WO2015018948A1 - Célula electrocrómica flexible. - Google Patents

Célula electrocrómica flexible. Download PDF

Info

Publication number
WO2015018948A1
WO2015018948A1 PCT/ES2013/070582 ES2013070582W WO2015018948A1 WO 2015018948 A1 WO2015018948 A1 WO 2015018948A1 ES 2013070582 W ES2013070582 W ES 2013070582W WO 2015018948 A1 WO2015018948 A1 WO 2015018948A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
electrochromic
layer
lithium
transparent
Prior art date
Application number
PCT/ES2013/070582
Other languages
English (en)
French (fr)
Inventor
Mojtaba MESHKAT MAMALEK
Original Assignee
Intercomet, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intercomet, S.L. filed Critical Intercomet, S.L.
Priority to PCT/ES2013/070582 priority Critical patent/WO2015018948A1/es
Publication of WO2015018948A1 publication Critical patent/WO2015018948A1/es

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1506Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode
    • G02F1/1508Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect caused by electrodeposition, e.g. electrolytic deposition of an inorganic material on or close to an electrode using a solid electrolyte
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte

Definitions

  • the present invention relates to a flexible electrochromic cell.
  • This device comprises two flexible transparent substrates that incorporate two electrically conductive electrodes together, an electrochromic layer of a conductive polymer and a polymeric electrolyte curable by ultraviolet (UV) radiation.
  • UV ultraviolet
  • Electrochromic devices have the characteristic of losing transparency when an electric current is applied.
  • a typical electrochromic device comprises an electrochromic layer and an ion storage layer, coated by two conductive substrates.
  • the electrochromic layer and the ion storage layer can be separated by means of an electrically conductive ion layer.
  • Applying an external voltage the electrochromic devices have a reversible color change after the interleaving and de-interleaving of small cations and charges in the electrochromic layer.
  • the electrochromic layer comprises an inorganic metal oxide, commonly an oxide of a transition metal and in particular: tungsten oxide.
  • Electrochromic devices based on inorganic materials have a long history, however polymeric electrochromic materials have certain advantages compared to them.
  • REPLACEMENT SHEET (Rule 26) of doping ions.
  • Other beneficial properties of polymers are the circulatory coloring efficiencies, along with their overall processing capacity.
  • the use of a transparent conductive layer that is capable of presenting electrochromic properties can reduce the number of final layers by combining the electrochromic layer and a conductive layer together.
  • the electrolyte layer is a liquid solution that is not suitable for industrial production due to its problems such as containment and loss of ionic conductivity at low temperatures.
  • problems associated with a liquid electrolyte can be avoided.
  • electrochromic devices are constructed on a rigid glass substrate. However, it is difficult to manufacture these devices with a non-flat shape due to their rigidity and fragile nature. The use of a flexible substrate for the manufacture of an electrochromic device would solve this problem and present advantages such as lightness, durability and low cost.
  • the flexible electrochromic devices described in the present invention consist of two flexible transparent conductive films that are used as electrodes, one of which is coated with an electrochromic material. These conductive films are separated from each other by means of a solid polymer electrolyte.
  • a remarkable aspect of the invention lies in the fact that the substrate used is flexible, to avoid the practical limitations of the glass substrate. Electrochromic devices can be prohibitively expensive to manufacture and can also break into dangerous fragments after the impact of a foreign object. Typically, plastics are electrically resistant, chemically stable, thermally resistant, flexible, elastic, tear proof, etc. The manufacturing costs of these electrochromic devices are controllable: For example, the layer can be covered
  • REPLACEMENT SHEET Electrochromic on a electrically conductive poly (ethylene terephthalate) side film at rapid speed and subsequently, the coated layers can be laminated together by means of a curable ionic conductive electrolyte.
  • Another aspect of the invention is the use of a solid curable polymer electrolyte composition.
  • Liquid electrolytes based on organic solvents or water are not suitable for large and stable long-term area applications, due to evaporation, leaks, mechanical instability, and panel deformation due to gravity. These disadvantages can also be resolved through the use of a solid electrolyte. In addition, the production of solid electrolyte is easy and fast.
  • a solid curable polymer electrolyte composition includes at least one polymerizable material.
  • the polymerizable material intended for the preparation of the electrolyte composition behaves like a solid once the composition has been cured by ultraviolet radiation. It is desired that the UV curable polymer electrolyte have a glass transition temperature (T g ) lower than the ambient temperature, in order to increase the mobility of the ions.
  • the desired glass transition temperature (T g ) can be achieved through the use of plasticizers and / or other additives.
  • the glass transition temperature (T g) of the aforementioned electrolyte can become less than -60 e C.
  • a solid curable polymer electrolyte composition allows excellent adhesion to be achieved, which improves the connection of the electrolyte with the electrochromic material. This union between the layers of the solid state system improves the coloring efficiency.
  • Another aspect provided by the present invention is a commercially industrializable electrochromic material, which comprises a conductive polymer instead of inorganic material.
  • Organic electrochromic materials offer several advantages over inorganic ones, not only in terms of flexibility, ease of processing, fast response times, high optical contrasts and low cost, but also with regard to the effectiveness of coloring.
  • a disadvantage dependent on conductive polymers is
  • REPLACEMENT SHEET (Rule 26) that both electrons and ions act as charge vehicles.
  • Figure 1 is a schematic of a flexible electrochromic device, containing a UV curable polymer electrolyte, in contact with a conductive polymeric electrochromic layer.
  • the flexible electrochromic device object of the present invention consists of a cell formed by two flexible transparent conductive films (1-2) (2-1), which include a flexible substrate (1) and a conductive layer (2), which forms the electrodes; At least one of these conductive films is covered by an electrochromic material (3). These films are separated from each other by means of a solid polymer electrolyte (4), curable by UV ultraviolet radiation.
  • the transparent flexible substrates (1) are selected from a group consisting of polyesters, polyimides, polyamides, polycarbonate, poly (ethylene terephthalate), poly (phenylene oxide), polysulfones, polyester-amides, polyester -imides, poly (ether ethers), polyethersulfone, polyether ketone, polyetherimide, cellulosic materials and polystyrene / polyphenylene oxide, coated with an electrically conductive transparent material (2).
  • the conductive layer (2) covering the flexible substrate (1) can be selected from a group consisting of tin and indium oxide, copper, aluminum, gold, platinum, silver, cobalt, palladium, iridium.
  • the function of flexible transparent conductive electrodes is to provide the voltage required for movements
  • REPLACEMENT SHEET (Rule 26) of the ions in the electrolyte. You can also insert charges into the electrochromic layer or collect them from this layer, applying a direct and reverse voltage.
  • the electrochromic materials (3) that are used according to the present invention have a visible reversible change in the transmittance and / or reflectance as a result of the electrochemical reduction-oxidation (redox) reaction.
  • This redox reaction occurs after applying a voltage and therefore the insertion of the ions and charges in the electrochromic layer, or through the removal of the inserted charge and the ions thereof, applying a reverse voltage.
  • the electrochromic materials (3) may be a cathode electrochromic conductive polymer, selected from a group of conductive polymers including PEDOT, PProDOT, PEDOP5, PProDOP, PTT3PAEM-EDOT and combinations thereof.
  • the electrochromic material (3) may consist of at least conductive polymers including PEDOT, PProDOT, PEDOP5, PProDOP, PTT3PAEM-EDOT.
  • the conductive polymer solution comprises at least one solvent selected from multifunctional alcohols or alcohols, or organosulfoxide compounds.
  • the electrochromic material may be coated on the flexible transparent conductive film (2), by means of a method selected from: spray coating, immersion coating, knife coating and screen printing.
  • composition of the solid curable polymer electrolyte includes at least one ionic compound, at least one polymerizable material, at least one initiator and at least one plasticizer.
  • the function of the ionic compound is to provide the ionic transport for the composition.
  • the ionic compound is selected from lithium salts, such as lithium mida, lithium triflate, lithium (bis) trifluoromethanesulfonamide, lithium tetrafluoroborate, lithium perchlorate, lithium iodide, lithium trifluorocarbonate, lithium nitrate, thiocyanate lithium, lithium hexafluoroarsenate,
  • REPLACEMENT SHEET (Rule 26) lithium hexafluorophosphate, lithium meth and mixtures thereof.
  • the polymerizable material has the function of making the solid electrolyte composition, once the composition is cured by UV.
  • the polymerizable material is a UV curable polymerizable material. More than one polymerizable material could be used in an electrolyte composition. Examples of polymerizable material that can be used in the electrolyte composition include, but are not limited to, alkyl and diallyl ethers, multifunctional thiols, diisocyanate ester derivatives, acrylates, methacrylates and diacrylates such as poly (ethylene glycol) ether acrylate methyl, poly (ethylene glycol) methyl ether methacryl, poly (ethylene glycol) methyl ether diacrylate and combinations thereof.
  • a commercially available mixture of allyl and diallyl ether, multifunctional thiol and diisocyanate ester derivatives was used.
  • the multifunctional thiol can exhibit excellent adhesion with improved electrolyte connection to the electrochromic layer. This good bond between the layers in a solid state system can improve the coloring efficiency.
  • the use of nanoparticles based on metal oxides can also improve the adhesion of the electrochromic layer, and the electrolyte layer to its neighboring layer.
  • the electrolyte compositions may also include at least one initiator.
  • the initiators can be either photoinitiators or thermal initiators.
  • the photoinitiators are used because they allow the use of UV light to cure the polymerizable material.
  • a photoinitiator is a compound that, under the absorption of light, undergoes photoreaction, producing reactive species.
  • photoinitiators include organic peroxides (for example, benzoyl peroxide), azo compounds, quinones, nitrous compounds, acyl halides, hydrazones, mercapto compounds, pyrilio compounds, imidazoles, chlorotriazines, benzoin, alkyl and benzoin esters, diketones, Phenones and their mixtures.
  • the electrolyte compositions also include at least one plasticizer.
  • the plasticizer as used herein, is a polar solvent or a combination of polar solvents, with a high dielectric constant, which facilitates the achievement of high ionic conductivity.
  • the polar solvents are selected from a group of alkylene carbonates, including propylene carbonate, ethylene carbonate, butylene carbonate, glycine carbonate and combinations thereof.
  • the composition of the disclosed electrolyte can be varied by modifying the ratio of ionic compound, plasticizer, polymerizable material and ionic compound, in order to achieve a better ionic transport, and consequently coloring efficiency. It is desired that the UV-curable polymer electrolyte, as used herein, have a glass transition temperature (T g ) less than room temperature, in order to increase the mobility of ions.
  • the glass transition temperature (T g ) of the mentioned electrolyte is less than - 60 e C.
  • the electrolyte disclosed herein is coated on the electrochromic layer, by means of a method selected from dip coating, knife coating, injection coating and screen printing.
  • Polymerization of the curable electrolyte disclosed herein is achieved by exposing the device to a UV source.
  • the transparency of the film can be altered and opacity can be achieved.
  • a good coloring and duration efficiency can be achieved by optimizing the electrochromic layer of this device, together with its electrolyte.
  • the degree of transparency depends on the composition of the electrochromic layer, its method of deposition, its thickness, the composition of the electrolyte and its thickness. Through the application of a reverse voltage, transparency returns to its original state.
  • Flexible electrochromic devices are more useful for architectural or vehicular applications, compared to glass based electrochromics, due to their ability to be easily cut and shaped. These devices can be used for solar energy regulation
  • REPLACEMENT SHEET (Rule 26) incident, sunlight and glare in buildings and vehicles. Examples An embodiment of the present invention is illustrated by the following examples. The essential characteristics of the present invention can be established from the above descriptions and the following examples.
  • a solution of thiophene derivative was prepared with an organosulfoxide compound with a ratio of 1: 1 by weight, and a surfactant. It was stirred for 10 minutes before coating.
  • a solution prepared in example 1 was coated by means of a method of coating by blades on ITO / PET with a thickness between 5-40 ⁇ .
  • the coating of a mixture of poly thiophene derivative with an extra solution can improve the conductivity of the electrochromic layer and consequently achieve an individual layer device avoiding the ITO layer.
  • REPLACEMENT SHEET (Rule 26) This electrolyte contains a solution of lithium salt (1 M) in a 1: 1 mixture of two solvents of cyclic carbonates by weight. The solution was stirred at 65 e C until dissolved. Mixing the resulting solution with a commercially mixture of an alkyl ether and diallyl a multifunctional thiol ester diisocyanate and an aromatic ketone, it resulted in a viscous composition and stirred at 65 C for 15 minutes. Subsequently, a photoinitiator was added thereto and the final mixture was stirred at room temperature for 15 minutes.
  • Example 3 The solution prepared in Example 3 was coated on a first coated substrate by means of an electrochromic layer, by means of a method of coating with blades. Its thickness was 20-1000 ⁇ . Finally, a bare sheet of ITO / PET covered the electrolyte layer as shown in Figure 1. The final device was exposed to UV light at an intensity between 5-30 mW / cm 2 at 365 nm for 1 -25 min. UV curing resulted in an electrolyte in solid form.
  • the transparency of the film and the opacity can be modified.
  • a good coloring efficiency and shelf life can be achieved by optimizing the electrochromic layer of this device, along with its electrolyte.
  • the degree of transparency (color modification) depends on the composition of the electrochromic layer, its deposition method, its thickness, the composition of the electrolyte and its thickness. Applying a reverse voltage, the transparency returns to its original state.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

Célula electrocrómica flexible que comprende una primera película conductora, transparente y flexible (1-2), una capa electrocrómica (3) unida a la superficie del electrodo (2) de la primera película conductora, un electrolito polimérico (4), curable por radiación ultravioleta UV, sólido y transparente, en contacto con la capa electrocrómica (3) y una segunda película conductora, transparente y flexible (2-1).

Description

DESCRIPCIÓN
Célula electrocrómica flexible. Objeto de la invención
La presente invención se refiere a una célula electrocrómica flexible. Este dispositivo comprende sendos sustratos transparentes flexibles que incorporan sendos electrodos eléctricamente conductores unidos, una capa electrocrómica de un polímero conductor y un electrolito polimérico curable por radiación ultravioleta (UV).
Antecedentes de la invención Los dispositivos electrocrómicos presentan la característica de perder la transparencia cuando se le aplica una corriente eléctrica. Un dispositivo electrocrómico típico comprende una capa electrocrómica y una capa de almacenamiento de iones, revestidas por dos substratos conductores. La capa electrocrómica y la capa de almacenamiento de iones se pueden separar por medio de una capa electrolítica conductora de iones. Aplicando un voltaje externo, los dispositivos electrocrómicos presentan un cambio de color reversible tras el intercalado y des-intercalado de cationes pequeños y cargas en la capa electrocrómica. Normalmente, la capa electrocrómica comprende un óxido de metal inorgánico, comúnmente un óxido de un metal de transición y en particular: óxido de tungsteno. Los dispositivos electrocrómicos basados en materiales inorgánicos tienen una larga historia, no obstante los materiales electrocrómicos poliméricos tienen ciertas ventajas en comparación con ellos. En primer lugar, se dispone de una amplia gama de colores para los materiales orgánicos, debido a la capacidad para sintetizar una amplia variedad de polímeros con varios grados de riqueza en electrones y conjugación. En segundo lugar, pueden aumentar la vida útil del dispositivo. En tercer lugar, los dispositivos basados en polímeros han logrado tiempos de encendido extremadamente rápidos para cambios grandes de densidad óptica. Este encendido rápido se atribuye a una morfología altamente abierta de películas electroactivas, lo que permite un transporte rápido i
HOJA DE REEMPLAZO (Regla 26) de iones dopantes. Otras propiedades beneficiosas de los polímeros son las eficacias de coloración en circulación, junto con su capacidad general de procesado. La utilización de una capa conductora transparente que es capaz de presentar propiedades electrocrómicas puede reducir el número de capas finales por medio de la combinación de la capa electrocrómica y una capa conductora juntas.
Generalmente, la capa de electrolito es una disolución líquida que no resulta adecuada para la producción industrial debido a sus problemas tales como contención y pérdida de conductividad iónica a bajas temperaturas. Por medio del uso de un electrolito sólido se pueden evitar los problemas asociados a un electrolito líquido. También sería deseable proporcionar un electrolito sólido que tenga excelente conductividad iónica. Normalmente, los dispositivos electrocrómicos están construidos sobre un sustrato de vidrio rígido. No obstante, es difícil fabricar estos dispositivos con forma no plana debido a su rigidez y naturaleza frágil. La utilización de un sustrato flexible para la fabricación de un dispositivo electrocromico solucionaría este problema y presentaría ventajas como ligereza, durabilidad y bajo coste.
Descripción de la invención
Los dispositivos electrocrómicos flexibles que se describen en la presente invención consisten en dos películas conductoras transparentes flexibles que se emplean como electrodos, una de ellas está revestida por un material electrocromico. Estas películas conductoras están separadas una de otra por medio de un electrolito polimérico sólido.
Un aspecto destacable de la invención radica en el hecho de que el sustrato empleado es flexible, para evitar las limitaciones prácticas que presenta el sustrato de vidrio. Los dispositivos electrocrómicos pueden ser prohibitivamente caros de fabricar y también pueden romperse en fragmentos peligrosos tras el impacto de un objeto extraño. Típicamente, los plásticos son eléctricamente resistentes, químicamente estables, resistentes térmicamente, flexibles, elásticos, a prueba de rotura, etc. Los costes de fabricación de estos dispositivos electrocrómicos son controlables: Por ejemplo, se puede cubrir la capa
2
HOJA DE REEMPLAZO (Regla 26) electrocrómica sobre una película lateral de poli(tereftalato de etileno) eléctricamente conductora a velocidad rápida y posteriormente, se pueden laminar las capas recubiertas juntas por medio de un electrolito conductor iónico curable.
Otro aspecto de la invención es el empleo de una composición de electrolito polimérica curable sólida. Los electrolitos líquidos basados en disolventes orgánicos o agua no son apropiados para aplicaciones de zonas grandes y estables a largo plazo, debido a la evaporación, fugas, inestabilidad mecánica, y deformación del panel debido a la gravedad. Estas desventajas también se pueden resolver por medio del uso de un electrolito sólido. Además, la producción del electrolito sólido es fácil y rápida.
Una composición de electrolito polimérica curable sólida, según se usa en la presente invención, incluye al menos un material polimerizable. El material polimerizable destinado a la preparación de la composición del electrolito, se comporta como un sólido una vez que se ha curado la composición mediante radiación ultravioleta. Se desea que el electrolito polimérico curable por UV tenga una temperatura de transición vitrea (Tg) menor que la temperatura ambiente, con la finalidad de aumentar la movilidad de los iones. Se puede conseguir la temperatura de transición vitrea (Tg) deseada por medio del uso de plastificantes y/u otros aditivos. La temperatura de transición vitrea (Tg) del electrolito mencionado puede llegar a ser menor de -60e C. Una composición de electrolito polimérica curable sólida, según se usa en la presente invención, permite lograr una adhesión excelente, que mejore la conexión del electrolito con el material electrocrómico. Esta unión entre las capas del sistema en estado sólido mejora la eficacia de coloración. Otro aspecto que proporciona la presente invención es un material electrocrómico comercialmente industrializable, que comprende un polímero conductor en lugar de material inorgánico. Los materiales electrocrómicos orgánicos ofrecen varias ventajas con respecto a los inorgánicos, no solo en términos de flexibilidad, facilidad de procesado, tiempos de respuesta rápidos, elevados contrastes ópticos y bajo coste, sino también con respecto a la eficacia de la coloración. Una desventaja dependiente de los polímeros conductores es
3
HOJA DE REEMPLAZO (Regla 26) que ambos electrones e iones actúan como vehículos de carga. Se puede formar una vasta configuración de polímeros conductores con conductividades que varían desde semiconductores hasta conductores razonablemente buenos. Descripción de las figuras
Para complementar la descripción que se está realizando y con objeto de facilitar la comprensión de las características de la invención, se acompaña a la presente memoria descriptiva un juego de dibujos en los que, con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La Figura 1 es un esquema de un dispositivo electrocrómico flexible, que contiene un electrolito polimérico curable por UV, en contacto con una capa electrocrómica polimérica conductora.
Realización preferente de la invención
El dispositivo electrocrómico flexible objeto de la presente invención consiste en una célula formada por dos películas conductoras transparentes flexibles (1 -2) (2-1 ), que incluyen un sustrato flexible (1 ) y una capa conductora (2), que conforma los electrodos; al menos una de estas películas conductoras está recubierta por un material electrocrómico (3). Estas películas están separadas una de otra por medio de un electrolito polimérico sólido (4), curable por radiación ultravioleta UV.
Los sustratos flexibles transparentes (1 ), según la presente invención, se seleccionan de un grupo que consiste en poliésteres, poliimidas, poliamidas, policarbonato, poli(tereftalato de etileno), poli(óxido de fenileno), polisulfonas, poliéster-amidas, poliéster-imidas, poli(éteres de éster), poliétersulfona, poliéter cetona, poliéterimida, materiales celulósicos y óxido de poliestireno/polifenileno, recubiertos con un material transparente eléctricamente conductor (2).
La capa conductora (2) que recubre el sustrato flexible (1 ) puede seleccionarse entre un grupo que consiste en óxido de estaño e indio, cobre, aluminio, oro, platino, plata, cobalto, paladio, iridio. La función de los electrodos conductores transparentes flexibles es proporcionar el voltaje requerido para los movimientos
4
HOJA DE REEMPLAZO (Regla 26) de los iones en el electrolito. También se pueden insertar cargas en la capa electrocrómica o recogerlas de esta capa, aplicando un voltaje directo e inverso.
Los materiales electrocrómicos (3) que se usan según la presente invención, presentan un cambio visible reversible en la transmitancia y/o reflectancia como resultado de la reacción electroquímica de reducción-oxidación (redox). Esta reacción redox ocurre después de aplicar un voltaje y por consiguiente la inserción de los iones y cargas en la capa electrocrómica, o por medio de la retirada de la carga insertada y los iones de la misma, aplicando un voltaje inverso.
Los materiales electrocrómicos (3), según la presente invención podrán ser un polímero conductor electrocrómico catódico, seleccionado entre un grupo de polímeros conductores incluyendo PEDOT, PProDOT, PEDOP5, PProDOP, PTT3PAEM-EDOT y sus combinaciones.
En una realización el material electrocrómico (3) puede consistir en al menos polímeros conductores incluyendo PEDOT, PProDOT, PEDOP5, PProDOP, PTT3PAEM-EDOT. La disolución polimérica conductora comprende al menos un disolvente seleccionado entre alcoholes o alcoholes multifuncionales, o compuestos de organosulfóxido.
El material electrocrómico puede estar revestido sobre la película conductora transparente flexible (2), por medio de un método seleccionado entre: recubrimiento por pulverización, recubrimiento por inmersión, recubrimiento por cuchillas e impresión por serigrafía.
En cuanto a la composición del electrolito polimérico curable sólido, según se usa en la presente invención, incluye al menos un compuesto iónico, al menos un material polimerizable, al menos un iniciador y al menos un plastificante.
La función del compuesto iónico es proporcionar el transporte iónico para la composición. El compuesto iónico está seleccionado entre sales de litio, tales como ¡mida de litio, triflato de litio, (bis) trifluorometanosulfonamida de litio, tetrafluoroborato de litio, perclorato de litio, yoduro de litio, trifluorocarbonato de litio, nitrato de litio, tiocianato de litio, hexafluoroarsenato de litio,
5
HOJA DE REEMPLAZO (Regla 26) hexafluorofosfato de litio, metida de litio y sus mezclas.
El material polimerizable tiene por función hacer la composición de electrolito sólida, una vez que la composición se cure por UV. El material polimerizable es un material polimerizable curable por UV. Se podría utilizar más de un material polimerizable en una composición de electrolito. Ejemplos de material polimerizable que se puede utilizar en la composición de electrolito incluyen, pero no se limitan a, éteres de alquilo y dialilo, tioles multifuncionales, derivados de éster de diisocianato, acrilatos, metacrilatos y diacrilatos tales como acrilato de éter poli(etilenglicol)metílico, metacrilato de éter poli(etilenglicol)metílico, diacrilato de éter poli(etilenglicol)metílico y sus combinaciones.
En una realización, se utilizó una mezcla disponible comercialmente de éter de alilo y dialilo, tiol multifuncional y derivados de éster de diisocianato. El tiol multifuncional puede presentar una excelente adhesión con mejora de la conexión del electrolito a la capa electrocrómica. Esta buena unión entre las capas en un sistema en estado sólido puede mejorar la eficacia de coloración. El uso de nanopartículas basadas en óxidos metálicos puede también mejorar la adhesión de la capa electrocrómica, y la capa de electrolito a su capa vecina.
Las composiciones de electrolito pueden también incluir al menos un iniciador. Los iniciadores pueden ser bien fotoiniciadores o iniciadores térmicos. En una realización, los fotoiniciadores se utilizan porque permiten el uso de luz UV para curar el material polimerizable.
Generalmente, un fotoiniciador es un compuesto que, bajo la absorción de luz, experimenta una fotorreacción, produciendo especies reactivas. Ejemplos de fotoiniciadores incluyen peróxidos orgánicos (por ejemplo, peróxido de benzoilo), compuestos azo, quinonas, compuestos nitrosos, haluros de acilo, hidrazonas, compuestos mercapto, compuestos de pirilio, imidazoles, clorotriazinas, benzoína, ésteres de alquilo y benzoína, dicetonas, fenonas y sus mezclas.
Las composiciones de electrolito también incluyen al menos un plastificante. El plastificante, según se usa en la presente memoria, es un disolvente polar o una combinación de disolventes polares, con elevada constante dieléctrica, lo que facilita la consecución de una elevada conductividad iónica. En una realización,
6
HOJA DE REEMPLAZO (Regla 26) los disolventes polares están seleccionados entre un grupo de carbonatos de alquileno, incluyendo carbonato de propileno, carbonato de etileno, carbonato de butileno, carbonato de glicina y sus combinaciones. La composición del electrolito divulgado se puede variar modificando la relación de compuesto iónico, plastificante, material polimerizable y compuesto iónico, con el fin de conseguir un mejor transporte iónico, y por consiguiente eficacia de coloración. Se desea que el electrolito polimérico curable por UV, según se usa en la presente memoria, tenga una temperatura de transición vitrea (Tg) menor que la temperatura ambiente, con el fin de aumentar la movilidad de los iones. La temperatura de transición vitrea (Tg) del electrolito mencionado es menor de - 60eC.
Se recubre el electrolito divulgado en el presente documento sobre la capa electrocrómica, por medio de un método seleccionado entre recubrimiento por inmersión, recubrimiento por cuchillas, recubrimiento por inyección e impresión por serigrafía.
La polimerización del electrolito curable divulgado en el presente documento, se logra por medio de exposición del dispositivo a una fuente UV.
Cuando se aplica un voltaje pequeño entre 1 -6V a los electrodos del dispositivo electrocrómico divulgado, se puede alterar la transparencia de la película y se puede conseguir opacidad. Se pueden conseguir una buena eficacia de coloración y duración optimizando la capa electrocrómica de este dispositivo, junto con su electrolito. El grado de transparencia (cambio de color) depende de la composición de la capa electrocrómica, su método de deposición, su espesor, la composición del electrolito y su espesor. Por medio de la aplicación de un voltaje inverso, la transparencia vuelve a su estado original.
Los dispositivos electrocrómicos flexibles son más útiles para aplicaciones arquitectónicas o vehiculares, en comparación con los electrocrómicos basados en vidrio, debido a su capacidad para ser cortados y conformados fácilmente. Estos dispositivos se pueden usar para la regulación de la energía solar
7
HOJA DE REEMPLAZO (Regla 26) incidente, la luz solar y el deslumbramiento en edificaciones y vehículos. Ejemplos Una realización de la presente invención se ilustra por medio de los siguientes ejemplos. Se pueden establecer las características esenciales de la presente invención a partir de las descripciones anteriores y los ejemplos siguientes.
El significado de las abreviaturas usadas es el siguiente: "min" significa minutos, "μΓπ" significa micrómetro, "M" significa molaridad, "eC" significa grado Celsius, "ITO" significa óxido de estaño e indio, "PET" significa poli(tereftalato de etileno), "mw/cm2" significa milivatio/centímetro cuadrado, "nm" significa nanómetro, "UV" significa ultravioleta, "V" significa voltios. Ejemplo 1
Preparación de disolución electrocrómica
Se preparó una disolución de derivado de tiofeno con un compuesto de organosulfóxido con una relación de 1 :1 en peso, y un tensioactivo. Se agitó durante 10 minutos antes del recubrimiento.
Ejemplo 2 Recubrimiento de la capa electrocrómica sobre sustrato flexible
Se revistió una disolución preparada en el ejemplo 1 por medio de un método de recubrimiento por cuchillas sobre ITO/PET con un espesor entre 5-40 μηι. El recubrimiento de una mezcla de derivado de poli tiofeno con una disolución extra puede mejorar la conductividad de la capa electrocrómica y por consiguiente conseguir un dispositivo de capa individual evitando la capa ITO.
Ejemplo 3 Preparación de la disolución de electrolito
8
HOJA DE REEMPLAZO (Regla 26) Este electrolito contiene una disolución de sal de litio (1 M) en una mezcla de 1 :1 de dos disolventes de carbonatos cíclicos en peso. La disolución se agitó a 65 eC hasta que se disolvió. La mezcla de la disolución resultante con una mezcla comercialmente de un éter de alquilo y dialilo, un tiol multifuncional, un éster de diisocianato y una cetona aromática, dio como resultado una composición viscosa que se agitó a 65 eC durante 15 minutos. Posteriormente, se añadió un fotoiniciador a ello y se agitó la mezcla final a temperatura ambiente durante 15 minutos. Ejemplo 4
Preparación de dispositivo electrocrómico flexible
Se revistió la disolución preparada en el ejemplo 3 sobre un primer sustrato revestido por medio de una capa electrocrómica, por medio de un método de recubrimiento con cuchillas. Su espesor fue de 20-1000 μηι. Finalmente, una lámina desnuda de ITO/PET cubrió la capa de electrolito como se muestra en la Figura 1 . Se expuso el dispositivo final a luz UV a una intensidad entre 5-30 mW/cm2 en 365 nm durante 1 -25 min. El curado por UV dio como resultado un electrolito en forma sólida.
Cuando se aplica un voltaje pequeño entre 1 -6 V a los electrodos, se puede modificar la transparencia de la película y la opacidad. Se puede conseguir una buena eficacia de coloración y vida útil optimizando la capa electrocrómica de este dispositivo, junto con su electrolito. El grado de transparencia (modificación de color) depende de la composición de la capa electrocrómica, su método de deposición, su espesor, la composición del electrolito y su espesor. Aplicando un voltaje inverso, la transparencia vuelve a su estado original.
9
HOJA DE REEMPLAZO (Regla 26)

Claims

REIVINDICACIONES
1 . Célula electrocrómica flexible que comprende:
- una primera película conductora, transparente y flexible (1 -2), que comprende un sustrato (1 ) y una capa (2) eléctricamente conductora, que está en contacto con una capa electrocrómica (3) intermedia;
- una capa electrocrómica (3) unida a la superficie del electrodo (2) de la primera película conductora transparente y en contacto con una capa de electrolito polimérico (4) intermedia;
- un electrolito polimérico (4), curable por radiación ultravioleta UV, sólido y transparente, en contacto con la capa electrocrómica (3) y con un segundo electrodo (2), de una segunda película conductora (2-1 ); y
- una segunda película conductora, transparente y flexible (2-1 ) que comprende un sustrato (1 ) y una capa (2) eléctricamente conductora, en contacto con la capa de electrolito polimérico (4) y que no tiene sustancialmente contacto entre la capa electrocrómica (3).
2. La célula electrocrómica flexible de la reivindicación 1 , en la que el sustrato transparente y flexible (1 ), que forma la primera y segunda películas conductoras, comprende un polímero seleccionado entre un grupo que consiste en poli(tereftalato de etileno) (PET), poli(naftalato de etileno) (PEN), policarbonato (PC), poliétersulfona (PES) y poliimida (Pl), recubierto con un material transparente eléctricamente conductor.
3. La célula electrocrómica flexible de la reivindicación 1 , en la capa (2), transparente y eléctricamente conductora, que forma la primera y segunda películas conductoras, comprende al menos un material seleccionado entre el grupo que consiste en óxido de indio y estaño, cobre, aluminio, oro, platino, plata, cobalto, paladio e iridio.
4. La célula electrocrómica flexible de la reivindicación 1 , en la que la capa electrocrómica (3) comprende un polímero conductor electrocrómico catódico seleccionado entre PEDOT, PProDOT, PEDOP5 PProDOP, PTT3PAEM-EDOT y sus combinaciones.
5. La célula electrocrómica flexible de la reivindicación 4, en la que la disolución
10
HOJA DE REEMPLAZO (Regla 26) polimérica conductora comprende al menos un disolvente seleccionado entre un grupo que consiste en metanol, etanol, iso-propanol, sulfóxido de dimetilo, dimetilformamida, etilenglicol y sus combinaciones.
6. La célula electrocrómica flexible de la reivindicación 1 , en la que la capa electrocrómica (3) se deposita sobre el lado conductor (2) de la primera lámina flexible por medio de un método seleccionado entre recubrimiento por pulverización, recubrimiento por inmersión, recubrimiento por cuchillas e impresión por serigrafía.
7. La célula electrocrómica flexible de la reivindicación 1 , en la que el electrolito sólido (4) comprende: un compuesto iónico, material polimerizable, un fotoiniciador y un plastificante.
8. La célula electrocrómica flexible de la reivindicación 7, en la que el material flexible comprende una mezcla de éter de alquilo y dialilo, tiol multifuncional, éster de diisocianato y cetona aromática.
9. La célula electrocrómica flexible de la reivindicación 7, en la que el fotoiniciador está seleccionado entre peróxidos orgánicos (por ejemplo, peróxido de benzoilo), compuestos azo, quinonas, compuestos nitrosos, haluros de acilo, hidrazonas, compuestos mercapto, compuestos de pirilio, imidazoles, clorotriazinas, benzoina, éteres de alquilo y benzoina, dicetonas, fenonas y sus mezclas.
10. La célula electrocrómica flexible de la reivindicación 7, en la que el plastificante está seleccionado entre carbonates de alquileno, tales como carbonato de propileno, carbonato de etileno, carbonato de butileno, carbonato de glicerina y sus combinaciones.
1 1 . La célula electrocrómica flexible de la reivindicación 7, en la que el compuesto iónico está seleccionado entre sales de litio, tales como ¡mida de litio, triflato de litio, (bis) trifluorometanosulfonimida de litio, tetrafluoroborato de litio, perclorato de litio, yoduro de litio, trifluorocarbonato de litio, nitrato de litio, tiocianato de litio, hexafluoroarsenato de litio, hexafluorofosfato de litio, metida de litio y sus mezclas.
11
HOJA DE REEMPLAZO (Regla 26)
12. La célula electrocrómica flexible de la reivindicación 1 , en la que la capa de electrolito se reviste sobre la capa electrocrómica por medio de un método seleccionado entre recubrimiento por inmersión, recubrimiento por cuchillas, recubrimiento por inyección e impresión por serigrafía.
13. La célula electrocrómica de la reivindicación 1 , en la que la polimerización del electrolito curable (4) se logra por medio de exposición del dispositivo a una fuente de rayos ultravioleta UV.
14. El polímero curado sólido preparado de la reivindicación 13, que tiene una temperatura de transición vitrea (Tg) que es de aproximadamente -60e C.
15. Un método para preparar una célula electrocrómica flexible que comprende: - Revestir un primer sustrato flexible (1 ) con un primera capa transparente (2), eléctricamente conductora;
Revestir un segundo sustrato flexible (2) con una segunda capa transparente (2), eléctricamente conductora;
Revestir el primer sustrato con una capa electrocrómica (3), situada encima de la capa conductora (2);
- Cubrir el primer sustrato revestido con la capa electrocrómica (3) con una mezcla de electrolito polimérico (4), curable por UV, sólida y transparente que comprende un prepolímero, un fotoiniciador, un plastificante y un compuesto iónico;
- Poner en contacto el primer sustrato flexible revestido con la capa electrocrómica (3) con el segundo sustrato flexible, en el que el electrolito sólido (4) está en contacto con la capa electrocrómica (3) y el segundo electrodo (2), en el que no existe sustancialmente contacto entre la capa electrocrómica (3) y el segundo electrodo (2).
12
HOJA DE REEMPLAZO (Regla 26)
PCT/ES2013/070582 2013-08-07 2013-08-07 Célula electrocrómica flexible. WO2015018948A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070582 WO2015018948A1 (es) 2013-08-07 2013-08-07 Célula electrocrómica flexible.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2013/070582 WO2015018948A1 (es) 2013-08-07 2013-08-07 Célula electrocrómica flexible.

Publications (1)

Publication Number Publication Date
WO2015018948A1 true WO2015018948A1 (es) 2015-02-12

Family

ID=52460699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070582 WO2015018948A1 (es) 2013-08-07 2013-08-07 Célula electrocrómica flexible.

Country Status (1)

Country Link
WO (1) WO2015018948A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772846A1 (en) * 2019-08-07 2021-02-10 Furcifer Inc. Back cover for mobile devices with adjustable appearance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094052A2 (en) * 2005-03-01 2006-09-08 Triton Systems, Inc. Gel polymer electrolytes
WO2007002989A1 (en) * 2005-07-01 2007-01-11 Schefenacker Vision Systems Australia Pty Ltd Charge conducting medium
US20080070062A1 (en) * 2006-09-20 2008-03-20 Bayer Materialscience Ag Electrochromic arrangement
US20100294330A1 (en) * 2009-05-25 2010-11-25 Industrial Technology Research Institute Photovoltaic electrochromic device and method of manufacturing the same
US20110233532A1 (en) * 2010-03-25 2011-09-29 Sotzing Gregory A Formation of conjugated polymers for solid-state devices
WO2013003548A2 (en) * 2011-06-30 2013-01-03 University Of Florida Research Foundation, Inc. Multiple controlled electrochromic devices for visible and ir modulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006094052A2 (en) * 2005-03-01 2006-09-08 Triton Systems, Inc. Gel polymer electrolytes
WO2007002989A1 (en) * 2005-07-01 2007-01-11 Schefenacker Vision Systems Australia Pty Ltd Charge conducting medium
US20080070062A1 (en) * 2006-09-20 2008-03-20 Bayer Materialscience Ag Electrochromic arrangement
US20100294330A1 (en) * 2009-05-25 2010-11-25 Industrial Technology Research Institute Photovoltaic electrochromic device and method of manufacturing the same
US20110233532A1 (en) * 2010-03-25 2011-09-29 Sotzing Gregory A Formation of conjugated polymers for solid-state devices
WO2013003548A2 (en) * 2011-06-30 2013-01-03 University Of Florida Research Foundation, Inc. Multiple controlled electrochromic devices for visible and ir modulation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3772846A1 (en) * 2019-08-07 2021-02-10 Furcifer Inc. Back cover for mobile devices with adjustable appearance
CN112437171A (zh) * 2019-08-07 2021-03-02 菲尔齐费尔公司 具有可调节外观的移动设备的后盖
US11032407B2 (en) 2019-08-07 2021-06-08 Furcifer Inc. Back cover for mobile devices with adjustable appearance
EP4286934A3 (en) * 2019-08-07 2024-02-28 Furcifer Inc. Back cover for mobile devices with adjustable appearance

Similar Documents

Publication Publication Date Title
Kim et al. Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window
Yun et al. Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices
JP6798098B2 (ja) エレクトロクロミック装置及びその製造方法
KR102183001B1 (ko) 전자적 스위칭가능 프라이버시 디바이스
US8179587B2 (en) Electrochromic device
CN101852960A (zh) 全固态高分子可控电致变色柔性薄膜器件及其制造方法
TWI281054B (en) Electrochromic device based on poly-(3,4-dioxy-thiophene)derivatives
KR20170134472A (ko) 플라스틱 기판을 가지는 전기 화학적 장치
US20160011482A1 (en) Electrochromic device comprising three or four layers
BRPI0925039B1 (pt) transístor de filme fino eletrocrômico e método de fabricação do mesmo
JP5577586B2 (ja) 電解質形成用塗工液、及びそれを用いた色素増感型太陽電池
ES2946279T3 (es) Películas electrocrómicas con protección de bordes
Ganesh et al. A pragmatic approach to methyl methacrylate based solid polymer electrolyte processing: A case study for electrochromism
JP5380851B2 (ja) 色素増感型太陽電池の製造方法および色素増感型太陽電池モジュールの製造方法
CN108604035A (zh) 电致变色膜在基体上的整合
Ko et al. Self-healable electrochromic ion gels for low power and robust displays
KR102021189B1 (ko) 전기변색소자 및 그의 제조방법
Lee et al. A facile nanoarchitectonics of electrochromic devices with poly (3, 4-ethylenedioxythiophene) and bioplastic composite
JP6848505B2 (ja) エレクトロクロミック素子
WO2015018948A1 (es) Célula electrocrómica flexible.
JP5309589B2 (ja) 色素増感型太陽電池および色素増感型太陽電池モジュール
JP2009217970A (ja) 酸化物半導体電極用積層体、酸化物半導体電極、色素増感型太陽電池、および色素増感型太陽電池モジュール
Meng Organic Electronics for Electrochromic Materials and Devices
KR101642894B1 (ko) 매립형 전기 변색 소자 및 그 제조 방법
KR102468146B1 (ko) 전기변색소자 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891244

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891244

Country of ref document: EP

Kind code of ref document: A1