JP2005062364A - Self-forming optical waveguide and its manufacturing method - Google Patents

Self-forming optical waveguide and its manufacturing method Download PDF

Info

Publication number
JP2005062364A
JP2005062364A JP2003290914A JP2003290914A JP2005062364A JP 2005062364 A JP2005062364 A JP 2005062364A JP 2003290914 A JP2003290914 A JP 2003290914A JP 2003290914 A JP2003290914 A JP 2003290914A JP 2005062364 A JP2005062364 A JP 2005062364A
Authority
JP
Japan
Prior art keywords
curable resin
resin liquid
core
container
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003290914A
Other languages
Japanese (ja)
Other versions
JP4179947B2 (en
Inventor
Manabu Kagami
学 各務
Shuri Kawasaki
朱里 河崎
Tatsuya Yamashita
達弥 山下
Masatoshi Yonemura
正寿 米村
Yukitoshi Inui
幸利 伊縫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Original Assignee
Toyoda Gosei Co Ltd
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd, Toyota Central R&D Labs Inc filed Critical Toyoda Gosei Co Ltd
Priority to JP2003290914A priority Critical patent/JP4179947B2/en
Priority to US10/913,505 priority patent/US7166322B2/en
Publication of JP2005062364A publication Critical patent/JP2005062364A/en
Application granted granted Critical
Publication of JP4179947B2 publication Critical patent/JP4179947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To facilitate formation of a self-forming optical waveguide that has small transmission loss without using a solvent. <P>SOLUTION: A first curing resin liquid 1 is filled in an acrylic transparent container 3 which is shaped to have an opening on the upper face of the rectangular parallelepiped and a plastic optical fiber is immersed, as shown in (a). The first curing resin liquid 1 is irradiated with a laser beam through the plastic optical fiber 4 and gradually hardened with the laser beam to form an axial core 5 through self convergence of light (b). From the opening of the transparent container 3, the uncured first curing resin liquid 1 is removed. In this case, the uncured first curing resin liquid 11 sticks to the surface of the core 5 and the inner face of the transparent container 3 and remains therein, as shown in (c). Then, a second curing resin liquid 2 is filled in the transparent container 3. In this case, the uncured first curing resin liquid 11 is dispersed in the second curing resin liquid 2. Thereafter, the second curing resin liquid 2 is photoset by ultraviolet rays to form a clad (d). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は光硬化性樹脂液を硬化させた柱状のコアを有する自己形成光導波路に関する。本発明において光硬化性樹脂液とは、光重合性モノマー又は光重合性マクロモノマー或いは光重合性オリゴマーと光反応開始剤の混合物を言うものとする。   The present invention relates to a self-forming optical waveguide having a columnar core obtained by curing a photocurable resin liquid. In the present invention, the photocurable resin liquid refers to a mixture of a photopolymerizable monomer, a photopolymerizable macromonomer or a photopolymerizable oligomer, and a photoinitiator.

光硬化性樹脂液に光ファイバなどから光を照射して、自己集光現象により柱状の硬化物を形成し、これをコアとして用いた光導波路が、特許文献1、特許文献2に記載されている。これらの技術においては、コア周囲の未硬化の光硬化性樹脂液を除去することが必要であって、その際はトルエンなどの溶剤を用いることが提案されている。また、本発明者らは、下記特許文献3に開示した技術を開発し、特許を受けた(特許第3444352号)。本技術は、光硬化性樹脂液に、当該光硬化性樹脂液を硬化させる光を光ファイバにて導入して、光ファイバの先端から、当該光ファイバのコア部の径程度の柱状の樹脂硬化物を形成する際の好適な条件を開示したものである。この後、未硬化の当該光硬化性樹脂液を除き、周囲をより屈折率の低い樹脂で囲うことにより、先に形成したより屈折率の高い樹脂硬化物を光導波路とするモジュール等を容易に形成することができる。尚、高屈折率光硬化性樹脂液と低屈折率光硬化性樹脂液の混合溶液に、当該高屈折率光硬化性樹脂液のみを硬化させる光を光ファイバにて導入する場合は、より容易に柱状の樹脂硬化物を形成することも特許文献3にて公開した。
特開平8−320422号公報 特開平11−326660号公報 特開2000−347043号公報
An optical waveguide using a light-curing resin liquid irradiated with light from an optical fiber or the like to form a column-shaped cured product by a self-condensing phenomenon and using this as a core is described in Patent Document 1 and Patent Document 2. Yes. In these techniques, it is necessary to remove the uncured photocurable resin liquid around the core, and it has been proposed to use a solvent such as toluene. In addition, the present inventors developed a technique disclosed in Patent Document 3 below and received a patent (Japanese Patent No. 3444352). This technology introduces light that cures the photocurable resin liquid into the photocurable resin liquid through an optical fiber, and cures the columnar resin from the tip of the optical fiber to the diameter of the core of the optical fiber. The preferred conditions for forming the product are disclosed. After this, by removing the uncured photocurable resin liquid and surrounding the periphery with a resin having a lower refractive index, it is possible to easily form a module or the like using the previously formed resin cured product having a higher refractive index as an optical waveguide. Can be formed. It is easier to introduce light that cures only the high refractive index photocurable resin liquid into the mixed solution of the high refractive index photocurable resin liquid and the low refractive index photocurable resin liquid through an optical fiber. It was also disclosed in Patent Document 3 to form a columnar resin cured product.
JP-A-8-320422 JP-A-11-326660 JP 2000-347043 A

高屈折率光硬化性樹脂液と低屈折率光硬化性樹脂液の混合溶液を用いず、高屈折率の光硬化性樹脂液を用いて柱状の樹脂硬化物を形成する場合、未硬化の高屈折率の光硬化性樹脂液をできるだけ完全に除去した後、例えばより低屈折率の他の光硬化性樹脂を容器等に充たす必要がある。未硬化の高屈折率の光硬化性樹脂液がコア外周に残存すると、特に容器等とコアの接続部等に未硬化の高屈折率の光硬化性樹脂液が残存し、全体を硬化した際、コアの形状が当該部分で設計と異なるものとなる。   When forming a columnar resin cured product using a high refractive index photocurable resin liquid without using a mixed solution of a high refractive index photocurable resin liquid and a low refractive index photocurable resin liquid, After removing the photocurable resin liquid having the refractive index as completely as possible, it is necessary to fill the container or the like with another photocurable resin having a lower refractive index. When uncured high-refractive-index photocurable resin liquid remains on the outer periphery of the core, particularly when uncured high-refractive-index photocurable resin liquid remains at the connection between the container and the core and the whole is cured. The shape of the core is different from the design in this part.

より具体的には、全反射鏡、ハーフミラー、又はダイクロイックミラーを組み合わせて図7の(a)ような自己形成光導波路を形成しようとした際、コア5を形成した後、未硬化の高屈折率の光硬化性樹脂液11を完全に除去しなければ、図7の(b)のように、全反射鏡7、ハーフミラー6、又はダイクロイックミラーとコア5の接合部における形状が、設計と全く異なることになりかねない。ところが光硬化性樹脂液は一般的に粘度が高く、硬化させたコア部分に表面張力により未硬化の光硬化性樹脂液が付着し、除去は決して容易でない。除去が不完全であると次のような問題が生じる。   More specifically, when an attempt is made to form a self-forming optical waveguide as shown in FIG. 7A by combining a total reflection mirror, a half mirror, or a dichroic mirror, an uncured high refractive index is formed after the core 5 is formed. If the photo-curing resin liquid 11 is not completely removed, as shown in FIG. 7B, the shape of the total reflection mirror 7, the half mirror 6, or the junction between the dichroic mirror and the core 5 is designed. It can be quite different. However, the photocurable resin liquid generally has a high viscosity, and the uncured photocurable resin liquid adheres to the cured core portion due to surface tension, and removal is never easy. Incomplete removal causes the following problems.

まず、未硬化の光硬化性樹脂液がコア部分に付着したままクラッドとなる材料を埋め込んだのち当該未硬化の光硬化性樹脂液を硬化させると、コア表面に凹凸が形成され散乱損失が大きくなる。分岐部の込み入った部分では分岐損失などの過剰損失が増加する。尚、分岐部に残存する可能性は、光硬化性樹脂液の粘度が小さい場合でも問題となる。更に、コアに未硬化の光硬化性樹脂液が付着していなくても、筐体の内部や他の光学部品に残留していると迷光の散乱要因となったり、筐体や光学部品からクラッドが剥離を起こす等の要因となり、通信特性に少なからず悪影響を及ぼし、信頼性の低下につながる。   First, when the uncured photocurable resin liquid is cured after the uncured photocurable resin liquid is embedded in the core portion and then the uncured photocurable resin liquid is cured, unevenness is formed on the core surface, resulting in a large scattering loss. Become. Excessive loss such as branch loss increases in the complicated part of the branch. Note that the possibility of remaining in the branched portion becomes a problem even when the viscosity of the photocurable resin liquid is small. Furthermore, even if uncured photo-curable resin liquid is not attached to the core, stray light may be scattered if it remains inside the housing or other optical components, or clad from the housing or optical components. Causes peeling, and has a considerable adverse effect on communication characteristics, leading to a decrease in reliability.

ところで溶剤を使用すると、次のような悪影響も生じる。まず、溶剤を充填し、洗浄し、乾燥するというプロセスの増加が生じる。コア部材は溶剤により膨潤することがあり、変形をも生じうるため、特性が劣化する。溶剤が界面に浸入することにより各光学部品、コア、筐体とが剥離を生じて破壊されやすくなる。溶剤がコアに浸透することにより光学特性が悪化する。   By the way, when the solvent is used, the following adverse effects also occur. First, an increase in the process of filling with solvent, washing and drying occurs. Since the core member may swell due to the solvent and may cause deformation, the characteristics deteriorate. When the solvent enters the interface, the optical components, the core, and the casing are peeled off and easily broken. Optical properties are deteriorated by the penetration of the solvent into the core.

本発明は上記課題を解決するために成されたものであって、その目的は、溶剤を用いることなく、自己集光性を利用した光導波路を容易に形成することである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to easily form an optical waveguide using self-condensing properties without using a solvent.

請求項1に記載の発明は、少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路であって、コアを形成する樹脂は、ある波長にて光硬化可能な第1の硬化性樹脂液の硬化物であり、クラッドを形成する樹脂は、主として、第1の硬化性樹脂液とは少なくとも組成が異なり、第1の硬化性樹脂と相溶性を有する第2の硬化性樹脂液の硬化物であり、第1の硬化性樹脂液と第2の硬化性樹脂液はいずれも粘度が1500mPa・s以下であり、第1の硬化性樹脂液の溶解性パラメータと第2の硬化性樹脂液の溶解性パラメータの差は4.4MPa1/2以下であることを特徴とする。粘度、溶解性パラメータの差とも、実質的に下限値は無く、常識的な範囲で選択すれば良い。 The invention according to claim 1 is a self-forming optical waveguide having at least a part of a columnar core and a periphery thereof covered with a clad having a low refractive index, and the resin forming the core is photocured at a certain wavelength. A cured product of the first curable resin liquid that can be formed, and the resin that forms the clad is mainly different in composition from the first curable resin liquid and is compatible with the first curable resin. 2 is a cured product of the first curable resin liquid, both the first curable resin liquid and the second curable resin liquid have a viscosity of 1500 mPa · s or less, and the solubility parameter of the first curable resin liquid The difference in solubility parameter between the second curable resin liquid and the second curable resin liquid is 4.4 MPa 1/2 or less. There is substantially no lower limit for the difference in viscosity and solubility parameter, and it may be selected within a common sense range.

また、請求項2に記載の発明は、少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路であって、コアを形成する樹脂は、ある波長にて光硬化可能な第1の硬化性樹脂液の硬化物であり、クラッドを形成する樹脂は、主として、第1の硬化性樹脂液とは少なくとも組成が異なる第2の硬化性樹脂液の硬化物であり、第1の硬化性樹脂液の比重と第2の硬化性樹脂液の比重の差が0.14以上であることを特徴とする。比重の差の実質的な上限値は無いが、常識的な範囲で選択される。   The invention according to claim 2 is a self-forming optical waveguide in which at least a part of the core is a columnar core and the periphery thereof is covered with a clad having a low refractive index, and the resin forming the core is at a certain wavelength. The cured product of the first curable resin liquid that is photocurable, and the resin that forms the clad is mainly a cured product of the second curable resin liquid that has at least a composition different from that of the first curable resin liquid. And the difference between the specific gravity of the first curable resin liquid and the specific gravity of the second curable resin liquid is 0.14 or more. Although there is no substantial upper limit for the difference in specific gravity, it is selected within a common sense range.

また、請求項3に記載の発明は、コアは、全反射鏡、ハーフミラー、又はダイクロイックミラーとの接合部において分岐又は屈曲部を有することを特徴とする。また、請求項4に記載の発明は、第2の硬化性樹脂液は光硬化性樹脂であることを特徴とする。   According to a third aspect of the present invention, the core has a branching or bending portion at the joint with the total reflection mirror, half mirror, or dichroic mirror. The invention described in claim 4 is characterized in that the second curable resin liquid is a photocurable resin.

また、請求項5に記載の発明は、少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路の製造方法であって、所望の容器にある波長にて光硬化可能な第1の硬化性樹脂液を入れる工程と、当該第1の硬化性樹脂液に対し、光を照射して光硬化させ、少なくとも一部が柱状のコアを形成する工程と、所望の形状のコアを形成した後、未硬化の第1の硬化性樹脂液の大部分を当該容器外に取り出す工程と、第1の硬化性樹脂液の硬化物であるコアを有する容器に第1の硬化性樹脂液とは少なくとも組成が異なり、第1の硬化性樹脂と相溶性を有する第2の硬化性樹脂液を充たして、当該容器内に残存する未硬化の第1の硬化性樹脂液を第2の硬化性樹脂液中に溶解させる工程と、未硬化の第1の硬化性樹脂液と第2の硬化性樹脂液を硬化させる工程とを有し、第1の硬化性樹脂液と第2の硬化性樹脂液はいずれも粘度が1500mPa・s以下であり、第1の硬化性樹脂液の溶解性パラメータと第2の硬化性樹脂液の溶解性パラメータの差は4.4MPa1/2以下であることを特徴とする。尚、粘度は、第2の硬化性樹脂液を充填する際の温度での粘度であるものとする。粘度、溶解性パラメータの差とも、実質的に下限値は無く、常識的な範囲で選択すれば良い。また、請求項6に記載の発明は、請求項5に記載の発明の変形発明であって、未硬化の第1の硬化性樹脂液の大部分を当該容器外に取り出す工程以降を、コアを取り出して別の容器に組み込み、当該コアを組み込んだ別の容器において、請求項5に記載の発明と同様に第2の硬化性樹脂液を充填する工程以降を行うものである。 The invention according to claim 5 is a method of manufacturing a self-forming optical waveguide in which at least a part is a columnar core and the periphery thereof is covered with a clad having a low refractive index, at a wavelength in a desired container. A step of adding a photocurable first curable resin liquid, a step of irradiating the first curable resin liquid with light and photocuring to form at least a part of a columnar core; After forming the core of the shape, a step of taking out most of the uncured first curable resin liquid out of the container, and a container having a core that is a cured product of the first curable resin liquid are first. The curable resin liquid at least has a composition different from that of the first curable resin liquid that is compatible with the first curable resin and is filled with the second curable resin liquid remaining in the container. In the second curable resin liquid, and an uncured first curable resin And a step of curing the second curable resin liquid, both of the first curable resin liquid and the second curable resin liquid have a viscosity of 1500 mPa · s or less, and the first curable resin liquid The difference between the solubility parameter of the liquid and the solubility parameter of the second curable resin liquid is 4.4 MPa 1/2 or less. The viscosity is the viscosity at the temperature when filling the second curable resin liquid. There is substantially no lower limit for the difference in viscosity and solubility parameter, and it may be selected within a common sense range. The invention described in claim 6 is a modified invention of the invention described in claim 5, in which the core is removed after the step of taking out most of the uncured first curable resin liquid out of the container. It is taken out and incorporated in another container, and in the other container in which the core is incorporated, the process after the step of filling the second curable resin liquid is performed in the same manner as in the invention described in claim 5.

また、請求項7に記載の発明は、少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路の製造方法であって、所望の容器にある波長にて光硬化可能な第1の硬化性樹脂液を入れる工程と、当該第1の硬化性樹脂液に対し、光を照射して光硬化させ、少なくとも一部が柱状のコアを形成する工程と、所望の形状のコアを形成した後、未硬化の第1の硬化性樹脂液の大部分を当該容器外に取り出す工程と、第1の硬化性樹脂液の硬化物であるコアを有する容器に第1の硬化性樹脂液とは少なくとも組成が異なる第2の硬化性樹脂液を充たして、当該容器内に残存する未硬化の第1の硬化性樹脂液を第2の硬化性樹脂液により容器の上方又は下方に移動させる工程と、未硬化の第1の硬化性樹脂液と第2の硬化性樹脂液を硬化させる工程とを有し、第1の硬化性樹脂液の比重と第2の硬化性樹脂液の比重の差が0.14以上であることを特徴とする。比重の差の実質的な上限値は無いが、常識的な範囲で選択される。また、請求項8に記載の発明は、請求項7に記載の発明の変形発明であって、未硬化の第1の硬化性樹脂液の大部分を当該容器外に取り出す工程以降を、コアを取り出して別の容器に組み込み、当該コアを組み込んだ別の容器において、請求項8に記載の発明と同様に第2の硬化性樹脂液を充填する工程以降を行うものである。   The invention according to claim 7 is a method of manufacturing a self-forming optical waveguide in which at least a part is a columnar core and its periphery is covered with a clad having a low refractive index, at a wavelength in a desired container. A step of adding a photocurable first curable resin liquid, a step of irradiating the first curable resin liquid with light and photocuring to form at least a part of a columnar core; After forming the core of the shape, a step of taking out most of the uncured first curable resin liquid out of the container, and a container having a core that is a cured product of the first curable resin liquid are first. A second curable resin liquid having at least a composition different from that of the curable resin liquid is filled, and the uncured first curable resin liquid remaining in the container is placed above the container by the second curable resin liquid. Or a step of moving downward, an uncured first curable resin liquid, and a second hard resin. And a step of curing the sexual resin liquid, the difference in the specific gravity of the first curable resin liquid specific gravity and a second curable resin liquid is equal to or is less than 0.14. Although there is no substantial upper limit for the difference in specific gravity, it is selected within a common sense range. The invention described in claim 8 is a modified invention of the invention described in claim 7, in which the core is removed after the step of taking out most of the uncured first curable resin liquid out of the container. It is taken out and incorporated in another container, and in the other container in which the core is incorporated, the process after the step of filling the second curable resin liquid is performed in the same manner as in the eighth aspect of the invention.

また、請求項9に記載の発明は、請求項5又は7に記載の発明において、容器には、全反射鏡、ハーフミラー、又はダイクロイックミラーの少なくとも1つを配置させ、柱状のコアを形成する工程において、当該全反射鏡、ハーフミラー、又はダイクロイックミラーとコアとの接合部を形成するとともにコアの分岐又はコアの屈曲部を形成することを特徴とする。また、請求項10に記載の発明は、請求項6又は8に記載の発明において、コアを形成するための前記容器には、全反射鏡、ハーフミラー、又はダイクロイックミラーの少なくとも1つを配置させ、柱状のコアを形成する工程において、当該全反射鏡、ハーフミラー、又はダイクロイックミラーとコアとの接合部を形成するとともにコアの分岐又はコアの屈曲部を形成し、コアを取り出し別の容器に組み込む工程において、当該全反射鏡、ハーフミラー、又はダイクロイックミラーとコアの分岐又はコアの屈曲部と一体としてコアを取り出し、且つ別の容器に組み込むことを特徴とする。   The invention according to claim 9 is the invention according to claim 5 or 7, wherein at least one of a total reflection mirror, a half mirror, or a dichroic mirror is arranged in the container to form a columnar core. In the process, a junction between the total reflection mirror, half mirror, or dichroic mirror and the core is formed, and a branch of the core or a bent portion of the core is formed. Further, in the invention described in claim 10, in the invention described in claim 6 or 8, at least one of a total reflection mirror, a half mirror, and a dichroic mirror is disposed in the container for forming the core. In the step of forming the columnar core, a junction between the total reflection mirror, half mirror, or dichroic mirror and the core is formed, and a branch of the core or a bent portion of the core is formed, and the core is taken out into another container. In the assembling step, the total reflection mirror, half mirror, or dichroic mirror and the branch of the core or the bent portion of the core are taken out and integrated into another container.

また、請求項11に記載の発明は、第2の硬化性樹脂液は光硬化性樹脂であることを特徴とする。   The invention described in claim 11 is characterized in that the second curable resin liquid is a photocurable resin.

〔作用〕
第2の硬化性樹脂液の粘度が低く、且つ未硬化の第1の硬化性樹脂液と相溶性が高ければコア表面や容器の内面に付着した未硬化の第1の硬化性樹脂液は、第2の硬化性樹脂液を容器に注入した際に、コア表面や容器の内面に残存することなく第2の硬化性樹脂液に拡散する。また、未硬化の第1の硬化性樹脂液が第2の硬化性樹脂液に拡散しない場合であっても、それらの比重が大きく異なれば未硬化の第1の硬化性樹脂液は第2の硬化性樹脂液の上方又は下方に追いやられ、コア表面に残存できなくなる。
[Action]
If the viscosity of the second curable resin liquid is low and the compatibility with the uncured first curable resin liquid is high, the uncured first curable resin liquid attached to the core surface or the inner surface of the container is: When the second curable resin liquid is poured into the container, it diffuses into the second curable resin liquid without remaining on the core surface or the inner surface of the container. Further, even when the uncured first curable resin liquid does not diffuse into the second curable resin liquid, the uncured first curable resin liquid is the second if the specific gravity is greatly different. It is driven up or down the curable resin liquid and cannot remain on the core surface.

第2の硬化性樹脂液の粘度が低く、且つ未硬化の第1の硬化性樹脂液と相溶性が高い場合、コア表面から未硬化の第1の硬化性樹脂液を溶解拡散することにより除去できる(請求項1、5、6)。また、それらの比重が大きく異なる場合は、いずれもコア表面から未硬化の第1の硬化性樹脂液を除去できる(請求項2、7、8)。これらの効果は、特に粘性のある硬化性樹脂液を1乃至数cm3の内容量の比較的小さい容器中で硬化させて光導波路を形成する場合に特に有効である。第2の硬化性樹脂液が光硬化性樹脂であるならば、残存した未硬化の第1の硬化性樹脂液とともに硬化させることが可能である(請求項4、11)。本発明は特に全反射鏡、ハーフミラー、又はダイクロイックミラー等を有する、分岐又は屈曲部(反射部)を有する光導波路及びその製造方法に好適である(請求項3、9、10)。 When the viscosity of the second curable resin liquid is low and the compatibility with the uncured first curable resin liquid is high, it is removed by dissolving and diffusing the uncured first curable resin liquid from the core surface. (Claims 1, 5, 6). Moreover, when the specific gravity differs greatly, in any case, the uncured first curable resin liquid can be removed from the core surface (claims 2, 7 and 8). These effects are particularly effective when an optical waveguide is formed by curing a viscous curable resin liquid in a container having a relatively small internal volume of 1 to several cm 3 . If the second curable resin liquid is a photocurable resin, it can be cured together with the remaining uncured first curable resin liquid (claims 4 and 11). The present invention is particularly suitable for an optical waveguide having a branched or bent portion (reflecting portion) having a total reflection mirror, a half mirror, a dichroic mirror, and the like, and a method for manufacturing the same (claims 3, 9, 10).

以下、本願発明の具体的な実施例について説明する。ただし、本願発明は以下の実施例に限定されるものではない。   Hereinafter, specific examples of the present invention will be described. However, the present invention is not limited to the following examples.

表1に示すコア材料を各々光硬化性の第1の硬化性樹脂液とし、第2の硬化性樹脂液として、光硬化性の東亞合成株式会社製OXT−221を8重量部、同じく光硬化性のユニオンカーバイド社製UVR−6110を2重量部混合したものを用いて、次の通り光導波路を作成した。表1では溶解パラメータの値を単に「SP値」とした。以下においてもSP値は溶解パラメータを示す。第2の硬化性樹脂液は粘度が120mPa・s、SP値は東亞合成株式会社製OXT−221のSP値18.25MPa1/2及びユニオンカーバイド社製UVR−6110のSP値23.44MPa1/2から、19.28MPa1/2と算出した。ここで、溶解性パラメータはWiley International社刊 Polymer Handbook 4th edition pp.682-685記載のSmallらの算出方法、及びそのためのデータ(同書同頁、table 1-3)により求めた。尚、OXT−221のモノマーはジ(1−エチル(3−オキセタニル))メチルエーテルであり、UVR−6110のモノマーは3,4−エポキシシクロヘキサンカルボン酸−3,4−エポキシシクロヘキシルメチルであり、OXT−221には光重合開始剤が含まれている。 Each of the core materials shown in Table 1 is a photocurable first curable resin liquid, and the second curable resin liquid is 8 parts by weight of OXT-221 manufactured by Toagosei Co., Ltd. An optical waveguide was prepared as follows using a mixture of 2 parts by weight of UVR-6110 manufactured by Union Carbide Corporation. In Table 1, the value of the dissolution parameter is simply “SP value”. In the following, the SP value indicates the solubility parameter. The second curable resin liquid has a viscosity of 120 mPa · s, SP value from Toagosei Co., Ltd. OXT-221 SP value 18.25 MPa 1/2 and Union Carbide UVR-6110 SP value 23.44 MPa 1/2 19.28 MPa 1/2 was calculated. Here, the solubility parameter was calculated | required by the calculation method of Small et al. Described in Polymer Handbook 4th edition pp.682-685 published by Wiley International Co., Ltd., and data for the calculation (same book same page, table 1-3). The monomer of OXT-221 is di (1-ethyl (3-oxetanyl)) methyl ether, the monomer of UVR-6110 is 3,4-epoxycyclohexanecarboxylic acid-3,4-epoxycyclohexylmethyl, and OXT -221 contains a photopolymerization initiator.

Figure 2005062364
図1は本願発明に係る光導波路10の製造工程を示す工程図(断面図)である。まず、図1の(a)のように、直方体の上面が開口となった形のアクリル製の透明容器3に第1の硬化性樹脂液1を充填し、プラスチック光ファイバ4を浸漬した。プラスチック光ファイバ4はコア径980μm、開口数0.25のものを用いた。次に、このプラスチック光ファイバ4を通して波長488nmのレーザ光を第1の硬化性樹脂液1に照射した。レーザ光の出射光強度は100mWとした。また、波長488nmは、各第1の硬化性樹脂液1の有する光重合開始剤のいずれもが活性化される波長として選択された。こうして第1の硬化性樹脂液1に照射されたレーザ光により徐々に硬化し、自己集光性によって軸状のコア5が形成された。本実施例では、長さ15mmのコア5の形成をもって透明容器3の壁に到達した(図1の(b))。
Figure 2005062364
FIG. 1 is a process diagram (cross-sectional view) showing a manufacturing process of an optical waveguide 10 according to the present invention. First, as shown in FIG. 1A, an acrylic transparent container 3 having a rectangular parallelepiped upper surface was filled with the first curable resin liquid 1, and the plastic optical fiber 4 was immersed therein. A plastic optical fiber 4 having a core diameter of 980 μm and a numerical aperture of 0.25 was used. Next, the first curable resin liquid 1 was irradiated with laser light having a wavelength of 488 nm through the plastic optical fiber 4. The emitted light intensity of the laser beam was 100 mW. Further, the wavelength 488 nm was selected as the wavelength at which any of the photopolymerization initiators of each first curable resin liquid 1 was activated. In this way, the first curable resin liquid 1 was gradually cured by the laser light irradiated, and the shaft-like core 5 was formed by self-condensing property. In the present example, the formation of the core 5 having a length of 15 mm reached the wall of the transparent container 3 ((b) in FIG. 1).

次に透明容器3の開口部から、未硬化の第1の硬化性樹脂液1を除去した。このとき、溶剤等を用いた洗浄を行わなかったため、第1の硬化性樹脂液を1の大部分は除去できたが、図1の(c)のようにコア5表面及び透明容器3の内面に未硬化の第1の硬化性樹脂液11が一部付着し、残存した。次に上記第2の硬化性樹脂液2を透明容器3に充填した。この際、未硬化の第1の硬化性樹脂液11は第2の硬化性樹脂液2の中に分散する。この後、第2の硬化性樹脂液2を紫外光を用いて光硬化させてクラッドを形成した。このとき、第2の硬化性樹脂液2の中に分散した未硬化の第1の硬化性樹脂液11も光重合して一体となって硬化物22となった(図1の(d))。   Next, the uncured first curable resin liquid 1 was removed from the opening of the transparent container 3. At this time, since the cleaning using a solvent or the like was not performed, most of the first curable resin liquid 1 could be removed, but the surface of the core 5 and the inner surface of the transparent container 3 as shown in FIG. A part of the uncured first curable resin liquid 11 adhered to and remained. Next, the transparent container 3 was filled with the second curable resin liquid 2. At this time, the uncured first curable resin liquid 11 is dispersed in the second curable resin liquid 2. Thereafter, the second curable resin liquid 2 was photocured using ultraviolet light to form a clad. At this time, the uncured first curable resin liquid 11 dispersed in the second curable resin liquid 2 was also photopolymerized and integrated into a cured product 22 ((d) in FIG. 1). .

このようにして形成された光導波路10の伝送損失を測定し、第1の硬化性樹脂液1の粘度との関係及び第1と第2の硬化性樹脂液のSP値差との関係を調べた。図2は、第1の硬化性樹脂液1の粘度と光導波路10の伝送損失の関係を示すグラフ図、図3は、第1と第2の硬化性樹脂液のSP値差と光導波路10の伝送損失の関係を示すグラフ図、図4は、第1の硬化性樹脂液1の粘度と第1と第2の硬化性樹脂液のSP値差との関係を示すグラフ図である。図2乃至図4において、黒丸印は伝送損失が1dB/cm以下の良好な場合を示し、バツ印(×)は伝送損失が1dB/cmを超える場合を示す。図2及び図3からは明確な指標は得られず、第1の硬化性樹脂液1の粘度のみ、第1と第2の硬化性樹脂液のSP値差のみからは光導波路10の伝送損失の少ない範囲を特定することができない。しかし、図4のように、第1の硬化性樹脂液1の粘度と、第1と第2の硬化性樹脂液のSP値差を組み合わせることで、第1の硬化性樹脂液1の粘度が1500mPa・s以下、第1と第2の硬化性樹脂液のSP値差4.4MPa1/2以下の場合に光導波路10の伝送損失を1dB/cm以下とすることができることがわかった。即ち、粘度が互いに低く、且つ相溶性が良いことで、コア5等に付着した未硬化の第1の硬化性樹脂液11が第2の硬化性樹脂液2の中に容易に分散する。逆に、いずれかの粘度が高いか、相溶性が悪いと、コア5等に付着した未硬化の第1の硬化性樹脂液11が第2の硬化性樹脂液2の中に容易に分散せず、コア5等に付着したまま硬化し、表面の散乱損失が大きくする。 尚、図4からは粘度は1000mPa・s以下が更に好ましいことがわかる。更には、粘度をxmPa・s、SP値差をyMPa1/2としたとき、x/1500+y/9≦1の範囲で粘度xmPa・sとSP値差yMPa1/2を調整すれば良いこともわかる。 The transmission loss of the optical waveguide 10 thus formed is measured, and the relationship between the viscosity of the first curable resin liquid 1 and the difference between the SP values of the first and second curable resin liquids is examined. It was. FIG. 2 is a graph showing the relationship between the viscosity of the first curable resin liquid 1 and the transmission loss of the optical waveguide 10, and FIG. 3 shows the SP value difference between the first and second curable resin liquids and the optical waveguide 10. FIG. 4 is a graph showing the relationship between the viscosity of the first curable resin liquid 1 and the SP value difference between the first and second curable resin liquids. In FIG. 2 to FIG. 4, black circles indicate good cases where the transmission loss is 1 dB / cm or less, and crosses (×) indicate cases where the transmission loss exceeds 1 dB / cm. A clear index cannot be obtained from FIGS. 2 and 3, and the transmission loss of the optical waveguide 10 is determined only from the viscosity of the first curable resin liquid 1 and only from the SP value difference between the first and second curable resin liquids. It is not possible to specify a range with a small amount. However, as shown in FIG. 4, by combining the viscosity of the first curable resin liquid 1 and the SP value difference between the first and second curable resin liquids, the viscosity of the first curable resin liquid 1 is It was found that the transmission loss of the optical waveguide 10 can be made 1 dB / cm or less when the SP value difference between the first and second curable resin liquids is 1500 mPa · s or less and the SP value difference is 4.4 MPa 1/2 or less. That is, the uncured first curable resin liquid 11 adhering to the core 5 or the like is easily dispersed in the second curable resin liquid 2 because of low viscosity and good compatibility. Conversely, if any of the viscosity is high or the compatibility is poor, the uncured first curable resin liquid 11 attached to the core 5 or the like is easily dispersed in the second curable resin liquid 2. First, it hardens while adhering to the core 5 and the like, and the scattering loss on the surface increases. 4 that the viscosity is more preferably 1000 mPa · s or less. Furthermore, when the viscosity is xmPa · s and the SP value difference is yMPa 1/2 , the viscosity xmPa · s and the SP value difference yMPa 1/2 may be adjusted within the range of x / 1500 + y / 9 ≦ 1. Understand.

尚、上記各実験に対応して、長さ15mmのコア5の形成ののち、イソプロピルアルコールを用いた超音波洗浄により未硬化の第1の硬化性樹脂液1を除去したのちに透明容器3に第2の硬化性樹脂液2を充填して硬化させて形成した光導波路について伝送損失を測定した。このとき、いずれの第1の硬化性樹脂液1の場合も伝送損失は0.2-0.5dB/cmと小さく、表1、図2乃至図4のような高い伝送損失は、コア5に付着した未硬化の第1の硬化性樹脂液11及びその硬化物の影響であると考えられる。   Corresponding to the above experiments, after forming the core 5 having a length of 15 mm, the uncured first curable resin liquid 1 is removed by ultrasonic cleaning using isopropyl alcohol, and then the transparent container 3 is formed. Transmission loss was measured for an optical waveguide formed by filling the second curable resin liquid 2 and curing it. At this time, in any of the first curable resin liquids 1, the transmission loss is as small as 0.2-0.5 dB / cm, and high transmission loss as shown in Table 1 and FIGS. This is considered to be due to the influence of the first curable resin liquid 11 and its cured product.

表2のようなコアを形成する第1の硬化性樹脂液1と、クラッドを形成する第2の硬化性樹脂液2を用いて、第1実施例同様に光導波路10を形成し、伝送損失を測定した。この結果を表2及び図5、図6に示す。図5は第1の硬化性樹脂液1と第2の硬化性樹脂液2の5個の硬化前の屈折率と比重の関係を示す。本実施例においては、フッ素化アクリル系モノマーとして大日本インキ製のディフェンサOP−38,40,43,44,47を用いた。これらは、フッ素置換アクリル系モノマーであって、ディフェンサOP−38がフッ素の置換量が最も多く、ディフェンサOP−40,43,44,47の順にフッ素の置換量が少なくなる。このため、フッ素の置換量が多いものが屈折率が小さく、比重が大きくなる。これを示したものが図5である。   Using the first curable resin liquid 1 forming the core as shown in Table 2 and the second curable resin liquid 2 forming the clad, the optical waveguide 10 is formed in the same manner as in the first embodiment, and transmission loss is achieved. Was measured. The results are shown in Table 2 and FIGS. FIG. 5 shows the relationship between the refractive index and specific gravity of the first curable resin liquid 1 and the second curable resin liquid 2 before curing. In this example, Defender OP-38, 40, 43, 44, 47 manufactured by Dainippon Ink was used as the fluorinated acrylic monomer. These are fluorine-substituted acrylic monomers, and the defender OP-38 has the largest fluorine substitution amount, and the fluorine substitution amount decreases in the order of the defenders OP-40, 43, 44, and 47. For this reason, those having a large amount of fluorine substitution have a low refractive index and a high specific gravity. This is shown in FIG.

Figure 2005062364
ディフェンサOP−47を第1の硬化性樹脂液1としてコアを形成し、第2の硬化性樹脂液2としてディフェンサOP−38、40、43、44を用いて光導波路を作成したときの伝送損失について、第1の硬化性樹脂液1と第2の硬化性樹脂液2の比重の差との関係を図6に示す。比重の差が0.14を超えると伝送損失が1dB/cmを下回り、良好な結果が得られた。このとき、第1の硬化性樹脂液1と第2の硬化性樹脂液2はいずれも粘度が高いので、残存する未硬化の第1の硬化性樹脂液11の第2の硬化性樹脂液2への分散は起こらなかったものと考えられる。また、比重差0.2以上で伝送損失は0.5dB/cm以下、比重差0.24以上で伝送損失は0.35dB/cm以下、比重差0.3以上で伝送損失は0.25dB/cm以下となる傾向が見られる。よって、比重差0.2以上が更に好ましく、比重差0.24以上がより好ましい。
Figure 2005062364
Transmission loss when an optical waveguide is formed using the defender OP-47 as the first curable resin liquid 1 and the core as the second curable resin liquid 2 and using the defenders OP-38, 40, 43, and 44. 6 shows the relationship between the specific gravity difference between the first curable resin liquid 1 and the second curable resin liquid 2. When the difference in specific gravity exceeded 0.14, the transmission loss was less than 1 dB / cm, and good results were obtained. At this time, since both the first curable resin liquid 1 and the second curable resin liquid 2 have high viscosity, the second curable resin liquid 2 of the remaining uncured first curable resin liquid 11 is used. It is considered that no dispersion occurred. In addition, when the specific gravity difference is 0.2 or more, the transmission loss tends to be 0.5 dB / cm or less, when the specific gravity difference is 0.24 or more, the transmission loss is 0.35 dB / cm or less, and when the specific gravity difference is 0.3 or more, the transmission loss tends to be 0.25 dB / cm or less. Therefore, a specific gravity difference of 0.2 or more is more preferable, and a specific gravity difference of 0.24 or more is more preferable.

上記各実施例においては、第2の硬化性樹脂液として光硬化性のものを用いたが、第2の硬化性樹脂液は例えば熱硬化性のものを用いても良い。   In each of the above embodiments, a photocurable resin is used as the second curable resin liquid. However, the second curable resin liquid may be a thermosetting liquid, for example.

光ラジカル重合を行うモノマーとしては、(メタ)アクリル酸エステル、(メタ)アクリル酸アミドが好ましい。具体的には(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2−ブトキシエチル等の1官能性(メタ)アクリル酸エステル(モノ(メタ)アクリレート)を用いることができる。また、エチレングリコール、ネオペンチルグリコール、1,6−ヘキサンジオール等のジオールと2等量の(メタ)アクリル酸とのエステル(ジ(メタ)アクリレート)を用いることができる。同様に、アルコール性水酸基を複数有する有機化合物と(メタ)アクリル酸とのエステル(トリ、テトラ、…(メタ)アクリレート)を用いることができる。尚、これらのモノマーにおいて、(メタ)アクリロイル基及びその他の有機骨格のメチル水素、メチレン水素、メチン水素の一部をハロゲンで置換したものでも良い。又、これらモノマーを適当に組み合わせて用いても良い。   As a monomer which performs radical photopolymerization, (meth) acrylic acid ester and (meth) acrylic acid amide are preferable. Specifically, monofunctional (meth) acrylic acid esters (mono (meth) acrylates) such as 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, and 2-butoxyethyl (meth) acrylate are used. Can do. Further, an ester (di (meth) acrylate) of diol such as ethylene glycol, neopentyl glycol, 1,6-hexanediol and 2 equivalents of (meth) acrylic acid can be used. Similarly, an ester (tri, tetra,... (Meth) acrylate) of an organic compound having a plurality of alcoholic hydroxyl groups and (meth) acrylic acid can be used. In these monomers, a part of methyl hydrogen, methylene hydrogen and methine hydrogen in the (meth) acryloyl group and other organic skeletons may be substituted with halogen. These monomers may be used in appropriate combinations.

光ラジカル重合を行うオリゴマー(マクロモノマー)としては、末端又は分岐に(メタ)アクリロイル基を有するウレタン系オリゴマー、ポリエーテル系オリゴマー、エポキシ系オリゴマー、ポリエステル系オリゴマーなどが好ましい。尚、これらのオリゴマーにおいて、(メタ)アクリロイル基及びその他の有機骨格のメチル水素、メチレン水素、メチン水素の一部をハロゲンで置換したものでも良い。又、これらオリゴマーを前記モノマーと適当に組み合わせたものを用いても良い。   As the oligomer (macromonomer) for performing radical photopolymerization, a urethane-based oligomer, a polyether-based oligomer, an epoxy-based oligomer, a polyester-based oligomer having a (meth) acryloyl group at the terminal or branch is preferable. In these oligomers, a part of methyl hydrogen, methylene hydrogen, and methine hydrogen in the (meth) acryloyl group and other organic skeletons may be substituted with halogen. Moreover, you may use what combined these oligomers with the said monomer suitably.

光ラジカル重合開始剤として、ベンジルジメチルケタール系化合物としては2,2−ジメトキシ−2−フェニルアセトフェノン、α−ヒドロキシケトン系化合物としては2−ヒドロキシ−2−メチル−フェニルプロパン−1−オン、(1−ヒドロキシシクロヘキシル)−フェニルケトン、α−アミノケトン系化合物としては2−ベンジル−2−ジメチルアミノ−1−(4−モルホリノフェニル)−ブタン−1−オン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルホリノプロパン−1−オン、ビスアシルホスフィンオキシド系化合物としてはビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルホスフィンオキシド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド、メタロセン系化合物としてはビス(η−シクロペンタジエニル)−ビス(2,6−ジフルオロ−3−(N−ピロイル)フェニル)チタンなどを用いることができる。これらを複数種類用いても良い。   As a radical photopolymerization initiator, 2,2-dimethoxy-2-phenylacetophenone as a benzyldimethyl ketal compound, 2-hydroxy-2-methyl-phenylpropan-1-one as an α-hydroxyketone compound, (1 -Hydroxycyclohexyl) -phenyl ketone, α-aminoketone compounds include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2-methyl-1- (4- (methylthio) ) Phenyl) -2-morpholinopropan-1-one, and bisacylphosphine oxide compounds include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide, bis (2,4,6). -Trimethylbenzoyl) -phenylphosphine oxide, metallose Bis (η-cyclopentadienyl) -bis (2,6-difluoro-3- (N-pyroyl) phenyl) titanium or the like can be used as the silver compound. A plurality of these may be used.

光カチオン重合を行うモノマー或いはオリゴマーとしては、エポキシ環、オキセタン環ほか環状エーテルを有する化合物、環状ラクトン化合物、環状アセタール化合物、ビニルエーテル化合物等のモノマー或いはオリゴマーを用いることができる。又、これらモノマー或いはオリゴマーを適当に組み合わせたものを用いても良い。   As the monomer or oligomer for performing cationic photopolymerization, monomers or oligomers such as an epoxy ring, an oxetane ring, a compound having a cyclic ether, a cyclic lactone compound, a cyclic acetal compound, and a vinyl ether compound can be used. Moreover, you may use what combined these monomers or oligomers appropriately.

光カチオン重合開始剤としては、4,4’−ビス(ジ(2−ヒドロキシエトキシ)フェニルスルホニオ)フェニルスルフィド二ヘキサフルオロアンチモン酸、η−シクロペンタジエニル−η−クメン鉄(1+)−ヘキサフルオロリン酸(1−)などを用いることができる。   As a photocationic polymerization initiator, 4,4′-bis (di (2-hydroxyethoxy) phenylsulfonio) phenyl sulfide dihexafluoroantimonic acid, η-cyclopentadienyl-η-cumene iron (1 +)-hexa Fluorophosphoric acid (1-) or the like can be used.

上記述の光ラジカル重合開始剤又は光カチオン重合開始剤に、光増感剤を加えても良い。更に、必要に応じて、重合禁止剤、紫外線吸収剤、光安定剤、酸化防止剤、レベリング剤、消泡剤その他の添加剤を配合することができる。以上のような組み合わせにより、本発明に用いる光硬化性液状樹脂組成物とすることができる。また、本発明は、光アニオン重合性の重合開始剤とモノマー又はオリゴマーの組み合わせを排除するものではない。また、チオール・エン付加による重合を用いても良い。また、本発明と同様にして、コア部分の形成は光照射により行い、クラッド部分の形成は光照射以外の方法で行うことも可能である。   A photosensitizer may be added to the above-mentioned photo radical polymerization initiator or photo cationic polymerization initiator. Furthermore, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, an antioxidant, a leveling agent, an antifoaming agent and other additives can be blended as necessary. By the combination as described above, the photocurable liquid resin composition used in the present invention can be obtained. Further, the present invention does not exclude a combination of a photoanion polymerizable polymerization initiator and a monomer or oligomer. Further, polymerization by thiol-ene addition may be used. Similarly to the present invention, the core portion can be formed by light irradiation, and the clad portion can be formed by a method other than light irradiation.

第2の硬化性樹脂液を充填してから硬化させるまでの時間は10分程度又はそれ以下にすると良い。未硬化の第2の硬化性樹脂液がコア(硬化した第1の硬化性樹脂液)に浸透すること、さらにはコアを膨潤させることを防ぐためである。   The time from filling the second curable resin liquid to curing is preferably about 10 minutes or less. This is to prevent the uncured second curable resin liquid from penetrating into the core (cured first curable resin liquid) and further swelling of the core.

尚、第2実施例において、図7(b)のように主としてコア5の終端51が透明容器3の下面において受光素子又は発光素子8と結合する場合には、第2の硬化性樹脂液としては比重の重いものを用い、未硬化の第1の硬化性樹脂液1を上方に除去して、透明容器3の下面において受光素子又は発光素子8と結合するコア5の終端51付近から未硬化の第1の硬化性樹脂液1が除去されやすいようにすると良い。   In the second embodiment, as shown in FIG. 7B, when the terminal end 51 of the core 5 is combined with the light receiving element or the light emitting element 8 mainly on the lower surface of the transparent container 3, the second curable resin liquid is used. Uses a material having a high specific gravity, removes the uncured first curable resin liquid 1 upward, and uncures from the vicinity of the end 51 of the core 5 coupled to the light receiving element or the light emitting element 8 on the lower surface of the transparent container 3. It is preferable that the first curable resin liquid 1 is easily removed.

第2の硬化性樹脂液の硬化後の屈折率は、未硬化の第1の硬化性樹脂液の屈折率よりも低いことが望ましい。自己集光性によって形成された軸状のコアは、未硬化の第1の硬化性樹脂液との屈折率差とにより伝送光を閉じ込めているので、屈折率差が小さくなることによる放射損失を避けるためには、第2の硬化性樹脂液の硬化後の屈折率は、未硬化の第1の硬化性樹脂液の屈折率よりも低いことが望ましい。   The refractive index after curing of the second curable resin liquid is desirably lower than the refractive index of the uncured first curable resin liquid. The shaft-shaped core formed by self-condensing property confines transmission light due to the difference in refractive index from the uncured first curable resin liquid, so that radiation loss due to the small difference in refractive index is reduced. In order to avoid this, it is desirable that the refractive index after curing of the second curable resin liquid is lower than the refractive index of the uncured first curable resin liquid.

本願発明に係る光導波路の製造工程を示す工程図(断面図)。Process drawing (sectional drawing) which shows the manufacturing process of the optical waveguide which concerns on this invention. 第1の硬化性樹脂液の粘度と光導波路の伝送損失の関係を示すグラフ図。The graph which shows the relationship between the viscosity of a 1st curable resin liquid, and the transmission loss of an optical waveguide. 第1と第2の硬化性樹脂液のSP値差と光導波路の伝送損失との関係を示すグラフ図。The graph which shows the relationship between SP value difference of the 1st and 2nd curable resin liquid, and the transmission loss of an optical waveguide. 第1の硬化性樹脂液の粘度と第1と第2の硬化性樹脂液のSP値差との関係を示すグラフ図。The graph which shows the relationship between the viscosity of a 1st curable resin liquid, and SP value difference of a 1st and 2nd curable resin liquid. 第2実施例におけるモノマーの屈折率と比重の関係を示すグラフ図。The graph which shows the refractive index and specific gravity of a monomer in 2nd Example. 第1と第2の硬化性樹脂液の比重差と光導波路の伝送損失との関係を示すグラフ図。The graph which shows the relationship between the specific gravity difference of the 1st and 2nd curable resin liquid, and the transmission loss of an optical waveguide. (a)は光モジュールの断面図、(b)は洗浄が充分でない場合の作業工程の途中図。(A) is sectional drawing of an optical module, (b) is the intermediate figure of the work process in case washing | cleaning is not enough.

符号の説明Explanation of symbols

1:未硬化の第1の硬化性樹脂液
11:残存する未硬化の第1の硬化性樹脂液
2:未硬化の第2の硬化性樹脂液
22:クラッド(硬化した第2の硬化性樹脂液)
3:透明容器
4:プラスチック光ファイバ
5:コア(軸状に硬化した第1の硬化性樹脂液)
6:ハーフミラー(半透鏡)
7:全反射鏡
1: Uncured first curable resin liquid 11: Remaining uncured first curable resin liquid 2: Uncured second curable resin liquid 22: Clad (cured second curable resin liquid)
3: Transparent container 4: Plastic optical fiber 5: Core (first curable resin liquid cured in a shaft shape)
6: Half mirror
7: Total reflection mirror

Claims (11)

少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路であって、
コアを形成する樹脂は、ある波長にて光硬化可能な第1の硬化性樹脂液の硬化物であり、
クラッドを形成する樹脂は、主として、前記第1の硬化性樹脂液とは少なくとも組成が異なり、前記第1の硬化性樹脂と相溶性を有する第2の硬化性樹脂液の硬化物であり、
前記第1の硬化性樹脂液と前記第2の硬化性樹脂液はいずれも粘度が1500mPa4s以下であり、
前記第1の硬化性樹脂液の溶解性パラメータと前記第2の硬化性樹脂液の溶解性パラメータの差は4.4MPa1/2以下であることを特徴とする自己形成光導波路。
A self-forming optical waveguide having at least a part of a columnar core and its periphery covered with a clad having a low refractive index,
The resin forming the core is a cured product of a first curable resin liquid that can be photocured at a certain wavelength,
The resin forming the clad is mainly a cured product of a second curable resin liquid having a composition different from that of the first curable resin liquid and having compatibility with the first curable resin.
Both the first curable resin liquid and the second curable resin liquid have a viscosity of 1500 mPa 4 s or less,
A difference between the solubility parameter of the first curable resin liquid and the solubility parameter of the second curable resin liquid is 4.4 MPa1 / 2 or less.
少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路であって、
コアを形成する樹脂は、ある波長にて光硬化可能な第1の硬化性樹脂液の硬化物であり、
クラッドを形成する樹脂は、主として、前記第1の硬化性樹脂液とは少なくとも組成が異なる第2の硬化性樹脂液の硬化物であり、
前記第1の硬化性樹脂液の比重と前記第2の硬化性樹脂液の比重の差が0.14以上であることを特徴とする自己形成光導波路。
A self-forming optical waveguide having at least a part of a columnar core and its periphery covered with a clad having a low refractive index,
The resin forming the core is a cured product of a first curable resin liquid that can be photocured at a certain wavelength,
The resin that forms the cladding is mainly a cured product of a second curable resin liquid having a composition different from that of the first curable resin liquid.
A self-forming optical waveguide, wherein a difference between a specific gravity of the first curable resin liquid and a specific gravity of the second curable resin liquid is 0.14 or more.
前記コアは、全反射鏡、ハーフミラー、又はダイクロイックミラーとの接合部において分岐又は屈曲部を有することを特徴とする請求項1又は請求項2に記載の自己形成光導波路。 3. The self-forming optical waveguide according to claim 1, wherein the core has a branching portion or a bent portion at a joint portion with a total reflection mirror, a half mirror, or a dichroic mirror. 前記第2の硬化性樹脂液は光硬化性樹脂であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の自己形成光導波路。 4. The self-forming optical waveguide according to claim 1, wherein the second curable resin liquid is a photocurable resin. 5. 少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路の製造方法であって、
所望の容器にある波長にて光硬化可能な第1の硬化性樹脂液を入れる工程と、
当該第1の硬化性樹脂液に対し、光を照射して光硬化させ、少なくとも一部が柱状のコアを形成する工程と、
所望の形状のコアを形成した後、未硬化の前記第1の硬化性樹脂液の大部分を当該容器外に取り出す工程と、
前記第1の硬化性樹脂液の硬化物であるコアを有する容器に前記第1の硬化性樹脂液とは少なくとも組成が異なり、前記第1の硬化性樹脂と相溶性を有する第2の硬化性樹脂液を充たして、当該容器内に残存する未硬化の前記第1の硬化性樹脂液を第2の硬化性樹脂液中に溶解させる工程と、
未硬化の前記第1の硬化性樹脂液と前記第2の硬化性樹脂液を硬化させる工程とを有し、
前記第1の硬化性樹脂液と前記第2の硬化性樹脂液はいずれも粘度が1500mPas以下であり、
前記第1の硬化性樹脂液の溶解性パラメータと前記第2の硬化性樹脂液の溶解性パラメータの差は4.4MPa1/2以下であることを特徴とする自己形成光導波路の製造方法。
A method for producing a self-forming optical waveguide, wherein at least a part of a core is covered with a low refractive index cladding.
Adding a first curable resin liquid photocurable at a wavelength in a desired container;
Irradiating light to the first curable resin liquid and photocuring, forming at least a part of a columnar core; and
After forming the core of a desired shape, taking out most of the uncured first curable resin liquid out of the container;
A container having a core, which is a cured product of the first curable resin liquid, has at least a composition different from that of the first curable resin liquid and is compatible with the first curable resin. Filling the resin liquid and dissolving the uncured first curable resin liquid remaining in the container in the second curable resin liquid;
A step of curing the uncured first curable resin liquid and the second curable resin liquid,
Both the first curable resin liquid and the second curable resin liquid have a viscosity of 1500 mPa · s or less,
A method for producing a self-forming optical waveguide, wherein a difference between a solubility parameter of the first curable resin liquid and a solubility parameter of the second curable resin liquid is 4.4 MPa1 / 2 or less.
少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路の製造方法であって、
所望の容器にある波長にて光硬化可能な第1の硬化性樹脂液を入れる工程と、
当該第1の硬化性樹脂液に対し、光を照射して光硬化させ、少なくとも一部が柱状のコアを形成する工程と、
所望の形状のコアを形成した後、当該コアを取り出し、別の容器に組み込む工程と、
前記コアを組み込んだ容器に、前記第1の硬化性樹脂液とは少なくとも組成が異なり、前記第1の硬化性樹脂と相溶性を有する第2の硬化性樹脂液を充たして、前記コア表面等に残存する未硬化の前記第1の硬化性樹脂液を第2の硬化性樹脂液中に溶解させる工程と、
未硬化の前記第1の硬化性樹脂液と前記第2の硬化性樹脂液を硬化させる工程とを有し、
前記第1の硬化性樹脂液と前記第2の硬化性樹脂液はいずれも粘度が1500mPa・s以下であり、
前記第1の硬化性樹脂液の溶解性パラメータと前記第2の硬化性樹脂液の溶解性パラメータの差は4.4MPa1/2以下であることを特徴とする自己形成光導波路の製造方法。
A method for producing a self-forming optical waveguide, wherein at least a part of a core is covered with a low refractive index cladding.
Adding a first curable resin liquid photocurable at a wavelength in a desired container;
Irradiating light to the first curable resin liquid and photocuring, forming at least a part of a columnar core; and
After forming a core of a desired shape, removing the core and incorporating it in another container;
A container incorporating the core is filled with a second curable resin liquid having at least a composition different from that of the first curable resin liquid and having compatibility with the first curable resin, and the core surface, etc. Dissolving the uncured first curable resin liquid remaining in the second curable resin liquid;
A step of curing the uncured first curable resin liquid and the second curable resin liquid,
Both the first curable resin liquid and the second curable resin liquid have a viscosity of 1500 mPa · s or less,
A method for producing a self-forming optical waveguide, wherein a difference between a solubility parameter of the first curable resin liquid and a solubility parameter of the second curable resin liquid is 4.4 MPa1 / 2 or less.
少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路の製造方法であって、
所望の容器にある波長にて光硬化可能な第1の硬化性樹脂液を入れる工程と、
当該第1の硬化性樹脂液に対し、光を照射して光硬化させ、少なくとも一部が柱状のコアを形成する工程と、
所望の形状のコアを形成した後、未硬化の前記第1の硬化性樹脂液の大部分を当該容器外に取り出す工程と、
前記第1の硬化性樹脂液の硬化物であるコアを有する容器に前記第1の硬化性樹脂液とは少なくとも組成が異なる第2の硬化性樹脂液を充たして、当該容器内に残存する未硬化の前記第1の硬化性樹脂液を第2の硬化性樹脂液により容器の上方又は下方に移動させる工程と、
未硬化の前記第1の硬化性樹脂液と前記第2の硬化性樹脂液を硬化させる工程とを有し、
前記第1の硬化性樹脂液の比重と前記第2の硬化性樹脂液の比重の差が0.14以上であることを特徴とする自己形成光導波路の製造方法。
A method for producing a self-forming optical waveguide, wherein at least a part of a core is covered with a low refractive index cladding.
Adding a first curable resin liquid photocurable at a wavelength in a desired container;
Irradiating light to the first curable resin liquid and photocuring, forming at least a part of a columnar core; and
After forming the core of a desired shape, taking out most of the uncured first curable resin liquid out of the container;
A container having a core, which is a cured product of the first curable resin liquid, is filled with a second curable resin liquid having a composition different from that of the first curable resin liquid, and remains in the container. Moving the first curable resin liquid for curing to the upper or lower side of the container with the second curable resin liquid; and
A step of curing the uncured first curable resin liquid and the second curable resin liquid,
A method for producing a self-forming optical waveguide, wherein a difference between a specific gravity of the first curable resin liquid and a specific gravity of the second curable resin liquid is 0.14 or more.
少なくとも一部が柱状のコアと、その周囲を屈折率の低いクラッドで覆った自己形成光導波路の製造方法であって、
所望の容器にある波長にて光硬化可能な第1の硬化性樹脂液を入れる工程と、
当該第1の硬化性樹脂液に対し、光を照射して光硬化させ、少なくとも一部が柱状のコアを形成する工程と、
所望の形状のコアを形成した後、当該コアを取り出し、別の容器に組み込む工程と、
前記コアを組み込んだ容器に、前記第1の硬化性樹脂液とは少なくとも組成が異なる第2の硬化性樹脂液を充たして、当該容器内に残存する未硬化の前記第1の硬化性樹脂液を第2の硬化性樹脂液により容器の上方又は下方に移動させる工程と、
未硬化の前記第1の硬化性樹脂液と前記第2の硬化性樹脂液を硬化させる工程とを有し、
前記第1の硬化性樹脂液の比重と前記第2の硬化性樹脂液の比重の差が0.14以上であることを特徴とする自己形成光導波路の製造方法。
A method for producing a self-forming optical waveguide, wherein at least a part of a core is covered with a low refractive index cladding.
Adding a first curable resin liquid photocurable at a wavelength in a desired container;
Irradiating light to the first curable resin liquid and photocuring, forming at least a part of a columnar core; and
After forming a core of a desired shape, removing the core and incorporating it in another container;
The container incorporating the core is filled with a second curable resin liquid having a composition different from that of the first curable resin liquid, and the uncured first curable resin liquid remaining in the container is filled. Moving the container upward or downward with the second curable resin liquid;
A step of curing the uncured first curable resin liquid and the second curable resin liquid,
A method for producing a self-forming optical waveguide, wherein a difference between a specific gravity of the first curable resin liquid and a specific gravity of the second curable resin liquid is 0.14 or more.
前記容器には、全反射鏡、ハーフミラー、又はダイクロイックミラーの少なくとも1つを配置させ、
前記柱状のコアを形成する工程において、当該全反射鏡、ハーフミラー、又はダイクロイックミラーとコアとの接合部を形成するとともにコアの分岐又はコアの屈曲部を形成することを特徴とする請求項5又は請求項7に記載の自己形成光導波路の製造方法。
In the container, at least one of a total reflection mirror, a half mirror, or a dichroic mirror is disposed,
6. In the step of forming the columnar core, a junction between the total reflection mirror, half mirror, or dichroic mirror and the core is formed, and a branch of the core or a bent portion of the core is formed. Or the manufacturing method of the self-forming optical waveguide of Claim 7.
コアを形成するための前記容器には、全反射鏡、ハーフミラー、又はダイクロイックミラーの少なくとも1つを配置させ、
前記柱状のコアを形成する工程において、当該全反射鏡、ハーフミラー、又はダイクロイックミラーとコアとの接合部を形成するとともにコアの分岐又はコアの屈曲部を形成し、
前記コアを取り出し、別の容器に組み込む工程において、当該全反射鏡、ハーフミラー、又はダイクロイックミラーとコアの分岐又はコアの屈曲部と一体として前記コアを取り出し、且つ別の容器に組み込むことを特徴とする請求項6又は請求項8に記載の自己形成光導波路の製造方法。
In the container for forming the core, at least one of a total reflection mirror, a half mirror, or a dichroic mirror is disposed,
In the step of forming the columnar core, forming the junction between the total reflection mirror, half mirror, or dichroic mirror and the core and forming a branch of the core or a bent portion of the core,
In the step of taking out the core and incorporating it into another container, the core is taken out as a unit with the total reflection mirror, half mirror, or dichroic mirror and a branch of the core or a bent portion of the core, and incorporated into another container. A method for producing a self-forming optical waveguide according to claim 6 or 8.
前記第2の硬化性樹脂液は光硬化性樹脂であることを特徴とする請求項5乃至請求項10のいずれか1項に記載の自己形成光導波路の製造方法。 The method for producing a self-forming optical waveguide according to any one of claims 5 to 10, wherein the second curable resin liquid is a photocurable resin.
JP2003290914A 2003-08-08 2003-08-08 Manufacturing method of self-forming optical waveguide Expired - Fee Related JP4179947B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003290914A JP4179947B2 (en) 2003-08-08 2003-08-08 Manufacturing method of self-forming optical waveguide
US10/913,505 US7166322B2 (en) 2003-08-08 2004-08-09 Optical waveguide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003290914A JP4179947B2 (en) 2003-08-08 2003-08-08 Manufacturing method of self-forming optical waveguide

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007334047A Division JP4563445B2 (en) 2007-12-26 2007-12-26 Manufacturing method of self-forming optical waveguide

Publications (2)

Publication Number Publication Date
JP2005062364A true JP2005062364A (en) 2005-03-10
JP4179947B2 JP4179947B2 (en) 2008-11-12

Family

ID=34368765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003290914A Expired - Fee Related JP4179947B2 (en) 2003-08-08 2003-08-08 Manufacturing method of self-forming optical waveguide

Country Status (1)

Country Link
JP (1) JP4179947B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080735A (en) * 2005-09-15 2007-03-29 Nec Corp Light source device and its manufacturing method, indicator device and its manufacturing method, and drive method for indicator device
JP2008003197A (en) * 2006-06-21 2008-01-10 Toyoda Gosei Co Ltd Optical module and manufacturing method
JP2009198609A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler
JP2009198608A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler, component parts thereof and manufacturing method thereof
JP2010032582A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Method of manufacturing optical module
JP2010032583A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Optical component, optical module and adjusting method of the same
US7907808B2 (en) 2005-09-06 2011-03-15 Kabushiki Kaisha Totoya Chuo Kenkyusho Optical waveguide and method for manufacturing the same
US8170385B2 (en) 2008-02-19 2012-05-01 Toyoda Gosei Co., Ltd. Light coupler and manufacturing method thereof
WO2015019512A1 (en) * 2013-08-08 2015-02-12 日立化成株式会社 Resin composition for optical waveguides, resin film for optical waveguides using same, optical waveguide and photoelectric composite wiring board

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7907808B2 (en) 2005-09-06 2011-03-15 Kabushiki Kaisha Totoya Chuo Kenkyusho Optical waveguide and method for manufacturing the same
JP2007080735A (en) * 2005-09-15 2007-03-29 Nec Corp Light source device and its manufacturing method, indicator device and its manufacturing method, and drive method for indicator device
JP2008003197A (en) * 2006-06-21 2008-01-10 Toyoda Gosei Co Ltd Optical module and manufacturing method
JP4544210B2 (en) * 2006-06-21 2010-09-15 豊田合成株式会社 Optical module and manufacturing method thereof
JP2009198609A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler
JP2009198608A (en) * 2008-02-19 2009-09-03 Toyoda Gosei Co Ltd Light coupler, component parts thereof and manufacturing method thereof
US8170385B2 (en) 2008-02-19 2012-05-01 Toyoda Gosei Co., Ltd. Light coupler and manufacturing method thereof
JP2010032582A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Method of manufacturing optical module
JP2010032583A (en) * 2008-07-25 2010-02-12 Toyota Central R&D Labs Inc Optical component, optical module and adjusting method of the same
WO2015019512A1 (en) * 2013-08-08 2015-02-12 日立化成株式会社 Resin composition for optical waveguides, resin film for optical waveguides using same, optical waveguide and photoelectric composite wiring board

Also Published As

Publication number Publication date
JP4179947B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4179947B2 (en) Manufacturing method of self-forming optical waveguide
JP4084633B2 (en) Manufacturing method of optical waveguide
JPH10160947A (en) Wide-band plastic clad optical fiber
JP2006337748A (en) Optical waveguide and its manufacturing method
JP4555760B2 (en) Filler composition and method for producing hole assist fiber using the same
JP4011283B2 (en) Manufacturing method of optical transmission line
US7166322B2 (en) Optical waveguide and method for producing the same
JP2011039489A (en) Method of manufacturing optical waveguide device
JP4589211B2 (en) UV curable liquid resin composition for optics
JP2012018258A (en) Optical fiber core wire
JP4563445B2 (en) Manufacturing method of self-forming optical waveguide
US7399498B2 (en) Material composition for producing optical waveguide and method for producing optical waveguide
JP4622878B2 (en) Manufacturing method of optical waveguide
JP3938684B2 (en) Self-forming optical waveguide material composition
JP5820266B2 (en) Optical waveguide forming resin composition and optical waveguide using the same
JP5291030B2 (en) Optical device and manufacturing method thereof
JP4687631B2 (en) Optical waveguide and method for manufacturing the same
JP2008032764A (en) Optical waveguide
JP4024729B2 (en) Manufacturing method of optical waveguide
JP4670678B2 (en) Manufacturing method of optical waveguide
JP5073609B2 (en) Manufacturing method of optical waveguide
JP2011154107A (en) Plastic-cladding optical fiber
JP4979649B2 (en) Manufacturing method of optical module
JP2009223258A (en) Self-forming optical waveguide manufacturing method, and optical waveguide
JP6956088B2 (en) Methods and related kits for creating self-aligned optical guides between light sources and fiber optics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080826

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees