Urethane bond and one or more ethylene Compound having an unsaturated group The resin composition for forming an optical waveguide of the present invention is preferably a resin composition that is cured by heating or irradiation with actinic rays.
Hereinafter, each component used in the present invention will be described.
<(A)アルカリ可溶性基を有するポリマー>
 本発明の光導波路形成用樹脂組成物は、(A)成分としてアルカリ可溶性基を有するポリマー(以下、単に「(A)成分」ともいう)を含有する。
 (A)成分は、前記アルカリ可溶性基を有することにより、アルカリ性水溶液に対して溶解する性質を有するものであり、アルカリ性水溶液、水系現像液等の現像液(以下、単に「現像液」ともいう)に、目的とする現像処理が遂行される程度に溶解性を有するものであれば特に制限はない。
 (A)成分は、アルカリ性水溶液による現像処理を可能とする観点から、(A)成分を含む溶液を乾燥後の膜厚が50μmとなるように基材に塗布した後、乾燥して得られた被膜を、1質量%の炭酸カリウム水溶液に30℃で30分間浸漬した後、純水にて洗浄した場合に、前記被膜が残らない程度のアルカリ可溶性を有していてもよい。
 前記アルカリ可溶性基としては、例えば、カルボキシ基、スルホン酸基、フェノール性水酸基、アルコール性水酸基等の遊離する水素原子を有する酸性置換基、及びアミノ基などが挙げられる。アルカリ性水溶液への溶解性の観点から、酸性置換基が好ましく、カルボキシ基がより好ましい。
<(A) Polymer having alkali-soluble group>
The resin composition for forming an optical waveguide of the present invention contains a polymer having an alkali-soluble group (hereinafter, also simply referred to as “component (A)”) as the component (A).
The component (A) has a property of being dissolved in an alkaline aqueous solution by having the alkali-soluble group, and a developer such as an alkaline aqueous solution or an aqueous developer (hereinafter also simply referred to as “developer”). In addition, there is no particular limitation as long as it has solubility to the extent that the desired development processing is performed.
The component (A) was obtained by applying a solution containing the component (A) to a substrate so that the film thickness after drying was 50 μm and then drying from the viewpoint of enabling development with an alkaline aqueous solution. When the coating is immersed in a 1% by mass aqueous potassium carbonate solution at 30 ° C. for 30 minutes and then washed with pure water, it may have alkali solubility to such an extent that the coating does not remain.
Examples of the alkali-soluble group include acidic substituents having a free hydrogen atom such as a carboxy group, a sulfonic acid group, a phenolic hydroxyl group, and an alcoholic hydroxyl group, and an amino group. From the viewpoint of solubility in an alkaline aqueous solution, an acidic substituent is preferable, and a carboxy group is more preferable.
 (A)成分としては、特に制限は無いが、透明性、耐熱性及びアルカリ性水溶液への溶解性の観点から、アルカリ可溶性(メタ)アクリルポリマーが好ましい。
 (A)成分のアルカリ可溶性(メタ)アクリルポリマーとしては、例えば、(メタ)アクリル酸;(メタ)アクリルアルキルエステル、(メタ)アクリル酸ヒドロキシアルキルエステル等の(メタ)アクリル酸エステル;(メタ)アクリルアミドなどの(メタ)アクリル系モノマー由来の構造単位を有する重合体、前記(メタ)アクリル系モノマー由来の構造単位と、スチレン、α-メチルスチレン、マレイン酸無水物、N置換又は未置換のマレイミドモノマー等の前記(メタ)アクリル系モノマー以外の他の重合性不飽和基含有モノマー由来の構造単位とを有する共重合体が好ましいものとして挙げられる。
 なお、本明細書において、「(メタ)アクリルポリマー」とは、「アクリルポリマー」又は「メタクリルポリマー」を意味し、(メタ)アクリル酸とは、「アクリル酸」又は「メタクリル酸」を意味する。以下も同様である。
Although there is no restriction | limiting in particular as (A) component, From a transparency viewpoint, heat resistance, and a soluble viewpoint to alkaline aqueous solution, an alkali-soluble (meth) acrylic polymer is preferable.
Examples of the alkali-soluble (meth) acrylic polymer of component (A) include (meth) acrylic acid; (meth) acrylic acid esters such as (meth) acrylic alkyl ester and (meth) acrylic acid hydroxyalkyl ester; Polymer having structural unit derived from (meth) acrylic monomer such as acrylamide, structural unit derived from (meth) acrylic monomer, and styrene, α-methylstyrene, maleic anhydride, N-substituted or unsubstituted maleimide Preferred is a copolymer having a structural unit derived from a polymerizable unsaturated group-containing monomer other than the (meth) acrylic monomer such as a monomer.
In the present specification, “(meth) acrylic polymer” means “acrylic polymer” or “methacrylic polymer”, and (meth) acrylic acid means “acrylic acid” or “methacrylic acid”. . The same applies to the following.
 これらの中でも、透明性、耐熱性及びアルカリ性水溶液への溶解性の観点から、主鎖にN置換マレイミドモノマー由来のマレイミド骨格を有するポリマーが好ましく、主鎖にN置換マレイミドモノマー由来のマレイミド骨格を有する(メタ)アクリルポリマーがより好ましく、N置換マレイミドモノマー由来の構造単位とそれ以外の(メタ)アクリル系モノマー由来の構造単位との共重合体がさらに好ましい。
 主鎖にN置換マレイミドモノマー由来のマレイミド骨格を有する(メタ)アクリルポリマーとしては、主鎖に下記一般式(1)で表される構造単位(A-1)及び下記一般式(2)で表される構造単位(A―2)を含み、さらにカルボキシ基とエチレン性不飽和基を有する化合物由来の下記一般式(3)で表される構造単位(A-3)及び下記一般式(4)で表される構造単位(A-4)の少なくとも一方を有するアルカリ可溶性(メタ)アクリルポリマーを用いることが好ましい。
Among these, from the viewpoint of transparency, heat resistance, and solubility in an alkaline aqueous solution, a polymer having a maleimide skeleton derived from an N-substituted maleimide monomer in the main chain is preferable, and a polymer having a maleimide skeleton derived from an N-substituted maleimide monomer in the main chain. A (meth) acrylic polymer is more preferable, and a copolymer of a structural unit derived from an N-substituted maleimide monomer and a structural unit derived from another (meth) acrylic monomer is more preferable.
The (meth) acrylic polymer having a maleimide skeleton derived from an N-substituted maleimide monomer in the main chain is represented by the structural unit (A-1) represented by the following general formula (1) and the following general formula (2) in the main chain. A structural unit (A-3) represented by the following general formula (3) derived from a compound having a structural unit (A-2) and further having a carboxy group and an ethylenically unsaturated group, and the following general formula (4) It is preferable to use an alkali-soluble (meth) acrylic polymer having at least one of the structural units (A-4) represented by
Figure JPOXMLDOC01-appb-C000001

(一般式(1)中、R~Rは、各々独立に水素原子及び炭素数1~20の有機基のいずれかを示す。)
Figure JPOXMLDOC01-appb-C000001

(In the general formula (1), R 1 to R 3 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000002

(一般式(2)中、R~Rは、各々独立に水素原子及び炭素数1~20の有機基のいずれかを示す。Rは炭素数1~20の有機基を示す。)
Figure JPOXMLDOC01-appb-C000002

(In general formula (2), R 4 to R 6 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms. R 7 represents an organic group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000003

(一般式(3)中、R~R10は、各々独立に水素原子及び炭素数1~20の有機基のいずれかを示す。)
Figure JPOXMLDOC01-appb-C000003

(In the general formula (3), R 8 to R 10 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms.)
Figure JPOXMLDOC01-appb-C000004

(一般式(4)中、R11~R13は、各々独立に水素原子及び炭素数1~20の有機基のいずれかを示す。Xは炭素数1~20の2価の有機基を示す。)
Figure JPOXMLDOC01-appb-C000004

(In the general formula (4), R 11 to R 13 each independently represents a hydrogen atom or an organic group having 1 to 20 carbon atoms. X 1 represents a divalent organic group having 1 to 20 carbon atoms. Show.)
 一般式(1)~(4)における炭素数1~20の有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基等の1価又は2価の基が挙げられる。それらは、さらに、ヒドロキシ基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、アルコキシ基、アリーロキシ基、アルキルチオ基、アリールチオ基、アミノ基、シリル基等で置換されていてもよい。 Examples of the organic group having 1 to 20 carbon atoms in the general formulas (1) to (4) include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, a carbonyl group, an alkoxycarbonyl group, an aryloxycarbonyl group, and a carbamoyl group. And monovalent or divalent groups such as They are further hydroxy groups, halogen atoms, alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, carbonyl groups, alkoxycarbonyl groups, aryloxycarbonyl groups, carbamoyl groups, alkoxy groups, aryloxy groups, alkylthio groups, arylthio groups. , An amino group, a silyl group and the like may be substituted.
 前記アルカリ可溶性(メタ)アクリルポリマーにおける構造単位(A-1)の含有率は、3~50質量%であることが好ましい。3質量%以上であるとマレイミドに由来する耐熱性が得られ、50質量%以下であれば透明性を十分に確保しつつ、得られる樹脂パターンの脆性を抑制することができる。以上の観点から、5~40質量%がより好ましく、10~30質量%であることがさらに好ましい。 The content of the structural unit (A-1) in the alkali-soluble (meth) acrylic polymer is preferably 3 to 50% by mass. When it is 3% by mass or more, heat resistance derived from maleimide is obtained, and when it is 50% by mass or less, the brittleness of the resulting resin pattern can be suppressed while sufficiently ensuring transparency. From the above viewpoint, 5 to 40% by mass is more preferable, and 10 to 30% by mass is further preferable.
 構造単位(A-1)は、一般式(1)で表されるものであれば特に制限はない。
 構造単位(A-1)の原料となるマレイミドとしては、例えば、前記特許文献5(特開2013-174776号公報)の段落[0017]に記載されるものが全て挙げられる。
 具体的には、N-メチルマレイミド、N-エチルマレイミド等のアルキルマレイミド;前記アルキル基の水素原子がヒドロキシ基で置換したヒドロキシアルキルマレイミド;N-シクロプロピルマレイミド、N-シクロブチルマレイミド等の脂環式マレイミド;N-フェニルマレイミド、N-2-メチルフェニルマレイミド、N-2-クロロフェニルマレイミド等のアリールマレイミドなどが挙げられる。
The structural unit (A-1) is not particularly limited as long as it is represented by the general formula (1).
Examples of the maleimide as a raw material for the structural unit (A-1) include all those described in paragraph [0017] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776).
Specifically, alkylmaleimides such as N-methylmaleimide and N-ethylmaleimide; hydroxyalkylmaleimides in which the hydrogen atom of the alkyl group is substituted with a hydroxy group; alicyclic rings such as N-cyclopropylmaleimide and N-cyclobutylmaleimide Mention may be made of the formula maleimide; arylmaleimides such as N-phenylmaleimide, N-2-methylphenylmaleimide, N-2-chlorophenylmaleimide and the like.
 これらの中でも、透明性及び溶解性の観点から、脂環式マレイミドを用いることが好ましく、N-シクロヘキシルマレイミド又はN-2-メチルシクロヘキシルマレイミドを用いることがより好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
Among these, from the viewpoint of transparency and solubility, alicyclic maleimide is preferably used, and N-cyclohexylmaleimide or N-2-methylcyclohexylmaleimide is more preferably used.
These compounds can be used alone or in combination of two or more.
 前記アルカリ可溶性(メタ)アクリルポリマーにおける構造単位(A-2)の含有率は、20~90質量%であることが好ましい。20質量%以上であると(メタ)アクリレートに由来する透明性が得られ、90質量%以下であれば耐熱性が十分である。以上の観点から、25~85質量%がより好ましく、30~80質量%であることがさらに好ましい。 The content of the structural unit (A-2) in the alkali-soluble (meth) acrylic polymer is preferably 20 to 90% by mass. When it is 20% by mass or more, transparency derived from (meth) acrylate is obtained, and when it is 90% by mass or less, heat resistance is sufficient. From the above viewpoint, the content is more preferably 25 to 85% by mass, and further preferably 30 to 80% by mass.
 構造単位(A-2)の構造は、一般式(2)で表されるものであれば特に制限はない。
 構造単位(A-2)の原料となる(メタ)アクリレートとしては、例えば、前記特許文献5(特開2013-174776号公報)の段落[0020]に記載されるものが全て挙げられる。具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート等の脂肪族(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート等の芳香族(メタ)アクリレート;2-テトラヒドロフルフリル(メタ)アクリレート、N-(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド等の複素環式(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;これらのカプロラクトン変性体などが挙げられる。
The structure of the structural unit (A-2) is not particularly limited as long as it is represented by the general formula (2).
Examples of the (meth) acrylate used as the raw material for the structural unit (A-2) include all those described in paragraph [0020] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776). Specifically, aliphatic (meth) acrylates such as methyl (meth) acrylate and ethyl (meth) acrylate; alicyclic (meth) acrylates such as cyclopentyl (meth) acrylate and cyclohexyl (meth) acrylate; benzyl (meth) Aromatic (meth) acrylates such as acrylate and phenyl (meth) acrylate; heterocyclic (meth) acrylates such as 2-tetrahydrofurfuryl (meth) acrylate and N- (meth) acryloyloxyethyl hexahydrophthalimide; Examples thereof include hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate; modified caprolactone thereof.
 これらの中でも、透明性及び耐熱性の観点から、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の脂肪族(メタ)アクリレート、前記脂環式(メタ)アクリレート、前記芳香族(メタ)アクリレート、前記複素環式(メタ)アクリレート、又はヒドロキシアルキル(メタ)アクリレートが好ましく、芳香族(メタ)アクリレート又はヒドロキシアルキル(メタ)アクリレートがより好ましい。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。 Among these, from the viewpoints of transparency and heat resistance, aliphatic (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, the alicyclic The formula (meth) acrylate, the aromatic (meth) acrylate, the heterocyclic (meth) acrylate, or the hydroxyalkyl (meth) acrylate is preferable, and the aromatic (meth) acrylate or hydroxyalkyl (meth) acrylate is more preferable. These compounds can be used alone or in combination of two or more.
 アルカリ可溶性(メタ)アクリルポリマーにおいて、カルボキシ基とエチレン性不飽和基を有する化合物由来の構造単位(A-3)及び(A-4)の合計含有率は3~60質量%であることが好ましい。3質量%以上であると現像液に溶解し易く、60質量%以下であれば後述する現像により感光性樹脂組成物の層を選択的に除去してパターンを形成する現像工程において、耐現像液性(現像により除去されずにパターンとなる部分が、現像液によって侵されない性質)が良好となる。以上の観点から、5~50質量%であることがより好ましく、10~40質量%であることがさらに好ましい。 In the alkali-soluble (meth) acrylic polymer, the total content of the structural units (A-3) and (A-4) derived from the compound having a carboxy group and an ethylenically unsaturated group is preferably 3 to 60% by mass. . If it is 3% by mass or more, it is easy to dissolve in the developer, and if it is 60% by mass or less, in the development step of selectively removing the layer of the photosensitive resin composition by development described later, The property (the property that the portion that becomes a pattern without being removed by development is not attacked by the developer) is improved. From the above viewpoint, the content is more preferably 5 to 50% by mass, and further preferably 10 to 40% by mass.
 カルボキシ基とエチレン性不飽和基を有する化合物由来の構造単位(A-3)は、一般式(3)で表されるものであれば特に制限はない。
 構造単位(A-3)の原料となるカルボキシ基とエチレン性不飽和基を有する化合物としては、例えば、(メタ)アクリル酸、マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、メサコン酸、ケイ皮酸等が挙げられ、これらの中でも、透明性及びアルカリ可溶性の観点から、(メタ)アクリル酸、マレイン酸、フマル酸又はクロトン酸が好ましく、(メタ)アクリル酸がより好ましい。
 また、無水マレイン酸を原料として用いて、重合後にメタノール、エタノール、プロパノール等の適当なアルコールによって開環し、構造単位(A-3)の構造に変換してもよい。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
The structural unit (A-3) derived from the compound having a carboxy group and an ethylenically unsaturated group is not particularly limited as long as it is represented by the general formula (3).
Examples of the compound having a carboxy group and an ethylenically unsaturated group as a raw material for the structural unit (A-3) include (meth) acrylic acid, maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, and mesaconic acid. , Cinnamic acid, and the like. Among these, (meth) acrylic acid, maleic acid, fumaric acid, or crotonic acid are preferable, and (meth) acrylic acid is more preferable from the viewpoint of transparency and alkali solubility.
Alternatively, maleic anhydride may be used as a raw material, and after the polymerization, ring opening may be performed with an appropriate alcohol such as methanol, ethanol, propanol, or the like to convert the structure into the structure of the structural unit (A-3). These compounds can be used alone or in combination of two or more.
 カルボキシ基とエチレン性不飽和基を有する化合物由来の構造単位(A-4)は、一般式(4)で表されるものであれば特に制限はない。
 構造単位(A-4)の原料となるカルボキシ基とエチレン性不飽和基を有する化合物としては、例えば、前記特許文献5(特開2013-174776号公報)の段落[0023]に記載されるものが全て挙げられる。
 これらの中でも、透明性及びアルカリ可溶性の観点から、モノ(2-(メタ)アクリロイロキシエチル)スクシネート、モノ(2-(メタ)アクリロイロキシエチル)テトラヒドロフタレート、モノ(2-(メタ)アクリロイロキシエチル)ヘキサヒドロフタレート、モノ(2-(メタ)アクリロイロキシエチル)ヘキサヒドロイソフタレート、モノ(2-(メタ)アクリロイロキシエチル)ヘキサヒドロテレフタレート等であることが好ましい。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
The structural unit (A-4) derived from the compound having a carboxy group and an ethylenically unsaturated group is not particularly limited as long as it is represented by the general formula (4).
Examples of the compound having a carboxy group and an ethylenically unsaturated group as a raw material for the structural unit (A-4) include those described in paragraph [0023] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776). Are all listed.
Among these, from the viewpoints of transparency and alkali solubility, mono (2- (meth) acryloyloxyethyl) succinate, mono (2- (meth) acryloyloxyethyl) tetrahydrophthalate, mono (2- (meth) acrylic acid). It is preferably leuoxyethyl) hexahydrophthalate, mono (2- (meth) acryloyloxyethyl) hexahydroisophthalate, mono (2- (meth) acryloyloxyethyl) hexahydroterephthalate, and the like. These compounds can be used alone or in combination of two or more.
 また、前記アルカリ可溶性(メタ)アクリルポリマーは、必要に応じて構造単位(A-1)~(A-4)以外の構造単位を含んでもよい。
 このような構造単位の原料となるエチレン性不飽和基を有する化合物としては特に制限はなく、例えばスチレン、α-メチルスチレン、ビニルトルエン、塩化ビニル、酢酸ビニル、ビニルピリジン、N-ビニルピロリドン、N-ビニルカルバゾール、ブタジエン、イソプレン、クロロプレン等が挙げられる。これらの中でも、耐熱性及び透明性の観点から、スチレン、α-メチルスチレン、ビニルトルエン、N-ビニルカルバゾールを用いることが好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
The alkali-soluble (meth) acrylic polymer may contain structural units other than the structural units (A-1) to (A-4) as necessary.
The compound having an ethylenically unsaturated group as a raw material for such a structural unit is not particularly limited. For example, styrene, α-methylstyrene, vinyl toluene, vinyl chloride, vinyl acetate, vinyl pyridine, N-vinyl pyrrolidone, N -Vinylcarbazole, butadiene, isoprene, chloroprene and the like. Of these, styrene, α-methylstyrene, vinyltoluene, and N-vinylcarbazole are preferably used from the viewpoint of heat resistance and transparency.
These compounds can be used alone or in combination of two or more.
 (A)アルカリ可溶性基を有するポリマーは、その合成方法に特に制限はないが、(A)成分としてアルカリ可溶性(メタ)アクリルポリマーを用いる場合には、例えば、構造単位(A-1)の原料となるマレイミド、構造単位(A-2)の原料となる(メタ)アクリレート、並びに構造単位(A-3)及び(A-4)の少なくとも一方の原料となるカルボキシ基とエチレン性不飽和基を有する化合物、さらには必要に応じてその他のエチレン性不飽和基を有する化合物と適切な重合開始剤を用いて共重合させることにより得ることができる。また、必要に応じて有機溶剤を反応溶媒として用いることができる。 (A) The polymer having an alkali-soluble group is not particularly limited in its synthesis method. However, when an alkali-soluble (meth) acrylic polymer is used as the component (A), for example, a raw material for the structural unit (A-1) A maleimide, a (meth) acrylate as a raw material of the structural unit (A-2), a carboxy group and an ethylenically unsaturated group as at least one raw material of the structural units (A-3) and (A-4) It can be obtained by copolymerization using a compound having a suitable polymerization initiator and a compound having another ethylenically unsaturated group as required. Moreover, an organic solvent can be used as a reaction solvent as needed.
 前記重合開始剤としては、特に制限はないが、好ましくはラジカル重合開始剤であり、例えば、各種ケトンパーオキシド、パーオキシケタール、ジアルキルパーオキシド、ジアシルパーオキシド、パーオキシカーボネート、パーオキシエステル、アゾ化合物等が挙げられる。 The polymerization initiator is not particularly limited, but is preferably a radical polymerization initiator, such as various ketone peroxides, peroxyketals, dialkyl peroxides, diacyl peroxides, peroxycarbonates, peroxyesters, azo Compounds and the like.
 前記反応溶媒として用いる有機溶剤としては、前記アルカリ可溶性(メタ)アクリルポリマーを溶解しえるものであれば、特に制限はなく、各種芳香族炭化水素、環状エーテル、ケトン、エステル、カーボネート、多価アルコールアルキルエーテル、多価アルコールアルキルエーテルアセテート、アミド等が挙げられる。これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。 The organic solvent used as the reaction solvent is not particularly limited as long as it can dissolve the alkali-soluble (meth) acrylic polymer, and various aromatic hydrocarbons, cyclic ethers, ketones, esters, carbonates, polyhydric alcohols. Examples include alkyl ethers, polyhydric alcohol alkyl ether acetates, and amides. These organic solvents can be used alone or in combination of two or more.
 前記アルカリ可溶性(メタ)アクリルポリマーは、必要に応じて側鎖にエチレン性不飽和基を含んでいてもよい。その組成、合成方法等に特に制限はないが、例えば前記アルカリ可溶性(メタ)アクリルポリマーに、少なくとも1つのエチレン性不飽和基とエポキシ基、オキセタニル基、イソシアネート基、ヒドロキシ基、カルボキシ基等の1つの官能基とを有する化合物を付加反応させて側鎖にエチレン性不飽和基を導入することができる。 The alkali-soluble (meth) acrylic polymer may contain an ethylenically unsaturated group in the side chain as necessary. The composition, synthesis method, etc. are not particularly limited. For example, the alkali-soluble (meth) acrylic polymer includes at least one ethylenically unsaturated group and an epoxy group, an oxetanyl group, an isocyanate group, a hydroxy group, a carboxy group, and the like. An ethylenically unsaturated group can be introduced into the side chain by addition reaction of a compound having two functional groups.
 これらの化合物としては特に制限はなく、前記特許文献5(特開2013-174776号公報)の段落[0029]に記載されるものが全て挙げられる。即ち、各種エチレン性不飽和基とエポキシ基を有する化合物、エチレン性不飽和基とオキセタニル基を有する化合物、エチレン性不飽和基とイソシアネート基を有する化合物、エチレン性不飽和基とヒドロキシ基を有する化合物、エチレン性不飽和基とカルボキシ基を有する化合物等が挙げられる。
 これらの中でも、透明性及び反応性の観点から、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、イソシアン酸エチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、(メタ)アクリル酸、クロトン酸、2-ヘキサヒドロフタロイルエチル(メタ)アクリレートが好ましい。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
These compounds are not particularly limited, and include all those described in paragraph [0029] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776). Namely, compounds having various ethylenically unsaturated groups and epoxy groups, compounds having ethylenically unsaturated groups and oxetanyl groups, compounds having ethylenically unsaturated groups and isocyanate groups, compounds having ethylenically unsaturated groups and hydroxy groups And compounds having an ethylenically unsaturated group and a carboxy group.
Among these, from the viewpoint of transparency and reactivity, glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, ethyl isocyanate (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- Hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) acrylic acid, crotonic acid, and 2-hexahydrophthaloylethyl (meth) acrylate are preferred. These compounds can be used alone or in combination of two or more.
 (A)アルカリ可溶性基を有するポリマーの重量平均分子量は、6,000~300,000であることが好ましい。6,000以上であると分子量が大きいため樹脂組成物とした場合の硬化物の強度が十分であり、300,000以下であれば、現像液に対する溶解性及び(B)成分との相溶性が良好である。以上の観点から6,000~200,000であることがより好ましく、10,000~100,000であることがさらに好ましい。なお、本発明における重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値である。 (A) The polymer having an alkali-soluble group preferably has a weight average molecular weight of 6,000 to 300,000. When the molecular weight is 6,000 or more, the strength of the cured product is sufficient when the resin composition is used, and when it is 300,000 or less, the solubility in the developer and the compatibility with the component (B) are high. It is good. From the above viewpoint, it is more preferably 6,000 to 200,000, and further preferably 10,000 to 100,000. The weight average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
 (A)アルカリ可溶性基を有するポリマーは、後述する現像により感光性樹脂組成物の層を選択的に除去してパターンを形成する工程において、公知の各種現像液により現像可能となるように酸価を規定することができる。例えば、炭酸ナトリウム、炭酸カリウム、水酸化テトラメチルアンモニウム、トリエタノールアミン等のアルカリ性水溶液を用いて現像する場合には、(A)アルカリ可溶性基を有するポリマーの酸価は20~300mgKOH/gであることが好ましい。20mgKOH/g以上であると現像が容易で、300mgKOH/g以下であると耐現像液性の低下を抑制することができる。以上の観点から、30~250mgKOH/gであることがより好ましく、40~200mgKOH/gであることがさらに好ましい。 (A) The polymer having an alkali-soluble group has an acid value so that it can be developed with various known developing solutions in the step of selectively removing a layer of the photosensitive resin composition by development described later. Can be defined. For example, when developing using an alkaline aqueous solution such as sodium carbonate, potassium carbonate, tetramethylammonium hydroxide, triethanolamine, the acid value of the polymer (A) having an alkali-soluble group is 20 to 300 mgKOH / g. It is preferable. When it is 20 mgKOH / g or more, development is easy, and when it is 300 mgKOH / g or less, a decrease in developer resistance can be suppressed. From the above viewpoint, it is more preferably 30 to 250 mgKOH / g, and further preferably 40 to 200 mgKOH / g.
 水又はアルカリ性水溶液と1種以上の界面活性剤とからなる水系現像液を用いて現像する場合には、(A)アルカリ可溶性基を有するポリマーの酸価は10~260mgKOH/gであることが好ましい。酸価が10mgKOH/g以上であると現像が容易で、260mgKOH/g以下であると耐現像液性が低下することがない。以上の観点から、20~250mgKOH/gであることがより好ましく、30~200mgKOH/gであることがさらに好ましい。 When developing using an aqueous developer comprising water or an aqueous alkaline solution and one or more surfactants, the acid value of the polymer (A) having an alkali-soluble group is preferably 10 to 260 mgKOH / g. . When the acid value is 10 mgKOH / g or more, development is easy, and when it is 260 mgKOH / g or less, the developer resistance is not lowered. From the above viewpoint, it is more preferably 20 to 250 mgKOH / g, and further preferably 30 to 200 mgKOH / g.
 本発明の光導波路形成用樹脂組成物中における(A)成分の含有量は、(A)及び(B)成分の総量に対して、10~85質量%であることが好ましい。10質量%以上であると、光導波路形成用樹脂組成物の硬化物の強度及び可撓性が十分で、85質量%以下であれば、露光時に(B)成分によって(A)成分のポリマーが絡め込まれて容易に硬化し、耐現像液性が不足することがない。以上の観点から、15質量%以上であることがより好ましく、20質量%以上であることがさらに好ましい。また、75質量%以下であることがより好ましく、65質量%以下であることがさらに好ましい。また、低光損失の観点から、10~65質量%の範囲が特に好ましい。 In the resin composition for forming an optical waveguide of the present invention, the content of the component (A) is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B). If it is 10% by mass or more, the strength and flexibility of the cured product of the resin composition for forming an optical waveguide are sufficient, and if it is 85% by mass or less, the polymer of the component (A) is formed by the component (B) during exposure. It is easily entangled and hardened, and the developer resistance is not insufficient. From the above viewpoint, it is more preferably 15% by mass or more, and further preferably 20% by mass or more. Moreover, it is more preferable that it is 75 mass% or less, and it is further more preferable that it is 65 mass% or less. Further, from the viewpoint of low light loss, the range of 10 to 65% by mass is particularly preferable.
<(B)分子中にエチレン性不飽和基を有する化合物>
 本発明の光導波路形成用樹脂組成物は、(B)分子中にエチレン性不飽和基を有する化合物(以下、単に「(B)成分」ともいう)を含有する。(B)成分は、(B1)成分として下記の(B1-1)~(B1-3)から選ばれる少なくとも1種の化合物と、(B2)成分として分子中に(A)成分のポリマーのアルカリ可溶性基と反応する基及びエチレン性不飽和基を有する化合物とを併用することにより、硬化後のフィルムの強靭性を向上させることができ、さらに高温高湿放置試験による信頼性試験時のブリードアウトを抑制させることができる。
 (B1-1)3つ以上のエチレン性不飽和基を有する化合物
 (B1-2)カルボキシ基及び2つ以上のエチレン性不飽和基を有する化合物
 (B1-3)ウレタン結合及び1つ以上のエチレン性不飽和基を有する化合物
 前記エチレン性不飽和基としては、ビニル基、アリル基、ブテニル基、シクロヘキセニル基、シクロペンタジエニル基、(メタ)アクリロイルオキシアルキル基等が挙られ、ビニル基及び(メタ)アクリロイルオキシアルキル基から選ばれる少なくとも1種が好ましい。
 なお、本明細書において、「(メタ)アクリロイルオキシアルキル基」とは、「アクリロイルオキシアルキル基」又は「メタクリロイルオキシアルキル基」を意味する。以下も同様である。
<(B) Compound having ethylenically unsaturated group in molecule>
The resin composition for forming an optical waveguide of the present invention contains (B) a compound having an ethylenically unsaturated group in the molecule (hereinafter, also simply referred to as “component (B)”). The component (B) comprises at least one compound selected from the following (B1-1) to (B1-3) as the component (B1) and an alkali of the polymer of the component (A) in the molecule as the component (B2) Combined use of a group that reacts with a soluble group and a compound having an ethylenically unsaturated group can improve the toughness of the cured film, and further, a bleed out during a reliability test using a high temperature and high humidity standing test. Can be suppressed.
(B1-1) Compound having three or more ethylenically unsaturated groups (B1-2) Compound having carboxy group and two or more ethylenically unsaturated groups (B1-3) Urethane bond and one or more ethylene Compound having an unsaturated group Examples of the ethylenically unsaturated group include a vinyl group, an allyl group, a butenyl group, a cyclohexenyl group, a cyclopentadienyl group, a (meth) acryloyloxyalkyl group, and the like. At least one selected from (meth) acryloyloxyalkyl groups is preferred.
In the present specification, “(meth) acryloyloxyalkyl group” means “acryloyloxyalkyl group” or “methacryloyloxyalkyl group”. The same applies to the following.
 本発明の光導波路形成用樹脂組成物中における(B)成分の含有量は、(A)及び(B)成分の総量に対して、15~90質量%であることが好ましい。15質量%以上であると、信頼性試験時のブリードアウトを抑制させることができ、90質量%以下であれば、硬化後のフィルムの強靭性を保持することができる。以上の観点から、25質量%以上であることがより好ましく、35質量%以上であることがさらに好ましい。また、85質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。また、低光損失の観点からは、35~90質量%の範囲が特に好ましい。
 本発明の光導波路形成用樹脂組成物中における(B1)成分の(B2)成分に対する質量比〔(B1)/(B2)〕 は、50/50~85/15であることが好ましい。50/50以上であると、信頼性試験時のブリードアウトを抑制させることができ、85/15以下であれば、硬化後のフィルムの強靭性を保持することができる。以上の観点から、60/40~80/20であることがより好ましく、65/35~75/25であることがさらに好ましい。また、低光損失の観点からは、65/35~75/25の範囲が特に好ましい。
The content of the component (B) in the optical waveguide forming resin composition of the present invention is preferably 15 to 90% by mass relative to the total amount of the components (A) and (B). If it is 15% by mass or more, bleeding out during a reliability test can be suppressed, and if it is 90% by mass or less, the toughness of the cured film can be maintained. From the above viewpoint, it is more preferably 25% by mass or more, and further preferably 35% by mass or more. Moreover, it is more preferable that it is 85 mass% or less, and it is further more preferable that it is 80 mass% or less. From the viewpoint of low light loss, the range of 35 to 90% by mass is particularly preferable.
The mass ratio [(B1) / (B2)] of the component (B1) to the component (B2) in the optical waveguide forming resin composition of the present invention is preferably 50/50 to 85/15. If it is 50/50 or more, bleed-out during the reliability test can be suppressed, and if it is 85/15 or less, the toughness of the cured film can be maintained. From the above viewpoint, the ratio is more preferably 60/40 to 80/20, and further preferably 65/35 to 75/25. From the viewpoint of low light loss, the range of 65/35 to 75/25 is particularly preferable.
<(B1)成分>
〔(B1-1)成分〕
 本発明においては、(B1)成分として、(B1-1)3つ以上のエチレン性不飽和基を有する化合物と、(B2)成分として、分子中に(A)成分のアルカリ可溶性基と反応する基及びエチレン性不飽和基を有する化合物とを併用することにより、硬化後のフィルムの強靭性を向上させることができる。
<(B1) component>
[(B1-1) component]
In the present invention, as the component (B1), (B1-1) a compound having three or more ethylenically unsaturated groups and as the component (B2) react with the alkali-soluble group of the component (A) in the molecule. By using in combination with a group and a compound having an ethylenically unsaturated group, the toughness of the cured film can be improved.
 (B1-1)3つ以上のエチレン性不飽和基を有する化合物(以下、単に「(B1-1)成分」ともいう)としては、特に制限はなく、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレート等の複素環式(メタ)アクリレート;これらのカプロラクトン変性体;フェノールノボラック型エポキシトリ(メタ)アクリレート、クレゾールノボラック型エポキシトリ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどの(メタ)アクリレートが挙げられる。 (B1-1) The compound having three or more ethylenically unsaturated groups (hereinafter, also simply referred to as “component (B1-1)”) is not particularly limited, and examples thereof include trimethylolpropane tri (meth) acrylate. , Ethoxylated trimethylolpropane tri (meth) acrylate, propoxylated trimethylolpropane tri (meth) acrylate, ethoxylated propoxylated trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated pentaerythritol tri ( (Meth) acrylate, propoxylated pentaerythritol tri (meth) acrylate, ethoxylated propoxylated pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythris Aliphatic (meth) such as tall tetra (meth) acrylate, propoxylated pentaerythritol tetra (meth) acrylate, ethoxylated propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetraacrylate, dipentaerythritol hexa (meth) acrylate Acrylates; heterocyclic (meth) acrylates such as ethoxylated isocyanuric acid tri (meth) acrylate, propoxylated isocyanuric acid tri (meth) acrylate, ethoxylated propoxylated isocyanuric acid tri (meth) acrylate; these caprolactone modified products; phenol Aromatic epoxy (meth) acrylates such as novolak type epoxy tri (meth) acrylate and cresol novolak type epoxy tri (meth) acrylate They include a (meth) acrylate.
 これらの中でも、透明性及び耐熱性の観点から、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレート等の複素環式(メタ)アクリレート;これらのカプロラクトン変性体;フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシトリ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどの3つのエチレン性不飽和基を有する化合物が好ましく、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレート等の、さらにその分子中にイソシアヌレート環を有する化合物がより好ましく、エトキシ化イソシアヌル酸トリ(メタ)アクリレートがさらに好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて使用することができ、さらにその他の3つ以上のエチレン性不飽和基を有する化合物と組み合わせて使用することもできる。その他の3つ以上のエチレン性不飽和基を有する化合物としては、可撓性の観点から、分子中にウレタン結合を有する化合物が好ましく、ウレタン(メタ)アクリレートがより好ましく、エトキシ化イソシアヌル酸トリ(メタ)アクリレート(a1)と3つ以上のエチレン性不飽和基を有するウレタン(メタ)アクリレート(a2)とを併用することがさらに好ましい。
 本発明の光導波路形成用樹脂組成物中における(a1)成分の(a2)成分に対する質量比〔(a1)/(a2)〕 は、20/80~70/30であることが好ましい。20/80以上であると、硬化後のフィルムの柔軟性を保持することができ、70/30以下であれば、硬化後のフィルムの強靭性を保持することができる。以上の観点から、30/70~65/35であることがより好ましく、40/60~60/40であることがさらに好ましい。
Among these, from the viewpoint of transparency and heat resistance, heterocyclic (such as ethoxylated isocyanuric acid tri (meth) acrylate, propoxylated isocyanuric acid tri (meth) acrylate, ethoxylated propoxylated isocyanuric acid tri (meth) acrylate) ( A compound having three ethylenically unsaturated groups, such as aromatic epoxy (meth) acrylates such as a phenol novolac type epoxy (meth) acrylate and a cresol novolac type epoxy tri (meth) acrylate; Preferably, ethoxylated isocyanuric acid tri (meth) acrylate, propoxylated isocyanuric acid tri (meth) acrylate, ethoxylated propoxylated isocyanuric acid tri (meth) acrylate, etc. More preferably a compound having an over preparative ring, ethoxylated isocyanuric acid tri (meth) acrylate is more preferred.
These compounds can be used alone or in combination of two or more kinds, and can also be used in combination with other compounds having three or more ethylenically unsaturated groups. As another compound having three or more ethylenically unsaturated groups, a compound having a urethane bond in the molecule is preferable, urethane (meth) acrylate is more preferable, and ethoxylated isocyanuric acid tri ( More preferably, the (meth) acrylate (a1) and the urethane (meth) acrylate (a2) having three or more ethylenically unsaturated groups are used in combination.
The mass ratio [(a1) / (a2)] of the (a1) component to the (a2) component in the resin composition for forming an optical waveguide of the present invention is preferably 20/80 to 70/30. If it is 20/80 or more, the flexibility of the cured film can be maintained, and if it is 70/30 or less, the toughness of the cured film can be maintained. From the above viewpoint, the ratio is more preferably 30/70 to 65/35, and further preferably 40/60 to 60/40.
 (B1-1)成分は、分子量の異なる2種以上の化合物の混合物であることが好ましい。具体的には重量平均分子量が100以上1,000未満である(a3)成分と、これよりも分子量が大きい重量平均分子量が1,000以上10,000以下である(a4)成分とを組み合わせることがより好ましい。前記混合物を用いることにより、硬化後のフィルムの柔軟性と強靭性を両立させることができる。
 本発明の光導波路形成用樹脂組成物中における(a3)成分の(a4)成分に対する質量比〔(a3)/(a4)〕 は、20/80~70/30であることが好ましい。20/80以上であると、硬化後のフィルムの柔軟性を保持することができ、70/30以下であれば、硬化後のフィルムの強靭性を保持することができる。以上の観点から、30/70~65/35であることがより好ましく、40/60~60/40であることがさらに好ましい。
The component (B1-1) is preferably a mixture of two or more compounds having different molecular weights. Specifically, the component (a3) having a weight average molecular weight of 100 or more and less than 1,000 is combined with the component (a4) having a weight average molecular weight of 1,000 to 10,000. Is more preferable. By using the said mixture, the softness | flexibility and toughness of the film after hardening can be made compatible.
The mass ratio [(a3) / (a4)] of the (a3) component to the (a4) component in the resin composition for forming an optical waveguide of the present invention is preferably 20/80 to 70/30. If it is 20/80 or more, the flexibility of the cured film can be maintained, and if it is 70/30 or less, the toughness of the cured film can be maintained. From the above viewpoint, the ratio is more preferably 30/70 to 65/35, and further preferably 40/60 to 60/40.
 本発明の光導波路形成用樹脂組成物中における(B1-1)成分の含有量は、(A)及び(B)成分の総量に対して、10~85質量%であることが好ましい。10質量%以上であると、光硬化による架橋が高密度となり、高温高湿放置試験による環境信頼性試験(以下、単に「環境信頼性試験」ともいう)時の未反応物の析出が少ない。また、85質量%以下であれば、硬化フィルムのフィルム強度及び可撓性が十分である。以上の観点から、13~70質量%であることがより好ましく、15~50質量%がさらに好ましい。また、硬化フィルムの反りを抑制する観点からは、15~30質量%の範囲が特に好ましい。 The content of the component (B1-1) in the optical waveguide forming resin composition of the present invention is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B). When the content is 10% by mass or more, crosslinking due to photocuring becomes high density, and precipitation of unreacted substances during an environmental reliability test (hereinafter also simply referred to as “environmental reliability test”) by a high temperature and high humidity standing test is small. Moreover, if it is 85 mass% or less, the film strength and flexibility of a cured film are enough. From the above viewpoint, the content is more preferably 13 to 70% by mass, and further preferably 15 to 50% by mass. Further, from the viewpoint of suppressing the warp of the cured film, the range of 15 to 30% by mass is particularly preferable.
〔(B1-2)成分〕
 本発明においては、(B1)成分として(B1-2)カルボキシ基及び2つ以上のエチレン性不飽和基を有する化合物と、(B2)成分として分子中に(A)成分のアルカリ可溶性基に反応する基及びエチレン性不飽和基を有する化合物とを併用することにより、硬化後のフィルムの強靭性を向上、さらに信頼性試験時のブリードアウトを抑制させることができる。
[(B1-2) component]
In the present invention, the compound (B1-2) having a carboxy group and two or more ethylenically unsaturated groups as the component (B1) and the alkali-soluble group of the component (A) in the molecule as the component (B2) By using in combination with a group having an ethylenically unsaturated group, the toughness of the cured film can be improved, and bleeding out during a reliability test can be suppressed.
 (B1-2)カルボキシ基及び2つ以上のエチレン性不飽和基を有する化合物(以下、単に「(B1-2)成分」ともいう)としては、分子中にカルボキシ基及び2つ以上のエチレン性不飽和基を有する光ラジカル反応性の化合物であれば特に制限はなく、例えば、エポキシ化合物(b1)と不飽和モノカルボン酸(b2)のエステル化物に飽和又は不飽和多塩基酸無水物(b3)を付加した付加反応物等を用いることができる。これらは、二段階の反応によって得ることができる。最初の反応(以下、便宜的に「第一の反応」という)では、エポキシ化合物(b1)と不飽和モノカルボン酸(b2)とが反応する。次の反応(以下、便宜的に「第二の反応」という)では、第一の反応で生成したエステル化物と、飽和又は不飽和多塩基酸無水物(b3)とが反応する。 (B1-2) A compound having a carboxy group and two or more ethylenically unsaturated groups (hereinafter, also simply referred to as “component (B1-2)”) includes a carboxy group and two or more ethylenic groups in the molecule. There is no particular limitation as long as it is a photoradical reactive compound having an unsaturated group. For example, an esterified product of an epoxy compound (b1) and an unsaturated monocarboxylic acid (b2) is saturated with an unsaturated polybasic acid anhydride (b3). An addition reaction product to which is added) can be used. These can be obtained by a two-step reaction. In the first reaction (hereinafter referred to as “first reaction” for convenience), the epoxy compound (b1) and the unsaturated monocarboxylic acid (b2) react. In the next reaction (hereinafter referred to as “second reaction” for convenience), the esterified product formed in the first reaction and the saturated or unsaturated polybasic acid anhydride (b3) react.
 本発明で使用できる(B1-2)成分としては、EA-6340、EA-7140、EA-7440(以上、新中村化学工業株式会社製、商品名)、CCR-1218H、CCR-1159H、CCR-1222H、PCR-1050、TCR-1335H、ZAR-1035、ZAR-2001H、ZFR-1185、UXE-3024及びZCR-1569H(以上、日本化薬株式会社製、商品名)、UE-EXP-2810、UE-EXP-3073(以上、DIC株式会社製、商品名)等が商業的に入手可能である。 As the component (B1-2) that can be used in the present invention, EA-6340, EA-7140, EA-7440 (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.), CCR-1218H, CCR-1159H, CCR- 1222H, PCR-1050, TCR-1335H, ZAR-1035, ZAR-2001H, ZFR-1185, UXE-3024 and ZCR-1569H (Nippon Kayaku Co., Ltd., trade name), UE-EXP-2810, UE EXP-3073 (trade name, manufactured by DIC Corporation) is commercially available.
 (B1-2)成分は、現像液により現像可能となるように酸価を規定することができる。(B1-2)成分の酸価は5~200mgKOH/gであることが好ましい。5mgKOH/g以上であると、現像液に対する溶解性が良好であり、200mgKOH/g以下であると、耐現像液性が良好である。以上の観点から、(B1-2)成分の酸価は、10~150mgKOH/gであることがより好ましく、15~100mgKOH/gであることがさらに好ましく、20~50mgKOH/gであることが特に好ましい。 The acid value of the component (B1-2) can be regulated so that it can be developed with a developer. The acid value of the component (B1-2) is preferably 5 to 200 mgKOH / g. When it is 5 mgKOH / g or more, the solubility in a developer is good, and when it is 200 mgKOH / g or less, the developer resistance is good. From the above viewpoint, the acid value of the component (B1-2) is more preferably 10 to 150 mgKOH / g, further preferably 15 to 100 mgKOH / g, and particularly preferably 20 to 50 mgKOH / g. preferable.
 (B1-2)成分の重量平均分子量は、1,000~100,000であることが好ましい。1,000以上であると樹脂組成物とした場合の硬化物の強度が十分で、100,000以下であれば、現像液に対する溶解性及び(B)成分に含まれる他の化合物との相溶性が良好となる。以上の観点から、2,000~50,000であることがより好ましく、3,000~25,000であることがさらに好ましく、3,000~10,000であることが特に好ましく、3,000以上6,000未満であることが特に好ましい。
 なお、(B1-2)成分の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値である。
The weight average molecular weight of the component (B1-2) is preferably 1,000 to 100,000. When the resin composition is 1,000 or more, the strength of the cured product is sufficient, and if it is 100,000 or less, the solubility in the developer and the compatibility with other compounds contained in the component (B) Becomes better. From the above viewpoints, it is more preferably 2,000 to 50,000, further preferably 3,000 to 25,000, particularly preferably 3,000 to 10,000, and 3,000. It is particularly preferred that the number is less than 6,000.
The weight average molecular weight of the component (B1-2) is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
 (B1-2)成分は、現像液に対する溶解性の観点から、分子鎖中に2つ以上のカルボキシ基を有し、分子鎖末端に1つ以上のエチレン性不飽基を有する化合物であることが好ましく、分子鎖中に2つ以上のカルボキシ基を有し、かつ分子鎖両末端にそれぞれエチレン性不飽基を有する化合物であることがより好ましい。
 (B1-2)成分は、硬化後のフィルムの強靭性の向上及び信頼性試験時のブリードアウトを抑制させる観点から、その分子中にエチレン性不飽和基が2つ以上であり、そして、3つ以下であることが好ましく、2つであることがより好ましい。
Component (B1-2) is a compound having two or more carboxy groups in the molecular chain and one or more ethylenically unsaturated groups at the molecular chain ends from the viewpoint of solubility in a developer. It is more preferable that the compound has two or more carboxy groups in the molecular chain and has an ethylenically unsaturated group at both ends of the molecular chain.
The component (B1-2) has two or more ethylenically unsaturated groups in the molecule from the viewpoint of improving the toughness of the cured film and suppressing bleed out during the reliability test. The number is preferably one or less, and more preferably two.
 (B1-2)カルボキシ基及び2つ以上のエチレン性不飽和基を有する化合物は、可撓性の観点から、さらにその分子中にウレタン結合を有しているものを使用してもよい。
 カルボキシ基及び2つ以上のエチレン性不飽和基、並びにウレタン結合を有する化合物としては、特に制限はなく、例えば、下記(I)~(IV)で表されるウレタン(メタ)アクリレート等が挙げられる。
(B1-2) As the compound having a carboxy group and two or more ethylenically unsaturated groups, those having a urethane bond in the molecule may be used from the viewpoint of flexibility.
The compound having a carboxy group, two or more ethylenically unsaturated groups, and a urethane bond is not particularly limited, and examples thereof include urethane (meth) acrylates represented by the following (I) to (IV). .
(I)2官能アルコール化合物、2官能イソシアネート化合物、及び水酸基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
(II)2官能アルコール化合物、2官能イソシアネート化合物、及びイソシアネート基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
(III)多官能イソシアネート化合物及び水酸基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
(IV)多官能アルコール化合物及びイソシアネート基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
(但し、(I)~(IV)のいずれにおいても、いずれかの原料化合物がカルボキシ基を有している。)
 これらの中でも、透明性及び耐熱性の観点から、さらにその分子中にウレタン結合と、脂環構造、芳香環構造、及び複素環構造から選ばれる少なくとも1種の環構造とを有するウレタン(メタ)アクリレートが好ましい。前記環構造としては、脂環構造が好ましく、シクロヘキサン環がより好ましい。
(I) Urethane (meth) acrylate obtained by reacting a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having a hydroxyl group.
(II) Urethane (meth) acrylate obtained by reacting a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having an isocyanate group.
(III) Urethane (meth) acrylate obtained by reacting a polyfunctional isocyanate compound and (meth) acrylate having a hydroxyl group.
(IV) Urethane (meth) acrylate obtained by reacting a polyfunctional alcohol compound and a (meth) acrylate having an isocyanate group.
(However, in any of (I) to (IV), any raw material compound has a carboxy group.)
Among these, from the viewpoints of transparency and heat resistance, urethane (meth) having a urethane bond and at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure in the molecule. Acrylate is preferred. As said ring structure, an alicyclic structure is preferable and a cyclohexane ring is more preferable.
 前記2官能アルコール化合物、すなわちジオール化合物としては、例えば、カルボキシ基含有ジオール化合物が挙げられ、さらに、ポリエーテルジオール化合物、ポリエステルジオール化合物、ポリカーボネートジオール化合物、ポリカプロラクトンジオール化合物等が含まれていてもよい。 Examples of the bifunctional alcohol compound, that is, the diol compound, include a carboxy group-containing diol compound, and may further include a polyether diol compound, a polyester diol compound, a polycarbonate diol compound, a polycaprolactone diol compound, and the like. .
 前記カルボキシ基含有ジオール化合物としては、特に制限はなく、例えば、2,2-ジメチロールブタン酸、2,2-ジメチロールプロピオン酸、2,2-ジメチロール酪酸、2,2-ジメチロールペンタン酸等が挙げられる。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。 The carboxy group-containing diol compound is not particularly limited, and examples thereof include 2,2-dimethylolbutanoic acid, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpentanoic acid, and the like. Is mentioned. These compounds can be used alone or in combination of two or more.
 前記ポリエーテルジオール化合物としては、特に制限はなく、例えば、エチレンオキシド、プロピレンオキシド、イソブテンオキシド、ブチルグリシジルエーテル、ブテン-1-オキシド、3,3-ビスクロロメチルオキセタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、3-メチルテトラヒドロフラン、シクロヘキセンオキシド、スチレンオキシド、フェニルグリシジルエーテル、安息香酸グリシジルエステル等の環状エーテル化合物から選ばれる少なくとも1種を開環(共)重合することにより得られるポリエーテルジオール化合物;シクロヘキサンジメタノール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF等の脂環式ジオール化合物に上記環状エーテル化合物から選ばれる少なくとも1種を開環付加することにより得られるポリエーテルジオール化合物;ヒドロキノン、レゾルシノール、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールAF、ビフェノール、フルオレンビスフェノール等の2官能フェノール化合物に上記環状エーテル化合物から選ばれる少なくとも1種を開環付加することにより得られるポリエーテルジオール化合物などが挙げられる。 The polyether diol compound is not particularly limited, and examples thereof include ethylene oxide, propylene oxide, isobutene oxide, butyl glycidyl ether, butene-1-oxide, 3,3-bischloromethyloxetane, tetrahydrofuran, 2-methyltetrahydrofuran, 3 A polyether diol compound obtained by ring-opening (co) polymerizing at least one selected from cyclic ether compounds such as methyltetrahydrofuran, cyclohexene oxide, styrene oxide, phenyl glycidyl ether, glycidyl benzoate; cyclohexanedimethanol, An alicyclic diol compound such as tricyclodecane dimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F or the like is selected from the above cyclic ether compounds. Polyether diol compound obtained by ring-opening addition of one kind; at least selected from the above cyclic ether compounds as a bifunctional phenol compound such as hydroquinone, resorcinol, catechol, bisphenol A, bisphenol F, bisphenol AF, biphenol, and fluorene bisphenol Examples include polyether diol compounds obtained by ring-opening addition of one kind.
 前記ポリエステルジオール化合物としては、特に制限はなく、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、フタル酸、イソフタル酸、テレフタル酸、マレイン酸、フマル酸、イタコン酸等の2官能カルボン酸化合物と、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブタンジオール、ジブタンジオール、ポリブタンジオール、ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、シクロヘキサンジメタノール、トリシクロデカンジメタノール等のジオール化合物とを共重合して得られるポリエステルジオール化合物などが挙げられる。 The polyester diol compound is not particularly limited. For example, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, tetrahydrophthalic acid, hexahydrophthalic acid, phthalic acid, isophthalic acid, terephthalic acid, maleic acid, Bifunctional carboxylic acid compounds such as fumaric acid and itaconic acid, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butanediol, dibutanediol, polybutanediol, pentanediol, neopentylglycol, 3-methyl-1,5-pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclohexanedimethanol, tricyclodeca Polyester diol compounds obtained by copolymerizing a diol compound of dimethanol, etc., and the like.
 前記ポリカーボネートジオール化合物としては、特に制限はなく、例えば、ホスゲン、トリホスゲン、ジアルキルカーボネート、ジアリールカーボネート等と、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブタンジオール、ジブタンジオール、ポリブタンジオール、ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、シクロヘキサンジメタノール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF等のジオール化合物とを共重合して得られるポリカーボネートジオール化合物などが挙げられる。 The polycarbonate diol compound is not particularly limited, and examples thereof include phosgene, triphosgene, dialkyl carbonate, diaryl carbonate and the like, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butanediol, dibutanediol. , Polybutanediol, pentanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclohexanedimethanol, tricyclodecanedimethanol, hydrogenated Polycarbonatediol obtained by copolymerizing diol compounds such as bisphenol A and hydrogenated bisphenol F Such compounds.
 前記ポリカプロラクトンジオール化合物としては、特に制限はなく、例えば、ε-カプロラクトンと、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブタンジオール、ジブタンジオール、ポリブタンジオール、ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール、シクロヘキサンジメタノール、トリシクロデカンジメタノール等のジオール化合物とを共重合して得られるポリカプロラクトンジオール化合物などが挙げられる。 The polycaprolactone diol compound is not particularly limited. For example, ε-caprolactone and ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butanediol, dibutanediol, polybutanediol, and pentane. Copolymerizes with diol compounds such as diol, neopentyl glycol, 3-methyl-1,5-pentanediol, hexanediol, heptanediol, octanediol, nonanediol, decanediol, cyclohexanedimethanol, and tricyclodecanedimethanol. And polycaprolactone diol compounds obtained by the above.
 その他のジオール化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ジブタンジオール、ペンタンジオール、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ノナンジオール、デカンジオール等の脂肪族ジオール化合物;シクロヘキサンジメタノール、トリシクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF等の脂環式ジオール化合物;ポリブタジエン変性ジオール化合物、水添ポリブタジエン変性ジオール化合物、ジリコーン変性ジオール化合物等の変性ジオール化合物などが挙げられる。これらのジオール化合物は、単独で又は2種類以上を組み合わせて用いることができる。 Examples of other diol compounds include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butanediol, dibutanediol, pentanediol, neopentylglycol, 3-methyl-1,5-pentanediol, hexanediol, and heptane. Aliphatic diol compounds such as diol, octanediol, nonanediol, decanediol; cycloaliphatic diol compounds such as cyclohexanedimethanol, tricyclodecanedimethanol, hydrogenated bisphenol A, hydrogenated bisphenol F; polybutadiene-modified diol compounds, water Examples thereof include modified diol compounds such as an additive polybutadiene-modified diol compound and diricone-modified diol compound. These diol compounds can be used alone or in combination of two or more.
 前記2官能イソシアネート化合物としては特に制限はなく、例えば、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイシシアネート、デカメチレンジイソシアネート、ドデカメチレンジイソシアネート等の脂肪族2官能イソシアネート化合物;1,3-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、2,5-ビス(イソシアナトメチル)ノルボルネン、ビス(4-イソシアナトシクロヘキシル)メタン、1,2-ビス(4-イソシアナトシクロヘキシル)エタン、2,2-ビス(4-イソシアナトシクロヘキシル)プロパン、2,2-ビス(4-イソシアナトシクロヘキシル)ヘキサフルオロプロパン、ビシクロヘプタントリイソシアネート等の脂環式2官能イソシアネート化合物;2,4´-ジフェニルメタンジイソシアネート、4,4´-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネート等の芳香族2官能イソシアネート化合物などが挙げられる。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。 The bifunctional isocyanate compound is not particularly limited, and examples thereof include aliphatic bifunctional isocyanate compounds such as tetramethylene diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, decamethylene diisocyanate, and dodecamethylene diisocyanate. 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, 2,5-bis (isocyanatomethyl) norbornene, bis (4-isocyanatocyclohexyl) methane, 1,2-bis (4-isocyanatocyclohexyl) Ethane, 2,2-bis (4-isocyanatocyclohexyl) propane, 2,2-bis (4-isocyanatocyclohexyl) hexafluoropropane, bicycloheptane triisocyanate 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o And aromatic bifunctional isocyanate compounds such as xylylene diisocyanate and m-xylylene diisocyanate. These compounds can be used alone or in combination of two or more.
 前記水酸基を有する(メタ)アクリレートとしては特に制限はなく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、1,4-シクロヘキサンジメタノールモノ(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の単官能(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;ビス(2-(メタ)アクリロイロキシエチル)(2-ヒドロキシエチル)イソシアヌレート等の2官能(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;シクロヘキサンジメタノール型エポキシジ(メタ)アクリレート、トリシクロデカンジメタノール型エポキシジ(メタ)アクリレート、水添ビスフェノールA型エポキシジ(メタ)アクリレート、水添ビスフェノールF型エポキシジ(メタ)アクリレート、ヒドロキノン型エポキシジ(メタ)アクリレート、レゾルシノール型エポキシジ(メタ)アクリレート、カテコール型エポキシジ(メタ)アクリレート、ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールAF型エポキシジ(メタ)アクリレート、ビフェノール型エポキシジ(メタ)アクリレート、フルオレンビスフェノール型エポキシジ(メタ)アクリレート、イソシアヌル酸モノアリル型エポキシジ(メタ)アクリレート等の2官能エポキシ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の3官能以上の(メタ)アクリレート、これらのエトキシ化体、これらのプロポキシ化体、これらのエトキシ化プロポキシ化体、及びこれらのカプロラクトン変性体;フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシポリ(メタ)アクリレート、イソシアヌル酸型エポキシトリ(メタ)アクリレート等の3官能以上のエポキシ(メタ)アクリレートなどが挙げられる。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。 The (meth) acrylate having a hydroxyl group is not particularly limited, and examples thereof include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, 2- Hydroxybutyl (meth) acrylate, 1,4-cyclohexanedimethanol mono (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2-hydroxy-3- (o-phenylphenoxy) propyl (meth) acrylate Monofunctional (meth) acrylates such as 2-hydroxy-3- (1-naphthoxy) propyl (meth) acrylate and 2-hydroxy-3- (2-naphthoxy) propyl (meth) acrylate, ethoxylated products thereof, and the like The propoxylated form of this Ethoxylated propoxy compounds thereof, and modified caprolactone thereof; bifunctional (meth) acrylates such as bis (2- (meth) acryloyloxyethyl) (2-hydroxyethyl) isocyanurate, ethoxylated compounds thereof, These propoxy compounds, these ethoxylated propoxy compounds, and their caprolactone modified products: cyclohexanedimethanol type epoxy di (meth) acrylate, tricyclodecane dimethanol type epoxy di (meth) acrylate, hydrogenated bisphenol A type epoxy di ( (Meth) acrylate, hydrogenated bisphenol F type epoxy di (meth) acrylate, hydroquinone type epoxy di (meth) acrylate, resorcinol type epoxy di (meth) acrylate, catechol type epoxy di (meth) acrylate, bis Enol A type epoxy di (meth) acrylate, bisphenol F type epoxy di (meth) acrylate, bisphenol AF type epoxy di (meth) acrylate, biphenol type epoxy di (meth) acrylate, fluorene bisphenol type epoxy di (meth) acrylate, isocyanuric acid monoallyl type epoxy di ( Bifunctional epoxy (meth) acrylates such as (meth) acrylate; trifunctional or more (meth) acrylates such as pentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and the like Ethoxylated compounds, their propoxylated compounds, their ethoxylated propoxylated compounds, and their caprolactone-modified products; Examples thereof include tri- or higher functional epoxy (meth) acrylates such as poxy (meth) acrylate, cresol novolac type epoxy poly (meth) acrylate, and isocyanuric acid type epoxy tri (meth) acrylate. These compounds can be used alone or in combination of two or more.
 ここで、(メタ)アクリレートのエトキシ化体、プロポキシ化体、エトキシ化プロポキシ化体とは、(メタ)アクリレートの原料となるアルコール化合物又はフェノール化合物の代わりに、前記アルコール化合物又はフェノール化合物に、それぞれ、1以上のエチレンオキシドを付加した構造のアルコール化合物、1以上のプロピレンオキシドを付加した構造のアルコール化合物、又は1以上のエチレンオキシド及びプロピレンオキシドを付加した構造のアルコール化合物を、原料に用いて得られる(メタ)アクリレートを示す。
 例えば、単官能(メタ)アクリレート;CH=CH(R14)-COO-R15(R14は水素原子又はメチル基、R15は1価の有機基)の場合は、原料であるHO-R15で示されるアルコール化合物の代わりに、該アルコール化合物に1以上のエチレンオキシドを付加した構造のアルコール化合物を用いて得られるCH=CH(R14)-COO-(CHCHO)-R15(qは1以上の整数、R14、R15は前記と同様)で示される。
 また、カプロラクトン変性体とは、(メタ)アクリレートの原料となるアルコール化合物をε-カプロラクトンで変性したアルコール化合物を、原料に用いて得られる(メタ)アクリレートを示す。例えば、単官能(メタ)アクリレートのカプロラクトン変性体の場合、CH=CH(R14)-COO-((CHCOO)-R15(q、R14、R15は前記と同様)で示される。
Here, the (meth) acrylate ethoxylated product, propoxylated product, and ethoxylated propoxylated product are the above alcohol compound or phenol compound instead of the alcohol compound or phenol compound used as the raw material of (meth) acrylate, respectively. An alcohol compound having a structure in which one or more ethylene oxides are added, an alcohol compound having a structure in which one or more propylene oxides are added, or an alcohol compound having a structure in which one or more ethylene oxides and propylene oxide are added are used as raw materials ( (Meth) acrylate is shown.
For example, in the case of monofunctional (meth) acrylate; CH 2 ═CH (R 14 ) —COO—R 15 (wherein R 14 is a hydrogen atom or a methyl group, R 15 is a monovalent organic group), the raw material HO— CH 2 ═CH (R 14 ) —COO— (CH 2 CH 2 O) q obtained by using an alcohol compound having a structure in which one or more ethylene oxides are added to the alcohol compound instead of the alcohol compound represented by R 15 -R 15 (q is an integer of 1 or more, and R 14 and R 15 are the same as above).
The caprolactone-modified product refers to (meth) acrylate obtained by using, as a raw material, an alcohol compound obtained by modifying an alcohol compound that is a raw material for (meth) acrylate with ε-caprolactone. For example, in the case of a caprolactone modified product of monofunctional (meth) acrylate, CH 2 ═CH (R 14 ) —COO — ((CH 2 ) 5 COO) q —R 15 (q, R 14 , R 15 are the same as above. ).
 前記イソシアネート基を有する(メタ)アクリレートとしては、特に制限はなく、例えば、N-(メタ)アクリロイルイソシアネート、(メタ)アクリロイルオキシメチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(メタ)アクリロイルオキシエトキシエチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等が挙げられる。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。 The (meth) acrylate having an isocyanate group is not particularly limited. For example, N- (meth) acryloyl isocyanate, (meth) acryloyloxymethyl isocyanate, 2- (meth) acryloyloxyethyl isocyanate, 2- (meth) Examples include acryloyloxyethoxyethyl isocyanate and 1,1-bis ((meth) acryloyloxymethyl) ethyl isocyanate. These compounds can be used alone or in combination of two or more.
 前記多官能イソシアネート化合物としては、特に制限はなく、例えば、前記2官能イソシアネート化合物;前記2官能イソシアネート化合物のウレトジオン型二量体、イソシアヌレート型、ビウレット型三量体等の多量体などが挙げられる。なお多量体を構成する2つ又は3つの2官能イソシアネート化合物は、同一でも異なっていてもよい。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。 The polyfunctional isocyanate compound is not particularly limited, and examples thereof include bifunctional isocyanate compounds; multimers such as uretdione dimers, isocyanurate types, biuret trimers of the bifunctional isocyanate compounds, and the like. . The two or three bifunctional isocyanate compounds constituting the multimer may be the same or different. These compounds can be used alone or in combination of two or more.
 前記多官能アルコール化合物としては、特に制限はなく、例えば、前記2官能アルコール化合物;トリメチロールプロパン、ペンタエリスリトール、ジトリメチロールプロパン、ジペンタエリスリトール、トリス(2-ヒドロキシエチル)イソシアヌレート等の3官能以上のアルコール化合物、これらに前記環状エーテル化合物から選ばれる少なくとも1種を開環付加することにより得られる付加体、これらのカプロラクトン変性体;フェノールノボラック、クレゾールノボラック等の3官能以上のフェノール化合物に前記環状エーテル化合物から選ばれる少なくとも1種を開環付加することにより得られるアルコール化合物、これらのカプロラクトン変性体などが挙げられる。これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。 The polyfunctional alcohol compound is not particularly limited. For example, the bifunctional alcohol compound; trifunctional or more functional groups such as trimethylolpropane, pentaerythritol, ditrimethylolpropane, dipentaerythritol, tris (2-hydroxyethyl) isocyanurate Alcohol compounds, adducts obtained by ring-opening addition of at least one selected from the cyclic ether compounds to these, caprolactone-modified products thereof; cyclic compounds with trifunctional or higher functional phenol compounds such as phenol novolac and cresol novolak Examples include alcohol compounds obtained by ring-opening addition of at least one selected from ether compounds, and modified caprolactones thereof. These compounds can be used alone or in combination of two or more.
 (B1-2)成分は、硬化後のフィルムの強靭性の向上及び信頼性試験時のブリードアウトを抑制させる観点から、カルボキシ基及び2つ以上のエチレン性不飽和基を有し、さらにその分子中にウレタン結合と、脂環構造、芳香環構造、及び複素環構造から選ばれる少なくとも1種の環構造とを有する化合物が好ましい。前記環構造としては、脂環構造が好ましく、シクロヘキサン環がより好ましい。 The component (B1-2) has a carboxy group and two or more ethylenically unsaturated groups from the viewpoint of improving the toughness of the cured film and suppressing bleed out during a reliability test, A compound having a urethane bond therein and at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure is preferable. As said ring structure, an alicyclic structure is preferable and a cyclohexane ring is more preferable.
 これらの中でも、硬化後のフィルムの強靭性の向上及び信頼性試験時のブリードアウトを抑制させる観点から、(I)2官能アルコール化合物、2官能イソシアネート化合物、及び水酸基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレートが好ましく、前記(I)において、2官能アルコール化合物として前記カルボキシ基含有ジオール化合物、2官能イソシアネート化合物として前記脂肪族2官能イソシアネート化合物、水酸基を有する(メタ)アクリレートとして前記単官能(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレートがより好ましい。 Among these, (I) a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having a hydroxyl group are reacted from the viewpoint of improving the toughness of the cured film and suppressing bleed-out during a reliability test. The urethane (meth) acrylate obtained is preferable, and in the (I), the carboxy group-containing diol compound as a bifunctional alcohol compound, the aliphatic bifunctional isocyanate compound as a bifunctional isocyanate compound, and a (meth) acrylate having a hydroxyl group More preferred is urethane (meth) acrylate obtained by reacting the monofunctional (meth) acrylate.
 (B1-2)成分は、硬化後のフィルムの強靭性の向上及び信頼性試験時のブリードアウトを抑制させる観点から、カルボキシ基及び2つのエチレン性不飽和基を有し、さらにその分子中にウレタン結合と、脂環構造、芳香環構造、及び複素環構造から選ばれる少なくとも1種の環構造とを有するウレタン(メタ)アクリレートが好ましい。前記環構造としては、脂環構造が好ましく、シクロヘキサン環がより好ましい。 The component (B1-2) has a carboxy group and two ethylenically unsaturated groups from the viewpoint of improving the toughness of the cured film and suppressing bleed-out during a reliability test, and further in its molecule. A urethane (meth) acrylate having a urethane bond and at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure is preferable. As said ring structure, an alicyclic structure is preferable and a cyclohexane ring is more preferable.
 本発明の光導波路形成用樹脂組成物中における(B1-2)成分の含有量は、(A)及び(B)成分の総量に対して、10~85質量%であることが好ましい。10質量%以上であると、(A)成分のポリマーを絡みこんで硬化することが容易で、耐現像液性が不足することがない。また、85質量%以下であれば、硬化フィルムのフィルム強度及び可撓性が十分である。以上の観点から、13~70質量%であることがより好ましく、15~50質量%であることがさらに好ましく、15~30質量%であることが特に好ましい。 The content of the component (B1-2) in the optical waveguide forming resin composition of the present invention is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B). When it is 10% by mass or more, the polymer of the component (A) can be easily entangled and cured, and the developer resistance is not insufficient. Moreover, if it is 85 mass% or less, the film strength and flexibility of a cured film are enough. From the above viewpoint, the content is more preferably 13 to 70% by mass, further preferably 15 to 50% by mass, and particularly preferably 15 to 30% by mass.
〔(B1-3)成分〕
 本発明においては、(B1)成分として(B1-3)ウレタン結合及び1つ以上のエチレン性不飽和基を有する化合物、並びに(B2)成分として分子中に(A)成分のアルカリ可溶性基と反応する基及びエチレン性不飽和基を有する化合物を併用することにより、硬化後のフィルムの強靭性及び可撓性を向上させることができる。
[(B1-3) component]
In the present invention, (B1) component (B1-3) has a urethane bond and one or more ethylenically unsaturated groups as component (B1), and (B2) component reacts with the alkali-soluble group of component (A) in the molecule. By using together a compound having a group and an ethylenically unsaturated group, the toughness and flexibility of the cured film can be improved.
 (B1-3)ウレタン結合及び1つ以上のエチレン性不飽和基を有する化合物(以下、単に「(B1-3)成分」ともいう)としては、特に制限はなく、例えば、下記(V)~(VIII)で表されるウレタン(メタ)アクリレート等が挙げられる。
(V)2官能アルコール化合物、2官能イソシアネート化合物、及び水酸基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
(VI)2官能アルコール化合物、2官能イソシアネート化合物、及びイソシアネート基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
(VII)多官能イソシアネート化合物及び水酸基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
(VIII)多官能アルコール化合物及びイソシアネート基を有する(メタ)アクリレートを反応して得られるウレタン(メタ)アクリレート。
 上記2官能アルコール化合物、上記2官能イソシアネート化合物、上記水酸基を有する(メタ)アクリレート、上記イソシアネート基を有する(メタ)アクリレート、多官能イソシアネート化合物は、前述の化合物が好適なものとして挙げられる。
(B1-3) The compound having a urethane bond and one or more ethylenically unsaturated groups (hereinafter also simply referred to as “component (B1-3)”) is not particularly limited, and examples thereof include the following (V) to And urethane (meth) acrylate represented by (VIII).
(V) Urethane (meth) acrylate obtained by reacting a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having a hydroxyl group.
(VI) Urethane (meth) acrylate obtained by reacting a bifunctional alcohol compound, a bifunctional isocyanate compound, and a (meth) acrylate having an isocyanate group.
(VII) Urethane (meth) acrylate obtained by reacting a polyfunctional isocyanate compound and a (meth) acrylate having a hydroxyl group.
(VIII) A urethane (meth) acrylate obtained by reacting a polyfunctional alcohol compound and a (meth) acrylate having an isocyanate group.
The above-mentioned compounds are preferred as the bifunctional alcohol compound, the bifunctional isocyanate compound, the (meth) acrylate having the hydroxyl group, the (meth) acrylate having the isocyanate group, and the polyfunctional isocyanate compound.
 これらの中でも、透明性及び耐熱性の観点から、さらにその分子中に脂環構造、芳香環構造及び複素環構造から選ばれる少なくとも1種の環構造を有する化合物が好ましく、複素環構造を有するウレタン(メタ)アクリレートがより好ましく、イソシアヌレート環を有するウレタン(メタ)アクリレートがさらに好ましい。 Among these, from the viewpoint of transparency and heat resistance, a compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure and a heterocyclic structure in the molecule is preferable, and a urethane having a heterocyclic structure (Meth) acrylate is more preferable, and urethane (meth) acrylate having an isocyanurate ring is more preferable.
 また、(B1-3)成分は、耐現像液性及び環境信頼性の観点から、その分子中に含まれるエチレン性不飽和基が2つ以上であることが好ましく、3つ以上であることがより好ましく、3つであることがさらに好ましい。
 さらに、(B1-3)成分としてウレタン結合及び3つ以上のエチレン性不飽和基を有する化合物を含むことが好ましく、分子中に2つのエチレン性不飽和基を有するウレタン(メタ)アクリレート(c1)及び3つのエチレン性不飽和基を有するウレタン(メタ)アクリレート(c2)との混合系にすることが好ましい。このような組み合わせとすることで、耐現像液性、環境信頼性に加え、硬化物の可撓性を向上させることができる。
 本発明の光導波路形成用樹脂組成物中における(c1)成分の(c2)成分に対する質量比〔(c1)/(c2)〕 は、50/50~85/15であることが好ましい。50/50以上であれば、信頼性試験時のブリードアウトを抑制し、硬化後のフィルムの強靭性を保持することができ、85/15以下であると、硬化後のフィルムの柔軟性を保持することができる。以上の観点から、60/40~80/20であることがより好ましく、65/35~75/25であることがさらに好ましい。
In addition, the component (B1-3) preferably has two or more ethylenically unsaturated groups in the molecule from the viewpoint of developer resistance and environmental reliability, and preferably three or more. More preferably, the number is three.
Furthermore, it is preferable to include a compound having a urethane bond and three or more ethylenically unsaturated groups as the component (B1-3), and urethane (meth) acrylate (c1) having two ethylenically unsaturated groups in the molecule. And a mixed system with urethane (meth) acrylate (c2) having three ethylenically unsaturated groups. By setting it as such a combination, the flexibility of hardened | cured material can be improved in addition to developing solution resistance and environmental reliability.
The mass ratio [(c1) / (c2)] of the (c1) component to the (c2) component in the optical waveguide forming resin composition of the present invention is preferably 50/50 to 85/15. If it is 50/50 or more, bleeding out during the reliability test can be suppressed and the toughness of the cured film can be maintained, and if it is 85/15 or less, the flexibility of the cured film is maintained. can do. From the above viewpoint, the ratio is more preferably 60/40 to 80/20, and further preferably 65/35 to 75/25.
 (B1-3)成分は、耐熱性及び現像液に対する溶解性の観点から、必要に応じてさらにその分子中にカルボキシ基を有してもよい。
 (B1-3)としてのカルボキシ基及びウレタン結合を有する(メタ)アクリレートは、特に制限はなく、例えば、前述のウレタン(メタ)アクリレートを合成する際に、カルボキシ基含有ジオール化合物を前記ジオール化合物と併用して、又は前記ジオール化合物の代わりに用いて得られるウレタン(メタ)アクリレート等が挙げられる。
 カルボキシ基含有ジオール化合物としては、特に制限はなく、例えば、2,2-ジメチロールブタン酸、2,2-ジメチロールプロピオン酸、2,2-ジメチロール酪酸、2,2-ジメチロールペンタン酸等が挙げられる。
 これらの化合物は、単独で又は2種類以上を組み合わせて用いることができる。
The component (B1-3) may further have a carboxy group in the molecule as necessary from the viewpoint of heat resistance and solubility in a developer.
The (meth) acrylate having a carboxy group and a urethane bond as (B1-3) is not particularly limited. For example, when synthesizing the urethane (meth) acrylate described above, the carboxy group-containing diol compound is combined with the diol compound. Examples thereof include urethane (meth) acrylate obtained in combination or in place of the diol compound.
The carboxy group-containing diol compound is not particularly limited, and examples thereof include 2,2-dimethylolbutanoic acid, 2,2-dimethylolpropionic acid, 2,2-dimethylolbutyric acid, 2,2-dimethylolpentanoic acid, and the like. Can be mentioned.
These compounds can be used alone or in combination of two or more.
 (B1-3)としてのカルボキシ基及びウレタン結合を有する(メタ)アクリレートは、現像液により現像可能となるように酸価を規定することができる。(B1-3)成分の酸価は5~200mgKOH/gであることが好ましい。5mgKOH/g以上であると、現像液に対する溶解性が良好であり、200mgKOH/g以下であると、耐現像液性が良好である。以上の観点から、(B1-3)成分としてのカルボキシ基及びウレタン結合を有する(メタ)アクリレートの酸価は、10~150mgKOH/gであることがより好ましく、15~100mgKOH/gであることがさらに好ましく、20~50mgKOH/gであることが特に好ましい。 The acid value of the (meth) acrylate having a carboxyl group and a urethane bond as (B1-3) can be regulated so that it can be developed with a developer. The acid value of the component (B1-3) is preferably 5 to 200 mgKOH / g. When it is 5 mgKOH / g or more, the solubility in a developer is good, and when it is 200 mgKOH / g or less, the developer resistance is good. From the above viewpoint, the acid value of the (meth) acrylate having a carboxy group and a urethane bond as the component (B1-3) is more preferably 10 to 150 mgKOH / g, and more preferably 15 to 100 mgKOH / g. Further preferred is 20 to 50 mg KOH / g.
 本発明の光導波路形成用樹脂組成物中における(B1-3)成分の含有量は、(A)及び(B)成分の総量に対して、10~85質量%であることが好ましい。10質量%以上であると、(A)成分のポリマーを絡みこんで硬化することが容易で、耐現像液性が不足することがない。また、85質量%以下であれば、硬化フィルムのフィルム強度及び可撓性が十分である。以上の観点から、13~70質量%であることがより好ましく、15~50質量%であることがさらに好ましく、20~50質量%が特に好ましい。 The content of the component (B1-3) in the resin composition for forming an optical waveguide of the present invention is preferably 10 to 85% by mass with respect to the total amount of the components (A) and (B). When it is 10% by mass or more, the polymer of the component (A) can be easily entangled and cured, and the developer resistance is not insufficient. Moreover, if it is 85 mass% or less, the film strength and flexibility of a cured film are enough. From the above viewpoint, the content is more preferably 13 to 70% by mass, further preferably 15 to 50% by mass, and particularly preferably 20 to 50% by mass.
 (B1)成分は、(B1-1)成分として3つのエチレン性不飽和基を有する化合物(b1-1)(但し、ウレタン結合を有するものを除く、以下、単に「(b1-1)成分」ともいう)と、(B1-2)成分としてカルボキシ基及び2つのエチレン性不飽和基を有する化合物(b1-2)(以下、単に「(b1-2)成分」ともいう)と、(B1-3)成分としてウレタン結合及び3つのエチレン性不飽和基を有する化合物(b1-3)(以下、単に「(b1-3)成分」ともいう)とを併用することが好ましい。これにより、硬化後のフィルムの強靭性を向上させることができ、さらに信頼性試験時のブリードアウトを抑制することができる。
 (b1-1)成分、(b1-2)成分及び(b1-3)成分の合計量は、(B1)成分の総量に対して、80質量%以上が好ましく、90質量%以上がより好ましく、100質量%であることがさらに好ましい。
 (b1-2)成分の含有量は、硬化後のフィルムの強靭性の向上及び信頼性試験時のブリードアウトを抑制する観点から、(b1-1)成分の100質量部に対して、100~300質量部が好ましく、150~250質量部がより好ましい。
 (b1-3)成分の含有量は、硬化後のフィルムの強靭性及び可撓性の観点から、(b1-1)成分の100質量部に対して、10~200質量部が好ましく、50~150質量部がより好ましい。
The component (B1) is a compound (b1-1) having three ethylenically unsaturated groups as the component (B1-1) (excluding those having a urethane bond, hereinafter, simply referred to as “component (b1-1)”. And a compound (b1-2) having a carboxy group and two ethylenically unsaturated groups as components (B1-2) (hereinafter also simply referred to as “component (b1-2)”), (B1- It is preferable to use a compound (b1-3) having a urethane bond and three ethylenically unsaturated groups (hereinafter also simply referred to as “(b1-3) component”) as the component 3). Thereby, the toughness of the cured film can be improved, and further, bleed out during a reliability test can be suppressed.
The total amount of the component (b1-1), the component (b1-2) and the component (b1-3) is preferably 80% by mass or more, more preferably 90% by mass or more based on the total amount of the component (B1). More preferably, it is 100 mass%.
The content of the component (b1-2) is from 100 to 100 parts by mass with respect to 100 parts by mass of the component (b1-1) from the viewpoint of improving the toughness of the cured film and suppressing bleed out during the reliability test. 300 parts by mass is preferable, and 150 to 250 parts by mass is more preferable.
The content of the component (b1-3) is preferably 10 to 200 parts by mass with respect to 100 parts by mass of the component (b1-1), from the viewpoint of toughness and flexibility of the cured film. 150 parts by mass is more preferable.
 (b1-1)成分は、その分子中にイソシアヌレート環を有する化合物が好ましく、エトキシ化イソシアヌル酸トリ(メタ)アクリレートがより好ましい。
 (b1-2)成分は、分子鎖中に2つ以上のカルボキシ基を有し、分子鎖末端に1つ以上のエチレン性不飽基を有する化合物が好ましく、さらにその分子中にウレタン結合と、脂環構造、芳香環構造、及び複素環構造から選ばれる少なくとも1種の環構造とを有する化合物がより好ましく、脂環構造を有するウレタン(メタ)アクリレートがさらに好ましい。前記脂環構造としては、シクロヘキサン環が好ましい。
 (b1-3)成分は、さらにその分子中に脂環構造、芳香環構造、及び複素環構造から選ばれる少なくとも1種の環構造を有する化合物が好ましく、複素環構造を有するウレタン(メタ)アクリレートがより好ましい。前記環構造としては、イソシアヌレート環がより好ましい。
The component (b1-1) is preferably a compound having an isocyanurate ring in its molecule, and more preferably ethoxylated isocyanuric acid tri (meth) acrylate.
The component (b1-2) is preferably a compound having two or more carboxy groups in the molecular chain and one or more ethylenically unsaturated groups at the molecular chain ends, and further having a urethane bond in the molecule, A compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure is more preferable, and a urethane (meth) acrylate having an alicyclic structure is more preferable. As said alicyclic structure, a cyclohexane ring is preferable.
The component (b1-3) is preferably a compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure, and a heterocyclic structure in the molecule, and a urethane (meth) acrylate having a heterocyclic structure. Is more preferable. The ring structure is more preferably an isocyanurate ring.
<(B2)成分>
 本発明の光導波路形成用樹脂組成物は、前述の(B1)成分と共に、(B2)成分として分子中に(A)成分のアルカリ可溶性基と反応する基及びエチレン性不飽和基を有する化合物(以下、単に「(B2)成分」ともいう)を含有する。
 なお、本発明において、(B2)成分は、前記(B1)成分以外の化合物である。
 前記アルカリ可溶性基と反応する基としては、エポキシ基が好ましく、(B2)成分としては、(B2-1)分子中に1つ以上のエポキシ基及び1つ以上のエチレン性不飽和基を有する化合物を用いることが好ましい。例えば、1分子中に2つ以上のエポキシ基を有するエポキシ樹脂を(メタ)アクリル酸化合物と反応させて得られるエポキシ(メタ)アクリレートが挙げられ、エポキシ基1当量に対し(メタ)アクリル酸化合物を0.1~0.9当量反応させたものが好ましく、0.2~0.8当量がより好ましく、0.4~0.6当量がさらに好ましい。
<(B2) component>
The resin composition for forming an optical waveguide of the present invention is a compound having an ethylenically unsaturated group and a group that reacts with the alkali-soluble group of the component (A) in the molecule as the component (B2) together with the component (B1). Hereinafter, it is simply referred to as “component (B2)”.
In the present invention, the component (B2) is a compound other than the component (B1).
The group that reacts with the alkali-soluble group is preferably an epoxy group, and the component (B2) includes (B2-1) a compound having one or more epoxy groups and one or more ethylenically unsaturated groups in the molecule. Is preferably used. For example, an epoxy (meth) acrylate obtained by reacting an epoxy resin having two or more epoxy groups in one molecule with a (meth) acrylic acid compound is mentioned, and a (meth) acrylic acid compound with respect to 1 equivalent of the epoxy group Is preferably reacted with 0.1 to 0.9 equivalent, more preferably 0.2 to 0.8 equivalent, and still more preferably 0.4 to 0.6 equivalent.
 具体的にはビスフェノールA型エポキシ(メタ)アクリレート、テトラブロモビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールAF型エポキシ(メタ)アクリレート、ビスフェノールAD型エポキシ(メタ)アクリレート、ビフェニル型エポキシ(メタ)アクリレート、ナフタレン型エポキシ(メタ)アクリレート、フルオレン型エポキシ(メタ)アクリレート等の2官能フェノールグリシジルエーテル由来のエポキシ(メタ)アクリレート;水添ビスフェノールA型エポキシ(メタ)アクリレート、水添ビスフェノールF型エポキシ(メタ)アクリレート、水添2,2’-ビフェノール型エポキシ(メタ)アクリレート、水添4,4’-ビフェノール型エポキシ(メタ)アクリレート等の水添2官能フェノールグリシジルエーテル由来のエポキシ(メタ)アクリレート;フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、ジシクロペンタジエン-フェノール型エポキシ(メタ)アクリレート、テトラフェニロールエタン型エポキシ(メタ)アクリレート等の多官能フェノールグリシジルエーテル由来のエポキシ(メタ)アクリレート;ポリエチレングリコール型エポキシ(メタ)アクリレート、ポリプロピレングリコール型エポキシ(メタ)アクリレート、ネオペンチルグリコール型エポキシ(メタ)アクリレート、1,6-ヘキサンジオール型エポキシ(メタ)アクリレート等の2官能脂肪族アルコールグリシジルエーテル由来のエポキシ(メタ)アクリレート;シクロヘキサンジメタノール型エポキシ(メタ)アクリレート、トリシクロデカンジメタノール型エポキシ(メタ)アクリレート等の2官能脂環式アルコールグリシジルエーテル由来のエポキシ(メタ)アクリレート;トリメチロールプロパン型エポキシ(メタ)アクリレート、ソルビトール型エポキシ(メタ)アクリレート、グリセリン型エポキシ(メタ)アクリレート等の多官能脂肪族アルコールグリシジルエーテル由来のエポキシ(メタ)アクリレート;フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル由来のエポキシ(メタ)アクリレート;テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル由来のエポキシ(メタ)アクリレートなどが挙げられる。 Specifically, bisphenol A type epoxy (meth) acrylate, tetrabromobisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meth) acrylate, bisphenol AF type epoxy (meth) acrylate, bisphenol AD type epoxy (meth) acrylate , Epoxy (meth) acrylates derived from bifunctional phenol glycidyl ethers such as biphenyl type epoxy (meth) acrylate, naphthalene type epoxy (meth) acrylate, fluorene type epoxy (meth) acrylate; hydrogenated bisphenol A type epoxy (meth) acrylate, Hydrogenated bisphenol F type epoxy (meth) acrylate, hydrogenated 2,2'-biphenol type epoxy (meth) acrylate, hydrogenated 4,4'-biphenol type epoxy ( A) Epoxy (meth) acrylate derived from hydrogenated bifunctional phenol glycidyl ether such as acrylate; phenol novolac type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate, dicyclopentadiene-phenol type epoxy (meth) acrylate, Epoxy (meth) acrylate derived from polyfunctional phenol glycidyl ether such as tetraphenylol ethane type epoxy (meth) acrylate; polyethylene glycol type epoxy (meth) acrylate, polypropylene glycol type epoxy (meth) acrylate, neopentyl glycol type epoxy (meta ) Epoxy derived from bifunctional aliphatic alcohol glycidyl ether such as acrylate, 1,6-hexanediol type epoxy (meth) acrylate (Meth) acrylate; epoxy (meth) acrylate derived from bifunctional alicyclic alcohol glycidyl ether such as cyclohexanedimethanol type epoxy (meth) acrylate, tricyclodecane dimethanol type epoxy (meth) acrylate; trimethylolpropane type epoxy ( Epoxy (meth) acrylate derived from polyfunctional aliphatic alcohol glycidyl ether such as meth) acrylate, sorbitol type epoxy (meth) acrylate, glycerin type epoxy (meth) acrylate; derived from bifunctional aromatic glycidyl ester such as diglycidyl phthalate Epoxy (meth) acrylates: Epoxys derived from bifunctional alicyclic glycidyl esters such as tetrahydrophthalic acid diglycidyl ester and hexahydrophthalic acid diglycidyl ester ( And (meth) acrylate.
 これらの中でも、高屈折率、透明性及び耐熱性の観点から、さらにその分子中に脂環構造又は芳香環構造を有する化合物が好ましく、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート、ビスフェノールAF型エポキシ(メタ)アクリレート、ビスフェノールAD型エポキシ(メタ)アクリレート、ビフェニル型エポキシ(メタ)アクリレート、ナフタレン型エポキシ(メタ)アクリレート、フルオレン型エポキシ(メタ)アクリレート等の2官能フェノールグリシジルエーテル由来のエポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレートの多官能フェノールグリシジルエーテル由来のエポキシアクリレート、シクロヘキサンジメタノール型エポキシ(メタ)アクリレート、トリシクロデカンジメタノール型エポキシ(メタ)アクリレート等の2官能脂環式アルコールグリシジルエーテル由来のエポキシ(メタ)アクリレートから選ばれる少なくとも1種の分子中に脂環構造又は芳香環構造を有するエポキシ(メタ)アクリレートがより好ましく、その分子中にビスフェノール骨格を有する化合物がさらに好ましい。 Among these, from the viewpoint of high refractive index, transparency, and heat resistance, compounds having an alicyclic structure or an aromatic ring structure in the molecule are preferred, and bisphenol A type epoxy (meth) acrylate, bisphenol F type epoxy (meta ) Acrylate, bisphenol AF type epoxy (meth) acrylate, bisphenol AD type epoxy (meth) acrylate, biphenyl type epoxy (meth) acrylate, naphthalene type epoxy (meth) acrylate, fluorene type epoxy (meth) acrylate, etc. bifunctional phenol glycidyl Epoxy derived from polyfunctional phenol glycidyl ether of ether-derived epoxy (meth) acrylate, phenol novolac type epoxy (meth) acrylate, cresol novolac type epoxy (meth) acrylate In at least one molecule selected from bifunctional alicyclic alcohol glycidyl ether-derived epoxy (meth) acrylates such as acrylate, cyclohexanedimethanol type epoxy (meth) acrylate, and tricyclodecane dimethanol type epoxy (meth) acrylate An epoxy (meth) acrylate having an alicyclic structure or an aromatic ring structure is more preferable, and a compound having a bisphenol skeleton in the molecule is more preferable.
 本発明の光導波路形成用樹脂組成物中における(B2)成分の含有量は、(A)及び(B)成分の総量に対して、1~40質量%であることが好ましい。1質量%以上であると、(A)成分のアルカリ可溶性基を有するポリマーを絡みこんで硬化することが容易で、環境信頼性試験時の未反応物の析出が少ない。また、40質量%以下であれば、硬化フィルムのフィルム強度及び可撓性が十分である。以上の観点から、10~30質量%であることがより好ましい。 The content of the component (B2) in the resin composition for forming an optical waveguide of the present invention is preferably 1 to 40% by mass with respect to the total amount of the components (A) and (B). When it is 1% by mass or more, it is easy to entangle and cure the polymer having an alkali-soluble group of component (A), and there is little precipitation of unreacted substances during the environmental reliability test. Moreover, if it is 40 mass% or less, the film strength and flexibility of a cured film are enough. From the above viewpoint, the content is more preferably 10 to 30% by mass.
[(B3)成分]
 本発明の樹脂組成物は、前記の(B1)及び(B2)成分の他に、現像性及び耐熱性の観点から、(B3)成分として、(B1)及び(B2)成分以外の分子中に2つ以上のエチレン性不飽和基を有する化合物(以下、単に「(B3)成分」ともいう)を含有してもよい。これにより架橋反応が促進され、架橋が密となり、硬化部への現像液の浸漬が抑制され、現像時に露光部が溶解することを抑制することができる。その結果、コア部を形成する際に、コア部の膜減りを抑制し、コアパターンのエッジが丸みを帯びることなく、良好な略矩形の断面形状のコアパターンを形成することができる。
[(B3) component]
In addition to the components (B1) and (B2) described above, the resin composition of the present invention contains, as a component (B3), in a molecule other than the components (B1) and (B2) from the viewpoint of developability and heat resistance. A compound having two or more ethylenically unsaturated groups (hereinafter, also simply referred to as “component (B3)”) may be contained. Thereby, a crosslinking reaction is accelerated | stimulated, bridge | crosslinking becomes dense, immersion of the developing solution to a hardening part is suppressed, and it can suppress that an exposure part melt | dissolves at the time of image development. As a result, when the core portion is formed, it is possible to suppress a decrease in the film thickness of the core portion, and to form a core pattern having a good substantially rectangular cross-sectional shape without rounding the edges of the core pattern.
 (B3)成分である(B1)及び(B2)成分以外の分子中に2つ以上のエチレン性不飽和基を有する化合物としては、例えば、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルエステル、ビニルピリジン、ビニルアミド、アリール化ビニル等が挙げられるが、これらの中でも、透明性の観点から、(メタ)アクリレート及びアリール化ビニルが好ましい。(メタ)アクリレートとしては、2官能(メタ)アクリレート又は多官能(メタ)アクリレートを用いることもできる。 Examples of the compound having two or more ethylenically unsaturated groups in the molecule other than the components (B1) and (B2) as the component (B3) include (meth) acrylate, vinylidene halide, vinyl ether, vinyl ester, Examples thereof include vinyl pyridine, vinyl amide, and arylated vinyl. Among these, (meth) acrylate and arylated vinyl are preferable from the viewpoint of transparency. As the (meth) acrylate, bifunctional (meth) acrylate or polyfunctional (meth) acrylate may be used.
 2官能(メタ)アクリレートとしては、例えば、前記特許文献5(特開2013-174776号公報)の段落[0040]に記載されるものが全て挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、前記特許文献5(特開2013-174776号公報)の段落[0040]で挙げられる脂環式(メタ)アクリレート;芳香族(メタ)アクリレート;複素環式(メタ)アクリレート;脂環式エポキシ(メタ)アクリレート;芳香族エポキシ(メタ)アクリレートが好ましい。これらの化合物は、単独又は2種類以上組み合わせて使用することができる。さらにその他のエチレン性不飽和基を有する化合物と組み合わせて使用することもできる。
Examples of the bifunctional (meth) acrylate include all those described in paragraph [0040] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776).
Among these, from the viewpoints of transparency and heat resistance, the alicyclic (meth) acrylates; aromatic (meth) acrylates; complex mentioned in paragraph [0040] of Patent Document 5 (Japanese Patent Application Laid-Open No. 2013-174776) Cyclic (meth) acrylates; alicyclic epoxy (meth) acrylates; aromatic epoxy (meth) acrylates are preferred. These compounds can be used alone or in combination of two or more. Furthermore, it can also be used in combination with other compounds having an ethylenically unsaturated group.
 3官能以上の多官能(メタ)アクリレートとしては、前記特許文献5(特開2013-174776号公報)の段落[0041]に記載されるものが全て挙げられる。
 これらの中でも、透明性及び耐熱性の観点から、前記特許文献5(特開2013-174776号公報)の段落[0041]で挙げられる複素環式(メタ)アクリレート;芳香族エポキシ(メタ)アクリレートであることが好ましい。
 これらの化合物は、単独で又は2種類以上を組み合わせて使用することができる。さらにその他のエチレン性不飽和基を有する化合物と組み合わせて使用することもできる。
Examples of the trifunctional or higher polyfunctional (meth) acrylate include all those described in paragraph [0041] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776).
Among these, from the viewpoints of transparency and heat resistance, the heterocyclic (meth) acrylates mentioned in paragraph [0041] of Patent Document 5 (Japanese Patent Laid-Open No. 2013-174776); aromatic epoxy (meth) acrylates Preferably there is.
These compounds can be used alone or in combination of two or more. Furthermore, it can also be used in combination with other compounds having an ethylenically unsaturated group.
<(C)重合開始剤>
 本発明の光導波路形成用樹脂組成物は、(C)成分として重合開始剤(以下、単に「(C)成分」ともいう)を含有する。
 (C)重合開始剤としては、加熱、紫外線等の照射によって重合を開始させるものであれば特に制限はなく、熱ラジカル重合開始剤、光ラジカル重合開始剤等が挙げられる。特に硬化速度が速く常温硬化が可能なことから、光ラジカル重合開始剤が好ましい。
<(C) Polymerization initiator>
The resin composition for forming an optical waveguide of the present invention contains a polymerization initiator (hereinafter also simply referred to as “component (C)”) as the component (C).
(C) The polymerization initiator is not particularly limited as long as it initiates polymerization by heating, irradiation with ultraviolet rays or the like, and examples thereof include a thermal radical polymerization initiator and a photo radical polymerization initiator. In particular, a radical photopolymerization initiator is preferred because of its high curing rate and room temperature curing.
 熱ラジカル重合開始剤としては、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン等のパーオキシケタール;p-メンタンヒドロパーオキシド等のヒドロパーオキシド;α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t-ブチルクミルパーオキシド、ジ-t-ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t-ブチルパーオキシピバレート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシイソブチレート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウリレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシベンゾエート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート等のパーオキシエステル;2,2´-アゾビスイソブチロニトリル、2,2´-アゾビス(2,4-ジメチルバレロニトリル)、2,2´-アゾビス(4-メトキシ-2´-ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。
 これらの中でも、硬化性、透明性、及び耐熱性の観点から、前記ジアシルパーオキシド;前記パーオキシエステル;前記アゾ化合物が好ましい。
Examples of the thermal radical polymerization initiator include ketone peroxides such as methyl ethyl ketone peroxide, cyclohexanone peroxide, and methylcyclohexanone peroxide; 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t- Butylperoxy) -2-methylcyclohexane, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-bis (t-hexylperoxy) cyclohexane, 1,1- Peroxyketals such as bis (t-hexylperoxy) -3,3,5-trimethylcyclohexane; hydroperoxides such as p-menthane hydroperoxide; α, α′-bis (t-butylperoxy) diisopropylbenzene , Dicumyl peroxide, t-butylcumylperoxy Dialkyl peroxides such as di-t-butyl peroxide; diacyl peroxides such as octanoyl peroxide, lauroyl peroxide, stearyl peroxide, benzoyl peroxide; bis (4-t-butylcyclohexyl) peroxydicarbonate, Peroxycarbonates such as di-2-ethoxyethyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, di-3-methoxybutyl peroxycarbonate; t-butyl peroxypivalate, t-hexyl peroxypi Valate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-bis (2-ethylhexanoylperoxy) hexane, t-hexylperoxy -2-Ethylhexanoe Tate, t-butylperoxy-2-ethylhexanoate, t-butylperoxyisobutyrate, t-hexylperoxyisopropylmonocarbonate, t-butylperoxy-3,5,5-trimethylhexanoate T-butyl peroxylaurate, t-butyl peroxyisopropyl monocarbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, t-butyl peroxybenzoate, t-hexyl peroxybenzoate, 2,5-dimethyl- Peroxyesters such as 2,5-bis (benzoylperoxy) hexane and t-butylperoxyacetate; 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile) ), 2,2′-azobis (4-methoxy-2′-dimethyl) Such as Le valeronitrile) azo compounds, and the like.
Among these, from the viewpoints of curability, transparency, and heat resistance, the diacyl peroxide; the peroxy ester; and the azo compound are preferable.
 光ラジカル重合開始剤としては、例えば2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン等のベンゾインケタール;1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン等のα-ヒドロキシケトン;2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等のα-アミノケトン;1-[(4-フェニルチオ)フェニル]-1,2-オクタジオン-2-(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシド;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;ベンゾフェノン、N,N´-テトラメチル-4,4´-ジアミノベンゾフェノン、N,N´-テトラエチル-4,4´-ジアミノベンゾフェノン、4-メトキシ-4´-ジメチルアミノベンゾフェノン等のベンゾフェノン化合物;2-エチルアントラキノン、フェナントレンキノン、2-tert-ブチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ベンズアントラキノン、2-フェニルアントラキノン、2,3-ジフェニルアントラキノン、1-クロロアントラキノン、2-メチルアントラキノン、1,4-ナフトキノン、9,10-フェナントラキノン、2-メチル-1,4-ナフトキノン、2,3-ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9-フェニルアクリジン、1,7-ビス(9,9´-アクリジニルヘプタン)等のアクリジン化合物:N-フェニルグリシン、クマリンなどが挙げられる。 Examples of radical photopolymerization initiators include benzoin ketals such as 2,2-dimethoxy-1,2-diphenylethane-1-one; 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropane- Α-hydroxy ketones such as 1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one; 2-benzyl-2-dimethylamino-1 Α-amino ketones such as-(4-morpholinophenyl) -butan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one; Oxime esters such as (4-phenylthio) phenyl] -1,2-octadion-2- (benzoyl) oxime; bis (2,4,6-tri Phosphine oxides such as methylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; 2- (o-chlorophenyl) ) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer 2,4,5-triaryl such as 2-mer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer Imidazole dimer; benzophenone, N, N'-tetramethyl-4,4'-diame Benzophenone compounds such as nobenzophenone, N, N′-tetraethyl-4,4′-diaminobenzophenone, 4-methoxy-4′-dimethylaminobenzophenone; 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethyl Anthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone, 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenant Quinone compounds such as laquinone, 2-methyl-1,4-naphthoquinone and 2,3-dimethylanthraquinone; benzoin ethers such as benzoin methyl ether, benzoin ethyl ether and benzoin phenyl ether Benzoin compounds such as benzoin, methylbenzoin and ethylbenzoin; benzyl compounds such as benzyldimethyl ketal; acridine compounds such as 9-phenylacridine and 1,7-bis (9,9'-acridinylheptane): N-phenyl; Examples include glycine and coumarin.
 また、前記2,4,5-トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。また。ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン化合物と3級アミンとを組み合わせてもよい。 In the 2,4,5-triarylimidazole dimer, the substituents of the aryl groups at the two triarylimidazole sites may give the same and symmetric compounds, but give differently asymmetric compounds. May be. Also. A thioxanthone compound and a tertiary amine may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
 これらの中でも、硬化性、透明性、及び耐熱性の観点から、前記α-ヒドロキシケトン;前記ホスフィンオキシドであることが好ましい。これらのラジカル重合開始剤は、単独で又は2種類以上を組み合わせて使用することができる。さらに、適切な増感剤と組み合わせて用いることもできる。 Among these, from the viewpoint of curability, transparency, and heat resistance, the α-hydroxyketone and the phosphine oxide are preferable. These radical polymerization initiators can be used alone or in combination of two or more. Furthermore, it can also be used in combination with an appropriate sensitizer.
 また、(B)分子中にエチレン性不飽和基を有する化合物として、エポキシ基を有する化合物を用いる場合、該エポキシ基を重合性基として用いるために、(C)成分の重合開始剤としては、熱カチオン重合開始剤、光カチオン重合開始剤等のカチオン重合開始剤を用いてもよい。特に硬化速度が速く常温硬化が可能なことから、光カチオン重合開始剤が好ましい。 In addition, when a compound having an epoxy group is used as the compound having an ethylenically unsaturated group in the molecule (B), in order to use the epoxy group as a polymerizable group, You may use cationic polymerization initiators, such as a thermal cationic polymerization initiator and a photocationic polymerization initiator. In particular, a cationic photopolymerization initiator is preferred because it has a high curing rate and can be cured at room temperature.
 熱カチオン重合開始剤としては、例えば、p-アルコキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート等のベンジルスルホニウム塩;ベンジル-p-シアノピリジニウムヘキサフルオロアンチモネート、1-ナフチルメチル-o-シアノピリジニウムヘキサフルオロアンチモネート、シンナミル-o-シアノピリジニウムヘキサフルオロアンチモネート等のピリジニウム塩;ベンジルジメチルフェニルアンモニウムヘキサフルオロアンチモネート等のベンジルアンモニウム塩などが挙げられる。
 これらの中でも、硬化性、透明性、及び耐熱性の観点から、前記ベンジルスルホニウム塩が好ましい。
Examples of the thermal cationic polymerization initiator include benzylsulfonium salts such as p-alkoxyphenylbenzylmethylsulfonium hexafluoroantimonate; benzyl-p-cyanopyridinium hexafluoroantimonate, 1-naphthylmethyl-o-cyanopyridinium hexafluoroantimony And pyridinium salts such as cinnamyl-o-cyanopyridinium hexafluoroantimonate; and benzylammonium salts such as benzyldimethylphenylammonium hexafluoroantimonate.
Among these, the benzylsulfonium salt is preferable from the viewpoint of curability, transparency, and heat resistance.
 光カチオン重合開始剤としては、例えばp-メトキシベンゼンジアゾニウムヘキサフルオロホスフェート等のアリールジアゾニウム塩、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート等のジアリールヨードニウム塩;トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート、ジフェニル-4-チオフェノキシフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル-4-チオフェノキシフェニルスルホニウムペンタフルオロヒドロキシアンチモネート等のトリアリールスルホニウム塩;トリフェニルセレノニウムヘキサフルオロホスフェート、トリフェニルセレノニウムテトラフルオロボレート、トリフェニルセレノニウムヘキサフルオロアンチモネート等のトリアリールセレノニウム塩;ジメチルフェナシルスルホニウムヘキサフルオロアンチモネート、ジエチルフェナシルスルホニウムヘキサフルオロアンチモネート等のジアルキルフェナシルスルホニウム塩;4-ヒドロキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4-ヒドロキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート等のジアルキル-4-ヒドロキシ塩;α-ヒドロキシメチルベンゾインスルホン酸エステル、N-ヒドロキシイミドスルホネート、α-スルホニロキシケトン、β-スルホニロキシケトン等のスルホン酸エステルなどが挙げられる。
 これらの中でも、硬化性、透明性、及び耐熱性の観点から、前記トリアリールスルホニウム塩が好ましい。
Examples of the cationic photopolymerization initiator include aryl diazonium salts such as p-methoxybenzenediazonium hexafluorophosphate, diaryliodonium salts such as diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate; triphenylsulfonium hexafluorophosphate, triphenyl Triarylsulfonium salts such as sulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium hexafluorophosphate, diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate, diphenyl-4-thiophenoxyphenylsulfonium pentafluorohydroxyantimonate ; Triphenylselenonium hexa Triarylselenonium salts such as fluorophosphate, triphenylselenonium tetrafluoroborate, triphenylselenonium hexafluoroantimonate; dialkylphenacyl such as dimethylphenacylsulfonium hexafluoroantimonate, diethylphenacylsulfonium hexafluoroantimonate Sulfonium salts; dialkyl-4-hydroxy salts such as 4-hydroxyphenyldimethylsulfonium hexafluoroantimonate and 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate; α-hydroxymethylbenzoin sulfonate, N-hydroxyimide sulfonate, α -Sulfonyloxy ketone, sulfonic acid ester such as β-sulfonyloxy ketone, and the like.
Among these, from the viewpoints of curability, transparency, and heat resistance, the triarylsulfonium salt is preferable.
 これらのカチオン重合開始剤は、単独で又は2種類以上を組み合わせて用いることができる。さらに、適切な増感剤と組み合わせて用いることもできる。 These cationic polymerization initiators can be used alone or in combination of two or more. Furthermore, it can also be used in combination with an appropriate sensitizer.
 本発明の光導波路形成用樹脂組成物中における(C)成分の含有量は、(A)及び(B)成分の総量100質量部に対して、0.01~10質量部であることが好ましい。0.01質量部以上であると、硬化が十分であり、10質量部以下であると十分な光透過性が得られる。以上の観点から、0.1~10質量部であることがより好ましく、0.3~7質量部であることがさらに好ましく、0.5~5質量部であることが特に好ましい。 The content of the component (C) in the resin composition for forming an optical waveguide of the present invention is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). . Curing is sufficient when it is 0.01 parts by mass or more, and sufficient light transmission is obtained when it is 10 parts by mass or less. From the above viewpoint, the content is more preferably 0.1 to 10 parts by mass, further preferably 0.3 to 7 parts by mass, and particularly preferably 0.5 to 5 parts by mass.
 また、この他に必要に応じて、本発明の光導波路形成用樹脂組成物は、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤等のいわゆる添加剤を本発明の効果を阻害しない範囲内で含有してもよい。 In addition, if necessary, the resin composition for forming an optical waveguide of the present invention comprises an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, and a filling agent. You may contain what is called additives, such as an agent, in the range which does not inhibit the effect of this invention.
(光導波路形成用樹脂ワニス)
 本発明の光導波路形成用樹脂組成物は、有機溶剤を用いて希釈し、光導波路形成用樹脂ワニスとして使用してもよい。
 前記有機溶剤としては、本発明の光導波路形成用樹脂組成物を構成する各原料を溶解しえるものであれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p-シメン等の芳香族炭化水素;テトラヒドロフラン、1,4-ジオキサン等の環状エーテル;メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミドなどが挙げられる。
(Resin varnish for optical waveguide formation)
The resin composition for forming an optical waveguide of the present invention may be diluted with an organic solvent and used as a resin varnish for forming an optical waveguide.
The organic solvent is not particularly limited as long as it can dissolve each raw material constituting the resin composition for forming an optical waveguide of the present invention. For example, an aromatic such as toluene, xylene, mesitylene, cumene, p-cymene, etc. Aromatic hydrocarbons; cyclic ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol, propylene glycol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, 4-hydroxy-4-methyl -2- ketones such as pentanone; esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate and γ-butyrolactone; carbonates such as ethylene carbonate and propylene carbonate; ethylene glycol monomethyl ether Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether Polyhydric alcohol alkyl ethers such as diethylene glycol monobutyl ether, diethylene glycol dimethyl ether and diethylene glycol diethyl ether; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether Polyhydric alcohol alkyl ether acetates such as teracetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate; N, N-dimethylformamide, N, N-dimethylacetamide, N -Amides such as methylpyrrolidone.
 これらの中でも、溶解性及び沸点の観点から、トルエン、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸メチル、乳酸エチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、又はN,N-ジメチルアセトアミドであることが好ましい。これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用することができる。また、光導波路形成用樹脂ワニス中の固形分濃度は、20~80質量%であることが好ましい。 Among these, from the viewpoint of solubility and boiling point, toluene, methanol, ethanol, isopropanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, ethylene glycol monomethyl ether, Ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol dimethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, or N, N-dimethylacetamide is preferred. These organic solvents can be used alone or in combination of two or more. The solid content concentration in the optical waveguide forming resin varnish is preferably 20 to 80% by mass.
 光導波路形成用樹脂ワニスを調合する際は、撹拌により混合することが好ましい。撹拌方法には特に制限はないが、撹拌効率の観点からプロペラを用いた撹拌が好ましい。撹拌する際のプロペラの回転速度には特に制限はないが、10~1,000min-1であることが好ましい。10min-1以上であると、(A)~(C)成分、その他の成分、及び有機溶剤のそれぞれの成分が十分に混合され、1,000min-1以下であるとプロペラの回転による気泡の巻き込みが少なくなる。以上の観点から50~800min-1であることがより好ましく、100~500min-1であることがさらに好ましい。撹拌時間には特に制限はないが、1~24時間であることが好ましい。1時間以上であると、(A)~(C)成分、その他の成分、及び有機溶剤のそれぞれの成分が十分に混合され、24時間以下であると、ワニス調合時間を短縮することができる。 When preparing the resin varnish for forming an optical waveguide, it is preferable to mix by stirring. Although there is no restriction | limiting in particular in the stirring method, From the viewpoint of stirring efficiency, stirring using a propeller is preferable. There is no particular limitation on the rotation speed of the propeller during stirring, but it is preferably 10 to 1,000 min −1 . When it is 10 min −1 or more, the components (A) to (C), other components, and the organic solvent are sufficiently mixed, and when it is 1,000 min −1 or less, bubbles are involved by rotation of the propeller. Less. From the above viewpoint, it is more preferably 50 to 800 min −1 , further preferably 100 to 500 min −1 . The stirring time is not particularly limited, but is preferably 1 to 24 hours. When it is 1 hour or longer, the components (A) to (C), other components, and the organic solvent are sufficiently mixed, and when it is 24 hours or shorter, the varnish preparation time can be shortened.
 調合した光導波路形成用樹脂ワニスは、孔径50μm以下のフィルタを用いて濾過することが好ましい。孔径50μm以下であると、大きな異物等が除去されて、ワニス塗布時にはじき等を生じることがなく、またコア部を伝搬する光の散乱が抑制される。以上の観点から、孔径30μm以下のフィルタを用いて濾過するのがより好ましく、孔径10μm以下のフィルタを用いて濾過するのがさらに好ましい。 The prepared resin varnish for forming an optical waveguide is preferably filtered using a filter having a pore diameter of 50 μm or less. When the pore diameter is 50 μm or less, large foreign matters and the like are removed, and no repelling or the like occurs during varnish application, and scattering of light propagating through the core portion is suppressed. From the above viewpoint, it is more preferable to filter using a filter having a pore diameter of 30 μm or less, and it is more preferable to filter using a filter having a pore diameter of 10 μm or less.
 調合した光導波路形成用樹脂ワニスは、減圧下で脱泡することが好ましい。脱泡方法には、特に制限はなく、具体例としては真空ポンプとベルジャー、真空装置付き脱泡装置を用いることができる。減圧時の圧力には特に制限はないが、樹脂ワニスに含まれる有機溶剤が沸騰しない圧力が好ましい。減圧脱泡時間には特に制限はないが、3~60分であることが好ましい。3分以上であると、樹脂ワニス内に溶解した気泡を取り除くことができる。60分以下であると、樹脂ワニスに含まれる有機溶剤が揮発することがない。 The prepared resin varnish for forming an optical waveguide is preferably degassed under reduced pressure. There is no restriction | limiting in particular in the defoaming method, As a specific example, a degassing apparatus with a vacuum pump and a bell jar and a vacuum apparatus can be used. Although there is no restriction | limiting in particular in the pressure at the time of pressure reduction, The pressure which the organic solvent contained in a resin varnish does not boil is preferable. There is no particular limitation on the vacuum degassing time, but it is preferably 3 to 60 minutes. If it is 3 minutes or longer, bubbles dissolved in the resin varnish can be removed. If it is 60 minutes or less, the organic solvent contained in the resin varnish will not volatilize.
 本発明の光導波路形成用樹脂組成物を重合、硬化してなる硬化フィルムの、温度25℃における波長830~850nmの範囲での屈折率は1.400~1.700であることが好ましい。1.400~1.700であれば、通常の光導波路形成用樹脂組成物との屈折率が大きく異ならないため、光導波路形成用材料としての汎用性が損なわれることがない。以上の観点から、1.425~1.675であることがより好ましく、1.450~1.650であることがさらに好ましい。 The refractive index of the cured film obtained by polymerizing and curing the optical waveguide forming resin composition of the present invention in the wavelength range of 830 to 850 nm at a temperature of 25 ° C. is preferably 1.400 to 1.700. If the refractive index is 1.400 to 1.700, the refractive index is not significantly different from that of a normal resin composition for forming an optical waveguide, so that versatility as an optical waveguide forming material is not impaired. From the above viewpoints, it is more preferably 1.425 to 1.675, and further preferably 1.450 to 1.650.
 本発明の光導波路形成用樹脂組成物を重合、硬化してなる厚み50μmの硬化フィルムの波長850nmでの透過率は80%以上であることが好ましい。80%以上であると、光の透過量が十分である。以上の観点から85%以上であることがより好ましく、90%以上であることがさらに好ましい。なお、透過率の上限については特に制限されない。 The transmittance at a wavelength of 850 nm of a 50 μm thick cured film obtained by polymerizing and curing the optical waveguide forming resin composition of the present invention is preferably 80% or more. If it is 80% or more, the amount of transmitted light is sufficient. From the above viewpoint, it is more preferably 85% or more, and further preferably 90% or more. Note that the upper limit of the transmittance is not particularly limited.
[光導波路形成用樹脂フィルム]
 本発明の光導波路形成用樹脂フィルムは、本発明の光導波路形成用樹脂組成物を用いて得られる光導波路形成用樹脂層(以下、単に「樹脂層」ともいう)を有するものである。本発明の光導波路形成用樹脂フィルムは、光導波路の850nmにおける光伝搬損失を抑制し、環境信頼性を向上させる観点から、下部クラッド層、コア部及び上部クラッド層の少なくとも1つとして用いることができる。以上の観点から、下部クラッド層及び上部クラッド層の少なくとも1つとして用いることが好ましい。
 本発明の光導波路形成用樹脂フィルムは、本発明の光導波路形成用樹脂組成物を基材フィルムに塗布し、必要に応じて溶剤を除去することにより容易に製造することができる。
 また、生産性の観点から、前記光導波路形成用樹脂ワニスを直接基材フィルムに塗布し、溶剤を除去してもよい。
[Resin film for optical waveguide formation]
The resin film for forming an optical waveguide of the present invention has a resin layer for forming an optical waveguide (hereinafter also simply referred to as “resin layer”) obtained using the resin composition for forming an optical waveguide of the present invention. The resin film for forming an optical waveguide of the present invention is used as at least one of a lower cladding layer, a core portion, and an upper cladding layer from the viewpoint of suppressing light propagation loss at 850 nm of the optical waveguide and improving environmental reliability. it can. From the above viewpoint, it is preferable to use as at least one of the lower clad layer and the upper clad layer.
The resin film for forming an optical waveguide of the present invention can be easily produced by applying the resin composition for forming an optical waveguide of the present invention to a substrate film and removing the solvent as necessary.
Further, from the viewpoint of productivity, the resin varnish for forming an optical waveguide may be directly applied to a base film to remove the solvent.
 基材フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマーなどが挙げられる。
 これらの中でも、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、又はポリスルホンであることが好ましい。
There is no restriction | limiting in particular as a base film, For example, Polyester, such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; Polyolefin, such as polyethylene and a polypropylene; Polycarbonate, polyamide, polyimide, polyamideimide, polyetherimide, polyether sulfide , Polyethersulfone, polyetherketone, polyphenylene ether, polyphenylene sulfide, polyarylate, polysulfone, liquid crystal polymer and the like.
Among these, from the viewpoint of flexibility and toughness, it may be polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polypropylene, polycarbonate, polyamide, polyimide, polyamideimide, polyphenylene ether, polyphenylene sulfide, polyarylate, or polysulfone. preferable.
 基材フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、3~250μmであることが好ましい。3μm以上であるとフィルム強度が十分であり、また、250μm以下であると十分な柔軟性が得られる。以上の観点から、5~200μmであることがより好ましく、7~150μmであることがさらに好ましい。
 なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により離型処理が施されたフィルムを必要に応じて用いてもよい。
The thickness of the base film may be appropriately changed depending on the intended flexibility, but is preferably 3 to 250 μm. When it is 3 μm or more, the film strength is sufficient, and when it is 250 μm or less, sufficient flexibility is obtained. From the above viewpoint, the thickness is more preferably 5 to 200 μm, further preferably 7 to 150 μm.
In addition, from the viewpoint of improving the peelability from the resin layer, a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
 本発明の光導波路形成用樹脂フィルムは、必要に応じて保護フィルムを樹脂層上に貼り付け、基材フィルム、樹脂層及び保護フィルムをこの順に有する3層構造を含む構造としてもよく、より好ましくは前記3層構造からなる構造である。 The resin film for forming an optical waveguide of the present invention may have a structure including a three-layer structure having a base film, a resin layer, and a protective film in this order, if necessary. Is a structure composed of the three-layer structure.
 保護フィルムとしては、特に制限はなく、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンなどが挙げられる。これらの中でも、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレンなどのポリオレフィンであることが好ましい。なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により離型処理が施されたフィルムを必要に応じて用いてもよい。保護フィルムの厚みは、目的とする柔軟性により適宜変えてよいが、10~250μmであることが好ましい。10μm以上であると保護フィルム強度が十分であり、また、250μm以下であると十分な柔軟性が得られる。以上の観点から、15~200μmであることがより好ましく、20~150μmであることがさらに好ましい。 The protective film is not particularly limited, and examples thereof include polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyolefins such as polyethylene and polypropylene. Among these, from the viewpoints of flexibility and toughness, polyesters such as polyethylene terephthalate; polyolefins such as polyethylene and polypropylene are preferable. In addition, from the viewpoint of improving the peelability from the resin layer, a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary. The thickness of the protective film may be appropriately changed depending on the intended flexibility, but is preferably 10 to 250 μm. When it is 10 μm or more, the strength of the protective film is sufficient, and when it is 250 μm or less, sufficient flexibility is obtained. From the above viewpoint, the thickness is more preferably 15 to 200 μm, and further preferably 20 to 150 μm.
 本発明の光導波路形成用樹脂フィルムの樹脂層の厚みについては特に限定されないが、乾燥後の厚みで、通常は5~500μmであることが好ましい。5μm以上であると、厚みが十分であるため樹脂フィルム又は該フィルムの硬化物の強度が十分であり、また、500μm以下であると、乾燥が十分に行えるため樹脂フィルム中の残留溶媒量が増えることなく、該フィルムの硬化物を加熱したときに発泡することがない。 The thickness of the resin layer of the resin film for forming an optical waveguide of the present invention is not particularly limited, but the thickness after drying is preferably 5 to 500 μm. If the thickness is 5 μm or more, the resin film or the cured product of the film has sufficient strength because the thickness is sufficient, and if it is 500 μm or less, the drying can be performed sufficiently and the amount of residual solvent in the resin film increases. Without foaming when the cured product of the film is heated.
 このようにして得られた光導波路形成用樹脂フィルムは、下部クラッド層、コア部、及び上部クラッド層の少なくとも1つの形成用フィルムとして用いることができ、例えばロール状に巻き取ることによって容易に保存することができる。または、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。 The resin film for forming an optical waveguide thus obtained can be used as a film for forming at least one of a lower clad layer, a core portion, and an upper clad layer, and can be easily stored by, for example, winding in a roll shape. can do. Alternatively, a roll-shaped film can be cut into a suitable size and stored in a sheet shape.
 [光導波路]
 本発明の光導波路は、下部クラッド層、コア部、及び上部クラッド層の少なくとも1つを本発明の光導波路形成用樹脂組成物又は本発明の光導波路形成用樹脂フィルムを用いて形成した光導波路である。本発明の光導波路形成用樹脂組成物は、光導波路の850nmにおける光伝搬損失を抑制し、環境信頼性を向上させる観点から、下部クラッド層、コア部及び上部クラッド層の少なくとも1つとして用いることができる。以上の観点から、下部クラッド層及び上部クラッド層の少なくとも1つとして用いることが好ましい。
[Optical waveguide]
The optical waveguide of the present invention is an optical waveguide in which at least one of the lower cladding layer, the core portion, and the upper cladding layer is formed using the optical waveguide forming resin composition of the present invention or the optical waveguide forming resin film of the present invention. It is. The resin composition for forming an optical waveguide of the present invention is used as at least one of a lower cladding layer, a core portion, and an upper cladding layer from the viewpoint of suppressing light propagation loss at 850 nm of the optical waveguide and improving environmental reliability. Can do. From the above viewpoint, it is preferable to use as at least one of the lower clad layer and the upper clad layer.
 図1の(a)に本発明の光導波路1の断面図を示す。光導波路1は基材5上に形成され、高屈折率であるコア部形成用樹脂組成物から形成されるコア部2、並びに低屈折率であるクラッド層形成用樹脂組成物から形成される下部クラッド層4及び上部クラッド層3で構成されている。
 本発明の光導波路形成用樹脂組成物又は光導波路形成用樹脂フィルムは、光導波路1の下部クラッド層4、コア部2及び上部クラッド層3のうち、少なくとも1つに用いることができる。その中でも、現像液によりパターン形成可能の観点からはコア部2に好適に用いることができ、また、耐熱性及び環境信頼性に優れるため、コア周囲を被覆して保護するクラッド層用としても好適である。
FIG. 1A is a sectional view of the optical waveguide 1 of the present invention. The optical waveguide 1 is formed on a substrate 5 and is formed of a core part 2 formed from a core part-forming resin composition having a high refractive index, and a lower part formed from a resin composition for forming a cladding layer having a low refractive index. The clad layer 4 and the upper clad layer 3 are configured.
The resin composition for forming an optical waveguide or the resin film for forming an optical waveguide of the present invention can be used for at least one of the lower cladding layer 4, the core portion 2 and the upper cladding layer 3 of the optical waveguide 1. Among these, from the viewpoint that a pattern can be formed with a developer, it can be suitably used for the core part 2, and because of excellent heat resistance and environmental reliability, it is also suitable for a clad layer that covers and protects the core periphery. It is.
 本発明の光導波路形成用樹脂組成物を用いることによって、クラッドとコアの層間密着性、光導波路コアパターン形成時のパターン形成性(細線又は狭線間対応性)等をより向上させることができ、線幅、線間等の小さい微細パターン形成が可能となる。また、大面積の光導波路を一度に製造できるという生産性に優れたプロセスを提供することが可能となる。 By using the optical waveguide forming resin composition of the present invention, it is possible to further improve the interlayer adhesion between the clad and the core, the pattern formability (correspondence between fine lines or narrow lines) at the time of forming the optical waveguide core pattern, and the like. Thus, it is possible to form a small fine pattern such as a line width and a line spacing. In addition, it is possible to provide a process with excellent productivity in which a large-area optical waveguide can be manufactured at one time.
 光導波路1において、基材5としてはシリコン基板、ガラス基板又はFR-4等のガラスエポキシ樹脂基板のような硬い基板を用いることができる。
 また、光導波路1は、基材5として、柔軟性及び強靭性のある前記基材フィルムを用いて、フレキシブル光導波路としてもよい。
 基材5として、柔軟性及び強靭性のある前記基材フィルムを用いる場合には、該基材フィルムを光導波路1のカバーフィルムとして機能させてもよい。カバーフィルムとなる基材フィルムを配置することにより、柔軟性及び強靭性を光導波路1に付与することが可能となる。また、光導波路1が汚れ又は傷を受けなくなるため、取り扱い性が向上する。
 以上の観点から、図1の(b)のように上部クラッド層3の外側にカバーフィルムとなる基材フィルム5が配置されていたり、図1の(c)のように下部クラッド層4及び上部クラッド層3の両方の外側にカバーフィルムとなる基材フィルム5が配置されていてもよい。
 また、光導波路1に柔軟性及び強靭性が十分に備わっている場合には、図1の(d)のように、カバーフィルムとなる基材フィルム5が配置されていなくてもよい。
In the optical waveguide 1, a hard substrate such as a silicon substrate, a glass substrate, or a glass epoxy resin substrate such as FR-4 can be used as the base material 5.
Moreover, the optical waveguide 1 is good also as a flexible optical waveguide using the said base film with a softness | flexibility and toughness as the base material 5. FIG.
When the base film having flexibility and toughness is used as the base material 5, the base film may function as a cover film for the optical waveguide 1. By disposing a base film serving as a cover film, flexibility and toughness can be imparted to the optical waveguide 1. In addition, since the optical waveguide 1 is not damaged or scratched, the handleability is improved.
From the above viewpoint, a base film 5 serving as a cover film is disposed outside the upper clad layer 3 as shown in FIG. 1B, or the lower clad layer 4 and the upper portion as shown in FIG. A base film 5 serving as a cover film may be disposed on both outer sides of the clad layer 3.
Further, when the optical waveguide 1 has sufficient flexibility and toughness, the base film 5 serving as the cover film may not be disposed as shown in FIG.
 下部クラッド層4の厚みは、特に制限はないが、2~200μmであることが好ましく、く、5~100μmであることがより好ましく、7~80μmであることがさらに好ましい。2μm以上であると、伝搬光をコア内部に閉じ込めることが容易となり、200μm以下であると、光導波路1全体の厚みが過度に大きくなることを抑制できる。
 なお、下部クラッド層4の厚みとは、コア部2と下部クラッド層4との境界から下部クラッド層4の下面までの値である。
 下部クラッド層4を形成するために用いられる光導波路形成用樹脂フィルムの厚みは、特に制限はなく、硬化後の下部クラッド層4の厚みが上記の範囲となるように適宜調整すればよい。
The thickness of the lower cladding layer 4 is not particularly limited, but is preferably 2 to 200 μm, more preferably 5 to 100 μm, and even more preferably 7 to 80 μm. When it is 2 μm or more, it becomes easy to confine propagating light inside the core, and when it is 200 μm or less, it is possible to suppress an excessive increase in the thickness of the entire optical waveguide 1.
The thickness of the lower cladding layer 4 is a value from the boundary between the core portion 2 and the lower cladding layer 4 to the lower surface of the lower cladding layer 4.
The thickness of the optical waveguide forming resin film used for forming the lower clad layer 4 is not particularly limited, and may be appropriately adjusted so that the thickness of the lower clad layer 4 after curing falls within the above range.
 コア部2の高さは、特に制限はないが、10~100μmであることが好ましい。コア部の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが小さくなることがなく、また、100μm以下であれば、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が小さくなることがない。以上の観点から、コア部の高さは、15~80μmであることがより好ましく、20~70μmであることがさらに好ましい。
 なお、コア部2を形成するために用いられる光導波路形成用樹脂フィルムの厚みは、特に制限はなく、硬化後のコア部2の高さが上記の範囲となるように適宜調整すればよい。
The height of the core part 2 is not particularly limited, but is preferably 10 to 100 μm. When the height of the core portion is 10 μm or more, the alignment tolerance is not reduced in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed. In the coupling with the light emitting / receiving element or the optical fiber, the coupling efficiency is not reduced. From the above viewpoint, the height of the core part is more preferably 15 to 80 μm, and further preferably 20 to 70 μm.
In addition, the thickness of the resin film for forming an optical waveguide used for forming the core part 2 is not particularly limited, and may be appropriately adjusted so that the height of the core part 2 after curing is in the above range.
 上部クラッド層3の厚みは、コア部2を埋め込むことができる範囲であれば、特に制限はないが、乾燥後の厚みで、12~500μmであることが好ましく、20~150μmであることがより好ましい。上部クラッド層3の厚みは、最初に形成される下部クラッド層4の厚みと同一であっても異なってもよいが、コア部2を埋め込むという観点から、下部クラッド層4の厚みよりも厚くすることが好ましい。
 なお、上部クラッド層3の厚みとは、コア部2と下部クラッド層4との境界から上部クラッド層3の上面までの値である。
 上部クラッド層3を形成するために用いられる光導波路形成用樹脂フィルムの厚みは、特に制限はなく、硬化後の上部クラッド層3の厚みが上記の範囲となるように適宜調整すればよい。
The thickness of the upper cladding layer 3 is not particularly limited as long as the core portion 2 can be embedded, but the thickness after drying is preferably 12 to 500 μm, more preferably 20 to 150 μm. preferable. The thickness of the upper clad layer 3 may be the same as or different from the thickness of the lower clad layer 4 that is formed first, but is thicker than the thickness of the lower clad layer 4 from the viewpoint of embedding the core portion 2. It is preferable.
The thickness of the upper cladding layer 3 is a value from the boundary between the core portion 2 and the lower cladding layer 4 to the upper surface of the upper cladding layer 3.
The thickness of the resin film for forming an optical waveguide used for forming the upper cladding layer 3 is not particularly limited, and may be appropriately adjusted so that the thickness of the upper cladding layer 3 after curing is in the above range.
 本発明の光導波路は、波長850nmにおける光伝搬損失として0.25dB/cm以下であることが好ましく、0.15dB/cm以下であることがより好ましい。光伝搬損失が0.25dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分となる。 In the optical waveguide of the present invention, the light propagation loss at a wavelength of 850 nm is preferably 0.25 dB / cm or less, and more preferably 0.15 dB / cm or less. When the light propagation loss is 0.25 dB / cm or less, the light loss is reduced and the strength of the transmission signal is sufficient.
[光導波路の製造方法]
 本発明の光導波路を製造する方法としては、特に制限はないが、例えば、本発明の光導波路形成用樹脂組成物又は光導波路形成用樹脂ワニスを、コア部形成用樹脂ワニス及びクラッド層形成用樹脂ワニスとして用いて、スピンコート法等により製造する方法、本発明の光導波路形成用樹脂フィルムを、コア部形成用樹脂フィルム及びクラッド層形成用樹脂フィルムとして用いて、積層法により製造する方法などが挙げられる。また、これらの方法を組み合わせて製造することもできる。これらの中でも、生産性に優れた光導波路製造プロセスが提供可能という観点からは、光導波路形成用樹脂フィルムを用いる積層法により製造することが好ましい。
[Optical Waveguide Manufacturing Method]
The method for producing the optical waveguide of the present invention is not particularly limited. For example, the resin composition for forming an optical waveguide of the present invention or the resin varnish for forming an optical waveguide of the present invention is used for forming a resin varnish for forming a core part and a cladding layer. Use as a resin varnish, a method of producing by a spin coating method, etc., a method of producing an optical waveguide forming resin film of the present invention by using a core part forming resin film and a cladding layer forming resin film, a lamination method, etc. Is mentioned. Moreover, it can also manufacture combining these methods. Among these, it is preferable to manufacture by the lamination method using the resin film for optical waveguide formation from a viewpoint that the optical waveguide manufacturing process excellent in productivity can be provided.
 本発明の光導波路の製造方法は、生産性に優れた光導波路製造プロセスが提供可能という観点から、下記工程1~4を有する光導波路の製造方法であって、下部クラッド層、コア部及び上部クラッド層の少なくとも1つを、本発明の光導波路形成用樹脂フィルムを用いて形成することが好ましい。
 工程1:下部クラッド層形成用樹脂フィルムを基材上に積層して下部クラッド層を形成する工程
 工程2:前記下部クラッド層上にコア部形成用樹脂フィルムを積層する工程
 工程3:前記コア部形成用樹脂フィルムを、フォトマスクを介して露光し、次いで現像した後、コア部を形成する工程
 工程4:前記下部クラッド層及びコア部上に、上部クラッド層形成用樹脂フィルムを積層して上部クラッド層を形成する工程
The optical waveguide manufacturing method of the present invention is an optical waveguide manufacturing method having the following steps 1 to 4 from the viewpoint that an optical waveguide manufacturing process with excellent productivity can be provided, and includes a lower cladding layer, a core portion, and an upper portion. At least one of the cladding layers is preferably formed using the resin film for forming an optical waveguide of the present invention.
Step 1: A step of laminating a resin film for forming a lower clad layer on a substrate to form a lower clad layer Step 2: A step of laminating a resin film for forming a core portion on the lower clad layer Step 3: The core portion Step of forming the core part after exposing the forming resin film through a photomask and then developing Step 4: The upper clad layer-forming resin film is laminated on the lower clad layer and the core part. Step of forming the cladding layer
 以下、本発明の光導波路形成用樹脂フィルムを下部クラッド層4、コア部2及び上部クラッド層3に用いて光導波路1を形成する製造方法について図2を用いて説明する。
 コア部形成用樹脂フィルムの製造過程で用いる基材としては、後述のコアパターン形成に用いる露光用活性光線が透過するものであれば特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリフェニレンエーテル、ポリアリレートなどが挙げられる。
 これらの中でも、露光用活性光線の透過率、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリプロピレン等のポリオレフィンであることが好ましい。さらに、露光用活性光線の透過率向上及びコアパターンの側壁荒れ低減の観点から、高透明タイプな基材フィルムを用いることがさらに好ましい。このような高透明タイプな基材フィルムとしては、東洋紡株式会社製のコスモシャインA1517、コスモシャインA4100等が挙げられる。なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等により離型処理が施されたフィルムを必要に応じて用いてもよい。
Hereinafter, a manufacturing method for forming the optical waveguide 1 using the resin film for forming an optical waveguide of the present invention for the lower clad layer 4, the core portion 2 and the upper clad layer 3 will be described with reference to FIG.
The base material used in the process of producing the core portion forming resin film is not particularly limited as long as it can transmit the actinic ray for exposure used in the core pattern formation described later. For example, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate. Polyester such as phthalate; polyolefin such as polyethylene and polypropylene; polycarbonate, polyphenylene ether, polyarylate and the like.
Among these, polyesters such as polyethylene terephthalate and polybutylene terephthalate; polyolefins such as polypropylene are preferable from the viewpoints of the transmittance of exposure actinic rays, flexibility, and toughness. Furthermore, it is more preferable to use a highly transparent base film from the viewpoint of improving the transmittance of exposure actinic rays and reducing the side wall roughness of the core pattern. Examples of such highly transparent base film include Cosmo Shine A1517 and Cosmo Shine A4100 manufactured by Toyobo Co., Ltd. In addition, from the viewpoint of improving the peelability from the resin layer, a film that has been subjected to a release treatment with a silicone compound, a fluorine-containing compound, or the like may be used as necessary.
 コア部形成用樹脂フィルムの基材フィルムの厚みは、5~50μmであることが好ましい。5μm以上であると、支持体としての強度が十分であり、50μm以下であると、コアパターン形成時にフォトマスクとコア部形成用樹脂組成物層のギャップが大きくならず、パターン形成性が良好である。以上の観点から、基材フィルムの厚みは10~40μmであることがより好ましく、15~30μmであることがさらに好ましい。 The thickness of the base film of the core portion forming resin film is preferably 5 to 50 μm. If it is 5 μm or more, the strength as a support is sufficient, and if it is 50 μm or less, the gap between the photomask and the resin composition layer for forming the core part does not increase when the core pattern is formed, and the pattern formability is good. is there. From the above viewpoint, the thickness of the base film is more preferably 10 to 40 μm, and further preferably 15 to 30 μm.
 上記基材フィルム上に光導波路形成用樹脂組成物又は光導波路形成用樹脂ワニスを塗布して製造した光導波路形成用樹脂フィルムは、必要に応じて前記保護フィルムを樹脂層上に貼り付け、基材フィルム、樹脂層及び保護フィルムからなる3層構造としてもよい。 An optical waveguide-forming resin film produced by applying an optical waveguide-forming resin composition or an optical waveguide-forming resin varnish on the base film is prepared by applying the protective film on the resin layer as necessary. It is good also as a 3 layer structure which consists of a material film, a resin layer, and a protective film.
 このようにして得られたコア部形成用樹脂フィルムは、例えばロール状に巻き取ることによって容易に保存することができる。または、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。 The core part-forming resin film thus obtained can be easily stored by, for example, winding it into a roll. Alternatively, a roll-shaped film can be cut into a suitable size and stored in a sheet shape.
(工程1)
 図2は、本発明の光導波路の製造方法を示す工程断面図である。
 まず、工程1として、図2の(a)に示すように、下部クラッド層形成用樹脂フィルムを基材5上に積層して下部クラッド層4を形成する。
 工程1における積層方式としては、ロールラミネータ、又は平板型ラミネータを用いて加熱しながら圧着することにより積層する方法が挙げられるが、密着性及び追従性の観点から、平板型ラミネータを用いて減圧下で下部クラッド層形成用樹脂フィルムを積層することが好ましい。なお、本発明において平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式ラミネータを好適に用いることができる。ここでの加熱温度は、40~130℃であることが好ましく、圧着圧力は、0.1~1.0MPaであることが好ましいが、これらの条件には特に制限はない。下部クラッド層形成用樹脂フィルムに保護フィルムが存在する場合には、保護フィルムを除去した後に積層する。
(Process 1)
FIG. 2 is a process cross-sectional view illustrating the method of manufacturing an optical waveguide according to the present invention.
First, as step 1, as shown in FIG. 2A, a lower cladding layer 4 is formed by laminating a resin film for forming a lower cladding layer on a substrate 5.
Examples of the laminating method in Step 1 include a method of laminating by heating and pressure bonding using a roll laminator or a flat plate laminator, but from the viewpoint of adhesion and followability, using a flat plate laminator under reduced pressure. It is preferable to laminate a resin film for forming a lower clad layer. In the present invention, the flat plate type laminator refers to a laminator in which a laminated material is sandwiched between a pair of flat plates and pressed by pressing the flat plate. For example, a vacuum pressurizing laminator can be suitably used. The heating temperature here is preferably 40 to 130 ° C., and the pressing pressure is preferably 0.1 to 1.0 MPa, but these conditions are not particularly limited. When a protective film exists in the resin film for forming the lower cladding layer, the protective film is laminated after removing the protective film.
 なお、真空加圧式ラミネータによる積層の前に、ロールラミネータを用いて、あらかじめ下部クラッド層形成用樹脂フィルムを基材5上に仮貼りしておいてもよい。ここで、密着性及び追従性向上の観点から、圧着しながら仮貼りすることが好ましく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行ってもよい。ラミネート温度は、20~130℃であることが好ましい。20℃以上であると下部クラッド層4の形成用樹脂フィルムと基材5との密着性が向上し、130℃以下であると樹脂層がロールラミネート時に流動しすぎることがなく、必要とする膜厚が得られる。以上の観点から、ラミネート温度は40~100℃であることがより好ましい。圧力は0.2~0.9MPaであることが好ましく、ラミネート速度は0.1~3m/minであることが好ましいが、これらの条件には特に制限はない。 It should be noted that a resin film for forming a lower clad layer may be temporarily pasted on the substrate 5 in advance using a roll laminator before lamination with a vacuum pressure laminator. Here, from the viewpoint of improving adhesion and followability, it is preferable to perform temporary bonding while pressing, and when pressing, a laminator having a heat roll may be used while heating. The laminating temperature is preferably 20 to 130 ° C. When it is 20 ° C. or higher, the adhesion between the resin film for forming the lower clad layer 4 and the substrate 5 is improved, and when it is 130 ° C. or lower, the resin layer does not flow too much during roll lamination, and the required film Thickness is obtained. From the above viewpoint, the laminating temperature is more preferably 40 to 100 ° C. The pressure is preferably 0.2 to 0.9 MPa and the laminating speed is preferably 0.1 to 3 m / min, but these conditions are not particularly limited.
 続いて、基材5上に積層された下部クラッド層形成用樹脂フィルムを光又は加熱により硬化し、下部クラッド層形成用樹脂フィルムの基材フィルムを除去し、下部クラッド層4を形成する。
 下部クラッド層4を形成する際の活性光線の照射量は、0.1~5J/cmとすることが好ましく、加熱温度は50~200℃とすることが好ましいが、これらの条件には特に制限はない。
Subsequently, the lower clad layer forming resin film laminated on the base material 5 is cured by light or heating, the base film of the lower clad layer forming resin film is removed, and the lower clad layer 4 is formed.
The irradiation amount of actinic rays when forming the lower cladding layer 4 is preferably 0.1 to 5 J / cm 2, and the heating temperature is preferably 50 to 200 ° C. There is no limit.
(工程2)
 次いで、工程2として、図2の(b)に示すように、コア部形成用樹脂フィルム7を工程1と同様な方法で積層する。ここで、コア部形成用樹脂フィルム7は下部クラッド層形成用樹脂フィルムより高屈折率であるように設計され、活性光線によりコアパターンを形成し得る感光性樹脂組成物からなることが好ましい。
 本発明の光導波路形成用樹脂組成物は、感光性を有するため、コア部形成用樹脂フィルムとして好適である。
(Process 2)
Next, as step 2, as shown in FIG. 2B, the core portion forming resin film 7 is laminated by the same method as in step 1. Here, the core part-forming resin film 7 is preferably made of a photosensitive resin composition that is designed to have a higher refractive index than that of the lower clad layer-forming resin film and can form a core pattern with actinic rays.
Since the resin composition for forming an optical waveguide of the present invention has photosensitivity, it is suitable as a resin film for forming a core part.
(工程3)
 次に、工程3として、図2の(c)に示すように、コア部形成用樹脂フィルムを、フォトマスクを介して露光し、次いで現像した後、光導波路のコアパターン(コア部2)を形成する。具体的には、アートワークと呼ばれるネガ又はポジマスクパターンを有するフォトマスク6を通して活性光線が画像状に照射される。また、レーザ直接描画を用いてフォトマスク6を通さずに直接活性光線を画像上に照射してもよい。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものが挙げられる。
(Process 3)
Next, as step 3, as shown in FIG. 2 (c), the core portion-forming resin film is exposed through a photomask and then developed, and then the optical waveguide core pattern (core portion 2) is formed. Form. Specifically, actinic rays are irradiated in an image form through a photomask 6 having a negative or positive mask pattern called an artwork. Alternatively, the active light beam may be directly irradiated on the image without passing through the photomask 6 by using laser direct drawing. Examples of the active light source include known light sources that effectively emit ultraviolet rays, such as carbon arc lamps, mercury vapor arc lamps, ultrahigh pressure mercury lamps, high pressure mercury lamps, and xenon lamps. In addition, there are those that effectively radiate visible light such as a photographic flood bulb and a solar lamp.
 ここでの活性光線の照射量は、0.01~10J/cmであることが好ましい。0.01J/cm以上であると、硬化反応が十分に進行し、後述する現像工程によりコア部2が流失することがなく、10J/cm以下であると露光量過多によりコア部2が太ることがなく、微細なパターンが形成でき好適である。以上の観点から、0.05~5J/cmであることがより好ましく、0.1~3J/cmであることがさらに好ましい。 Here, the irradiation amount of actinic rays is preferably 0.01 to 10 J / cm 2 . When it is 0.01 J / cm 2 or more, the curing reaction proceeds sufficiently, and the core portion 2 is not washed away by the development process described later, and when it is 10 J / cm 2 or less, the core portion 2 is caused by excessive exposure. It is suitable for forming a fine pattern without being fat. From the above viewpoint, it is more preferably 0.05 to 5 J / cm 2 , and further preferably 0.1 to 3 J / cm 2 .
 なお、露光後に、コア部2の解像度及び密着性向上の観点から、露光後加熱を行ってもよい。紫外線照射から露光後加熱までの時間は、10分以内であることが好ましい。10分以内であると紫外線照射により発生した活性種が失活することがない。露光後加熱の温度は40~160℃であることが好ましく、時間は30秒~10分であることが好ましい。 In addition, after exposure, you may perform post-exposure heating from a viewpoint of the resolution of the core part 2, and adhesive improvement. The time from ultraviolet irradiation to post-exposure heating is preferably within 10 minutes. Within 10 minutes, the active species generated by ultraviolet irradiation will not be deactivated. The post-exposure heating temperature is preferably 40 to 160 ° C., and the time is preferably 30 seconds to 10 minutes.
 露光後、図2の(d)に示すように、コア部形成用樹脂フィルム7の基材フィルムを除去し、アルカリ性水溶液、水系現像液等の前記コア部形成用樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング、ディップ及びパドル等の公知の方法により現像する。また、必要に応じて2種類以上の現像方法を併用してもよい。 After the exposure, as shown in FIG. 2 (d), the base film of the core portion forming resin film 7 is removed, and development corresponding to the composition of the core portion forming resin film such as an alkaline aqueous solution or an aqueous developer is performed. Using the liquid, development is performed by a known method such as spraying, rocking dipping, brushing, scraping, dipping or paddle. Moreover, you may use together 2 or more types of image development methods as needed.
 前記アルカリ性水溶液の塩基としては、特に制限はないが、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ;リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ;リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩;ホウ砂、メタケイ酸ナトリウム等のナトリウム塩;水酸化テトラメチルアンモニウム、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール、1,3-ジアミノプロパノール-2-モルホリン等の有機塩基などが挙げられる。現像に用いるアルカリ性水溶液のpHは9~11であることが好ましく、その温度はコア部形成用樹脂組成物層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。 The base of the alkaline aqueous solution is not particularly limited. For example, alkali hydroxide such as lithium, sodium or potassium hydroxide; alkali carbonate such as lithium, sodium, potassium or ammonium carbonate or bicarbonate; Alkali metal phosphates such as potassium phosphate and sodium phosphate; Alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate; Sodium salts such as borax and sodium metasilicate; Tetramethylammonium hydroxide, Triethanolamine And organic bases such as ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, 1,3-diaminopropanol-2-morpholine, and the like. The pH of the alkaline aqueous solution used for development is preferably 9 to 11, and the temperature is adjusted in accordance with the developability of the core portion-forming resin composition layer. In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
 前記水系現像液としては、水又はアルカリ性水溶液と1種類以上の有機溶剤からなるものであれば特に制限はない。水系現像液のpHは、前記コア部形成用樹脂フィルムの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8~12であることがより好ましく、pH9~10であることがさらに好ましい。
 前記水系現像液に用いられる有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、4-ヒドロキシ-4-メチル-2-ペンタノン等のケトン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等の多価アルコールアルキルエーテルなどが挙げられる。これらは、単独で又は2種類以上を組み合わせて使用することができる。
The aqueous developer is not particularly limited as long as it is composed of water or an alkaline aqueous solution and one or more organic solvents. The pH of the aqueous developer is preferably as low as possible within the range where the development of the core part-forming resin film can be sufficiently performed, more preferably from 8 to 12, and even more preferably from 9 to 10.
Examples of the organic solvent used in the aqueous developer include alcohols such as methanol, ethanol, isopropanol, butanol, ethylene glycol and propylene glycol; ketones such as acetone and 4-hydroxy-4-methyl-2-pentanone; ethylene glycol Examples thereof include polyhydric alcohol alkyl ethers such as monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether and diethylene glycol monobutyl ether. These can be used alone or in combination of two or more.
 前記水系現像液中の有機溶剤の濃度は、通常、2~90質量%であることが好ましい。
 前記水系現像液の温度はコア部形成用樹脂組成物の現像性に合わせて調節される。また、水系現像液中には、界面活性剤、消泡剤等を少量混入させてもよい。
The concentration of the organic solvent in the aqueous developer is usually preferably 2 to 90% by mass.
The temperature of the aqueous developer is adjusted in accordance with the developability of the core portion forming resin composition. Further, a small amount of a surfactant, an antifoaming agent or the like may be mixed in the aqueous developer.
 現像後の処理として、必要に応じて水と前記有機溶剤からなる洗浄液を用いて光導波路のコア部2を洗浄してもよい。有機溶剤は単独で又は2種類以上を組み合わせて使用することができる。 As the post-development processing, the core portion 2 of the optical waveguide may be cleaned using a cleaning liquid composed of water and the organic solvent as necessary. An organic solvent can be used individually or in combination of 2 or more types.
 前記洗浄液中の有機溶剤の濃度は通常、2~90質量%とすることが好ましい。
 前記洗浄液の温度はコア部形成用樹脂組成物の現像性に合わせて調節される。
 現像又は洗浄後の処理として、必要に応じて、60~250℃程度の加熱又は0.1~1000mJ/cm程度の露光を行うことによりコア部2をさらに硬化してもよい。
The concentration of the organic solvent in the cleaning liquid is usually preferably 2 to 90% by mass.
The temperature of the cleaning liquid is adjusted in accordance with the developability of the core portion forming resin composition.
As processing after development or washing, the core 2 may be further cured by heating at about 60 to 250 ° C. or exposure at about 0.1 to 1000 mJ / cm 2 as necessary.
(工程4)
 続いて、工程4として、図2の(e)に示すように、前記下部クラッド層4及びコア部2上に、上部クラッド層形成用樹脂フィルムを工程1及び2と同様の方法で積層して上部クラッド層3を形成する。ここで、上部クラッド層形成用樹脂フィルムは、コア部形成用樹脂フィルムよりも低屈折率になるように設計されている。また、上部クラッド層3の厚みは、コア部2の高さより大きくすることが好ましい。
 次いで、工程1と同様な方法で上部クラッド層形成用樹脂フィルムを光又は熱によって硬化し、上部クラッド層3を形成する。
 上記クラッド層形成用樹脂フィルムの基材フィルムがPETの場合、活性光線の照射量は、0.1~5J/cmであることが好ましい。一方、基材フィルムがポリエチレンナフタレート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフィド、ポリエーテルスルホン、ポリスルホン等の場合、PETに比べて紫外線等の短波長の活性光線を通しにくいことから、活性光線の照射量は、0.5~30J/cmであることが好ましい。0.5J/cm以上であると硬化反応が十分に進行し、30J/cm以下であると光照射の時間が長くかかりすぎることがない。以上の観点から、3~27J/cmであることがより好ましく、5~25J/cmであることがさらに好ましい。
(Process 4)
Subsequently, as step 4, as shown in FIG. 2E, an upper clad layer forming resin film is laminated on the lower clad layer 4 and the core portion 2 in the same manner as in steps 1 and 2. The upper cladding layer 3 is formed. Here, the upper clad layer forming resin film is designed to have a lower refractive index than the core portion forming resin film. Further, the thickness of the upper cladding layer 3 is preferably larger than the height of the core portion 2.
Next, the upper clad layer-forming resin film is cured by light or heat in the same manner as in step 1 to form the upper clad layer 3.
When the base film of the resin film for forming a clad layer is PET, the irradiation amount of active light is preferably 0.1 to 5 J / cm 2 . On the other hand, when the base film is polyethylene naphthalate, polyamide, polyimide, polyamideimide, polyetherimide, polyphenylene ether, polyether sulfide, polyethersulfone, polysulfone, etc., actinic rays having a short wavelength such as ultraviolet rays are used compared to PET. Since it is difficult to pass through, the irradiation amount of actinic rays is preferably 0.5 to 30 J / cm 2 . When it is 0.5 J / cm 2 or more, the curing reaction proceeds sufficiently, and when it is 30 J / cm 2 or less, the time of light irradiation does not take too long. From the above viewpoint, it is more preferably 3 to 27 J / cm 2 , and further preferably 5 to 25 J / cm 2 .
 なお、より硬化させるために、両面から同時に活性光線を照射することが可能な両面露光機を使用することができる。また、加熱をしながら活性光線を照射してもよい。活性光線照射中又は照射後の加熱温度は50~200℃であることが好ましいが、これらの条件には特に制限はない。
 上部クラッド層3を形成後、必要であれば基材フィルムを除去して、光導波路1を作製することができる。
In addition, in order to make it harden | cure, the double-sided exposure machine which can irradiate actinic light simultaneously from both surfaces can be used. Moreover, you may irradiate actinic light, heating. The heating temperature during or after irradiation with actinic rays is preferably 50 to 200 ° C., but these conditions are not particularly limited.
After forming the upper cladding layer 3, the base film can be removed if necessary to produce the optical waveguide 1.
 本発明の光導波路は、透明性及び光伝搬性に優れているために光モジュールの光伝送路として用いてもよい。光モジュールの形態としては、例えば光導波路の両端に光ファイバを接続した光ファイバ付き光導波路、光導波路の両端にコネクタを接続したコネクタ付き光導波路、光導波路とプリント配線板と複合化した光電気複合基板、光導波路と光信号と電気信号を相互に変換する光/電気変換素子を組み合わせた光電気変換モジュール、光導波路と波長分割フィルタを組み合わせた波長合分波器等が挙げられる。なお、光電気複合基板において、複合化するプリント配線板としては、特に制限はなくガラスエポキシ基板等のリジッド基板、ポリイミド基板などのフレキシブル基板のどちらを用いてもよい。 The optical waveguide of the present invention may be used as an optical transmission path of an optical module because it is excellent in transparency and light propagation. Examples of the optical module include an optical waveguide with an optical fiber in which optical fibers are connected to both ends of the optical waveguide, an optical waveguide with a connector in which connectors are connected to both ends of the optical waveguide, and an opto-electrical device in which the optical waveguide and the printed wiring board are combined. Examples include a composite substrate, an optical / electrical conversion module that combines an optical waveguide and an optical / electrical conversion element that mutually converts an optical signal and an electrical signal, and a wavelength multiplexer / demultiplexer that combines an optical waveguide and a wavelength division filter. In the photoelectric composite substrate, the printed wiring board to be combined is not particularly limited, and either a rigid substrate such as a glass epoxy substrate or a flexible substrate such as a polyimide substrate may be used.
 以下、本発明を実施例及び比較例を挙げて更に詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。
 なお、合成例で得られたポリマーの物性は以下の方法により測定した。
Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. However, the present invention is not limited to these examples.
In addition, the physical property of the polymer obtained by the synthesis example was measured with the following method.
[酸価の測定]
 酸価は、合成例で得られたポリマー溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
[Measurement of acid value]
The acid value was calculated from the amount of 0.1 mol / L potassium hydroxide aqueous solution required to neutralize the polymer solution obtained in the synthesis example. At this time, the point at which the phenolphthalein added as an indicator changed color from colorless to pink was defined as the neutralization point.
[重量平均分子量の測定]
 重量平均分子量(標準ポリスチレン換算)は、ゲルパーミエーションクロマトグラフィー(GPC)により、以下の条件にて測定した。検量線は、標準ポリスチレンの5サンプルセット(東ソー株式会社製、品番PStQuick B)を用いて3次式で近似した。
 装置:「SD-8022」(デガッサー)、「DP-8020」(ポンプ)、及び「RI-8020」(検出器)(東ソー株式会社製、商品名)
 カラム:Gelpack(登録商標) GL-A150-S、及びGelpack(登録商標)GL-A160-S(計2本)(日立化成株式会社製、商品名)
 溶離液:テトラヒドロフラン
 サンプル濃度:0.5mg/ml
 溶出速度:1ml/min
 測定温度:25℃
 なお、本実施例における分子量測定は、特に断らない限り上記と同じ条件で行った。
[Measurement of weight average molecular weight]
The weight average molecular weight (standard polystyrene conversion) was measured under the following conditions by gel permeation chromatography (GPC). The calibration curve was approximated by a cubic equation using a standard polystyrene 5 sample set (product number PStQuick B, manufactured by Tosoh Corporation).
Apparatus: “SD-8022” (Degasser), “DP-8020” (Pump), and “RI-8020” (Detector) (trade name, manufactured by Tosoh Corporation)
Column: Gelpack (registered trademark) GL-A150-S and Gelpack (registered trademark) GL-A160-S (two in total) (trade name, manufactured by Hitachi Chemical Co., Ltd.)
Eluent: Tetrahydrofuran Sample concentration: 0.5 mg / ml
Elution rate: 1 ml / min
Measurement temperature: 25 ° C
In addition, unless otherwise indicated, the molecular weight measurement in a present Example was performed on the same conditions as the above.
合成例1[コア及びクラッド層形成用ベースポリマー;(メタ)アクリルポリマー(P-1)の調製]
 撹拌機、冷却管、ガス導入管、滴下ろうと及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート42質量部及び乳酸メチル21質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、N-シクロヘキシルマレイミド14.5質量部、ベンジルアクリレート20質量部、o-フェニルフェノール1.5EOアクリレート39質量部、2-ヒドロキシエチルメタクリレート14質量部、メタクリル酸12.5質量部、2,2’-アゾビス(2,4-ジメチルバレロニトリル)4質量部、プロピレングリコールモノメチルエーテルアセテート37質量部、及び乳酸メチル21質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマー(P-1)溶液(固形分45質量%)を得た。
以下、(メタ)アクリルポリマー(P-1)溶液を「P-1溶液」とも称する。
 得られた(メタ)アクリルポリマー(P-1)の酸価は79mgKOH/gであり、P-1の重量平均分子量(標準ポリスチレン換算)は3.9×10であった。
Synthesis Example 1 [Base polymer for forming core and clad layer; Preparation of (meth) acrylic polymer (P-1)]
In a flask equipped with a stirrer, a cooling pipe, a gas introduction pipe, a dropping funnel and a thermometer, 42 parts by mass of propylene glycol monomethyl ether acetate and 21 parts by mass of methyl lactate were weighed and stirred while introducing nitrogen gas. The liquid temperature was raised to 65 ° C., 14.5 parts by mass of N-cyclohexylmaleimide, 20 parts by mass of benzyl acrylate, 39 parts by mass of o-phenylphenol 1.5EO acrylate, 14 parts by mass of 2-hydroxyethyl methacrylate, 12. A mixture of 5 parts by mass, 4 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile), 37 parts by mass of propylene glycol monomethyl ether acetate, and 21 parts by mass of methyl lactate was added dropwise over 3 hours, and then 65 ° C. The mixture was further stirred at 95 ° C. for 1 hour to obtain a (meth) acrylic polymer (P-1) solution (solid content: 45% by mass).
Hereinafter, the (meth) acrylic polymer (P-1) solution is also referred to as “P-1 solution”.
The acid value of the obtained (meth) acrylic polymer (P-1) was 79 mgKOH / g, and the weight average molecular weight (in terms of standard polystyrene) of P-1 was 3.9 × 10 4 .
製造例1[コア部形成用樹脂ワニスCOV-1の調合]
 前記P-1溶液(固形分45質量%)60質量部、重合性化合物としてビスフェノールA型エポキシアクリレート(新中村化学工業株式会社製「EA-1010N」)(エポキシ当量518g/eq)40質量部、重合開始剤として1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(BASFジャパン株式会社製「イルガキュア2959」)1質量部、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製「イルガキュア819」)1質量部を広口のポリ瓶に秤量し、撹拌機を用いて、温度25℃、回転数400min-1の条件で、6時間撹拌して、溶液を調合した。
 得られた溶液を、孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製「PF020」)及び孔径0.5μmのメンブレンフィルタ(アドバンテック東洋株式会社製「J050A」)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過した。
 続いて、真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡し、コア部形成用樹脂ワニスCOV-1を得た。
Production Example 1 [Preparation of core part-forming resin varnish COV-1]
60 parts by mass of the P-1 solution (solid content: 45% by mass), bisphenol A type epoxy acrylate (“EA-1010N” manufactured by Shin-Nakamura Chemical Co., Ltd.) (epoxy equivalent 518 g / eq) as a polymerizable compound, As a polymerization initiator, 1 part by weight of 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (“Irgacure 2959” manufactured by BASF Japan Ltd.), bis ( 1 part by weight of 2,4,6-trimethylbenzoyl) phenylphosphine oxide (“Irgacure 819” manufactured by BASF Japan Ltd.) was weighed into a wide-mouthed plastic bottle, and was stirred at a temperature of 25 ° C. and a rotational speed of 400 min −1. Then, the solution was prepared by stirring for 6 hours.
The obtained solution was subjected to a temperature of 25 ° C. and a pressure of 0 ° C. using a polyflon filter having a pore size of 2 μm (“PF020” manufactured by Advantech Toyo Co., Ltd.) and a membrane filter having a pore size of 0.5 μm (“J050A” manufactured by Advantech Toyo Co., Ltd.). Pressure filtration was performed under the condition of 4 MPa.
Subsequently, vacuum degassing was performed for 15 minutes under the condition of a reduced pressure of 50 mmHg using a vacuum pump and a bell jar to obtain a core part forming resin varnish COV-1.
製造例2[コア部形成用樹脂フィルムCOF-1の作製]
 上記コア部形成用樹脂ワニスCOV-1を、PETフィルム(東洋紡株式会社製「コスモシャインA1517」、厚み16μm)の非処理面上に塗工機(株式会社ヒラノテクシード製マルチコーターTM-MC)を用いて塗布し、100℃で20分乾燥し、次いで保護フィルムとして離型PETフィルム(帝人デュポンフィルム株式会社製「ピューレックスA31」、厚み25μm)を貼付け、コア部形成用樹脂フィルムCOF-1を得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であるが、本製造例では硬化後の膜厚が50μmとなるように調節した。
Production Example 2 [Production of Core Part Forming Resin Film COF-1]
Using a coating machine (Multicoater TM-MC manufactured by Hirano Techseed Co., Ltd.) on the non-treated surface of the PET film (“Cosmo Shine A1517” manufactured by Toyobo Co., Ltd., thickness 16 μm). And then dried at 100 ° C. for 20 minutes, and then a release PET film (“Purex A31” manufactured by Teijin DuPont Films Ltd., thickness 25 μm) is pasted as a protective film to obtain a core part-forming resin film COF-1. It was. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine, but in this production example, the thickness after curing was adjusted to 50 μm.
実施例1[クラッド層形成用樹脂ワニスCLV-1の調合]
 (A)成分として前記P-1溶液(固形分45質量%)111質量部(固形分50質量部)、(B1)成分として、カルボキシ基を有するウレタン(メタ)アクリレート(日立化成株式会社製「ヒタロイド9082-95」)20質量部、3つのメタクリロイルオキシアルキル基を有するイソシアヌレート型ウレタン(メタ)アクリレート(新中村化学工業株式会社製「UA-21」)5質量部、EO(エチレンオキシド)変性イソシアヌレート型トリアクリレート(日立化成株式会社製「ファンクリルFA-731A」)10質量部、(B2)成分として下記式で表されるビスフェノールA型エポキシアクリレート(新中村化学工業株式会社製「EA-1010N」)(エポキシ当量518g/eq)15質量部、(C)成分として1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(BASFジャパン株式会社製「イルガキュア2959」)1質量部、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製「イルガキュア819」)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート23質量部を攪拌しながら混合した。
 得られた溶液を孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製「PF020」)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂ワニスCLV-1を得た。
Example 1 [Preparation of resin varnish CLV-1 for forming cladding layer]
As component (A), 111 parts by mass of the P-1 solution (solid content: 45% by mass) (solid content: 50 parts by mass), and as component (B1), urethane (meth) acrylate having a carboxy group (manufactured by Hitachi Chemical Co., Ltd.) "Hitaroid 9082-95") 20 parts by mass, 5 parts by mass of isocyanurate type urethane (meth) acrylate ("UA-21" manufactured by Shin-Nakamura Chemical Co., Ltd.) having three methacryloyloxyalkyl groups, EO (ethylene oxide) modified isocyania 10 parts by weight of a nurate type triacrylate (“Fancryl FA-731A” manufactured by Hitachi Chemical Co., Ltd.) and a bisphenol A type epoxy acrylate represented by the following formula as the component (B2) (“EA-1010N manufactured by Shin-Nakamura Chemical Co., Ltd.) ]) (Epoxy equivalent 518 g / eq) 15 parts by mass, (C) 1- [ -(2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (“Irgacure 2959” manufactured by BASF Japan Ltd.), 1 part by weight, bis (2,4,6-trimethylbenzoyl) ) 1 part by mass of phenylphosphine oxide (“Irgacure 819” manufactured by BASF Japan Ltd.) and 23 parts by mass of propylene glycol monomethyl ether acetate as an organic solvent for dilution were mixed.
The obtained solution was subjected to pressure filtration using a polyflon filter having a pore diameter of 2 μm (“PF020” manufactured by Advantech Toyo Co., Ltd.) and then degassed under reduced pressure to obtain a resin varnish CLV-1 for forming a cladding layer.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[クラッド層形成用樹脂フィルムCLF-1の作製]
 上記で得られたクラッド層形成用樹脂ワニスCLV-1を、基材フィルムとしてのPETフィルム(東洋紡株式会社製「コスモシャインA4100」、厚み50μm)の非処理面上に、前記塗工機を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製「ピューレックスA31」、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムCLF-1を得た。
 このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であるが、本実施例では、硬化後の膜厚が、下部クラッド層形成用樹脂フィルムで20μm、上部クラッド層形成用樹脂フィルムで60μmとなるように調整した。なお、後述する波長850nmにおける光線透過率測定用フィルム及び強靭性評価用フィルムについては50μmとなるように調整した。
[Preparation of Cladding Layer Forming Resin Film CLF-1]
Clad layer forming resin varnish CLV-1 obtained above was used on the non-treated surface of a PET film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 50 μm) as a base film. After coating at 100 ° C. for 20 minutes, a surface release treated PET film (“Purex A31” manufactured by Teijin DuPont Films Ltd., thickness 25 μm) is pasted as a protective film, and a resin film CLF-1 for forming a clad layer is applied. Obtained.
At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the film thickness after curing is 20 μm for the resin film for forming the lower cladding layer, and the upper cladding. It adjusted so that it might be set to 60 micrometers with the resin film for layer formation. In addition, it adjusted so that it might be set to 50 micrometers about the film for light transmittance measurement and the film for toughness evaluation in wavelength 850nm mentioned later.
[波長850nmにおける光線透過率の測定]
 保護フィルム(ピューレックスA31)を除去した前記クラッド層形成用樹脂フィルムCLF-1を、スライドガラス(サイズ:76mm×26mm、厚さ:1mm)上に前記真空ラミネータを用いて、圧力0.4MPa、温度50℃及び加圧時間30秒の条件で積層した。次いで、紫外線露光機(大日本スクリーン株式会社製「MAP-1200-L」)にて紫外線(波長365nm)を1000mJ/cm照射し、さらに160℃で1時間加熱し、光線透過率測定用のサンプルを作製した。このサンプルの波長850nmにおける光線透過率を、分光光度計(株式会社日立ハイテクノロジーズ製「U-3310」)を用いて測定した。
[Measurement of light transmittance at a wavelength of 850 nm]
The clad layer forming resin film CLF-1 from which the protective film (Purex A31) has been removed is subjected to a pressure of 0.4 MPa, using a vacuum laminator on a slide glass (size: 76 mm × 26 mm, thickness: 1 mm), Lamination was performed under conditions of a temperature of 50 ° C. and a pressurization time of 30 seconds. Next, ultraviolet light (wavelength 365 nm) was irradiated at 1000 mJ / cm 2 with an ultraviolet exposure machine (Dainippon Screen Co., Ltd. “MAP-1200-L”), and further heated at 160 ° C. for 1 hour to measure light transmittance. A sample was made. The light transmittance of this sample at a wavelength of 850 nm was measured using a spectrophotometer (“U-3310” manufactured by Hitachi High-Technologies Corporation).
[強靭性評価]
 保護フィルム(ピューレックスA31)を除去した前記クラッド層形成用樹脂フィルムCLF-1を、ポリイミドフィルム(カプトン200EN)(サイズ:80mm×26mm、厚さ:1mm)上に前記真空ラミネータを用いて、圧力0.4MPa、温度50℃及び加圧時間30秒の条件で積層した。次いで、前記紫外線露光機にて紫外線(波長365nm)を1000mJ/cm照射し、さらに160℃で1時間加熱し、強靭性評価用のサンプルを作製した。このサンプルの強靭性を、半径1mmの棒に巻きつけることによって、以下の基準で評価した。
 (評価基準)
  A…変化なし
  B…クラック発生又は破断がみられた
[Toughness evaluation]
The clad layer-forming resin film CLF-1 from which the protective film (Purex A31) has been removed is pressure-treated using the vacuum laminator on a polyimide film (Kapton 200EN) (size: 80 mm × 26 mm, thickness: 1 mm). Lamination was performed under the conditions of 0.4 MPa, a temperature of 50 ° C., and a pressing time of 30 seconds. Next, ultraviolet rays (wavelength 365 nm) were irradiated at 1000 mJ / cm 2 with the ultraviolet exposure machine, and further heated at 160 ° C. for 1 hour, to prepare samples for toughness evaluation. The toughness of this sample was evaluated according to the following criteria by winding it around a rod with a radius of 1 mm.
(Evaluation criteria)
A: No change B ... Crack generation or breakage was observed
[光導波路の製造方法]
(工程1)
 真空加圧式ラミネータ(株式会社名機製作所製「MVLP-500/600」)を用い、圧力0.4MPa、温度80℃及び加圧時間30秒の条件で、保護フィルム(ピューレックスA31)を除去した前記下部クラッド層形成用樹脂フィルムCLF-1を、ガラスエポキシ樹脂基板(日立化成株式会社製「MCL-E-679FB」、板厚0.6mm、銅箔はエッチングにより除去)上に積層した。次に、紫外線露光機(大日本スクリーン株式会社製「MAP-1200-L」)を用い、紫外線(波長365nm)を4000mJ/cm照射後、支持フィルム(コスモシャインA4100)を除去し、120℃で1時間加熱処理することによって、下部クラッド層4を形成した。
[Optical Waveguide Manufacturing Method]
(Process 1)
Using a vacuum pressure laminator (“MVLP-500 / 600” manufactured by Meiki Seisakusho Co., Ltd.), the protective film (Purex A31) was removed under the conditions of a pressure of 0.4 MPa, a temperature of 80 ° C., and a pressurization time of 30 seconds. The lower clad layer forming resin film CLF-1 was laminated on a glass epoxy resin substrate (“MCL-E-679FB” manufactured by Hitachi Chemical Co., Ltd., plate thickness 0.6 mm, copper foil removed by etching). Next, using an ultraviolet exposure machine (“MAP-1200-L” manufactured by Dainippon Screen Co., Ltd.), after irradiating the ultraviolet rays (wavelength 365 nm) with 4000 mJ / cm 2 , the support film (Cosmo Shine A4100) is removed and 120 ° C. The lower clad layer 4 was formed by heat treatment for 1 hour.
(工程2)
 続いて、ロールラミネータ(日立化成テクノプラント株式会社製「HLM-1500」)を用い、保護フィルム(ピューレックスA31)を除去した前記コア部形成用樹脂フィルムCOF-1を、下部クラッド層4上に、圧力0.5MPa、温度50℃、速度0.2m/minの条件で積層した。
(Process 2)
Subsequently, the core part-forming resin film COF-1 from which the protective film (Purex A31) has been removed using a roll laminator (“HLM-1500” manufactured by Hitachi Chemical Technoplant Co., Ltd.) is formed on the lower clad layer 4. And a pressure of 0.5 MPa, a temperature of 50 ° C., and a speed of 0.2 m / min.
(工程3)
 次いで、幅50μmの光導波路形成用パターンを有するネガ型フォトマスクを介し、前記紫外線露光機で紫外線(波長365nm)を2500mJ/cm照射して、コア部形成用樹脂フィルム(コアパターン)を露光した。支持フィルム(コスモシャインA1517)を除去した後、スプレー式現像装置(株式会社山縣機械製「RX-40D」)を用い、1質量%炭酸ナトリウム水溶液にて温度30℃、スプレー圧0.15MPa、現像時間105秒の条件で現像した。続いて、純水にて洗浄し、160℃で1時間加熱乾燥及び熱硬化した後、コア部2を形成した。
(Process 3)
Next, the resin film for forming a core part (core pattern) is exposed by irradiating 2500 mJ / cm 2 of ultraviolet rays (wavelength 365 nm) with the ultraviolet exposure machine through a negative photomask having an optical waveguide forming pattern having a width of 50 μm. did. After removing the support film (Cosmo Shine A1517), using a spray-type developing device (“RX-40D” manufactured by Yamazaki Kikai Co., Ltd.), a 1 mass% sodium carbonate aqueous solution at a temperature of 30 ° C., a spray pressure of 0.15 MPa, development Development was performed under conditions of 105 seconds. Subsequently, the core part 2 was formed after washing with pure water, heat drying and thermosetting at 160 ° C. for 1 hour.
(工程4)
 次いで、前記真空加圧式ラミネータを用い、保護フィルム(ピューレックスA31)を除去した前記上部クラッド層形成用樹脂フィルムCLF-1を、コア部2及び下部クラッド層4上に、圧力0.4MPa、温度80℃及び加圧時間30秒の条件で積層した。紫外線(波長365nm)を4000mJ/cm照射し、支持フィルム(コスモシャインA4100)を除去した後、160℃で1時間加熱硬化することによって、上部クラッド層3を形成し、図1(a)に示す光導波路1を得た。その後、ダイシングソー(株式会社ディスコ製「DAD-341」)を用いて長さ10cmのリジッド光導波路を切り出した。
(Process 4)
Next, the upper clad layer-forming resin film CLF-1 from which the protective film (Purex A31) has been removed using the vacuum pressurizing laminator is applied to the core 2 and the lower clad layer 4 at a pressure of 0.4 MPa and a temperature. Lamination was performed at 80 ° C. and a pressurization time of 30 seconds. After irradiating with ultraviolet light (wavelength 365 nm) 4000 mJ / cm 2 and removing the support film (Cosmo Shine A4100), the upper clad layer 3 is formed by heating and curing at 160 ° C. for 1 hour, as shown in FIG. The optical waveguide 1 shown was obtained. Thereafter, a rigid optical waveguide having a length of 10 cm was cut out using a dicing saw (“DAD-341” manufactured by DISCO Corporation).
[光損失の測定]
 得られた光導波路の光伝搬損失を、光源に波長850nmを中心波長とするVCSEL(EXFO社製「FLS-300-01-VCL」)、受光センサ(株式会社アドバンテスト製「Q82214」)、入射ファイバ(GI-50/125マルチモードファイバ、NA=0.20)、及び出射ファイバ(SI-114/125、NA=0.22)を用いて測定した。光伝搬損失は、光損失測定値(dB)を光導波路長(10cm)で割ることにより算出し、光損失量(初期)とした。
[Measurement of optical loss]
The optical propagation loss of the obtained optical waveguide is determined based on the VCSEL (“FLS-300-01-VCL” manufactured by EXFO) having a wavelength of 850 nm as the light source, the light receiving sensor (“Q82214” manufactured by Advantest Corporation), and the incident fiber. (GI-50 / 125 multimode fiber, NA = 0.20), and output fiber (SI-114 / 125, NA = 0.22). The optical propagation loss was calculated by dividing the optical loss measurement value (dB) by the optical waveguide length (10 cm), and was used as the optical loss amount (initial).
[環境信頼性評価-端面評価]
 光導波路の端面に関する環境信頼性の評価を、高温高湿放置試験により行った。
 得られた光導波路を、高温高湿試験機(エスペック株式会社製「PL-2KT」)を用いて、JPCA規格(JPCA-PE02-05-01S)に準じた条件で温度85℃、湿度85%の高温高湿放置試験を1000時間実施した。
 得られた光導波路をダイシングソー(株式会社ディスコ製「DAD-341」)を用いて、コアパターン方向に対して垂直方向に長さ2mmに切り出し、得られた端面を観察することで、環境信頼性を有しているか、以下の基準で評価を行った。
 (評価基準)
  A:端面にブリードアウト成分等の析出物なし
  B:端面にブリードアウト成分等の析出物あり
[Environmental reliability evaluation-End face evaluation]
The environmental reliability of the end face of the optical waveguide was evaluated by a high temperature and high humidity standing test.
The obtained optical waveguide was heated at a temperature of 85 ° C. and a humidity of 85% under the conditions in accordance with the JPCA standard (JPCA-PE02-05-01S) using a high temperature and high humidity tester (“PL-2KT” manufactured by ESPEC Corporation). The high temperature and high humidity standing test was conducted for 1000 hours.
The obtained optical waveguide is cut into a length of 2 mm in a direction perpendicular to the core pattern direction using a dicing saw (“DAD-341” manufactured by DISCO Corporation), and the obtained end face is observed, thereby providing environmental reliability. The following criteria were used to evaluate whether or not
(Evaluation criteria)
A: No precipitate such as bleed-out component on the end face B: Precipitate such as bleed-out component on the end face
[環境信頼性評価-光損失]
 光損失に関する環境信頼性の評価を、高温高湿放置試験により行った。
 高温高湿放置試験実施後の光導波路の光伝搬損失を、前記と同様の光源、受光素子、入射ファイバ、及び出射ファイバを用いて測定して得られる光損失量(試験後)とし、高温高湿放置試験による光損失増加量を以下の式に従って算出し、以下の基準で評価を行った。
 [光損失増加量]=[光損失量(試験後)]-[光損失量(初期)]
 (評価基準)
 A:光損失増加量が0.05dB/cm以下のもの
 B:0.05dB/cmを超えるもの
[Environmental reliability evaluation-Light loss]
The environmental reliability related to light loss was evaluated by a high temperature and high humidity standing test.
The light propagation loss of the optical waveguide after the high-temperature and high-humidity test is measured as the amount of light loss (after the test) obtained by using the same light source, light-receiving element, incident fiber, and output fiber as described above. The amount of increase in light loss due to the damp test was calculated according to the following formula and evaluated according to the following criteria.
[Amount of increase in optical loss] = [Amount of optical loss (after test)]-[Amount of optical loss (initial)]
(Evaluation criteria)
A: Increase in optical loss is 0.05 dB / cm or less B: Exceeds 0.05 dB / cm
実施例2、3、及び比較例1、2
 表1に示す配合組成に従って、クラッド層形成用樹脂ワニスCLV-2~5を調合し、実施例1と同様な方法で、クラッド層形成用樹脂フィルムCLF-2~5を作製した。
その後、実施例1と同様の方法で、光導波路を作製した。
Examples 2 and 3 and Comparative Examples 1 and 2
According to the composition shown in Table 1, clad layer forming resin varnishes CLV-2 to 5 were prepared, and clad layer forming resin films CLF-2 to 5 were produced in the same manner as in Example 1.
Thereafter, an optical waveguide was produced in the same manner as in Example 1.
 実施例1~3及び比較例1、2の評価結果を表1、実施例2及び比較例1の高温高湿放置試験後の光導波路断面を図3(a)及び(b)に示す。 The evaluation results of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1, and the cross sections of the optical waveguides after the high-temperature and high-humidity test of Examples 2 and 1 are shown in FIGS. 3 (a) and 3 (b).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1中に示す各成分の詳細について以下に示す。
[(A)成分]
 P-1:合成例1で作製した(メタ)アクリルポリマー(P-1)(重量平均分子量:3.5×10、酸価:80mgKOH/g)
Details of each component shown in Table 1 are shown below.
[(A) component]
P-1: (Meth) acrylic polymer (P-1) prepared in Synthesis Example 1 (weight average molecular weight: 3.5 × 10 4 , acid value: 80 mgKOH / g)
[(B)成分]
〔(B1)成分〕
 FA-731A:トリス(2-アクリロイルオキシエチル)イソシアヌレート(日立化成株式会社製、商品名:ファンクリルFA-731A、分子量423)
 HT9082-95:2つのカルボキシ基を有するウレタンアクリレート(日立化成株式会社製、商品名:ヒタロイドHT9082-95(両末端にシクロヘキシル基を介してアクリロイルオキシメチル基を有する化合物)、重量平均分子量4,000、酸価22mgKOH/g)
 UA-21:トリス(メタクリロイルオキシテトラエチレングリコールイソシアネートヘキサメチレン)イソシアヌレート(新中村化学株式会社製、商品名:UA-21、重量平均分子量1290)
〔(B2)成分〕
 EA-1010N:アクリル酸変性ビスフェノールA型エポキシモノアクリレート(新中村化学工業株式会社製、商品名:EA-1010N、エポキシ当量:518g/eq)
〔(B’)成分〕
 YX-8034:ビスフェノールA型水素化脂環式エポキシ樹脂(三菱化学株式会社製グレード:YX-8034)
 BL3175:ヘキサメチレンジイソシアネートのイソシアヌレート型三量体をメチルエチルケトンオキシムで保護した多官能ブロックイソシアネート溶液(固形分75質量%)(住化バイエルウレタン株式会社製、商品名:スミジュールBL3175)
[Component (B)]
[(B1) component]
FA-731A: Tris (2-acryloyloxyethyl) isocyanurate (manufactured by Hitachi Chemical Co., Ltd., trade name: funcryl FA-731A, molecular weight 423)
HT9082-95: Urethane acrylate having two carboxy groups (manufactured by Hitachi Chemical Co., Ltd., trade name: Hitaroid HT9082-95 (compound having acryloyloxymethyl groups via cyclohexyl groups at both ends), weight average molecular weight 4,000 , Acid value 22mgKOH / g)
UA-21: Tris (methacryloyloxytetraethylene glycol isocyanate hexamethylene) isocyanurate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: UA-21, weight average molecular weight 1290)
[(B2) component]
EA-1010N: acrylic acid modified bisphenol A type epoxy monoacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: EA-1010N, epoxy equivalent: 518 g / eq)
[(B ′) component]
YX-8034: Bisphenol A type hydrogenated alicyclic epoxy resin (Mitsubishi Chemical Corporation grade: YX-8034)
BL3175: Polyfunctional block isocyanate solution in which isocyanurate type trimer of hexamethylene diisocyanate is protected with methyl ethyl ketone oxime (solid content: 75% by mass) (manufactured by Sumika Bayer Urethane Co., Ltd., trade name: Sumijoule BL3175)
[(C)成分]
 I-2959:1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン(BASFジャパン株式会社製、商品名:イルガキュア(登録商標)2959)
 I-819:ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製、商品名:イルガキュア(登録商標)819)
[Component (C)]
I-2959: 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (manufactured by BASF Japan, trade name: Irgacure (registered trademark) 2959)
I-819: Bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by BASF Japan Ltd., trade name: Irgacure (registered trademark) 819)
 表1から、本発明の光導波路形成用樹脂組成物を用いて得られる光導波路形成用フィルムは透明性及び強靭性に優れており、これを用いて製造した光導波路は光損失量が低く、高温高湿放置試験による環境信頼性及び強靭性に優れていることがわかる。一方、比較例1及び2に示した本発明に属さない光導波路形成用樹脂組成物を用いて製造した光導波路は、光損失量が高く、環境信頼性に劣っていることがわかる。 From Table 1, the optical waveguide-forming film obtained using the optical waveguide-forming resin composition of the present invention is excellent in transparency and toughness, and the optical waveguide produced using this has a low optical loss amount, It turns out that it is excellent in environmental reliability and toughness by a high temperature and high humidity leaving test. On the other hand, it can be seen that the optical waveguide manufactured using the resin composition for forming an optical waveguide which does not belong to the present invention shown in Comparative Examples 1 and 2 has a high light loss and is inferior in environmental reliability.
 本発明の光導波路形成用樹脂組成物及び光導波路形成用樹脂フィルムは、透明性(低光伝搬損失)及び強靭性に優れており、これらを用いて製造した光導波路も透明性及び強靭性に優れている。さらに高温高湿放置試験による信頼性試験後においも光損失の悪化が観察されず、環境信頼性にも優れたものである。
 したがって、本発明の光導波路樹脂組成物は、光インターコネクション等で用いられる光導波路形成用樹脂組成物として好適である。
The resin composition for forming an optical waveguide and the resin film for forming an optical waveguide of the present invention are excellent in transparency (low light propagation loss) and toughness, and an optical waveguide produced using these has excellent transparency and toughness. Are better. Furthermore, no deterioration of light loss was observed after the reliability test by the high temperature and high humidity leaving test, and the environmental reliability was excellent.
Therefore, the optical waveguide resin composition of the present invention is suitable as a resin composition for forming an optical waveguide used for optical interconnection or the like.
1 光導波路
2 コア部
3 上部クラッド層
4 下部クラッド層
5 基材又は基材フィルム
6 フォトマスク
7 コア部形成用樹脂フィルム
DESCRIPTION OF SYMBOLS 1 Optical waveguide 2 Core part 3 Upper clad layer 4 Lower clad layer 5 Base material or base film 6 Photomask 7 Core part formation resin film

Claims (18)

  1.  (A)アルカリ可溶性基を有するポリマー、(B)分子中にエチレン性不飽和基を有する化合物、及び(C)重合開始剤を含有する光導波路形成用樹脂組成物であって、
     (B)成分が、(B1)成分として下記の(B1-1)~(B1-3)から選ばれる少なくとも1種の化合物と、(B2)成分として分子中に(A)成分のアルカリ可溶性基と反応する基及びエチレン性不飽和基を有する化合物とを含有してなる、光導波路形成用樹脂組成物。
     (B1-1)3つ以上のエチレン性不飽和基を有する化合物
     (B1-2)カルボキシ基及び2つ以上のエチレン性不飽和基を有する化合物
     (B1-3)ウレタン結合及び1つ以上のエチレン性不飽和基を有する化合物
    (A) a resin composition for forming an optical waveguide containing a polymer having an alkali-soluble group, (B) a compound having an ethylenically unsaturated group in the molecule, and (C) a polymerization initiator,
    The component (B) is at least one compound selected from the following (B1-1) to (B1-3) as the component (B1) and the alkali-soluble group of the component (A) in the molecule as the component (B2) A resin composition for forming an optical waveguide, comprising a group that reacts with a compound and a compound having an ethylenically unsaturated group.
    (B1-1) Compound having three or more ethylenically unsaturated groups (B1-2) Compound having carboxy group and two or more ethylenically unsaturated groups (B1-3) Urethane bond and one or more ethylene Compound having an unsaturated group
  2.  (B1-1)成分が、さらにその分子中にイソシアヌレート環を有する化合物である、請求項1に記載の光導波路形成用樹脂組成物。 The resin composition for forming an optical waveguide according to claim 1, wherein the component (B1-1) is a compound further having an isocyanurate ring in the molecule.
  3.  (B1-1)成分が、分子量の異なる2種以上の化合物の混合物である、請求項1又は2に記載の光導波路形成用樹脂組成物。 The resin composition for forming an optical waveguide according to claim 1 or 2, wherein the component (B1-1) is a mixture of two or more compounds having different molecular weights.
  4.  (B1-2)成分が、分子鎖中に2つ以上のカルボキシ基を有し、分子鎖末端に1つ以上のエチレン性不飽基を有する化合物である、請求項1~3のいずれか1項に記載の光導波路形成用樹脂組成物。 The component (B1-2) is a compound having two or more carboxy groups in the molecular chain and one or more ethylenically unsaturated groups at the molecular chain terminals. Item 6. A resin composition for forming an optical waveguide according to Item.
  5.  (B1-2)成分が、さらにその分子中にウレタン結合と、脂環構造、芳香環構造及び複素環構造から選ばれる少なくとも1種の環構造とを有する化合物である、請求項1~4のいずれか1項に記載の光導波路形成用樹脂組成物。 The component (B1-2) is a compound further having a urethane bond and at least one ring structure selected from an alicyclic structure, an aromatic ring structure and a heterocyclic structure in the molecule. The resin composition for forming an optical waveguide according to any one of the above items.
  6.  (B1-3)成分が、さらにその分子中に脂環構造、芳香環構造及び複素環構造から選ばれる少なくとも1種の環構造を有する化合物である、請求項1~5のいずれか1項に記載の光導波路形成用樹脂組成物。 The component (B1-3) is a compound having at least one ring structure selected from an alicyclic structure, an aromatic ring structure and a heterocyclic structure in the molecule. The resin composition for optical waveguide formation as described.
  7.  (B1-3)成分が、ウレタン結合及び3つ以上のエチレン性不飽和基を有する化合物を含む、請求項1~6のいずれか1項に記載の光導波路形成用樹脂組成物。 The resin composition for forming an optical waveguide according to any one of claims 1 to 6, wherein the component (B1-3) comprises a compound having a urethane bond and three or more ethylenically unsaturated groups.
  8.  (B2)成分が、(B2-1)分子中に1つ以上のエポキシ基及び1つ以上のエチレン性不飽和基を有する化合物である、請求項1~7のいずれか1項に記載の光導波路形成用樹脂組成物。 The light guide according to any one of claims 1 to 7, wherein the component (B2) is a compound having (B2-1) one or more epoxy groups and one or more ethylenically unsaturated groups in the molecule. A resin composition for forming a waveguide.
  9.  (B2-1)成分が、さらにその分子中に脂環構造又は芳香環構造を有する化合物である、請求項8に記載の光導波路形成用樹脂組成物。 The resin composition for forming an optical waveguide according to claim 8, wherein the component (B2-1) is a compound further having an alicyclic structure or an aromatic ring structure in the molecule.
  10.  (B2-1)成分が、さらにその分子中にビスフェノール骨格を有する化合物である、請求項8又は9に記載の光導波路形成用樹脂組成物。 The resin composition for forming an optical waveguide according to claim 8 or 9, wherein the component (B2-1) is a compound further having a bisphenol skeleton in the molecule.
  11.  (A)成分が、重量平均分子量6,000~300,000のポリマーである、請求項1~10のいずれか1項に記載の光導波路形成用樹脂組成物。 The resin composition for forming an optical waveguide according to any one of claims 1 to 10, wherein the component (A) is a polymer having a weight average molecular weight of 6,000 to 300,000.
  12.  (A)成分が、主鎖にマレイミド骨格を有するポリマーである、請求項1~11のいずれか1項に記載の光導波路形成用樹脂組成物。 The resin composition for forming an optical waveguide according to any one of claims 1 to 11, wherein the component (A) is a polymer having a maleimide skeleton in the main chain.
  13.  (A)成分の含有量が(A)及び(B)成分の総量に対して10~85質量%であり、(B)成分の含有量が(A)及び(B)成分の総量に対して15~90質量%であり、(B1)成分の(B2)成分に対する質量比〔(B1)/(B2)〕が50/50~85/15であり、(C)成分の含有量が(A)及び(B)成分の総量100質量部に対して0.01~10質量部である、請求項1~12のいずれか1項に記載の光導波路形成用樹脂組成物。 The content of component (A) is 10 to 85% by mass relative to the total amount of components (A) and (B), and the content of component (B) is relative to the total amount of components (A) and (B). 15 to 90% by mass, the mass ratio [(B1) / (B2)] of the component (B1) to the component (B2) is 50/50 to 85/15, and the content of the component (C) is (A The resin composition for forming an optical waveguide according to any one of claims 1 to 12, which is 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the components (B) and (B).
  14.  下部クラッド層、コア部及び上部クラッド層の少なくとも1つを請求項1~13のいずれか1項に記載の光導波路形成用樹脂組成物を用いて形成した、光導波路。 An optical waveguide in which at least one of a lower cladding layer, a core portion, and an upper cladding layer is formed using the resin composition for forming an optical waveguide according to any one of claims 1 to 13.
  15.  請求項1~13のいずれか1項に記載の光導波路形成用樹脂組成物を用いて得られる樹脂層を有する、光導波路形成用樹脂フィルム。 An optical waveguide forming resin film having a resin layer obtained by using the optical waveguide forming resin composition according to any one of claims 1 to 13.
  16.  下部クラッド層、コア部及び上部クラッド層の少なくとも1つを請求項15に記載の光導波路形成用樹脂フィルムを用いて形成した、光導波路。 An optical waveguide in which at least one of a lower clad layer, a core portion, and an upper clad layer is formed using the optical waveguide forming resin film according to claim 15.
  17.  波長850nmにおける光伝搬損失が0.25dB/cm以下である、請求項14又は16に記載の光導波路。 The optical waveguide according to claim 14 or 16, wherein a light propagation loss at a wavelength of 850 nm is 0.25 dB / cm or less.
  18.  下記工程1~4を有する光導波路の製造方法であって、下部クラッド層、コア部及び上部クラッド層の少なくとも1つを、請求項15に記載の光導波路形成用樹脂フィルムを用いて形成する、光導波路の製造方法。
     工程1:下部クラッド層形成用樹脂フィルムを基材上に積層して下部クラッド層を形成する工程
     工程2:前記下部クラッド層上にコア部形成用樹脂フィルムを積層する工程
     工程3:前記コア部形成用樹脂フィルムを、フォトマスクを介して露光し、次いで現像した後、コア部を形成する工程
     工程4:前記下部クラッド層及びコア部上に、上部クラッド層形成用樹脂フィルムを積層して上部クラッド層を形成する工程
    An optical waveguide manufacturing method including the following steps 1 to 4, wherein at least one of a lower cladding layer, a core portion, and an upper cladding layer is formed using the resin film for forming an optical waveguide according to claim 15; Manufacturing method of optical waveguide.
    Step 1: A step of laminating a resin film for forming a lower clad layer on a substrate to form a lower clad layer Step 2: A step of laminating a resin film for forming a core portion on the lower clad layer Step 3: The core portion Step of forming the core part after exposing the forming resin film through a photomask and then developing Step 4: The upper clad layer-forming resin film is laminated on the lower clad layer and the core part. Step of forming the cladding layer
PCT/JP2015/071973 2015-08-03 2015-08-03 Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same WO2017022055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071973 WO2017022055A1 (en) 2015-08-03 2015-08-03 Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/071973 WO2017022055A1 (en) 2015-08-03 2015-08-03 Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same

Publications (1)

Publication Number Publication Date
WO2017022055A1 true WO2017022055A1 (en) 2017-02-09

Family

ID=57942601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071973 WO2017022055A1 (en) 2015-08-03 2015-08-03 Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same

Country Status (1)

Country Link
WO (1) WO2017022055A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012133237A (en) * 2010-12-22 2012-07-12 Hitachi Chem Co Ltd Resin composition for forming optical waveguide, resin film for forming optical waveguide using the composition, and optical waveguide using the composition and the film
JP2013174776A (en) * 2012-02-27 2013-09-05 Hitachi Chemical Co Ltd Resin composition for optical material, resin film for optical material and optical waveguide using the same
JP2015145998A (en) * 2014-02-04 2015-08-13 日立化成株式会社 Resin composition for optical waveguide formation, resin film for optical waveguide formation, optical waveguide using the resin composition and the resin film, and method for manufacturing the same
JP2015146000A (en) * 2014-02-04 2015-08-13 日立化成株式会社 Resin composition for optical waveguide formation, resin film for optical waveguide formation, and optical waveguide using the resin composition and the resin film
JP2015145999A (en) * 2014-02-04 2015-08-13 日立化成株式会社 Resin composition for optical waveguide formation, resin film for optical waveguide formation, optical waveguide using the resin composition and the resin film, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012133237A (en) * 2010-12-22 2012-07-12 Hitachi Chem Co Ltd Resin composition for forming optical waveguide, resin film for forming optical waveguide using the composition, and optical waveguide using the composition and the film
JP2013174776A (en) * 2012-02-27 2013-09-05 Hitachi Chemical Co Ltd Resin composition for optical material, resin film for optical material and optical waveguide using the same
JP2015145998A (en) * 2014-02-04 2015-08-13 日立化成株式会社 Resin composition for optical waveguide formation, resin film for optical waveguide formation, optical waveguide using the resin composition and the resin film, and method for manufacturing the same
JP2015146000A (en) * 2014-02-04 2015-08-13 日立化成株式会社 Resin composition for optical waveguide formation, resin film for optical waveguide formation, and optical waveguide using the resin composition and the resin film
JP2015145999A (en) * 2014-02-04 2015-08-13 日立化成株式会社 Resin composition for optical waveguide formation, resin film for optical waveguide formation, optical waveguide using the resin composition and the resin film, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP4241874B2 (en) Resin composition for optical material, resin film for optical material, and optical waveguide
JP5359889B2 (en) Clad layer forming resin composition, clad layer forming resin film using the same, optical waveguide and optical module using the same
JP5321899B2 (en) Clad layer forming resin composition, optical waveguide and optical module
JP5892066B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film using the same, and optical waveguide using the same
WO2015029261A1 (en) Resin composition for forming optical waveguide, resin film for forming optical waveguide, and optical waveguide using same
JP5387370B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film using the same, and optical waveguide using the same
JP5585578B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide
JP5526740B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film using the same, and optical waveguide using the same
JP5003506B2 (en) Resin composition for optical material, resin film for optical material, and optical waveguide using the same
JP5515219B2 (en) Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these
JP2010091733A (en) Resin composition for forming core part and resin film for forming core part using the same, and optical waveguide using these
JP2009175244A (en) Resin composition for optical material, resin film for optical material, and optical waveguide using them
JP2010091734A (en) Resin composition for forming core part and resin film for forming core part using the same, and optical waveguide using these
JP2015145999A (en) Resin composition for optical waveguide formation, resin film for optical waveguide formation, optical waveguide using the resin composition and the resin film, and method for manufacturing the same
JP5904362B2 (en) Resin composition for optical material, resin film for optical material, and optical waveguide
JP2015145998A (en) Resin composition for optical waveguide formation, resin film for optical waveguide formation, optical waveguide using the resin composition and the resin film, and method for manufacturing the same
WO2017022055A1 (en) Optical waveguide forming resin composition, optical waveguide forming resin film, and optical waveguide using these, and method for producing same
JP2015146000A (en) Resin composition for optical waveguide formation, resin film for optical waveguide formation, and optical waveguide using the resin composition and the resin film
JP2009167353A (en) Resin composition for optical material, resin film for optical material, and optical waveguide path using them
JP2012008221A (en) Light waveguide clad resin composition, light waveguide clad resin film and light waveguide using the same
JP2018048277A (en) Resin composition for optical material, resin film for optical material using the same, and optical waveguide and production method of the optical waveguide
JP2017138495A (en) Method for producing optical waveguide using photosensitive resin composition
JP2016199719A (en) Resin composition for optical material, resin film for optical material, and optical waveguide
JP2013174776A (en) Resin composition for optical material, resin film for optical material and optical waveguide using the same
JP2017187653A (en) Optical waveguide cladding material, optical waveguide cladding layer-forming resin film, and optical waveguide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15900368

Country of ref document: EP

Kind code of ref document: A1