WO2015016564A1 - 냉매 유로를 포함하는 전지모듈 어셈블리 - Google Patents

냉매 유로를 포함하는 전지모듈 어셈블리 Download PDF

Info

Publication number
WO2015016564A1
WO2015016564A1 PCT/KR2014/006913 KR2014006913W WO2015016564A1 WO 2015016564 A1 WO2015016564 A1 WO 2015016564A1 KR 2014006913 W KR2014006913 W KR 2014006913W WO 2015016564 A1 WO2015016564 A1 WO 2015016564A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery module
module assembly
modules
sub
battery
Prior art date
Application number
PCT/KR2014/006913
Other languages
English (en)
French (fr)
Inventor
이범현
최지영
신진규
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/894,805 priority Critical patent/US9786968B2/en
Priority to EP14833029.3A priority patent/EP2991134B1/en
Priority to JP2016516468A priority patent/JP6131503B2/ja
Publication of WO2015016564A1 publication Critical patent/WO2015016564A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/627Stationary installations, e.g. power plant buffering or backup power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/512Connection only in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a battery module assembly including a refrigerant passage, and more particularly, to a battery module assembly including unit modules mounted on a cartridge in a state in which unit cells are electrically connected by a bus bar.
  • Two or more sub-modules including two or more unit modules stacked in a vertical direction from the ground to form a refrigerant passage, and arranged in a lateral direction while being spaced apart from each other to provide a refrigerant passage;
  • a bracket in which ends of the sub-modules are fixed to each other and a coolant outlet formed in communication with the coolant flow path is formed.
  • Secondary batteries are also attracting attention as energy sources such as electric vehicles and hybrid electric vehicles, which are proposed as a way to solve air pollution of conventional gasoline and diesel vehicles using fossil fuel.
  • the power storage device is a device that stores energy when power demand is low and supplies power in an overload or emergency, and provides an effect of improving power quality and energy use efficiency.
  • household power storage devices and industrial or commercial medium power storage devices are associated with smart grid technology, and the market size is rapidly growing.
  • the type of applications using the secondary battery has been very diversified due to the advantages of the secondary battery, and it is expected that the secondary battery will be applied to many fields and products in the future.
  • small mobile devices such as mobile phones, PDAs, digital cameras, notebook computers, and the like are used with one or two or four small and light battery cells per device according to the miniaturization tendency of the products.
  • medium and large devices such as electric vehicles, hybrid electric vehicles, power storage devices, etc.
  • medium and large battery modules or battery packs electrically connecting a plurality of battery cells are used. Since the size and weight of the battery module are directly related to the accommodation space and the output of the medium and large devices, manufacturers are trying to manufacture a battery module that is as small and lightweight as possible.
  • Cooling of the medium-large battery pack is generally performed by the flow of the refrigerant.
  • a refrigerant-flow cooling system that uses a cooling fan such as air to flow between unit cells of a battery pack or between battery modules is used.
  • a cooling fan such as air to flow between unit cells of a battery pack or between battery modules.
  • the battery pack is composed of a plurality of unit cells, and when each of these unit cells is in an optimal operating state, the operation of the entire battery pack may also maintain an optimal operating state. Therefore, a large temperature deviation between unit cells not only promotes deterioration of the battery but also becomes a major obstacle in optimizing the operating state of the battery pack as a whole.
  • the conventional cooling system structure has a problem that causes the battery pack to be enlarged.
  • the size of a battery pack that can be mounted in EV, HEV, etc. has a certain limit, so a large battery pack does not meet this.
  • Figure 1 is a schematic diagram of a typical representative battery pack cooling system is shown.
  • the battery pack cooling system 10 may include a battery pack 11 including a plurality of batteries, a refrigerant inlet 12 installed at a lower surface of the battery pack 11, and a refrigerant installed at an upper surface of the battery pack 11.
  • the discharge part 13 is comprised.
  • the battery pack 11 is composed of a plurality of battery groups 14 are electrically connected, each of the battery groups 14 is composed of a plurality of unit cells 15 are electrically connected.
  • a small gap is formed between the unit cells 15 of each battery group 14 to allow the refrigerant to move, so that the refrigerant entering from the inlet 12 moves through the gap, and thus in the unit cell 15. After removing the generated heat is discharged through the discharge portion 13 of the top of the battery pack (11).
  • the optimum operating conditions of the unit cell constituting the battery pack may vary depending on various factors, but are generally determined in a specific temperature range.
  • it is necessary to adjust the battery pack to the optimum operating temperature range as described above because it operates in a low temperature state in winter.
  • the operation of the cooling system may be stopped or the temperature of the refrigerant (e.g., air) flowing into the system may be increased to perform a temperature raising operation instead of cooling.
  • the unit cell is brought to a very low temperature state before that, damage to the battery components may be caused, and deterioration may be promoted by a sudden elevated temperature operation.
  • the present invention aims to solve the above-mentioned problems of the prior art and technical problems that have been requested from the past.
  • the inventors of the present application through in-depth studies and various experiments, the sub-modules arranged in the lateral direction spaced apart from each other to provide a refrigerant flow path of a specific structure, the side cover plates including the refrigerant inlet and
  • the battery module assembly By constructing the battery module assembly with a structure including a bracket having a refrigerant outlet, the battery of the structure that can achieve an improved cooling effect and a uniform cooling effect of the battery module assembly while suppressing the increase in volume of the battery module assembly We wanted to develop a module assembly.
  • an object of the present invention is to assemble a battery module assembly in a compact structure, and to eliminate the need for additional components for improving the cooling efficiency of the battery module. It is to provide a battery module assembly having an improved structure of cooling efficiency to achieve the efficiency increase effect.
  • a battery module assembly including unit modules mounted on a cartridge in which unit cells are electrically connected by a bus bar,
  • sub- modules Two or more sub-modules (sub-) which are arranged in a vertical direction from the ground to form a coolant flow path at the stacking interface, and are arranged in a lateral direction spaced apart from each other to provide a coolant flow path (sub- modules);
  • Side cover plates mounted on sides of the submodules, the side cover plates including one or more refrigerant inlets through which refrigerant may be introduced;
  • a bracket fixing the ends of the sub-modules to each other and having a coolant discharge port communicating with the coolant flow path;
  • Consists of a structure that includes.
  • the battery module assembly according to the present invention can achieve an improved cooling effect and a uniform cooling effect of the battery module assembly while suppressing an increase in volume of the battery module assembly by providing a coolant flow path having a specific structure as described above. have.
  • the battery module assembly can be assembled in a compact structure, and by eliminating the configuration of additional components for improving the cooling efficiency of the battery module, it is possible to achieve the effect of increasing the efficiency of the production process together with the compact structure. .
  • the unit cell may be a plate-shaped battery cell or a battery cell assembly structure in which two or more plate-shaped battery cells are mounted on a cell cover while the electrode terminals are exposed.
  • the battery cell may be a rectangular secondary battery or a pouch secondary battery.
  • the rectangular secondary battery may have a structure in which an electrode assembly is sealed in a rectangular metal case
  • the pouch type secondary battery may specifically have a structure in which an electrode assembly is sealed in a laminate sheet including a resin layer and a metal layer.
  • the secondary battery may be a lithium secondary battery of high energy density, discharge voltage, and output stability. Other components of the lithium secondary battery will be described in detail below.
  • a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, a lithium salt-containing nonaqueous electrolyte, and the like.
  • the positive electrode is produced by, for example, applying a mixture of a positive electrode active material, a conductive material, and a binder onto a positive electrode current collector, followed by drying, and further, a filler may be further added as necessary.
  • the negative electrode is also manufactured by coating and drying a mixture of a negative electrode active material and a binder on a negative electrode current collector, and if necessary, the components as described above may be further included.
  • the separator is interposed between the cathode and the anode, and an insulating thin film having high ion permeability and mechanical strength is used.
  • the lithium salt-containing non-aqueous electrolyte solution consists of a nonaqueous electrolyte solution and a lithium salt, and a liquid nonaqueous electrolyte solution, a solid electrolyte, an inorganic solid electrolyte, and the like are used as the nonaqueous electrolyte solution.
  • the current collector the electrode active material, the conductive material, the binder, the filler, the separator, the electrolyte, the lithium salt, and the like are known in the art, a detailed description thereof will be omitted herein.
  • Such lithium secondary batteries may be prepared by conventional methods known in the art. That is, it may be prepared by injecting an electrolyte through a porous separator between the anode and the cathode.
  • the positive electrode may be manufactured by, for example, applying a slurry containing the lithium transition metal oxide active material, the conductive material, and the binder described above onto a current collector and then drying.
  • the negative electrode can be prepared by, for example, applying a slurry containing the above-described carbon active material, a conductive material and a binder onto a thin current collector and then drying it.
  • the cell cover may be constituted by a pair of exterior members coupled to surround the outer surface of the battery cells except for the electrode terminal portion.
  • a cell cover for example, two battery cells may be mounted, and the two battery cells may form a battery cell assembly in a stacked structure such that electrode terminals of the same polarity contact each other and are connected in parallel.
  • the unit cells of the unit module may be a structure that is connected in parallel with each other.
  • the unit cells may be mounted on the cartridge so that the electrode terminals face each other, and the electrode terminals may be connected in parallel by battery bar connection bus bars mounted to the cartridge.
  • Such a cartridge is an electrically insulating member having predetermined rigidity, which protects the unit cells from external shocks and ensures stable mounting of the unit cells.
  • the unit cells are arranged by the cartridge so that the electrode terminals face each other, thereby facilitating electrical parallel connection by the bus bars.
  • a fixing member may be additionally mounted between the electrode terminal connecting portions of the unit cells to fix the electrode terminal connecting portions to the cartridge.
  • the fixing portion has an outer surface shape corresponding to the shape between the electrode terminal connecting portion is formed in the through groove in the center and is electrically insulating protrusions mounted on the cartridge, and inserted into the through grooves It may be a structure including a fastening portion for coupling to the cartridge.
  • the unit cells can be stably mounted to the cartridge.
  • both sides of the cartridge may be formed with protrusions having fastening grooves, and the cartridges are coupled to each other by a fastening member penetrating the fastening groove to form a submodule. Accordingly, the unit cells are fixed by the cartridge and at the same time the cartridges can be coupled to each other by the fastening groove, thereby achieving a more robust and stable fixing effect.
  • the fastening of the cartridges achieved through the fastening grooves may be, for example, fastening by bolts or the like that pass through the fastening grooves, but is not limited thereto.
  • the bus bar for connecting the unit cells is bent up or down one end of the surface to which the electrode terminal is coupled, the bent one end and the connection member is coupled, and the electrical connection with the adjacent unit module It may be a structure forming.
  • unit modules in the sub-module may have a structure that is connected in series or in parallel, for example, to achieve the parallel connection structure by the same mounting position of the connection member and different stacking structure of the unit modules. have.
  • the side cover plate may be formed with one or more refrigerant inlets through which the refrigerant can be introduced.
  • the unit modules in the sub-module are stacked so that the coolant flow path is formed at the stacking interface, and the sub-modules are arranged to be spaced apart from each other to provide the coolant flow path.
  • the side cover plate is a member mounted to the side of the sub-module to be fixed to the base plate and the upper cover plate of the sub-modules, the main body portion surrounding the side of the sub-module; A fixed part bent and formed in an extended structure at both ends of the main body to surround the sub-modules, and fixed to the sub-modules; And a handle formed at one end of the main body, and may have a structure in which coolant inlets are formed in the main body.
  • the shape of the inlet is not particularly limited as long as the refrigerant can pass therethrough.
  • the inlet may have a circular, elliptic, polygonal or slit shape.
  • the inlet may include a first inlet group including two or more first inlets and a second inlet group including two or more second inlets.
  • the first inlet group may be positioned in the front direction of the battery module assembly based on the direction in which the refrigerant flows into the battery module assembly, and the second inlet group may be disposed in the rear direction of the battery module assembly.
  • the size of the first inlet and the size of the second inlet it is possible to adjust the volume of the refrigerant flowing through these inlets.
  • the area of the second inlet may be 110 to 300% larger than the area of the first inlet.
  • the battery module assembly including the first inlet and the second inlet of such a structure can uniformly adjust the flow rate of the refrigerant flowing into the front and rear parts of the battery module assembly.
  • the positions of the inlets are different, the amount of the refrigerant flowing into the second inlet located in the rear direction of the battery module assembly and the amount of the refrigerant flowing into the first inlet located in the front direction of the battery module assembly are substantially changed. Do the same.
  • the temperature deviation between the unit module mounted closer to the refrigerant inlet and the unit module mounted farther than this can be significantly reduced, and a uniform cooling effect of the entire battery module assembly can be achieved.
  • the bracket may have a coolant discharge port communicating with the coolant flow path.
  • the coolant flow path between the sub-modules may be formed in a line with the coolant discharge port of the bracket in a plane.
  • the refrigerant flowing into the refrigerant inlet flows along the refrigerant passage formed at the unit module stacking interface, removes heat from the unit module, and flows into the refrigerant passage between the sub-modules, and is formed in the rear of the battery module assembly. It exits to the outlet.
  • the entire refrigerant has a T-shaped refrigerant flow structure.
  • a fan or discharge duct may be additionally installed at the location of the coolant outlet to further improve the cooling effect.
  • the bracket is a member that can be fixed to each other to maintain a predetermined space between the sub-modules, the plate-shaped body portion, the fixing portion, and formed through the center of the body portion It includes a refrigerant outlet, wherein the main body portion is formed on both ends of the concave-convex structure corresponding to the rear concave-convex structure of the sub-modules, and the fastening portion is formed in the fixing portion can be fastened to the rear of the sub-modules It consists of a structure.
  • a coolant flow path is formed at a stacking interface of the unit modules, a coolant inlet port for supplying coolant to the coolant flow path is formed at the side cover plate, and the coolant unit modules are cooled. Since the outlet of the is formed in the bracket located on the rear of the sub-module, it is possible to uniformly cool the unit modules constituting the battery module assembly. Therefore, the overall cooling effect of the battery module assembly can be achieved with improved efficiency.
  • the battery module assembly In one specific example, the battery module assembly,
  • An upper cover plate mounted on an upper surface of the sub modules, the upper cover plate being coupled to the sub modules and the side cover plate;
  • the front cover plate is mounted on the front of the sub-modules based on the inflow direction of the coolant, and is coupled to the sub-modules, the base plate, and the side cover plate.
  • the upper cover plate for example, can be made of a plate having a predetermined rigidity and elasticity, it is possible to achieve the effect of integrating the sub-modules into one and at the same time protect from the impact from the outside.
  • the upper cover plate is not particularly limited as long as it is manufactured by machining, but as a specific example, it may be manufactured by a press molding method.
  • reinforcing beads of concave-convex structure may be formed on the outer surface so as to improve self rigidity of the upper cover plate and the base plate.
  • the upper cover plate and the base plate may further include a fastening groove for fastening to the sub-modules.
  • the submodules may be fixed at the same time as being fastened with the upper cover plate and the base plate, thereby achieving a more robust and stable fixing effect.
  • the fastening of the sub-modules and the upper cover plate and the base plate, which are achieved through the fasteners may be fastening by bolts or the like, but is not limited thereto.
  • the present invention also provides a device including the battery module assembly as a power source, the device specifically, an electric vehicle, hybrid electric vehicle, plug-in hybrid electric vehicle, power storage device, emergency power supply, computer room power supply It may be a device, a portable power supply, a medical power supply, a fire extinguishing power supply, an alarm power supply, or an evacuation power supply.
  • FIG. 1 is a schematic view showing a conventional battery pack cooling system in a partially perspective state
  • FIG. 2 is a perspective view of a pouch-type battery cell according to the present invention.
  • FIG. 3 is a perspective view of a unit cell having a structure in which the battery cells of FIG. 1 are mounted on a cell cover;
  • FIG. 4 is a perspective view illustrating a unit cell of FIG. 2 mounted on a cartridge to configure one unit module
  • FIG. 5 is a plan view of a unit module according to the present invention.
  • FIG. 6 is a side view of a unit module according to the present invention.
  • FIG. 7 is a perspective view showing a shape in which unit modules according to the present invention are stacked;
  • FIG. 8 is an enlarged partial view of FIG. 7;
  • FIG. 9 is a perspective view showing a shape in which a serial connection member and a bus bar for external input / output terminals are mounted on a submodule according to the present invention.
  • FIG. 10 is a perspective view illustrating a shape in which an external input / output terminal protection member and a series connection protection member are attached to the submodule of FIG. 9;
  • FIG. 10 is a side view of FIG. 10;
  • FIG. 12 is a perspective view illustrating a shape in which a side cover plate is mounted to the submodule of FIG. 10;
  • FIG. 13 is a plan view of a side cover plate according to the invention.
  • FIG. 14 is a perspective view showing the shape of fixing the two sub-modules in the side cover plate and the bracket according to the present invention.
  • FIG. 15 is a plan view showing a refrigerant flow of the battery module assembly according to the present invention.
  • 16 and 17 are plan views showing a refrigerant flow of the battery module assembly according to another embodiment of the present invention.
  • FIG. 18 is a perspective view illustrating a shape in which two sub-modules according to the present invention are electrically connected to each other at the same time as the main bus bars and fixed together, and a base plate, an upper cover plate and a front cover plate are mounted;
  • FIG. 19 is a perspective view of a battery module assembly according to the present invention.
  • FIG. 2 is a perspective view of a pouch-type battery cell according to the present invention.
  • the battery cell 20 is a plate-shaped battery cell 20 in which electrode terminals (anode terminal 21 and cathode terminal 22) are formed at one end thereof.
  • the plate-shaped battery cell 20 includes an electrode assembly (not shown) in the pouch-shaped case 23 of the laminate sheet including a metal layer (not shown) and a resin layer (not shown).
  • the sealing portion 24 is formed by thermal fusion, and is commonly referred to as a pouch type battery cell.
  • FIG. 3 is a perspective view of a unit cell (battery cell assembly) having a structure in which the battery cells of FIG. 2 are mounted on a cell cover.
  • two battery cells 20 are accommodated and fixed in cell covers 111 and 112 formed of an upper cell cover 111 and a lower cell cover 112.
  • the electrode terminals 21 and 22 of the battery cells 20 are exposed in one direction from the cell cover so as to be electrically connected in parallel to each other to form two electrode terminals 110a and 110b.
  • FIG. 4 is a perspective view showing a shape in which the unit cell of FIG. 3 is mounted on a cartridge to form one unit module
  • FIGS. 5 and 6 show a plan view and a side view of the unit module according to the present invention.
  • two unit cells 110 are mounted to the cartridge 120 to constitute one unit module 100.
  • the unit cells 110 are arranged such that each of the positive electrode terminal 110a and the negative electrode terminal 110b face each other.
  • these electrode terminals 110a and 110b are electrically connected in parallel by bus bars 130, respectively.
  • the bus bar 130 is electrically coupled with the electrode terminals 110a and 110b, and a bent portion 131 is bent downward at one end of the bus bar 130 and fastened to the bent portion.
  • a sphere 132 is formed.
  • the fastener 132 is used as a fastener 132 for electrical connection between the unit modules 100 when a plurality of unit modules 100 are stacked (see FIGS. 7 and 8).
  • protrusions 121 having fastening grooves 122 are formed at both sides of the cartridge 120.
  • the protrusions 121 may be unit modules 100 coupled to each other by a fastening member (123 of FIG. 7) passing through the fastening groove 122.
  • the height of the protrusion 121 is 110 to 150% greater than the height of the cartridge 120. Therefore, when the unit modules 100 are stacked, a predetermined gap (170 in FIG. 11) is formed at the stacking interface of the unit module 100, and the gap (170 in FIG. 11) is a refrigerant flow path through which the refrigerant may flow. It can be used as.
  • FIG. 7 is a perspective view showing a shape in which unit modules according to the present invention are stacked.
  • the unit modules 100 are vertically stacked from the ground to form one sub module 200. Specifically, after the unit modules 100 are vertically stacked, the fastening members 123 are inserted into the protrusions formed at both sides thereof, and are coupled to each other.
  • FIG. 8 is a partially enlarged view of FIG. 7, and FIG. 9 illustrates a shape in which connection members 140 and bus bars 151 and 152 for external input / output terminals are mounted in the submodule 200 according to the present invention. The perspective view shown is shown.
  • the unit modules 100 are stacked in alternating state and electrically connected in series by the connection members 140.
  • bus bars 151 and 152 for external input / output terminals are mounted to electrically connect the unit modules 100 connected in series to the external input / output terminals 161 and 162.
  • FIG. 10 is a perspective view illustrating a shape in which an external input / output terminal protection member and a serial connection protection member are mounted on the submodule of FIG. 9.
  • the external input / output terminal 161 of the sub module 200 is protected from the outside by mounting the external input / output terminal protection member 165.
  • the serial connection unit in which the unit modules 100 are electrically connected in series is also protected from the outside by mounting the serial connection protection member 145.
  • FIG. 11 is a side view of FIG. 10.
  • predetermined gaps 170 are formed in the stacking interface of the unit modules 100 constituting the submodule 200. These gaps 170 may be utilized as a coolant flow path through which a coolant may flow.
  • FIG. 12 is a perspective view illustrating a shape in which the side cover plate is mounted on the submodule of FIG. 11, and FIG. 13 is a plan view of the side cover plate.
  • the side cover plate 300 includes a main body 310 surrounding the side of the sub module 200, and the main body 310 has refrigerant inlets through which refrigerant may be introduced from the outside. 311a and 311b are perforated. In addition, both ends of the main body 310 are formed with a bent portion 320 having a structure that is bent and extended to surround the submodule 200.
  • the body portion 310 and the bent portion 320 of the side cover plate 300 is formed with fixing parts (312, 321) fastened and fixed to the sub-module 200, one side of the body portion 310 A handle 330 is formed at the end.
  • the refrigerant inlets 311a and 311b formed in the main body 310 may be disposed in the first inlet group 311A positioned in the front direction B of the battery module assembly and in the rear direction C of the battery module assembly.
  • the second inlet group 311B is located.
  • the area of each of the second inlets 331b is 150 to 200% larger than the area of each of the first inlets 331a.
  • the battery module assembly including the inlets of the structure, it is possible to uniform the flow rate of the refrigerant flowing into the front and rear parts of the battery module assembly.
  • FIG. 14 is a perspective view illustrating a shape in which two submodules are fixed by a side cover plate and a bracket.
  • two sub-modules 200 are coupled to each other by mounting a bracket 500 on a rear surface thereof.
  • the bracket 500 includes a plate-shaped body portion 510, a fixing portion 520, and a refrigerant outlet 530 formed through the center of the body portion 510.
  • the main body 510 is formed at both ends of the concave-convex portion 511 having a shape corresponding to the rear concave-convex structure of the sub-modules 200, and the fastening portion 520 is fastened to the rear of the sub-modules 200. Fasteners that can be made are formed.
  • FIG. 15 is a plan view illustrating a refrigerant flow of the battery module assembly according to the present invention
  • FIG. 16 shows another embodiment of the present invention.
  • the sub-modules 200 may include a refrigerant (not shown) in the center by a bracket 500 mounted on the rear surface and a main bus bar 400 (FIG. 18) mounted on the front surface.
  • the coolant flow path 250 through which) may flow is formed. Therefore, the coolant flows from the side cover plate 300 to cool the battery cells (not shown) built in the sub-modules 200 and then coolant discharge holes formed in the bracket 500 along the central coolant flow path 250. 530 may be discharged.
  • the flow rate of the refrigerant flowing from the side cover plate 300 is determined according to the sizes of the refrigerant inlets 311a and 311b formed in the main body 310 of the side cover plate 300.
  • the size of the second inlets 331b located in the rear direction C of the battery module assembly is larger than that of the first inlets 331a located in the front direction B of the battery module assembly, despite the difference in distance from the refrigerant outlet. And provide the same refrigerant flow throughout.
  • a cooling fan 550 or a discharge duct may be installed at a location of the bracket 500 where the coolant outlet is formed, thereby further improving cooling efficiency.
  • 17 is a plan view showing a refrigerant flow of the battery module assembly according to another embodiment of the present invention.
  • the outer case 901 has refrigerant inlets 901 and 902 formed at both ends thereof to supply the refrigerant to the battery module assembly stored therein.
  • the refrigerant introduced from the refrigerant inlets 901 and 902 flows into the side cover plate 300 and cools the battery cells (not shown) embedded in the sub-modules 200 and then along the central refrigerant passage 250. It is discharged to the refrigerant outlet 530 formed in the bracket (500).
  • FIG. 18 is a perspective view illustrating a shape in which two sub-modules are electrically connected to each other at the same time as the main bus bars, and the base plate, the upper cover plate, and the front cover plate are mounted.
  • the external input / output terminals 162 and 161 of the two sub modules 200 are electrically connected in series by the main bus bar 400.
  • the two sub modules 200 are fixed to be spaced apart by a predetermined distance by the main bus bar 400.
  • the upper surface is protected by the upper cover plate 700, and the front surface is protected by the front cover plate 800.
  • FIG. 19 is a perspective view of a battery module assembly according to the present invention.
  • the upper cover plate 700 and the base plate 600 are formed with reinforcement beads 750 and 650 having concave-convex structures for improving self rigidity on the outer surface.
  • the battery module assembly has a side cover plate including sub-modules arranged in the lateral direction and spaced apart from each other so as to provide a coolant flow path having a specific structure, and a coolant inlet port.
  • a side cover plate including sub-modules arranged in the lateral direction and spaced apart from each other so as to provide a coolant flow path having a specific structure, and a coolant inlet port.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 적층 계면에 냉매 유로가 형성되도록 지면으로부터 수직 방향으로 적층된 둘 이상의 단위모듈들을 포함하고 있고, 냉매 유로를 제공할 수 있도록 상호 이격된 상태로 측면 방향으로 배열되어 있는 둘 이상의 서브모듈들; 서브모듈들이 탑재되는 베이스 플레이트; 서브모듈들의 측부에 장착되고, 냉매가 유입될 수 있는 하나 이상의 냉매 유입구를 포함하고 있는 측부 커버 플레이트들; 및 서브모듈들의 단부들을 상호 고정하고, 냉매 유로에 연통되는 냉매 배출구가 형성되어 있는 브라켓;을 포함하는 것을 특징으로 하는 전지모듈 어셈블리를 제공한다.

Description

냉매 유로를 포함하는 전지모듈 어셈블리
본 발명은 냉매 유로를 포함하는 전지모듈 어셈블리에 관한 것으로, 더욱 상세하게는, 단위셀들이 버스 바에 의해 전기적으로 연결된 상태에서 카트리지에 탑재되어 있는 단위모듈들을 포함하고 있는 전지모듈 어셈블리로서, 적층 계면에 냉매 유로가 형성되도록 지면으로부터 수직 방향으로 적층된 둘 이상의 단위모듈들을 포함하고 있고, 냉매 유로를 제공할 수 있도록 상호 이격된 상태로 측면 방향으로 배열되어 있는 둘 이상의 서브모듈들; 상기 서브모듈들이 탑재되는 베이스 플레이트; 상기 서브모듈들의 측부에 장착되고, 냉매가 유입될 수 있는 하나 이상의 냉매 유입구를 포함하고 있는 측부 커버 플레이트들; 및 상기 서브모듈들의 단부들을 상호 고정하고, 상기 냉매 유로에 연통되는 냉매 배출구가 형성되어 있는 브라켓;을 포함하는 것을 특징으로 하는 전지모듈 어셈블리에 관한 것이다.
이차전지는, 화석 연료를 사용하는 기존의 가솔린 차량, 디젤 차량 등의 대기오염 등을 해결하기 위한 방안으로 제시되고 있는 전기자동차, 하이브리드 전기자동차 등의 에너지원으로서도 주목받고 있다.
또한, 전기를 저장해 두었다가 필요한 시점에 안정적으로 전력계통에 다시 공급해주는 전력 저장 장치에 관한 기술이 개발되고 있다. 전력 저장 장치는 전력 수요가 적을 때 에너지를 저장하고, 과부하 또는 비상시에 전력을 공급하는 장치로서, 전력 품질 및 에너지 사용 효율을 향상시키는 효과를 제공하고 있다. 특히, 가정용 전력 저장 장치 및 산업용 또는 상업용 중형 전력 저장 장치는 스마트 그리드 기술과 결부되어 시장규모가 급성장하고 있다.
따라서, 이차전지를 사용하는 애플리케이션의 종류는 이차전지의 장점으로 인해 매우 다양화되어 가고 있으며, 향후에는 지금보다는 많은 분야와 제품들에 이차전지가 적용될 것으로 예상된다.
이와 같이 이차전지의 적용 분야와 제품들이 다양화됨에 따라, 전지의 종류 또한 그에 알맞은 출력과 용량을 제공할 수 있도록 다양화되고 있다. 더불어, 당해 분야 및 제품들에 적용되는 전지들은 소형 경량화가 강력히 요구되고 있다.
예를 들어, 휴대폰, PDA, 디지털 카메라, 노트북 컴퓨터 등과 같은 소형 모바일 기기들은 해당 제품들의 소형 경박화 경향에 따라 그에 상응하도록 디바이스 1 대당 하나 또는 두서너 개의 소형 경량을 가진 전지셀들이 사용되고 있다. 반면에, 전기자동차, 하이브리드 전기자동차, 전력저장 장치 등과 같은 중대형 디바이스들은 고출력 대용량의 필요성으로 인해, 다수의 전지셀을 전기적으로 연결한 중대형 전지모듈 또는 전지팩이 사용되고 있다. 전지모듈의 크기와 중량은 당해 중대형 디바이스 등의 수용 공간 및 출력 등에 직접적인 관련성이 있으므로, 제조업체들은 가능한 한 소형이면서 경량의 전지모듈을 제조하려고 노력하고 있다.
한편, 이와 같은 고출력 대용량 이차전지는 충방전 과정에서 다량의 열을 발생시킨다는 문제점을 가지고 있다. 충방전 과정에서 발생한 단위전지의 열이 효과적으로 제거되지 못하면, 열축적이 일어나고 결과적으로 단위전지의 열화를 초래한다. 더욱이, 이러한 과정에서 다양한 원인에 의해 일부 단위전지들이 과열될 경우에는 발화 또는 폭발할 가능성도 존재한다. 따라서, 고출력 대용량의 중대형 전지팩에서 냉각 시스템은 필수적이다.
중대형 전지팩의 냉각은 일반적으로 냉매의 유동에 의한 수행된다. 예를 들어, 공기 등과 같은 냉매를 냉각 팬에 의해 전지팩의 단위전지들 사이 또는 전지모듈 사이로 유동시키는 냉매-유동 냉각 시스템이 이용되고 있다. 그러나, 이러한 방식은 몇가지 문제점을 가지고 있다.
첫째, 단위전지들 간의 온도 편차가 매우 크다는 문제점을 가지고 있다. 전지팩은 다수의 단위전지들로 구성되어 있고, 이들 단위전지들 각각이 최적의 작동 상태에 놓여 있을 때, 전체 전지팩의 작동 또한 최적의 작동 상태를 유지할 수 있다. 따라서, 단위전지들 간의 큰 온도 편차는 전지의 열화를 촉진할 뿐만 아니라 전지팩 전체의 작동 상태를 최적화시키는데 큰 장애 요인이 된다.
둘째, 종래의 냉각 시스템 구조는 전지팩의 대형화를 초래하는 문제점을 가지고 있다. 예를 들어, EV, HEV 등에 탑재될 수 있는 전지팩의 크기는 일정한 한계를 가지고 있으므로, 대형화된 전지팩은 이에 부합하지 못한다.
도 1에는 종래의 대표적인 전지팩 냉각 시스템의 모식도가 도시되어 있다.
전지팩 냉각 시스템(10)은, 다수의 전지들로 구성된 전지팩(11), 전지팩(11)의 하단면에 설치된 냉매 유입부(12), 및 전지팩(11)의 상단면에 설치된 냉매 배출부(13)로 구성되어 있다. 전지팩(11)은 전기적으로 연결되어 있는 다수의 전지군(14)으로 이루어져 있고, 각각의 전지군(14)은 전기적으로 연결되어 있는 다수의 단위전지들(15)로 이루어져 있다. 각 전지군(14)의 단위전지들(15) 사이에는 냉매가 이동할 수 있을 수는 작은 틈이 형성되어 있어서, 유입부(12)로부터 들어온 냉매가 상기 틈을 통해 이동하면서 단위전지(15)에서 발생한 열을 제거한 후 전지팩(11) 상부의 배출부(13)를 통해 배출되게 된다.
이러한 구조에서는, 냉매 유입부(12)와 배출부(13)가 전지팩(11)의 상부와 하부에 각각 설치되므로, 그러한 냉매 유도 부재들의 설치를 위한 공간이 전지팩(11)의 상부와 하부에 각각 요구되며, 이는 전지팩 전체의 크기를 더욱 커지게 만드는 주요 요인이다.
이와는 별도로, EV, HEV 등과 같은 차량과 전력저장 장치 등은 다양한 조건에서 작동하는 상황에 자주 놓이게 된다. 전지팩을 구성하는 단위전지의 최적 작동 조건은 다양한 요인들에 의해 달라질 수 있지만, 일반적으로 특정한 온도범위에서 결정된다. 반면에, 겨울철에는 저온 상태에서 작동하게 되므로 전지팩을 상기와 같은 최적 작동 온도범위로 조절할 필요가 있다. 이 경우, 냉각 시스템의 작동을 정지시키거나 시스템으로 유입되는 냉매(e.g., 공기)의 온도를 높여 냉각 대신 승온 작동을 행할 수도 있다. 그러나, 그 이전에 단위전지가 매우 낮은 온도 상태에 놓이게 될 경우에는 전지 구성요소들의 손상이 유발될 수 있고, 또한 갑작스러운 승온 작동에 의해 열화가 촉진될 수도 있다.
따라서, 이러한 다양한 문제점들을 근본적으로 해결할 수 있는 기술에 대한 필요성이 높은 실정이다.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 일거에 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 통해, 특정한 구조의 냉매 유로를 제공할 수 있도록 상호 이격된 상태로 측면 방향으로 배열되어 있는 서브모듈들, 냉매 유입구를 포함하고 있는 측부 커버 플레이트들 및 냉매 배출구가 형성되어 있는 브라켓을 포함하는 구조로 전지모듈 어셈블리를 구성함으로써, 전지모듈 어셈블리의 부피 증가를 억제함과 동시에 전지모듈 어셈블리의 향상된 냉각 효과 및 균일한 냉각 효과를 달성할 수 있는 구조의 전지모듈 어셈블리를 개발하고자 하였다.
따라서, 본 발명의 목적은, 전지모듈 어셈블리를 콤팩트(compact) 한 구조로 조립할 수 있고, 전지모듈의 냉각 효율성의 향상을 위한 추가적인 부품의 구성이 필요치 않도록 하여, 상기 콤팩트 한 구조와 더불어 생산 공정의 효율성 증대 효과를 함께 달성할 수 있는 냉각 효율성 향상된 구조의 전지모듈 어셈블리를 제공하는 것이다.
이러한 목적을 달성하기 위한 본 발명에 따른 전지모듈 어셈블리는,
단위셀들이 버스 바에 의해 전기적으로 연결된 상태에서 카트리지에 탑재되어 있는 단위모듈들을 포함하고 있는 전지모듈 어셈블리로서,
적층 계면에 냉매 유로가 형성되도록 지면으로부터 수직 방향으로 적층된 둘 이상의 단위모듈들을 포함하고 있고, 냉매 유로를 제공할 수 있도록 상호 이격된 상태로 측면 방향으로 배열되어 있는 둘 이상의 서브모듈들(sub-modules);
상기 서브모듈들이 탑재되는 베이스 플레이트(base plate);
상기 서브모듈들의 측부에 장착되고, 냉매가 유입될 수 있는 하나 이상의 냉매 유입구를 포함하고 있는 측부 커버 플레이트들(side cover plates); 및
상기 서브모듈들의 단부들을 상호 고정하고, 상기 냉매 유로에 연통되는 냉매 배출구가 형성되어 있는 브라켓(bracket);
을 포함하는 구조로 이루어져 있다.
따라서, 본 발명에 따른 전지모듈 어셈블리는, 상기와 같은 특정한 구조의 냉매 유로를 제공함으로써, 전지모듈 어셈블리의 부피 증가를 억제함과 동시에 전지모듈 어셈블리의 향상된 냉각 효과 및 균일한 냉각 효과를 달성할 수 있다.
또한, 전지모듈 어셈블리를 콤팩트 한 구조로 조립할 수 있고, 전지모듈의 냉각 효율성의 향상을 위한 추가적인 부품의 구성이 필요치 않도록 하여, 상기 콤팩트 한 구조와 더불어 생산 공정의 효율성 증대 효과를 함께 달성할 수 있다.
하나의 구체적인 예에서, 상기 단위셀은, 판상형 전지셀이거나, 또는 전극단자들이 노출된 상태로 둘 이상의 판상형 전지셀들이 셀 커버에 장착되어 있는 전지셀 어셈블리 구조일 수 있다.
상기 전지셀은 각형 이차전지 또는 파우치형 이차전지일 수 있다.
상기 각형 이차전지는 각형의 금속 케이스에 전극조립체가 밀봉되어 있는 구조일 수 있고, 상기 파우치형 이차전지는 구체적으로 수지층과 금속층을 포함하는 라미네이트 시트에 전극조립체가 밀봉되어 있는 구조일 수 있다.
구체적으로, 상기 이차전지는 높은 에너지 밀도, 방전 전압, 및 출력 안정성의 리튬 이차전지일 수 있다. 이러한 리튬 이차전지의 기타 구성 요소들에 대하여 이하에서 상세히 설명한다.
일반적으로 리튬 이차전지는 양극, 음극, 분리막, 리튬염 함유 비수 전해액 등으로 구성되어 있다.
양극은, 예를 들어, 양극 집전체 상에 양극 활물질, 도전재 및 바인더의 혼합물을 도포한 후 건조하여 제조되며, 필요에 따라서는, 충진제를 더 첨가하기도 한다. 음극은 또한 음극 집전체 상에 음극 활물질과 바인더의 혼합물을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 더 포함될 수도 있다.
상기 분리막은 음극과 양극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다.
리튬염 함유 비수계 전해액은, 비수 전해액과 리튬염으로 이루어져 있으며, 비수 전해액으로는 액상 비수 전해액, 고체 전해질, 무기 고체 전해질 등이 사용된다.
상기 집전체, 전극 활물질, 도전재, 바인더, 충진제, 분리막, 전해액, 리튬염 등은 당업계에 공지되어 있으므로, 그에 대한 자세한 설명은 본 명세서에서 생략한다.
이러한 리튬 이차전지는 당업계에 공지되어 있는 통상적인 방법에 의해 제조될 수 있다. 즉, 양극과 음극 사이에 다공성 분리막을 개재하고 전해액을 주입하여 제조할 수 있다.
양극은, 예를 들어, 앞서 설명한 리튬 전이 금속 산화물 활물질과 도전재 및 결합제를 함유한 슬러리를 집전체 위에 도포한 후 건조하여 제조할 수 있다. 마찬가지로 음극은, 예를 들어, 앞서 설명한 탄소 활물질과 도전재 및 결합제를 함유한 슬러리를 얇은 집전체 위에 도포한 후 건조하여 제조할 수 있다.
상기 단위셀의 예들 중의 하나인 전지셀 어셈블리에서, 셀 커버는 전극단자 부위를 제외하고 전지셀들의 외면을 감싸도록 상호 결합되는 한 쌍의 외장 부재로 구성될 수 있다. 이러한 셀 커버에는, 예를 들어, 2개의 전지셀들이 장착될 수 있고, 상기 2개의 전지셀들은 동일 극성의 전극단자들이 서로 접하면서 병렬 연결되도록 적층된 구조로 전지셀 어셈블리를 형성할 수 있다.
하나의 구체적인 예에서, 상기 단위모듈의 단위셀들은 상호 병렬 연결되어 있는 구조일 수 있다.
구체적으로, 상기 단위셀들은 전극단자들이 대면하도록 카트리지 상에 장착되어 있고, 상기 카트리지에 장착되어 있는 전지셀 연결용 버스 바들에 의해 전극단자들이 병렬로 연결되어 있는 구조일 수 있다.
이러한 카트리지는 소정의 강성을 가진 전기절연성의 부재로서, 외부의 충격으로부터 단위셀들을 보호하고, 단위셀들의 안정적인 장착을 보장한다. 또한, 카트리지에 의해 상기 단위셀들은 전극단자들이 대면하도록 배열됨으로써, 버스 바들에 의한 전기적 병렬 연결을 더욱 용이하게 할 수 있다.
상기 단위셀들의 전극단자 연결부들 사이에는 상기 전극단자 연결부들을 카트리지에 정위치 고정하기 위한 고정부재가 추가로 장착될 수 있다. 하나의 구체적인 예에서, 상기 고정부는, 전극단자 연결부들 사이의 형상에 대응하는 외면 형상을 가지고 중앙에 관통홈에 형성되어 있으며 카트리지 상에 장착되는 전기절연성의 돌출부, 및 상기 관통홈에 삽입되어 돌출부를 카트리지에 결합하는 체결부를 포함하는 구조일 수 있다.
따라서, 외부 충격의 인가 시에도 단위셀들이 카트리지에 안정적으로 고정 장착될 수 있다.
또한, 상기 카트리지의 양 측면에는 체결홈을 구비한 돌출부들이 형성되어 있고, 상기 체결홈을 관통하는 체결부재에 의해 카트리지들이 상호 결합되어 서브모듈을 형성하고 있는 구조일 수 있다. 따라서, 상기 단위셀들은 카트리지에 의해 고정됨과 동시에 카트리지들이 상기 체결홈에 의해 상호 결합되어 체결될 수 있으므로, 더욱 견고하고 안정적인 고정 효과를 달성할 수 있다. 상기 체결홈들을 통해 달성되는 카트리지들의 체결은, 예를 들어, 체결홈을 관통하는 볼트 등에 의한 체결일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
하나의 구체적인 예에서, 단위셀 연결용 버스 바는 전극단자가 결합되어 있는 면의 일측 단부가 상향 또는 하향 절곡되어 있고, 상기 절곡된 일측 단부와 접속부재가 결합되어, 인접한 단위모듈과 전기적 연결을 이루는 구조일 수 있다.
또한, 상기 서브모듈에서 단위모듈들은 직렬 연결 또는 병렬 연결되는 구조일 수 있는 바, 예를 들어, 상기 접속부재의 장착위치를 동일하게 하고 단위모듈들의 적층 구조를 달리하여 병렬 연결 구조를 달성할 수 있다.
하나의 구체적인 예에서, 상기 측부 커버 플레이트에는 냉매가 유입될 수 있는 하나 이상의 냉매 유입구들이 형성되어 있을 수 있다.
앞서 정의한 바와 같이, 상기 서브모듈에서 단위모듈들은 적층 계면에 냉매 유로가 형성되도록 적층되어 있고, 상기 서브모듈들은 냉매 유로를 제공할 수 있도록 상호 이격된 상태로 배열되어 있다.
하나의 구체적인 예에서, 상기 측부 커버 플레이트는, 서브모듈들의 베이스 플레이트 및 상부 커버 플레이트에 장착 고정할 수 있도록 서브모듈의 측부에 장착되는 부재로서, 상기 서브모듈들의 측부를 감싸는 본체부; 상기 본체부의 양단에 서브모듈들의 감싸는 형태로 절곡되어 연장된 구조로 형성되어 있고, 서브모듈들과 체결 고정되는 고정부; 및 상기 본체부의 일측 단부에 형성된 손잡이;를 포함하고 있고, 상기 본체부에 냉매 유입구들이 형성되어 있는 구조일 수 있다.
상기 유입구의 형상은 냉매가 통과할 수 있는 형상이라면 특별히 제한되는 것은 아니나, 예를 들어, 평면상으로 원, 타원, 다각형 또는 슬릿(slit) 형상일 수 있다.
더욱 구체적인 예로서, 상기 유입구는 둘 이상의 제 1 유입구를 포함하는 제 1 유입구군 및 둘 이상의 제 2 유입구를 포함하는 제 2 유입구군을 포함할 수 있다. 또한, 상기 제 1 유입구군은 냉매가 전지모듈 어셈블리로 유입되는 방향을 기준으로 전지모듈 어셈블리 전면 방향에 위치하고, 상기 제 2 유입구군은 전지모듈 어셈블리의 후면 방향에 위치하는 구조일 수 있다.
경우에 따라서는, 상기 제 1 유입구의 크기와 제 2 유입구의 크기를 달리하여, 이들 유입구를 통해 유입되는 냉매의 양(volume)을 조절할 수 있다. 구체적인 예에서, 상기 제 2 유입구의 면적은 제 1 유입구의 면적 대비 110 내지 300% 더 큰 구조일 수 있다.
따라서, 이러한 구조의 제 1 유입구 및 제 2 유입구를 포함하는 전지모듈 어셈블리는, 전지모듈 어셈블리 전면부 및 후면부에 유입되는 냉매의 유량을 균일하게 조절할 수 있다. 구체적으로, 유입구들의 위치가 차이가 있음에도 불구하고, 전지모듈 어셈블리 후면 방향에 위치하는 제 2 유입구로 유입되는 냉매의 양과 전지모듈 어셈블리 전면 방향에 위치하는 제 1 유입구로 유입되는 냉매의 양을 실질적으로 동일하게 한다. 결과적으로, 냉매 유입구에 근접하여 장착된 단위모듈과 이보다 더 멀게 장착된 단위모듈과의 온도 편차를 현저히 줄일 수 있으며, 전지모듈 어셈블리 전체의 균일한 냉각 효과를 달성할 수 있다.
상기 브라켓에는 상기 냉매 유로에 연통되는 냉매 배출구가 형성되어 있을 수 있으며, 구체적으로, 상기 서브모듈들 사이의 냉매 유로는 평면상으로 브라켓의 냉매 배출구와 일직선 상에 형성되어 있는 구조일 수 있다.
하나의 구체적인 예에서, 상기 냉매 유입구로 유입된 냉매는 단위모듈 적층 계면에 형성된 냉매 유로를 따라 유동하며 단위모듈의 열을 제거한 후 서브모듈 사이의 냉매 유로로 유입되고, 전지모듈 어셈블리 후면에 형성된 냉매 배출구로 빠져나가게 된다. 이러한 냉매의 흐름을 평면상으로 표현하면 전체적으로 T 자형 냉매 흐름 구조를 갖게 된다.
냉매 배출구의 위치에 송풍기(fan) 또는 배출 덕트(duct)가 추가로 장착되어 냉각 효과를 더욱 향상시킬 수 있다.
하나의 구체적인 예에서, 상기 브라켓은, 상기 서브모듈들 사이에 소정의 이격 공간이 유지될 수 있도록 상호 고정할 수 있는 부재로서, 판상형 본체부, 고정부, 및 상기 본체부 중앙에 관통되어 형성되어 있는 냉매 배출구를 포함하고 있고, 상기 본체부는 서브모듈들의 후면 요철구조와 대응하는 형상의 요철부가 양단에 형성되어 있고, 상기 고정부에는 서브모듈들의 후면에 체결 고정될 수 있는 체결구가 형성되어 있는 구조로 이루어져 있다.
이상에서 설명한 바와 같은 구조의 전지모듈 어셈블리는, 단위모듈들의 적층 계면에 냉매 유로가 형성되어 있고, 이러한 냉매 유로에 냉매를 공급하는 냉매 유입구가 측부 커버 플레이트에 형성되어 있으며, 단위모듈들을 냉각시킨 냉매의 배출구가 서브모듈들의 후면에 위치하는 브라켓에 형성되어 있으므로, 전지모듈 어셈블리를 구성하고 있는 단위모듈들의 냉각을 균일하게 수행할 수 있다. 따라서, 향상된 효율성으로 전지모듈 어셈블리의 전체적인 냉각효과를 달성할 수 있다.
하나의 구체적인 예에서, 상기 전지모듈 어셈블리는,
상기 서브모듈들의 상면에 탑재되고, 서브모듈들 및 측부 커버플레이트와 체결 결합되는 상부 커버 플레이트(upper cover plate); 및
냉매의 유입 방향을 기준으로 상기 서브모듈들의 전면에 장착되고, 서브모듈들, 베이스 플레이트 및 측부 커버 플레이트에 체결 결합되는 전면 커버 플레이트(front cover plate);를 더 포함하는 구조일 수 있다.
상기 상부 커버 플레이트는, 예를 들어, 소정의 강성 및 탄성을 가진 판재로 제작될 수 있는 바, 서브모듈들을 하나로 일체화 시킴과 동시에 외부로부터의 충격으로부터 보호하는 효과를 달성할 수 있다.
상기 상부 커버 플레이트는 기계 가공에 의해 제작되는 것이라면 특별히 제한되는 것은 아니나, 구체적인 예로서, 프레스 성형법에 의해 제작될 수 있다.
상기 상부 커버 플레이트 및 베이스 플레이트의 자체 강성을 향상시킬 수 있도록, 바람직하게는, 외부 표면에 요철구조의 보강 비드(bead)가 형성될 수 있다.
경우에 따라서는, 상기 상부 커버 플레이트 및 베이스 플레이트는 서브모듈들과 체결 결합되기 위한 체결홈을 추가로 포함할 수 있다.
이 경우, 상기 서브모듈들은 상부 커버 플레이트 및 베이스 플레이트와 체결됨과 동시에 고정될 수 있으므로, 더욱 견고하고 안정적인 고정 효과를 달성할 수 있다. 또한, 상기 체결구들을 통해 달성되는 서브모듈들과 상부 커버 플레이트 및 베이스 플레이트와의 체결은, 바람직하게는, 볼트 등에 의한 체결일 수 있지만, 이들만으로 한정되지 않음은 물론이다.
본 발명은 또한, 상기 전지모듈 어셈블리를 전원으로 포함하는 디바이스를 제공하는 바, 상기 디바이스는 구체적으로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력저장 장치, 비상용 전원장치, 전산실 전원장치, 휴대용 전원장치, 의료설비 전원장치, 소화설비 전원장치, 경보설비 전원장치 또는 피난설비 전원장치일 수 있지만, 이것만으로 한정되는 것은 아니다.
이러한 디바이스의 구조 및 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.
도 1은 종래기술의 전지팩 냉각 시스템을 일부 투시 상태로 보여주는 모식도이다;
도 2는 본 발명에 따른 파우치형 전지셀의 사시도이다;
도 3은 도 1의 전지셀들이 셀 커버에 장착된 구조의 단위셀에 대한 사시도이다;
도 4는 도 2의 단위셀이 카트리지에 장착되어 하나의 단위모듈을 구성하는 형상을 나타낸 사시도이다;
도 5는 본 발명에 따른 단위모듈의 평면도이다;
도 6은 본 발명에 따른 단위모듈의 측면도이다;
도 7은 본 발명에 따른 단위모듈들이 적층되는 형상을 나타낸 사시도이다;
도 8은 도 7의 부분 확대도 이다;
도 9는 본 발명에 따른 서브모듈에 직렬 접속부재 및 외부 입출력 단자용 버스 바가 장착된 형상을 나타낸 사시도이다;
도 10은 도 9의 서브모듈에 외부 입출력 단자 보호부재 및 직렬 접속부 보호부재가 장착된 형상을 나타낸 사시도이다;
도 11은 도 10의 측면도이다;
도 12는 도 10의 서브모듈에 측부 커버 플레이트가 장착되는 형상을 나타낸 사시도이다;
도 13은 본 발명에 따른 측부 커버 플레이트의 평면도이다;
도 14는 본 발명에 따른 두 개의 서브모듈들을 측부 커버 플레이트 및 브라켓으로 고정하는 형상을 나타낸 사시도이다;
도 15는 본 발명에 따른 전지모듈 어셈블리의 냉매 흐름을 나타내는 평면도이다;
도 16 및 도 17은 본 발명의 또 다른 실시예에 따른 전지모듈 어셈블리의 냉매 흐름을 나타내는 평면도이다;
도 18는 본 발명에 따른 두 개의 서브모듈들을 메인 버스 바로 상호 전기적으로 연결함과 동시에 고정하고, 베이스 플레이트, 상부 커버 플레이트 및 전면 커버 플레이트가 장착되는 형상을 나타낸 사시도이다;
도 19는 본 발명에 따른 전지모듈 어셈블리의 사시도이다.
이하, 도면을 참조하여 본 발명을 더욱 자세히 설명하지만 본 발명의 범주가 그것에 한정되는 것은 아니다.
도 2에는 본 발명에 따른 파우치형 전지셀의 사시도가 도시되어 있다.
도 2를 참조하면, 전지셀(20)은 전극 단자들(양극단자 21, 음극단자 22)이 일측 단부에 형성되어 있는 판상형 전지셀(20)이다. 구체적으로 판상형 전지셀(20)은 금속층(도시하지 않음)과 수지층(도시하지 않음)을 포함하는 라미네이트 시트의 파우치형 케이스(23)에 전극조립체(도시하지 않음)를 내장하고, 예를 들어, 열융착에 의해 실링부(24)를 형성한 구조이며, 통상적으로 이를 파우치형 전지셀로 통칭하기도 한다.
도 3에는 도 2의 전지셀들이 셀 커버에 장착된 구조의 단위셀(전지셀 어셈블리)에 대한 사시도가 도시되어 있다.
도 3을 도 2와 함께 참조하면, 2개의 전지셀들(20)이 상부 셀 커버(111) 및 하부 셀 커버(112)로 구성된 셀 커버(111, 112)에 수납 및 고정되어 있다. 전지셀들(20)의 전극 단자들(21, 22)은, 각각 전기적으로 병렬 연결되어 두 개의 전극 단자들(110a, 110b)을 형성할 수 있도록, 셀 커버로부터 일측 방향으로 노출되어 있다.
도 4에는 도 3의 단위셀이 카트리지에 장착되어 하나의 단위모듈을 구성하는 형상을 나타낸 사시도가 도시되어 있고, 도 5 및 도 6에는 본 발명에 따른 단위모듈의 평면도 및 측면도가 도시되어 있다.
이들 도면을 참조하면, 2개의 단위셀들(110)은 카트리지(120)에 장착되어 하나의 단위모듈(100)을 구성한다. 단위셀들(110)은 각각의 양극단자(110a)와 음극단자(110b)가 서로 마주보도록 배열되어 있다. 또한, 이들 전극단자들(110a, 110b)은 각각 버스 바(130)에 의해 전기적으로 병렬 연결되어 있다.
구체적으로, 버스 바(130)는 전극단자들(110a, 110b)과 전기적으로 결합되어 있고, 버스 바(130)의 일측 단부에는 하향 절곡된 절곡부(131)가 형성되어 있으며, 절곡부에는 체결구(132)가 형성되어 있다. 이러한 체결구(132)는 단위모듈(100)이 다수 개 적층될 때 단위모듈들(100) 상호간의 전기적 연결을 위한 체결구(132)로 사용된다 (도 7 및 도 8 참조).
또한, 카트리지(120)의 양 측면에는 체결홈(122)을 구비한 돌출부들(121)이 형성되어 있다. 이러한 돌출부(121)는 체결홈(122)을 관통하는 체결부재(도 7의 123)에 의해 단위모듈들(100)이 상호 결합될 수 있다.
돌출부(121)의 높이는 카트리지(120)의 높이보다 110 내지 150% 크게 형성되어 있다. 따라서, 단위모듈들(100)이 적층될 때 단위모듈(100) 적층 계면에 소정의 간극(도 11의 170)이 생기게 되며, 이러한 간극(도 11의 170)은 냉매가 유동할 수 있는 냉매 유로로 활용될 수 있다.
도 7에는 본 발명에 따른 단위모듈들이 적층되는 형상을 나타낸 사시도가 도시되어 있다.
도 7을 참조하면, 단위모듈들(100)은 지면으로부터 수직 적층되어 하나의 서브모듈(200)을 구성하고 있다. 구체적으로, 각 단위모듈들(100)은 수직 적층된 후, 양 측면에 형성된 돌출부들에 체결부재(123)가 삽입되어 상호 결합된다.
도 8에는 도 7의 부분 확대도가 도시되어 있고, 도 9에는 본 발명에 따른 서브모듈(200)에 접속부재들(140) 및 외부 입출력 단자용 버스 바들(151, 152)이 장착된 형상을 나타낸 사시도가 도시되어 있다.
이들 도면을 참조하면, 단위모듈들(100)은 서로 교번 배열된 상태로 적층되고 접속부재들(140)에 의해 전기적으로 직렬 연결되어 있다. 또한, 직렬 연결된 단위모듈들(100)을 외부 입출력 단자들(161, 162)과 전기적으로 연결할 수 있도록 외부 입출력 단자용 버스 바들(151, 152)이 장착되어 있다.
도 10에는 도 9의 서브모듈에 외부 입출력 단자 보호부재 및 직렬접속부 보호부재가 장착된 형상을 나타낸 사시도가 도시되어 있다.
도 10을 도 9과 함께 참조하면, 서브모듈(200)의 외부 입출력 단자(161)는 외부 입출력 단자 보호부재(165)가 장착됨으로써 외부로부터 보호되고 있다. 또한, 단위모듈들(100)이 전기적으로 직렬 연결되어 있는 직렬접속부 역시 직렬접속부 보호부재(145)가 장착됨으로써 외부로부터 보호되고 있다.
도 11에는 도 10의 측면도가 도시되어 있다.
도 11을 도 6와 함께 참조하면, 서브모듈(200)을 구성하고 있는 단위모듈들(100)의 적층 계면에는 소정의 간극들(170)이 형성되어 있다. 이러한 간극들(170)은 냉매가 유동할 수 있는 냉매 유로로 활용될 수 있다.
도 12에는 도 11의 서브모듈에 측부 커버 플레이트가 장착되는 형상을 나타낸 사시도가 도시되어 있고, 도 13에는 측부 커버 플레이트의 평면도가 도시되어 있다.
이들 도면을 참조하면, 측부 커버 플레이트(300)는, 서브모듈(200)의 측부를 감싸는 본체부(310)를 포함하고 있고, 본체부(310)에는 냉매가 외부로부터 유입될 수 있는 냉매 유입구들(311a, 311b)이 천공되어 있다. 또한, 본체부(310)의 양단에는 서브모듈(200)을 감싸는 형태로 절곡되어 연장된 구조의 절곡부(320)가 형성되어 있다.
또한, 측부 커버 플레이트(300)의 본체부(310) 및 절곡부(320)에는 서브모듈(200)과 체결 고정되는 고정부들(312, 321)이 형성되어 있고, 본체부(310)의 일측 단부에는 손잡이(330)가 형성되어 있다.
구체적으로, 본체부(310)에 형성된 냉매 유입구들(311a, 311b)은, 전지모듈 어셈블리의 전면 방향(B)에 위치한 제 1 유입구군(311A)과, 전지모듈 어셈블리의 후면 방향(C)에 위치한 제 2 유입구군(311B)으로 구성되어 있다. 또한, 제 2 유입구들(331b) 각각의 면적은 제 1 유입구들(331a) 각각의 면적 대비 150 내지 200 % 더 크게 형성되어 있다.
따라서, 이러한 구조의 유입구들을 포함하는 전지모듈 어셈블리는, 전지모듈 어셈블리 전면부 및 후면부에 유입되는 냉매의 유량을 균일할 수 있다.
도 14에는 2개의 서브모듈들을 측부 커버 플레이트 및 브라켓으로 고정하는 형상을 나타낸 사시도가 도시되어 있다.
도 14를 참조하면, 2개의 서브모듈들(200)은 후면에 브라켓(500)이 장착되어 상호 결합되어 있다.
브라켓(500)은 판상형 본체부(510), 고정부(520), 및 본체부(510) 중앙에 관통되어 형성되어 있는 냉매 배출구(530)를 포함하고 있다. 본체부(510)에는 서브모듈들(200)의 후면 요철구조와 대응하는 형상의 요철부(511)가 양단에 형성되어 있고, 고정부(520)에는 서브모듈들(200)의 후면에 체결 고정될 수 있는 체결구들이 형성되어 있다.
도 15에는 본 발명에 따른 전지모듈 어셈블리의 냉매 흐름을 나타내는 평면도가 도시되어 있고, 도 16에는 본 발명의 또 다른 실시예가 도시되어 있다.
우선, 도 15를 도 14와 함께 참조하면, 서브모듈들(200)은 후면에 장착된 브라켓(500) 및 전면에 장착된 메인 버스 바(도 18의 400)에 의해 중앙부에 냉매(도시하지 않음)가 유동할 수 있는 냉매 유로(250)가 형성되어 있다. 따라서, 냉매는 측부 커버 플레이트(300)로부터 유입되어 서브모듈들(200)에 내장된 전지셀(도시하지 않음)을 냉각시킨 후 중앙 냉매 유로(250)를 따라 브라켓(500)에 형성된 냉매 배출구(530)로 배출될 수 있다.
한편, 측부 커버 플레이트(300)로부터 유입되는 냉매의 유량은, 측부 커버 플레이트(300)의 본체부(310)에 형성되어 있는 냉매 유입구들(311a, 311b)의 크기에 따라 결정된다. 전지모듈 어셈블리 후면 방향(C)에 위치한 제 2 유입구들(331b)의 크기는 전지모듈 어셈블리 전면 방향(B)에 위치한 제 1 유입구들(331a)의 크기보다 커서, 냉매 배출구로부터의 거리 차이에도 불구하고 전체적으로 동일한 냉매 유량을 제공한다.
경우에 따라서는, 도 16에서 보는 바와 같이, 냉매 배출구가 형성된 브라켓(500) 위치에 송풍기(fan: 550) 또는 배출 덕트(duct, 도시하지 않음)를 장착하여 냉각 효율을 더욱 향상시킬 수 있다.
도 17에는 본 발명의 또 다른 실시예에 따른 전지모듈 어셈블리의 냉매 흐름을 나타내는 평면도가 도시되어 있다.
도 17을 도 14 및 도 15와 함께 참조하면, 전지모듈 어셈블리에 외부 케이스(901)가 추가로 장착되는 점을 제외하고, 나머지 구조는 도 15에 도시된 전지모듈 어셈블리의 구조와 동일하다.
구체적으로, 외부 케이스(901)에는 내부에 수납된 전지모듈 어셈블리에 냉매를 공급할 수 있는 냉매 유입구들(901, 902)이 양단에 형성되어 있다. 냉매 유입구들(901, 902)로부터 유입된 냉매는 측부 커버 플레이트(300)로 유입되고 서브모듈들(200)에 내장된 전지셀(도시하지 않음)을 냉각시킨 후 중앙 냉매 유로(250)를 따라 브라켓(500)에 형성된 냉매 배출구(530)로 배출된다.
도 18에는 2개의 서브모듈들을 메인 버스 바로 상호 전기적으로 연결함과 동시에 고정하고, 베이스 플레이트, 상부 커버 플레이트 및 전면 커버 플레이트가 장착되는 형상을 나타낸 사시도가 도시되어 있다.
도 18을 참조하면, 2개의 서브모듈들(200)의 각 외부 입출력 단자들(162, 161)은 메인 버스 바(400)에 의해 전기적으로 직렬 연결되어 있다. 또한, 2개의 서브모듈들(200)은 메인 버스 바(400)에 의해 소정의 거리만큼 이격될 수 있도록 고정되어 있다.
또한, 2개의 서브모듈들(200)은 베이스 플레이트(600) 상에 탑재된 후, 상부면은 상부 커버 플레이트(700)에 의해 보호되고, 전면은 전면 커버 플레이트(800)에 의해 보호된다.
도 19에는 본 발명에 따른 전지모듈 어셈블리의 사시도가 도시되어 있다.
도 19를 도 18과 함께 참조하면, 상부 커버 플레이트(700) 및 베이스 플레이트(600)에는, 외부 표면에 자체 강성 향상을 위한 요철구조의 보강 비드들(750, 650)이 형성되어 있다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 전지모듈 어셈블리는, 특 특정구조의 냉매 유로를 제공할 수 있도록 상호 이격된 상태로 측면 방향으로 배열되어 있는 서브모듈들, 냉매 유입구를 포함하고 있는 측부 커버 플레이트들 및 냉매 배출구가 형성되어 있는 브라켓을 포함하는 구조로 전지모듈 어셈블리를 구성함으로써, 전지모듈 어셈블리의 부피 증가를 억제함과 동시에 전지모듈 어셈블리의 향상된 냉각 효과 및 균일한 냉각 효과를 달성할 수 있다. 또한, 전지모듈 어셈블리를 콤팩트(compact) 한 구조로 조립할 수 있고, 전지모듈의 냉각 효율성 향상을 위한 추가적인 부품의 구성이 필요치 않도록 하여, 상기 콤팩트 한 구조와 더불어 생산 공정의 효율성 증대 효과를 함께 달성할 수 있다.

Claims (20)

  1. 단위셀들이 버스 바에 의해 전기적으로 연결된 상태에서 카트리지에 탑재되어 있는 단위모듈들을 포함하고 있는 전지모듈 어셈블리로서,
    적층 계면에 냉매 유로가 형성되도록 지면으로부터 수직 방향으로 적층된 둘 이상의 단위모듈들을 포함하고 있고, 냉매 유로를 제공할 수 있도록 상호 이격된 상태로 측면 방향으로 배열되어 있는 둘 이상의 서브모듈들(sub-modules);
    상기 서브모듈들이 탑재되는 베이스 플레이트(base plate);
    상기 서브모듈들의 측부에 장착되고, 냉매가 유입될 수 있는 하나 이상의 냉매 유입구를 포함하고 있는 측부 커버 플레이트들(side cover plates); 및
    상기 서브모듈들의 단부들을 상호 고정하고, 상기 냉매 유로에 연통되는 냉매 배출구가 형성되어 있는 브라켓(bracket);
    을 포함하는 것을 특징으로 하는 전지모듈 어셈블리.
  2. 제 1 항에 있어서, 상기 단위셀은, 판상형 전지셀이거나, 또는 전극단자들이 노출된 상태로 둘 이상의 판상형 전지셀들이 셀 커버에 장착되어 있는 전지셀 어셈블리인 것을 특징으로 하는 전지모듈 어셈블리.
  3. 제 2 항에 있어서, 상기 전지셀은 각형 이차전지 또는 파우치형 이차전지인 것을 특징으로 하는 전지모듈 어셈블리.
  4. 제 3 항에 있어서, 상기 파우치형 이차전지는 수지층과 금속층을 포함하는 라미네이트 시트에 전극조립체가 밀봉되어 있는 구조로 이루어진 것을 특징으로 하는 전지모듈 어셈블리.
  5. 제 2 항에 있어서, 상기 셀 커버는 전극단자 부위를 제외하고 전지셀들의 외면을 감싸도록 상호 결합되는 한 쌍의 외장 부재인 것을 특징으로 하는 전지모듈 어셈블리.
  6. 제 1 항에 있어서, 상기 단위모듈에서 단위셀들은 병렬 연결되어 있는 것을 특징으로 하는 전지모듈 어셈블리.
  7. 제 6 항에 있어서, 상기 단위셀들은 전극단자들이 대면하도록 카트리지 상에 장착되어 있고, 상기 카트리지에 장착되어 있는 버스 바들에 의해 전극단자들이 병렬로 연결되어 있는 것을 특징으로 하는 전지모듈 어셈블리.
  8. 제 1 항에 있어서, 상기 카트리지의 양 측면에는 체결홈을 구비한 돌출부들이 형성되어 있고, 상기 체결홈을 관통하는 체결부재에 의해 카트리지들이 상호 결합되어 서브모듈을 형성하고 있는 것을 특징으로 하는 전지모듈 어셈블리.
  9. 제 1 항에 있어서, 상기 서브모듈에서 단위모듈들은 직렬 연결되어 있는 것을 특징으로 하는 전지모듈 어셈블리.
  10. 제 1 항에 있어서, 상기 버스 바는 전극단자가 결합되어 있는 면의 일측 단부가 상향 또는 하향 절곡되어 있고, 상기 절곡된 일측 단부와 직렬 접속부재가 결합되어, 인접한 단위모듈과 직렬 연결을 이루고 있는 것을 특징으로 하는 전지모듈 어셈블리.
  11. 제 1 항에 있어서, 상기 측부 커버 플레이트는,
    상기 서브모듈들의 측부를 감싸는 본체부;
    상기 본체부의 양단에 서브모듈들의 감싸는 형태로 절곡되어 연장된 구조로 형성되어 있고, 서브모듈들과 체결 고정되는 고정부; 및
    상기 본체부의 일측 단부에 형성된 손잡이;
    를 포함하고 있고, 상기 본체부에는 유입구가 형성되어 있는 것을 특징으로 하는 전지모듈 어셈블리.
  12. 제 11 항에 있어서, 상기 유입구는 평면상으로 원, 타원, 다각형 또는 슬릿(slit) 형상인 것을 특징으로 하는 전지모듈 어셈블리.
  13. 제 11 항에 있어서, 상기 유입구는 둘 이상의 제 1 유입구를 포함하는 제 1 유입구군 및 둘 이상의 제 2 유입구를 포함하는 제 2 유입구군을 포함하고, 상기 제 1 유입구군은 냉매가 전지모듈 어셈블리로 유입되는 방향을 기준으로 전지모듈 어셈블리 전면 방향에 위치하고, 상기 제 2 유입구군은 전지모듈 어셀블리의 후면 방향에 위치하는 것을 특징으로 하는 전지모듈 어셈블리.
  14. 제 13 항에 있어서, 상기 제 2 유입구의 면적은 제 1 유입구의 면적 대비 110 내지 300% 더 큰 것을 특징으로 하는 전지모듈 어셈블리.
  15. 제 1 항에 있어서, 상기 브라켓은,
    판상형 본체부, 고정부 및 상기 본체부 중앙에 관통되어 형성되어 있는 배출구를 포함하고 있고,
    상기 본체부는 서브모듈들의 후면 요철구조와 대응하는 형상의 요철부가 양단에 형성되어 있고,
    상기 고정부에는 서브모듈들의 후면에 체결고정될 수 있는 체결구가 형성되어 있는 것을 특징으로 하는 전지모듈 어셈블리.
  16. 제 1 항에 있어서, 상기 서브모듈들의 사이의 냉매 유로는 평면상으로 브라켓의 냉매 배출구와 일직선 상에 형성되어 있는 것을 특징으로 하는 전지모듈 어셈블리.
  17. 제 1 항에 있어서, 상기 전지모듈 어셈블리의 냉매 배출구의 위치에 송풍기(fan) 또는 배출 덕트(duct)가 장착되는 것을 특징으로 하는 전지모듈 어셈블리.
  18. 제 1 항에 있어서, 상기 전지모듈 어셈블리는,
    상기 서브모듈들의 상면에 탑재되고, 서브모듈들 및 측부 커버플레이트와 체결 결합되는 상부 커버 플레이트(upper cover plate); 및
    냉매의 유입 방향을 기준으로 상기 서브모듈들의 전면에 장착되고, 서브모듈들, 베이스 플레이트 및 측부 커버 플레이트에 체결 결합되는 전면 커버 플레이트(front cover plate);
    를 더 포함하는 것을 특징으로 하는 전지모듈 어셈블리.
  19. 제 1 항에 따른 전지모듈 어셈블리를 전원으로 포함하는 것을 특징으로 하는 디바이스.
  20. 제 19 항에 있어서, 상기 디바이스는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차, 전력저장 장치, 비상용 전원장치, 전산실 전원장치, 휴대용 전원장치, 의료설비 전원장치, 소화설비 전원장치, 경보설비 전원장치 또는 피난설비 전원장치인 것을 특징으로 하는 디바이스.
PCT/KR2014/006913 2013-07-31 2014-07-29 냉매 유로를 포함하는 전지모듈 어셈블리 WO2015016564A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/894,805 US9786968B2 (en) 2013-07-31 2014-07-29 Battery module assembly having coolant flow channel
EP14833029.3A EP2991134B1 (en) 2013-07-31 2014-07-29 Battery module assembly having refrigerant fluid channel
JP2016516468A JP6131503B2 (ja) 2013-07-31 2014-07-29 冷媒流路を含む電池モジュールアセンブリ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0090752 2013-07-31
KR1020130090752A KR101709555B1 (ko) 2013-07-31 2013-07-31 냉매 유로를 포함하는 전지모듈 어셈블리

Publications (1)

Publication Number Publication Date
WO2015016564A1 true WO2015016564A1 (ko) 2015-02-05

Family

ID=52432034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006913 WO2015016564A1 (ko) 2013-07-31 2014-07-29 냉매 유로를 포함하는 전지모듈 어셈블리

Country Status (5)

Country Link
US (1) US9786968B2 (ko)
EP (1) EP2991134B1 (ko)
JP (1) JP6131503B2 (ko)
KR (1) KR101709555B1 (ko)
WO (1) WO2015016564A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297061A4 (en) * 2016-01-08 2018-04-04 LG Chem, Ltd. Battery pack
EP3327821A4 (en) * 2016-01-12 2018-06-13 LG Chem, Ltd. Battery module assembly having stable fixing means for unit modules
CN111788710A (zh) * 2018-09-13 2020-10-16 株式会社Lg化学 包括热收缩管的电池模块
US10938012B2 (en) * 2017-02-24 2021-03-02 Lg Chem, Ltd. Battery module

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101829093B1 (ko) * 2014-10-22 2018-03-29 주식회사 엘지화학 배터리 시스템의 냉각 공기 흐름 제어 시스템 및 방법
KR102392920B1 (ko) 2015-06-02 2022-05-02 현대두산인프라코어(주) 에너지 저장 유닛의 냉각 모듈
KR102104383B1 (ko) * 2016-04-25 2020-04-24 주식회사 엘지화학 전력 저장 장치 및 전력 저장 장치 냉각 방법
EP3309858B1 (en) * 2016-10-13 2019-07-10 Samsung SDI Co., Ltd. Battery module carrier, battery system and use of a modified h-beam as battery module carrier
EP3346517B1 (en) 2017-01-04 2023-08-30 Samsung SDI Co., Ltd Battery system
CN106898842A (zh) * 2017-03-20 2017-06-27 乐视汽车(北京)有限公司 电池冷却板及其制造方法
CN107394075B (zh) * 2017-07-24 2020-07-10 苏州辉益电气科技有限公司 一种带有快速降温的电瓶盒
KR102119152B1 (ko) 2017-12-12 2020-06-04 삼성에스디아이 주식회사 배터리 팩
JP7058197B2 (ja) * 2018-08-20 2022-04-21 本田技研工業株式会社 車両用バッテリ装置
KR102257719B1 (ko) 2018-11-21 2021-05-28 오세호 작성프로그램 및 이를 탑재한 문자 입력 장치
KR20220039158A (ko) * 2020-09-22 2022-03-29 주식회사 엘지에너지솔루션 전지셀의 수명이 향상된 전지 팩 및 이를 포함하는 디바이스
DE102021109353B3 (de) * 2021-04-14 2022-03-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Batterieeinrichtung für ein Kraftfahrzeug, Kraftfahrzeug und Verfahren zum Betrieb einer Batterieeinrichtung
KR102658730B1 (ko) * 2022-10-13 2024-04-19 에스케이온 주식회사 배터리 모듈 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070039708A (ko) * 2005-10-10 2007-04-13 삼성에스디아이 주식회사 이차 전지 모듈
KR100726503B1 (ko) * 2005-12-09 2007-06-11 현대자동차주식회사 연료전지스택 구조
KR100937897B1 (ko) * 2008-12-12 2010-01-21 주식회사 엘지화학 신규한 공냉식 구조의 중대형 전지팩
JP2012054052A (ja) * 2010-08-31 2012-03-15 Toyota Motor Corp 蓄電装置および車両
KR20120129790A (ko) * 2011-05-19 2012-11-28 주식회사 엘지화학 구조적 신뢰성이 우수한 전지팩

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5643693A (en) * 1995-10-30 1997-07-01 Yazaki Corporation Battery-mounted power distribution module
US7662508B2 (en) 2004-11-30 2010-02-16 Samsung Sdi Co., Ltd. Secondary battery module
KR100876458B1 (ko) * 2004-12-24 2008-12-29 주식회사 엘지화학 신규한 구조의 전지 카트리지와 그것을 포함하고 있는개방형 전지 모듈
KR100983012B1 (ko) * 2007-10-13 2010-09-17 주식회사 엘지화학 기계적 접속방식에 기반한 이차전지 팩
JP5703293B2 (ja) * 2009-05-20 2015-04-15 ジョンソン コントロールズ−サフト アドバンスト パワー ソリューションズ エルエルシー リチウム−イオンバッテリーモジュール
US8557411B2 (en) * 2009-08-14 2013-10-15 Samsung Sdi Co., Ltd. Secondary battery with a connection tab folded around an insulator and method of manufacturing the same
KR101297176B1 (ko) * 2010-06-03 2013-08-21 주식회사 엘지화학 신규한 구조의 전지모듈
JP5553163B2 (ja) * 2010-09-09 2014-07-16 ソニー株式会社 バッテリユニット
KR101535795B1 (ko) * 2012-01-18 2015-07-10 주식회사 엘지화학 공냉식 구조의 전지팩
KR20140094207A (ko) * 2013-01-21 2014-07-30 삼성에스디아이 주식회사 전지 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070039708A (ko) * 2005-10-10 2007-04-13 삼성에스디아이 주식회사 이차 전지 모듈
KR100726503B1 (ko) * 2005-12-09 2007-06-11 현대자동차주식회사 연료전지스택 구조
KR100937897B1 (ko) * 2008-12-12 2010-01-21 주식회사 엘지화학 신규한 공냉식 구조의 중대형 전지팩
JP2012054052A (ja) * 2010-08-31 2012-03-15 Toyota Motor Corp 蓄電装置および車両
KR20120129790A (ko) * 2011-05-19 2012-11-28 주식회사 엘지화학 구조적 신뢰성이 우수한 전지팩

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2991134A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297061A4 (en) * 2016-01-08 2018-04-04 LG Chem, Ltd. Battery pack
US10673036B2 (en) 2016-01-08 2020-06-02 Lg Chem, Ltd. Battery pack
EP3327821A4 (en) * 2016-01-12 2018-06-13 LG Chem, Ltd. Battery module assembly having stable fixing means for unit modules
US10686172B2 (en) 2016-01-12 2020-06-16 Lg Chem, Ltd. Battery module assembly having stable fixing means for unit module
US10938012B2 (en) * 2017-02-24 2021-03-02 Lg Chem, Ltd. Battery module
CN111788710A (zh) * 2018-09-13 2020-10-16 株式会社Lg化学 包括热收缩管的电池模块
US11594780B2 (en) 2018-09-13 2023-02-28 Lg Energy Solution, Ltd. Battery module including heat-shrinkable tube

Also Published As

Publication number Publication date
US20160134000A1 (en) 2016-05-12
EP2991134A1 (en) 2016-03-02
KR20150015136A (ko) 2015-02-10
US9786968B2 (en) 2017-10-10
JP6131503B2 (ja) 2017-05-24
EP2991134B1 (en) 2018-01-03
JP2016520250A (ja) 2016-07-11
KR101709555B1 (ko) 2017-02-23
EP2991134A4 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2015016564A1 (ko) 냉매 유로를 포함하는 전지모듈 어셈블리
WO2015016566A1 (ko) 전지모듈 어셈블리
WO2015016557A1 (ko) 냉매 유로를 포함하는 전지모듈 어셈블리
WO2021107336A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2017104878A1 (ko) 배터리 팩
WO2014014303A1 (ko) 전지모듈 어셈블리
WO2017104938A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2017052041A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2015182909A1 (ko) 수냉식 냉각구조를 포함하는 전지모듈
WO2014185567A1 (ko) 신규한 구조의 전지모듈 어셈블리
WO2012177000A2 (ko) 신규한 공냉식 구조의 전지팩
WO2017095003A1 (ko) 그립핑부가 구비되어 있는 카트리지를 포함하고 있는 전지모듈
WO2017014449A1 (ko) 단자 플레이트 및 bms가 직접 연결된 구조의 전지모듈
WO2012086951A1 (ko) 리튬 이차전지의 냉각방법 및 냉각시스템
WO2019027150A1 (ko) 배터리 셀용 카트리지 및 이를 포함하는 배터리 모듈
CN105489796A (zh) 电池组壳体、电池组和使用电池组作为电源的装置
WO2015186912A1 (ko) 이차 전지용 프레임 및 이를 포함하는 배터리 모듈
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2014077578A1 (ko) 전지모듈 냉각장치 및 이를 포함하는 전지모듈 어셈블리
WO2019004553A1 (ko) 배터리 모듈
WO2017119789A1 (ko) 엣지 냉각 방식의 부재를 포함하는 전지팩
WO2021206383A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021206514A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221340A1 (ko) 전지팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833029

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014833029

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016516468

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14894805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE