WO2015016468A1 - 파장 측정 장치가 내장된 외부 공진기형 레이저 - Google Patents

파장 측정 장치가 내장된 외부 공진기형 레이저 Download PDF

Info

Publication number
WO2015016468A1
WO2015016468A1 PCT/KR2014/004176 KR2014004176W WO2015016468A1 WO 2015016468 A1 WO2015016468 A1 WO 2015016468A1 KR 2014004176 W KR2014004176 W KR 2014004176W WO 2015016468 A1 WO2015016468 A1 WO 2015016468A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
laser
reflection mirror
diode chip
partial reflection
Prior art date
Application number
PCT/KR2014/004176
Other languages
English (en)
French (fr)
Inventor
김정수
Original Assignee
주식회사 포벨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포벨 filed Critical 주식회사 포벨
Priority to CN201480042981.4A priority Critical patent/CN105431989B/zh
Priority to US14/908,749 priority patent/US9634466B2/en
Publication of WO2015016468A1 publication Critical patent/WO2015016468A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser

Definitions

  • the present invention relates to a laser having a wavelength measuring device as an external resonator type laser, and more particularly to an external resonator type laser having a TO type wavelength measuring device.
  • DWDM Dense Wavelength Division Multiplexing
  • DWDM has a communication wavelength of at least 32-40 channels in the C-band (1520 ⁇ 1560nm) band and requires more than 20 kinds of DFB-LD chip set sms corresponding to these 32 channels or more.
  • the present inventor has proposed an external resonator type laser structure of a TO (transistor outline) type whose wavelength is determined from the outside in Patent 10-1124173.
  • the external resonator type laser is a method of determining the oscillation wavelength of the semiconductor laser outside the semiconductor laser diode chip, and according to the method of determining the wavelength externally, the semiconductor laser can have various wavelengths or only oscillate at a specific wavelength. can do.
  • an external resonator laser is implemented in a package housing called a butterfly package.
  • a butterfly package has a large volume and a very expensive price of the package housing itself.
  • the semiconductor diode chip acts as a gain chip that gains only before the laser operation occurs, and when the gain chip is wavelength-locked at a wavelength selected from the outside, the laser operation is performed. It may be called a laser diode chip.
  • the concept of a gain chip and a laser diode chip may be used in the present invention. do.
  • Patent 10-1124173 by the present inventor shows a method of manufacturing an external resonator type laser using a TO type package.
  • Figure 1 shows the structure of the patent 10-1124173 by the inventor.
  • this method has a characteristic that the oscillation wavelength changes slightly depending on the internal temperature or the magnitude of the current flowing through the laser diode chip.
  • FIG. 2 shows a conventional characteristic that the oscillation wavelength is changed as the temperature of the thermoelectric element mounted inside the TO-type package is changed in the structure of FIG. 1 as described in Patent 10-1124173.
  • the laser oscillation wavelength is not stabilized and vibrates in the range of 100 pm in the external resonator type TO laser structure.
  • wavelength stability is more precise at +/- 100 pm, +/- 50 pm, and +/- 25 pm. Requires wavelength control.
  • Patent Document 1 Republic of Korea Patent Registration 10-1124173 (2012.02.29)
  • An object of the present invention is to provide a wavelength measurement function for an external resonator laser, and to provide an apparatus for wavelength measurement in an external resonator laser having a TO type ultra small laser package.
  • Laser device for achieving the above object is a laser diode chip for emitting a laser light; A partial reflection mirror for light feedback reflecting part of the light emitted from the laser diode chip and returning it back to the laser diode chip; A collimation lens installed on the optical path between the laser diode chip and the partial reflecting mirror for optical feedback, for collimating the light emitted from the laser diode chip, a wavelength selective filter for transmitting the light having a specific wavelength selected, and a package bottom 45 degree partial reflection mirror with partial reflection characteristic that redirects the laser light traveling horizontally with respect to the laser light traveling vertically with respect to the package bottom surface, is emitted from the laser diode chip and transmitted through the 45 degree reflective mirror It comprises a photodiode disposed on the optical path, a photodiode disposed below the 45 degree partial reflection mirror.
  • the light reflecting partial reflection mirror is preferably disposed above the 45 degree reflection mirror.
  • the laser diode chip, collimating lens, wavelength selective filter, 45 degree partial reflection mirror, and the light return partial reflection mirror are fixedly attached to an upper portion of the thermoelectric element, and preferably disposed in a TO (transistor outline) package.
  • the reflectance of the 45-degree reflective mirror is preferably 80% to 98%, and the reflectance of the partial feedback mirror for the light feedback is preferably 20% to 50%.
  • the wavelength selective filter is preferably formed by alternately stacking dielectric films having a high refractive index and low one on which the laser light passes, or a semiconductor layer of GaAs / AlGaAs is deposited on a GaAs substrate.
  • the half width of the transmission wavelength band of the wavelength selective filter is preferably formed at 0.05 nm to 1 nm.
  • the package housing in which the laser diode chip, the collimating lens, the wavelength selective filter, the 45 degree reflecting mirror and the light reflecting partial reflecting mirror is disposed is preferably kept inside a vacuum of 0.2 atm or less. It is preferable to be fixedly attached to the upper surface of the thermoelectric element or to the side of the laser diode chip submount for fixing the laser diode chip.
  • the photodiode disposed on the optical path passing through the 45 degree partial reflection mirror has a photocurrent flowing in proportion to the laser light emitted from the laser diode chip
  • the photo diode disposed below the 45 degree partial reflection mirror is a laser.
  • thermoelectric element included in the TO-type package such that the photocurrent ratio of the two photodiodes has a predetermined value is used.
  • the wavelength of the laser light can be precisely adjusted.
  • 1 is an external view showing a schematic view of a conventional external resonator type TO package
  • Figure 2 is an example of data showing a relationship of the external output wavelength is changed as the temperature of the thermoelectric element inside the package in the conventional external resonator type TO laser package,
  • FIG. 3 is a structural diagram of an external resonator type TO package having a wavelength monitoring function according to the present invention
  • FIG. 4 is an example of a transmission band of a wavelength selective filter in which the transmission wavelength band does not change relatively when the temperature of the thermoelectric element is changed in an external resonator laser having a wavelength monitoring function according to the present invention (FIG. 4A), An example in which the Fabry-Perot mode is moved according to the temperature of the thermoelectric element (FIG. 4B), and an example in which the light output varies depending on the allowable Fabry-Perot mode and the position of the transmission band of the wavelength selective filter ( Conceptual diagram illustrating FIG. 4 (c));
  • thermoelectric element 5 is a photocurrent flowing through the oscillation wavelength and PM-PD and FM-PD when the oscillation wavelength is changed by changing the temperature of the thermoelectric element mounted inside the TO-type package in the external resonator laser having the wavelength monitoring function according to the present invention. Is shown according to the temperature of the thermoelectric element,
  • thermoelectric element 6 shows the ratio of the oscillation wavelength and the FM-PD / PM-PD photocurrent when the oscillation wavelength is changed by changing the temperature of the thermoelectric element mounted inside the TO-type package in the external resonator laser having the wavelength monitoring function according to the present invention.
  • thermoelectric temperature change
  • Figure 7 shows the structure of an external resonator type TO laser package having a wavelength measuring device according to the present invention.
  • FIG. 1 is a structural diagram of an external resonator type TO laser package according to the related art as described above.
  • the wavelength is changed, and when the current flowing through the laser diode chip 150 is changed, the oscillation wavelength is also changed for the temperature of the same thermoelectric element. This wavelength change is shown in FIG.
  • a photodiode 350 chip for monitoring the output of the laser diode chip 150 is disposed under the 45 degree partial reflection mirror 270.
  • the photodiode chip 350 oscillates from the laser diode chip 150, passes through the collimation lens 170, passes through the 45 degree partial reflection mirror 270, and then passes through the wavelength selective filter 220.
  • a signal proportional to the intensity of the laser light output from the laser by monitoring the light reflected by the 45 degree partial reflection mirror 270 after the laser light reflected by the feedback reflection mirror 280 passes through the wavelength selective filter 220. Detect.
  • FIG. 3 is a schematic diagram of an external resonator type TO package having a wavelength stabilizing device according to the present invention.
  • the stem and cap of the TO-type package are not shown in FIG. 3.
  • the external resonator type laser diode package equipped with the wavelength measuring device according to the present invention includes a laser diode chip 100 installed in a submount 110 for a laser diode chip, and the laser diode chip 100.
  • the 45 degree partial reflection mirror 300 which passes through the collimation lens 200 and collimates the laser light emitted from the laser beam and transmits a predetermined ratio of incident laser light and reflects the predetermined ratio of light. The light is divided into two branches.
  • the 45 degree partial reflection mirror 300 has an appropriate reflectance of about 80 to 98%, and thus most of the light emitted from the laser diode chip 100 and incident on the 45 degree partial reflection mirror 300 is a 45 degree portion.
  • the light is incident on the wavelength selective filter on the reflective mirror 300.
  • the light passing through the 45 degree partial reflection mirror is incident to the laser light intensity monitoring photodiode (hereinafter referred to as PMPD) 600 to cause a photocurrent to flow through the PMPD in proportion to the laser light intensity.
  • PMPD laser light intensity monitoring photodiode
  • Most of the light emitted from the laser diode chip 100 and reflected by the 45 degree partial reflection mirror 300 via the collimation lens 200 is incident on the wavelength selective filter 400 for selectively transmitting light of a specific wavelength. do.
  • the incident surface of the wavelength selective filter 400 is preferably turned at least one degree with respect to the laser optical axis so that the light reflected from the wavelength selective filter 400 is not fed back to the laser diode chip 100. Do.
  • the light oscillation area of the laser diode chip is about 1 to 2 ⁇ m so that the light feedback to the laser diode chip does not occur even when the incident surface of the wavelength selective filter 400 has an angle with respect to the optical axis at a small angle of about 1 degree. .
  • the collimation lens 200 After the oscillation from the laser diode chip 100, the collimation lens 200 passes through the collimation lens 200, the light is reflected by the 45 degree partial reflection mirror 300 and then transmitted through the wavelength selective filter 400. Some of the light is transmitted through) to be used for optical communication, and the light reflected by the optical feedback partial reflection mirror 500 arrives at the 45 degree partial reflection mirror 300 via the wavelength selective filter 400.
  • the light incident from the wavelength selective filter 400 to the 45 degree partial reflection mirror 300 passes through the 45 degree partial reflection mirror 300 by a predetermined ratio and monitors the wavelength disposed under the 45 degree partial reflection mirror 300. It enters the photodiode 700 (hereinafter referred to as FMPD) and causes a photocurrent having information about the transmission component of the wavelength selective filter to flow into the FMPD 700.
  • FMPD photodiode 700
  • the light traveling from the wavelength selective filter 400 to the 45 degree partial reflection mirror 300 the light of the component reflected by the 45 degree partial reflection mirror 300 is fed back to the laser diode chip 100 via the collimation lens 200.
  • the oscillation wavelength of the laser diode chip 100 is locked to the wavelength selected by the wavelength selective filter 400, thereby completing a TO type external resonator laser.
  • the laser diode chip 100 is an edge emitting type laser diode chip, and the edge emitting type laser diode chip 100 emits laser light at both incision surfaces.
  • the incision surface of the laser diode chip 100 facing the partial reflection mirror 500 for the light feedback of both incision surfaces becomes an antireflective coating surface (reflective surface) having a reflectance of 1% or less.
  • This antireflection surface has a reflectance of 1% or less, preferably 0.1% or less, more preferably 0.01% or less.
  • the incision surface opposite the antireflective surface of the laser diode chip 100 typically has a reflectance of 1% or more, preferably 10% or more, more preferably 80% or more.
  • the laser diode chip 100 having one side of the incision is antireflectively coated, no light is fed back from the laser diode chip 100 itself, so that the Fabry-Perot mode using the laser diode chip 100 as a resonator is not formed. .
  • the light emitted from the laser diode chip 100 exhibits a wavelength of light having a very wide wavelength band (typically, a half width of 20 nm or more). Light of a wide wavelength band emitted through the non-reflective surface of the laser diode chip 100 is collimated by parallel light by the collimating lens 200.
  • the light of the wide wavelength band collimated by the collimation lens 200 is incident to the narrow wavelength selective filter 400 through the 45 degree partial reflection mirror 300, and the wavelength of the light incident to the wavelength selective filter 400 is incident. Except for the light passing through the selective filter 400, the rest is reflected by the wavelength selective filter 400 and sent to another path which cannot be fed back to the laser diode chip 100.
  • the light of the component transmitted from the laser diode chip 100 through the collimation lens 200 and the 45 degree partial reflection mirror 300 passes through the wavelength selective filter 400 and reaches the partial reflection mirror 500 for light feedback.
  • the light reflected by the light feedback partial reflection mirror 500 among the light reaching the partial reflection mirror 500 for light feedback passes through the wavelength selective filter 400 and the 45 degree partial reflection mirror 300 and then collimates the lens.
  • an extended resonator type laser including a laser diode chip 100, a collimating lens 200, a wavelength selective filter 300, and a light reflecting partial reflection mirror 500 is completed.
  • the wavelength of the laser light emitted from the laser diode chip 100 through the wavelength selective filter 400 is amplified. Is locked by the light. Therefore, when the external resonator type laser is completed and the wavelength locking phenomenon occurs, the laser light emitted from the laser diode chip 100 becomes the laser light passing through the wavelength selective filter 400.
  • the wavelength at which the actual wavelength lock occurs is not the highest transmittance wavelength of the wavelength selective filter 400, but becomes the Fabry-Perot mode of the external resonator within the transmission band of the wavelength selective filter 400.
  • 4A shows the transmission band transmission spectrum of the wavelength selective filter 400.
  • the wavelength selective filter exhibits a specific transmittance for a specific wavelength even for a wavelength in a transmission band, and a 1-transmission corresponds to a reflectance and has a constant distribution of reflectance for a wavelength in the wavelength selective filter. Therefore, even in the Fabry-Perot mode wavelength within the transmission band of the wavelength selective filter, the transmittance and reflectance of the wavelength-locked laser light vary depending on the relative position between the Fabry-Perot mode and the wavelength selective filter.
  • 4 (b) shows an example of the Fabry-Perot mode determined by the total resonator length of the external resonator laser. The dotted line in Fig.
  • FIG. 4 (b) is when the Fabry-Perot mode matches the wavelength with the most transmittance of the wavelength selective filter, and the dashed line in Fig. 4 (b) shows the wavelength with the most transmittance of the wavelength selective filter in the Fabry-Perot mode. If it does not match.
  • the laser Fabry-Perot mode which is wavelength-locked and oscillated in the laser diode chip 100, matches the wavelength with the highest transmittance of the wavelength selective filter 400, the intensity of the output laser light is increased as shown by the dotted line of FIG.
  • the intensity of the output laser light as shown by the broken line in FIG. 4 (c). Weakens.
  • the intensity of the output laser light is weakened, the amount of light reflected by the wavelength selective filter 400 is increased.
  • the reflected light increased by the wavelength selective filter 400 is a 45 degree partial reflection mirror 300. 2
  • the light is incident on the FMPD 700 under the partial reflection mirror 300 by the ratio of light corresponding to the transmittance of the partial reflection mirror 300. Therefore, the intensity of light incident on the FMPD 700 varies according to whether the center wavelength of the Fabry-Perot mode wavelength is matched based on the transmission band wavelength of the wavelength selective filter 400.
  • the transmission bandwidth of the wavelength selective filter 400 is preferably set appropriately for the insertion loss of light and effective Fabry-Perot mode selection.
  • the transmission bandwidth of the wavelength selective filter 400 is 0.05 nm. To 2 nm or so.
  • the reflectance of the light return partial reflection mirror 500 is also appropriately set. In the embodiment of the present invention, the reflectance of the light return partial reflection mirror 500 is set to about 20% to 50%.
  • FIG. 5 is a diagram of wavelengths oscillated by the laser and photocurrent flowing through the PMPD 600 and the FMPD 700 as a function of temperature when the temperature of the thermoelectric element 800 included in the package is changed in the TO type resonator laser. to be.
  • the effective refractive index of each part of the external resonator varies with temperature, and accordingly, the Fabry-Perot mode wavelength changes.
  • This wavelength change is about 20 pm ⁇ 40pm/.
  • the wavelength selective filter 400 changes the wavelength at 1 to 2 pm /
  • the transmission ratio of the wavelength selective filter 400 is changed based on the transmission band wavelength spectrum of the wavelength selective filter.
  • the intensity of the laser light oscillated by the laser diode chip 100 is not affected by the degree of wavelength tuning with the wavelength selective filter 400.
  • the photocurrent of the PMPD 600 is changed according to the temperature of the thermoelectric element 800. In the case of FIG.
  • the current flowing to the laser diode chip is constant and the temperature of the thermoelectric element 800 is changed. This is due to the difference in luminous efficiency of the laser diode chip.
  • the photocurrent of the PMPD 600 shows a tendency of monotonic decrease, whereas the photocurrent of the FMPD 700 is Rapid and repetitive characteristics.
  • the photocurrent of the FMPD 700 depends on the output of the laser diode chip 100 and the reflectance of the wavelength selective filter 400. Therefore, in order to obtain the wavelength of the laser light based on the transmission band wavelength of the wavelength selective filter 400 by measuring the reflectance of the wavelength selective filter 400, the variation of the output intensity of the laser diode chip 100 should be removed.
  • FIG. 6 is a diagram showing the wavelength of the laser and the values of the FMPD 700 photocurrent / PMPD 600 photocurrent based on the temperature of the thermoelectric element 800.
  • the wavelength of the laser and the photocurrent ratio of FMPD / PMPD show a very good agreement. Since the value of FMPD / PMPD is independent of the output of the laser, it can accurately determine the wavelength of the laser based on the transmission band wavelength of the wavelength selective filter 400 regardless of the current flowing through the laser diode chip.
  • the transmission wavelength band of the wavelength selective filter 400 is not affected by the current flowing through the laser diode chip 100, the transmission of the wavelength selective filter 400 is independent of the driving current of the laser diode chip 100 using this structure.
  • the wavelength of the laser light can be determined based on the wavelength band. This property is effective even if the wavelength selective filter uses a GaAs / AlGaAs wavelength selective filter having a wavelength change rate of 100 pm /.
  • the wavelength selective filter 400 may be manufactured by stacking a dielectric film having a high refractive index and low on a substrate such as glass or quartz, and may also be manufactured by stacking a GAAs / AlGaAs layer on a GaAs substrate.
  • the GaAs / AlGaAs wavelength selective filter has a strong characteristic that the wavelength changes with temperature. Nevertheless, the wavelength of the laser light can be determined based on the transmission wavelength band of the GaAs / AlGaAs wavelength selective filter.
  • a thermistor for measuring the temperature of the thermoelectric element may be added to the upper side of the thermoelectric element when the thermoelectric element is used.
  • thermoelectric element When measuring the wavelength of the laser light, it is a obvious technical additional factor to realize the predetermined wavelength of the laser light by applying a temperature change of the thermoelectric element to control the wavelength of the laser light.
  • Figure 7 shows the structure of an external resonator type TO laser package having a wavelength measuring device according to an embodiment of the present invention.
  • collimation lens 300 45 degree partial reflection mirror
  • wavelength selective filter 500 partial reflection mirror for light feedback

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명은 레이저 다이오드 칩의 구동 전류에 무관하게 레이저 빛의 파장을 공진기내에 삽입되는 파장 선택성 필터의 투과 파장 대역을 기준으로 정밀하게 측정 할 수 있는 파장 측정 장치를 갖춘 외부 공진기형 레이저에 관한 것이다. 본 발명에 따른 외부 공진기형의 레이저 장치는 레이저 빛을 발산하는 레이저 다이오드 칩(100)과; 상기 레이저 다이오드 칩(100)에서 발산된 빛을 일부 반사하여 다시 레이저 다이오드 칩(100)으로 궤환시키는 광 궤환용 부분 반사 거울(500)과; 상기 레이저 다이오드 칩(100)과 광 궤환용 부분 반사 거울(500) 사이의 광 경로 상에 설치되어, 레이저 다이오드 칩(100)으로부터 발산된 빛을 시준화시키는 시준화 렌즈(200)와, 패키지 바닥면에 대해 수평으로 진행하는 레이저 빛을 패키지 바닥면에 대해 수직으로 진행하는 레이저 빛으로 방향을 전환하는 45도 부분 반사 거울(300)과, 선택된 특정 파장의 빛을 투과시키는 파장 선택성 필터(400)와, 시준화 렌즈(200)에서 45도 부분 반사 거울(300)로 진행하여 45도 부분 반사 거울(300)을 투과하는 광 경로상에 배치되는 광세기감시용 포토 다이오드(600)와, 파장 선택성 필터(400)에서 45도 부분 반사 거울(300)로 진행하여 45도 부분 반사거울(300)을 투과하는 광 경로상에 배치되는 파장 감시용 포토다이오드(700);를 포함하여 이루어지는 것을 특징으로 하며, 파장 감시용 포토다이오드(700)를 흐르는 광전류는 레이저 다이오드 칩(100)에서 발진하는 광 출력 세기와 파장 선택성 필터(400)에서의 반사율에 따라 그 크기가 달라지고, 광세기 감시용 포토 다이오드(600)를 흐르는 광전류는 레이저 다이오드 칩(100)에서 출력된 광출력 세기에 의해 광전류가 결정되어지므로 파장 감시용 포토다이오드(700)를 흐르는 광전류를 광세기 감시용 포토 다이오드(600)로 흐르는 광전류를 나눈 값은 파장 선택성 필터(400)에서의 반사율에만 의존하는 값을 가지게 된다. 그러므로 파장 감시용 포토다이오드(700)를 흐르는 광전류를 광세기 감시용 포토 다이오드(600)로 흐르는 광전류를 나눈 값은 파장 선택성 필터(400)의 투과 대역 파장을 기준으로 레이저 빛의 파장에 대한 정보를 주며, 이를 측정함으로써 레이저 빛의 파장을 알아낼수 있으며 레이저 빛의 파장을 매우 정밀하게 미리 정해진 파장으로 결정되게 할 수 있다.

Description

파장 측정 장치가 내장된 외부 공진기형 레이저
본 발명은 외부 공진기형의 레이저로써 파장 측정 장치를 가지는 레이저에 관한 것으로, 특히 TO형의 파장 측정 장치를 가지는 외부 공진기형 레이저에 관한 것이다.
근래에 들어 스마트폰 등의 동영상 서비스를 비롯하여 통신 용량이 매우 큰 통신 서비스들이 출시되고 있다. 이에 따라 종래의 통신 용량을 대폭적으로 증가시킬 필요가 대두 되고 있으며, 이미 종래에 포설되어 있는 광섬유를 이용하여 통신 용량을 증대시키는 방법으로 DWDM(Dense Wavelength Division Multiplexing) 방식의 통신 방식을 채택하고 있다. 상기 DWDM은 파장이 서로 다른 레이저 빛들은 서로 간섭하지 않아 하나의 광섬유를 통하여 동시에 여러 가지 파장의 빛 신호를 전송하여도 신호 간에 간섭이 없는 현상을 이용하여, 하나의 광섬유로 여러 파장의 빛을 동시에 전송하는 방식을 말한다. 근래 광통신에서 사용되는 DWDM 방법은 빛의 주파수 간격을 100GHz 또는 50GHZ 간격이 되도록 적용하고 있으며, 이러한 주파수 간격은 1.55um 파장 대역에서 0.8nm 또는 0.4nm 정도의 파장 간격을 가진다.
DWDM은 C-band(1520~1560nm) 대역에 최소 32~40채널의 통신 파장을 가지고 이러한 32채널 이상의 채널에 해당하는 DFB-LD 칩 set sms 20종 이상이 필요하다.
DFB-LD가 복잡한 반도체 제조 공정을 거치는 DFB-LD 별로 특정한 파장을 가지므로 DWDM 전 채널에 해당하는 칩 set를 가지기 위해서는 복잡한 반도체 공정을 거치는 다양한 파장의 DFB-LD 칩 set를 구비하는 어려움이 있어왔고, 이러한 문제점을 해결하기 위해 본 발명인은 특허 10-1124173에서 외부에서 파장이 결정되는 TO(transistor outline)형의 외부 공진기형 레이저 구조를 제안한바 있다. 외부 공진기형의 레이저는 반도체 레이저 다이오드 칩 외부에서 반도체 레이저의 발진 파장을 결정하는 방법으로써 외부에서 파장을 결정하는 방법에 따라 반도체 레이저가 여러 가지 파장을 가지게 할 수 있고, 또는 특정한 파장으로만 발진하도록 할 수 있다. 통상적으로 외부 공진기형 레이저는 버터플라이 패키지라는 패키지 하우징에 장착되어 구현되었는데 이러한 버터플라이형 패키지는 부피가 매우 크며 패키지 하우징 자체의 가격이 매우 비싼 단점이 있다.
본 발명의 설명에서 외부 공진기형의 레이저에서 반도체 다이오드 칩은 레이저 동작이 일어나기 전에는 단지 이득을 주는 이득 칩(gain chip)으로 작용하고 외부에서 선택된 파장으로 이득 칩이 파장 잠금되어 레이저 동작을 할 경우에 레이저 다이오드 칩으로 불리울 수 있다. 그러나 외부 선택 파장으로 증폭이 일어나서 파장 잠금이 되든, 파장 잠금전의 이득 매질로 작용되는 외형적인 구조의 변화가 있는 것은 아니므로 본 발명에서 이득 칩(gain chip)과 레이저 다이오드 칩의 개념을 혼용하여 사용한다.
이러한 외부 공진기형 레이저를 TO형의 패키지로 구현하는 방법으로 본 발명인에 의한 특허 10-1124173은 TO형 패키지를 이용하여 외부 공진기형 레이저를 제작하는 방법을 도시하고 있다. 도 1은 본 발명인에 의한 특허 10-1124173의 구조도를 보여주고 있다. 그러나 이러한 방법에서는 내부의 온도 또는 레이저 다이오드 칩으로 흐르는 전류의 크기에 따라 발진 파장이 미세하게 변화하는 특성을 가진다.
도 2는 특허 10-1124173에서 설명되고 있는 바와 같이 도 1의 구조에서 TO 형 패키지의 내부 장착되는 열전소자의 온도가 바뀜에 따라 발진 파장이 바뀌게 되는 종래의 특성을 보여준다. 도 2에서 외부 공진기형 TO 형 레이저 구조에서 환경의 변화에 따라 레이저 발진 파장이 안정되지 못하고 100pm 파장의 범위에서 진동하고 있음을 알 수 있다.
현재 DWDM은 파장 간격은 100GHz, 50GHz, 25GHz로 점 점 더 좁아지고 있는 추세에 있으며 이러한 파장 간격의 DWDM을 위해서는 파장 안정도가 +/- 100pm, +/-50pm, +/-25pm로 점 점 더 정밀한 파장 제어를 요구한다.
특허 10-1124173을 위시한 종래의 TO 형 외부공진기형 레이저에서는 파장의 측정을 위한 어떠한 장치도 없어 TO 형 레이저에서 방출되는 레이저 빛의 파장을 안정화시킬 수 없으며 이에 따라 더 정밀한 파장 제어를 요구하는 응용에는 적용이 어려운 단점이 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허공보 10-1124173 (2012.02.29)
본 발명의 목적은 외부 공진기형 레이저에 파장 측정 기능을 제공하는 것에 있으며, 더 나아가 TO 형의 초소형의 레이저 패키지를 가지는 외부 공진기형 레이저에 파장 측정을 위한 장치를 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명에 따른 레이저 장치는 레이저 빛을 발산하게 되는 레이저 다이오드 칩과; 상기 레이저 다이오드 칩에서 발산된 빛을 일부 반사하여 다시 레이저 다이오드 칩으로 궤환시키는 광 궤환용 부분 반사 거울과; 상기 레이저 다이오드 칩과 광 궤환용 부분 반사 거울 사이의 광 경로 상에 설치되어, 레이저 다이오드 칩으로부터 발산된 빛을 시준화시키는 시준화 렌즈와, 선택된 특정 파장의 빛을 투과시키는 파장 선택성 필터와, 패키지 바닥면에 대해 수평으로 진행하는 레이저 빛을 패키지 바닥면에 대해 수직으로 진행하는 레이저 빛으로 방향을 전환하는 부분 반사 특성을 가지는 45도 부분 반사 거울, 레이저 다이오드 칩에서 발산되어 상기 45도 반사 거울을 투과하는 광 경로상에 배치된 포토 다이오드, 45도 부분 반사 거울의 하부에 배치된 포토 다이오드를 포함하여 이루어진다.
여기에서 상기 광 궤환용 부분 반사 거울은 45도 반사 거울의 상부에 배치되는 것이 바람직하다.
한편, 상기 레이저 다이오드 칩과 시준화 렌즈, 파장 선택성 필터, 45도 부분반사 거울 및 상기 광 궤환용 부분 반사 거울은 열전소자 상부에 고정 부착되어, TO(transistor outline)형 패키지 내부에 배치되는 것이 바람직하다.
상기 45도 반사 거울의 반사율은 80% 내지 98%로 형성되고, 상기 광 궤환용 부분 반사 거울의 반사율은 20% 내지 50%로 형성되는 것이 바람직하다.
또한, 상기 파장 선택성 필터는 레이저 빛이 투과하는 어느 한 면이 굴절률이 높고 낮은 유전체 박막이 교대로 적층되어 형성되거나, GaAs/AlGaAs의 반도체 층이 GaAs 기판에 증착되는 형태로 제작되는 것이 바람직하며, 상기 파장 선택성 필터의 투과 파장 대역의 반가폭은 0.05nm 내지 1nm로 형성되는 것이 바람직하다.
상기 레이저 다이오드 칩, 시준화 렌즈, 파장선택성 필터, 45도 반사 거울 및 광 궤환용 부분 반사 거울이 배치되는 패키지 하우징은 내부가 0.2 기압 이하의 진공상태로 유지되는 것이 바람직하며, 상기 시준화 렌즈는 열전소자 상부면에 부착되거나 상기 레이저 다이오드 칩을 고정하는 레이저 다이오드 칩용 서브마운트의 측면에 고정되어 부착되는 것이 바람직하다.
본 발명에서 45도 부분 반사 거울을 투과하는 광 경로상에 배치되는 포토 다이오드는 레이저 다이오드 칩에서 발산되는 레이저 빛에 비례한 광전류가 흐르게 되고, 45도 부분 반사 거울의 하부에 배치되는 포토 다이오드는 레이저 다이오드 칩에서 발산하는 레이저 빛의 파장이 파장 선택성 필터를 투과/반사하는 특성을 포함하는 광전류가 흐르게 되어, 두 포토 다이오드로 흐르는 광전류를 비교함으로써 레이저 빛의 파장을 파장 선택성 필터의 투과 파장을 기준으로 측정 할 수 있으며, 파장 선택성 필터의 투과 파장은 레이저 다이오드 칩으로 흐르는 전류 및 레이저 다이오드 칩의 온도와는 무관하게 단지 파장 선택성 필터의 온도에 의해 매우 정밀하게 미리 결정될 수 있다. 이러한 구조에서 레이저 빛의 파장을 측정하고, 레이저 빛의 파장을 조절하기 위해서는 두 포토 다이오드의 광전류 비율이 미리 정하여진 값을 가지도록 TO형 패키지의 내부에 포함되는 열전소자의 온도를 조절하는 방법으로 레이저 빛의 파장을 정밀하게 조절할 수 있다.
도 1은 종래의 외부공진기형 TO 형 패키지의 개략적인 모습을 나타낸 외형도,
도 2는 종래의 외부공진기형 TO형 레이저 패키지에서 패키지 내부의 열전소자의 온도가 변함에 따라 외부 출력 파장이 변화되는 관계를 보여주는 데이터 일례,
도 3은 본 발명에 의한 파장 감시 기능을 가지는 외부 공진기형 TO형 패키지의 구조도,
도 4는 본 발명에 따른 파장 감시 기능을 가지는 외부 공진기형 레이저에서 열전소자의 온도를 바꾸었을 때 상대적으로 투과 파장 대역이 바뀌지 않는 파장 선택성 필터의 투과 대역 일례(도 4의 (a))와, 열전소자의 온도에 따라 Fabry-Perot 모드가 이동하는 모습을 나타낸 일례(도 4의 (b))와, 허용되는 Fabry-Perot 모드와 파장 선택성 필터의 투과 대역의 위치에 따라 광 출력이 달라지는 일례(도 4의 (c))를 나타낸 개념도,
도 5는 본 발명에 따른 파장 감시 기능을 가지는 외부 공진기형 레이저에서 TO형 패키지 내부에 장착된 열전소자의 온도를 변화시켜 발진 파장을 바꾸었을 때 발진 파장과 PM-PD와 FM-PD를 흐르는 광전류를 열전소자의 온도에 따라 도시한 일례,
도 6은 본 발명에 따른 파장 감시 기능을 가지는 외부 공진기형 레이저에서 TO형 패키지 내부에 장착된 열전소자의 온도를 변화시켜 발진 파장을 바꾸었을 때 발진 파장과 FM-PD/PM-PD 광전류의 비를 열전소자 온도 변화에 따라 도시한 일례,
도 7은 본 발명에 따른 파장 측정 장치를 가지는 외부 공진기형 TO형 레이저 패키지의 구조를 나타낸 것이다.
이하 본 발명의 한정하지 않는 바람직한 실시예를 첨부된 도면과 함께 상세히 설명하기로 한다.
도 1은 전술한 바와 같이 종래의 기술에 의한 외부 공진기형 TO형 레이저 패키지의 구조도이다. 전술한 도 1의 구조에서 열전소자(310)의 온도를 바꾸게 되면 파장이 변화하고, 또한 레이저 다이오드 칩(150)으로 흐르는 전류를 바꾸어 주게되면 동일한 열전소자의 온도에 대해서도 발진 파장은 바뀌게 된다. 이러한 파장 변화는 도 2에 표시되어 있다.
도 1의 종래의 구조에서 레이저 다이오드 칩(150)의 출력을 감시하기 위한 포토 다이오드(350) 칩이 45도 부분 반사 거울(270)의 하부에 배치되어 있다. 본 구조에서 포토 다이오드 칩(350)은 레이저 다이오드 칩(150)에서 발진하여 시준화 렌즈(170)를 거치고 45도 부분 반사 거울(270)을 투과 한 후 파장 선택성 필터(220)를 투과 한 후 광 궤환용 반사 거울(280)에서 반사된 레이저 빛이 파장 선택성 필터(220)를 투과 한 후 45도 부분 반사 거울(270)에서 반사된 빛을 감시하여 레이저에서 출력되는 레이저 빛의 세기에 비례한 신호를 검출한다.
그러므로 도 1의 구조에서는 레이저 다이오드 칩에서 방출되는 레이저 빛의 세기만을 감시 할 수 있을뿐으로 레이저 빛의 파장과 관련된 정보를 얻을 수 없다.
도 3은 본 발명에 의한 파장 안정화 장치를 가지는 외부 공진기형 TO형 패키지의 개략도이다. 도 3에서 TO형 패키지의 스템과 캡은 도시하지 않았다.
도 3에 도시된 바와 같이, 본 발명에 따른 파장 측정 장치가 구비된 외부 공진기형 레이저 다이오드 패키지는 레이저 다이오드 칩용 서브마운트(110)에 설치되는 레이저 다이오드 칩(100)과, 상기 레이저 다이오드 칩(100)에서 방출되는 레이저 빛은 시준화 렌즈(200)를 통과하며 시준화괴고, 입사하는 레이저 빛 중 미리 정해진 비율의 빛은 투과시키고 미리 정해진 비율의 빛은 반사 시키는 45도 부분 반사 거울(300)에서 두 갈래로 빛이 나누어지게 된다. 이때 45도 부분 반사 거울(300)은 반사율이 80~98% 정도가 적절하며 이로인해 레이저 다이오드 칩(100)에서 발산되어 45도 부분 반사 거울(300)로 입사하는 빛중 대부분의 빛은 45도 부분 반사 거울(300) 상부의 파장 선택성 필터로 입사하게 된다. 45도 부분 반사 거울의 통과하는 빛은 레이저 빛 세기 감시용 포토 다이오드(앞으로 PMPD라 부르기로 한다)(600)로 입사하게 되어 레이저 빛의 세기에 비례한 광전류를 PMPD에 흐르게 한다. 레이저 다이오드 칩(100)에서 발산되어 시준화 렌즈(200)를 거쳐 45도 부분 반사 거울(300)에서 반사한 대부분의 빛은 특정 파장의 빛을 선택적으로 투과시키는 파장 선택성 필터(400)로 입사하게 된다. 파장 선택성 필터(400)는 파장 선택성 필터(400)에서 반사되는 빛이 다시 레이저 다이오드 칩(100)으로 궤환되지 않도록 파장 선택성 필터(400)의 입사면이 레이저 광축에 대해 1도 이상 틀어져 있는것이 바람직하다. 레이저 다이오드 칩의 빛 발진 영역이 1~2um 정도로 작아 상기한 1도 정도의 작은 각도로 파장 선택성 필터(400)의 입사면이 광축에 대해 각도를 가지고 있어도 레이저 다이오드 칩으로의 광 궤환이 이루어지지 않는다. 레이저 다이오드 칩(100)에서 발진하여 시준화 렌즈(200)를 거친 후 45도 부분 반사 거울(300)에서 반사된 후 파장 선택성 필터(400)를 투과하는 빛의 성분은 광궤환용 부분 반사 거울(500)에서 일부의 빛이 투과하여 광통신에 사용되게 되고, 광궤환용 부분 반사 거울(500)에서 반사한 빛은 다시 파장 선택성 필터(400)를 거쳐 45도 부분 반사 거울(300)에 도착하게 된다. 파장 선택성 필터(400)에서 45도 부분 반사 거울(300)로 입사하는 빛은 다시 미리 정해진 비율 만큼 45도 부분 반사 거울(300)을 투과하여 45도 부분 반사 거울(300) 하부에 배치된 파장 감시용 포토 다이오드(700, 앞으로 FMPD라 부르기로 한다)로 입사하여 파장 선택성 필터의 투과 성분에 대한 정보를 가진 광전류를 FMPD(700)에 흐르게 한다. 파장 선택성 필터(400)에서 45도 부분 반사 거울(300)로 진행하는 빛중 45도 부분 반사 거울(300)에서 반사되는 성분의 빛은 시준화 렌즈(200)를 거쳐 레이저 다이오드 칩(100)으로 궤환됨으로써 레이저 다이오드 칩(100)의 발진 파장을 파장 선택성 필터(400)에서 선택된 파장으로 잠금하게 되어 TO형의 외부 공진기형 레이저가 완성되게 된다.
상기 레이저 다이오드 칩(100)은 edge emitting 형(type)의 레이저 다이오드 칩으로, 이 edge emitting 형의 레이저 다이오드 칩(100)은 양 절개면에서 레이저 빛이 방출된다. 양 절개면 중 광 궤환용 부분 반사 거울(500)을 향한 레이저 다이오드 칩(100)의 절개면은 1% 이하의 반사율을 가지는 무반사 코팅면(무반사면)이 된다. 이 무반사면은 1% 이하의 반사율, 바람직하게는 0.1% 이하의 반사율을 갖는데, 더욱 바람직하게는 0.01% 이하의 반사율을 가는 것이 바람직하다. 레이저 다이오드 칩(100)의 무반사면 반대쪽의 절개면은 통상적으로 1% 이상의 반사율을 가지는데 바람직하게는 10% 이상의 반사율, 더욱 바람직하게는 80% 이상의 반사율을 가지는 것이 바람직하다. 이렇게 절개면의 한쪽이 무반사 코팅된 레이저 다이오드 칩(100)은 레이저 다이오드 칩(100) 자체에서 빛이 궤환되지 못하기 때문에 레이저 다이오드 칩(100) 자체를 공진기로 하는 Fabry-Perot 모드가 형성되지 않는다. 이러한 레이저 다이오드 칩(100)에서 방출되는 빛은 매우 넓은 파장 대역(통상적으로 반가폭이 20nm 이상)을 가지는 빛의 파장을 보인다. 레이저 다이오드 칩(100)의 무반사면을 통하여 방출된 넓은 파장 대역의 빛은 시준화 렌즈(200)에 의해 평행광으로 시준화 된다. 시준화 렌즈(200)에 의해 시준화된 넓은 파장 대역의 빛은 45도 부분 반사 거울 (300)을 거쳐 좁은 파장 선택성 필터(400)로 입사하는데, 파장 선택성 필터(400)로 입사하는 빛 중 파장 선택성 필터(400)를 투과하는 빛을 제외하고 나머지는 파장 선택성 필터(400)에 의해 반사되어 레이저 다이오드 칩(100)으로 궤환되지 못하는 다른 경로로 보내진다. 레이저 다이오드 칩(100)에서 시준화 렌즈(200) 및 45도 부분 반사 거울(300)을 거쳐 파장 선택성 필터(400)를 투과한 성분의 빛은 광 궤환용 부분 반사 거울(500)에 도착한다. 광 궤환용 부분 반사 거울(500)에 도달한 빛 중에서 광 궤환용 부분 반사 거울(500)에서 반사하는 빛은 다시 파장 선택성 필터(400)와 45도 부분 반사 거울(300)을 거친 후 시준화 렌즈(200)를 거쳐 레이저 다이오드 칩(100)으로 궤환된다. 그러므로 레이저 다이오드 칩(100)과 시준화 렌즈(200), 파장 선택성 필터(300), 광 궤환용 부분 반사 거울(500)을 포함하는 확장 공진기형 레이저가 완성된다. 파장 선택성 필터(400)에서 투과 선택된 파장의 빛이 레이저 다이오드 칩(100)으로 궤환되면 증폭 과정을 거쳐 레이저 다이오드 칩(100)에서 발산되는 레이저 빛의 파장이 파장 선택성 필터(400)를 통과하는 파장의 빛으로 잠금된다. 그러므로 외부 공진기형 레이저가 완성되어 파장 잠금 현상이 벌어지면 레이저 다이오드 칩(100)에서 발산되는 레이저 빛이 대부분 파장 선택성 필터(400)를 투과하는 레이저 빛이 된다. 그러나 실제 파장 잠금이 일어나는 파장은 파장 선택성 필터(400)의 가장 투과율이 높은 파장이 되는 것이 아니라, 파장 선택성 필터(400)의 투과 대역 이내에 있는 외부 공진기의 Fabry-Perot 모드가 된다.
도 4 (a)는 파장 선택성 필터(400)의 투과 대역 투과 스펙트럼을 보여준다. 파장 선택성 필터는 투과 대역 내의 파장에 대해서도 특정한 파장에 대해 특정한 투과율을 보이며, 1-투과율은 반사율에 해당하며 파장 선택성 필터내에 있는 파장에 대해서도 일정한 분포의 반사율을 가지게 된다. 그러므로 파장 선택성 필터의 투과 대역내에 있는 Fabry-Perot 모드 파장이라 하더라도 Fabry-Perot 모드와 파장 선택성 필터와의 상대 위치에 따라, 파장 잠금된 레이저 빛의 투과율 및 반사율은 달라지게 된다. 도 4(b)는 외부 공진기형 레이저의 전체 공진기 길이에 의해 결정되는 Fabry-Perot 모드의 일례를 보여주고 있다. 도 4(b)의 점선은 Fabry-Perot 모드가 파장 선택성 필터의 가장 투과율이 좋은 파장과 일치 할 경우이고, 도 4(b)의 파선은 Fabry-Perot 모드가 파장 선택성 필터의 가장 투과율이 좋은 파장과 일치 하지 않을 경우이다. 레이저 다이오드 칩(100)에서 파장 잠금되어 발진하는 레이저 Fabry-Perot 모드가 파장 선택성 필터(400)의 투과율이 가장 높은 파장과 일치하는 경우 도 4(c)의 점선과 같이 출력 레이저 빛의 세기가 세지고, 레이저 다이오드 칩(100)에서 파장 잠금되어 발진하는 레이저 Fabry-Perot 모드가 파장 선택성 필터(400)의 투과율이 가장 높은 파장과 일치하지 않는 경우 도 4(c)의 파선과 같이 출력 레이저 빛의 세기가 약해진다. 도 4(c)에서 출력 레이저 빛의 세기가 약해진다는 것은 파장 선택성 필터(400)에서 반사되는 빛의 양이 많아진다는 것이고 이렇게 파장 선택성 필터(400)에서 늘어난 반사빛은 45도 부분 반사 거울(300)로 되돌아가 부분 반사 거울(300)의 투과율에 해당하는 빛의 비율만큼 부분 반사 거울(300)하부의 FMPD(700)로 입사하게 된다. 그러므로 파장 선택성 필터(400)의 투과 대역 파장을 기준으로 Fabry-Perot 모드 파장의 중심 파장의 일치여부에 따라 FMPD(700)로 입사하는 빛의 세기가 달라지게 된다.
상기 파장 선택성 필터(400)의 투과 대역폭이 너무 좁으면 파장 선택성 필터(400)를 투과하는 빛의 삽입 손실이 커지게 되며, 파장 선택성 필터(300)의 투과 대역폭이 너무 넓으면 효과적으로 하나의 Fabry-Perot 모드를 선택하기가 어렵다. 그러므로 파장 선택성 필터(400)의 투과 대역폭은 빛의 삽입 손실 및 효과적인 Fabry-Perot 모드 선택을 위하여 적절히 설정되는 것이 바람직한데, 본 발명의 실시예에서 상기 파장 선택성 필터(400)의 투과 대역폭은 0.05nm 내지 2nm 정도로 설정된다.
상기 광 궤환용 부분 반사 거울(500)의 경우에도 반사율이 너무 낮으면 파장 잠금을 위하여 레이저 다이오드 칩(100)으로 궤환되는 빛이 양이 너무 작아 레이저의 파장 잠금이 잘 일어나지 않게 되고, 상기 광 궤환용 부분 반사(500) 거울의 반사율이 너무 높으면 광 궤환용 부분 반사 거울(500)을 투과하여 광 전송에 사용될 신호가 너무 약해지는 문제가 발생하게 된다. 그러므로 광 궤환용 부분 반사 거울(500)의 반사율 또한 적절하게 설정되는 것이 바람직한데, 본 발명의 실시예에서 상기 광 궤환용 부분 반사 거울(500)의 반사율은 약 20% 내지 50% 정도로 설정된다.
도 5는 TO형 외부 공진기형 레이저에서 패키지에 내장되는 열전소자(800)의 온도를 바꾸었을때 레이저에서 발진되는 파장과 PMPD(600), FMPD(700)를 흐르는 광전류를 온도의 함수로 그린 도표이다.
외부 공진기형 레이저에서 내장되는 열전소자의 온도를 바꾸게 되면 외부 공진기의 각 부분에서의 유효 굴절률이 온도에 따라 변화하며 이에따라 Fabry-Perot 모드 파장이 변화하게 된다. 이러한 파장 변화는 대략 20pm~ 40pm/ 정도의 속도가 된다. 그러나 파장 선택성 필터(400)는 1~2pm/로 파장이 변화하므로 열전소자(800)의 온도를 바꾸게 되면 파장 선택성 필터의 투과 대역 파장 스펙트럼을 기준으로 파장 선택성 필터(400)의 투과 비율이 달라진다. 그러나 레이저 다이오드 칩(100)에서 발진하는 레이저 빛의 세기는 파장 선택성 필터(400)와의 파장 동조 정도에 영향을 받지 않는다. 도 5에서 PMPD(600)의 광전류가 열전소자(800)의 온도에 따라 바뀌는 것은 도 5의 경우에 레이저 다이오드 칩으로 흐르는 전류가 일정하며 열전소자(800)의 온도를 바꾸어 준 경우로써 온도에 따라 레이저 다이오드 칩의 발광 효율이 차이가 나는 것에 기인한다. 도 5에서 레이저 다이오드 칩(100)으로 흐르는 전류를 일정하게 유지 할 때 열전소자의 온도를 증가시키면 PMPD(600)의 광전류는 완만한 단조감소의 경향을 보이며, 이에 반해 FMPD(700)의 광전류는 급격하며, 반복적인 특성을 보인다. 도 5에서 FMPD(700)의 광전류는 레이저 다이오드 칩(100)에서의 출력과 파장 선택성 필터(400)에서의 반사율에 의존하게 된다. 그러므로 파장 선택성 필터(400)에서의 반사율을 측정하여 레이저 빛의 파장을 파장 선택성 필터(400)의 투과 대역 파장을 기준으로 구하기 위해서는 레이저 다이오드 칩(100)의 출력 세기 변화를 제거하여야 한다.
도 6은 레이저의 파장과 FMPD(700) 광전류/PMPD(600)광전류의 값을 열전소자(800)의 온도를 기준으로 표시한 도면이다.
도 6에서 레이저의 파장과 FMPD/PMPD 의 광전류 비율이 매우 잘 일치하는 경향을 보이고 있다. FMPD/PMPD의 값은 레이저의 출력과 무관하므로 이는 레이저 다이오드 칩으로 흐르는 전류와 무관하게 레이저의 파장을 파장 선택성 필터(400)의 투과 대역 파장을 기준으로 정밀하게 알아낼수 있다.
파장 선택성 필터(400)의 투과 파장 대역은 레이저 다이오드 칩(100)으로 흐르는 전류에 영향을 받지 않으므로 이러한 구조를 이용하여 레이저 다이오드 칩(100)의 구동 전류와 무관하게 파장 선택성 필터(400)의 투과 파장 대역을 기준으로 레이저 빛의 파장을 알아 낼수 있다. 이러한 특성은 파장 선택성 필터가 100pm/의 파장 변화율을 보이는 GaAs/AlGaAs 파장 선택성 필터를 사용 할 경우에도 그대로 유효하다.
상기 파장 선택성 필터(400)는 유리 또는 quartz등의 기판위에 굴절률이 높고 낮은 유전체 박막을 적층하여 제작하는 것이 가능하고, 또한 GaAs 기판 위에 GAAs/AlGaAs 층을 적층하여 제작하는 것이 가능하다. GaAs/AlGaAs 파장 선택성 필터의 경우 온도에 따라 파장이 변화하는 특성이 강한데 그럼에도 불구하고 GaAs/AlGaAs 파장 선택성 필터의 투과 파장 대역을 기준으로 레이저 빛의 파장을 알아 낼 수 있다. 본 발명의 설명에서 자세한 설명을 빠져있지만 열전소자를 사용하는 경우 열전소자의 온도를 측정하기 위한 써미스터가 열전소자의 상부 일측에 추가 될 수 있음은 자명하다.
레이저 빛의 파장을 측정 한 경우에 레이저 빛의 파장을 조절하기 위해 열전소자의 온도 변화를 가하는 방법으로 미리 정해진 레이저 빛의 파장을 구현하는 것은 자명한 기술적 추가요소이다.
도 7은 이러한 본 발명의 실시예에 따른 파장 측정 장치를 가지는 외부 공진기형 TO형 레이저 패키지의 구조를 나타낸 것이다.
이러한 본 발명은 상술한 실시예에 한정되는 것은 아니며 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구 범위의 균등범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다.
[부호의 설명]
100 : 레이저 다이오드 칩 110 : 레이저 다이오드 칩용 서브마운트
200 : 시준화 렌즈 300 : 45도 부분 반사 거울
400 : 파장 선택성 필터 500 : 광 궤환용 부분 반사 거울
600 : 광세기 감시용 포토 다이오드(PMPD)
610: 광세기 감시용 포토 다이오드(PMPD)용 서브마운트
700 : 광세기 감시용 포토 다이오드(PMPD)
800 : 열전소자
900 : TO형 패키지의 스템 950 : TO형 패키지의 cap

Claims (5)

  1. 외부 공진기형의 레이저 장치에 있어서,
    레이저 빛을 발산하는 레이저 다이오드 칩(100)과;
    상기 레이저 다이오드 칩(100)에서 발산된 빛을 일부 반사하여 다시 레이저 다이오드 칩(100)으로 궤환시키는 광 궤환용 부분 반사 거울(500)과;
    상기 레이저 다이오드 칩(100)과 광 궤환용 부분 반사 거울(500) 사이의 광 경로 상에 설치되어, 레이저 다이오드 칩(100)으로부터 발산된 빛을 시준화시키는 시준화 렌즈(200)와, 패키지 바닥면에 대해 수평으로 진행하는 레이저 빛을 패키지 바닥면에 대해 수직으로 진행하는 레이저 빛으로 방향을 전환하는 45도 부분 반사 거울(300)과, 선택된 특정 파장의 빛을 투과시키는 파장 선택성 필터(400)와, 시준화 렌즈(200)에서 45도 부분 반사 거울(300)로 진행하여 45도 부분 반사 거울(300)을 투과하는 광 경로상에 배치되는 광세기감시용 포토 다이오드(600)와, 파장 선택성 필터(400)에서 45도 부분 반사 거울(300)로 진행하여 45도 부분 반사거울(300)을 투과하는 광 경로상에 배치되는 파장 감시용 포토다이오드(700);를 포함하여 이루어지는 것을 특징으로 하는 외부 공진기형 레이저 장치.
  2. 제 1항에 있어서,
    상기 레이저 다이오드 칩(100)과, 시준화 렌즈(200)와, 45도 부분 반사 거울(300)과, 파장 선택성 필터(400)와, 광 궤환용 부분 반사 거울(500)과, 광세기감시용 포토 다이오드(600)와, 파장 감시용 포토다이오드(700)는 열전소자(800)위에 배치되는 것을 특징으로 하는 외부 공진기형 레이저 장치.
  3. 제 1항에 있어서,
    상기 파장 선택성 필터는 유리 또는 Quartz 재질에 굴절률이 높고 낮은 유전체 박막을 적층하는 형태로 제작되는 것을 특징으로 하는 외부 공진기형 레이저 장치.
  4. 제 1항에 있어서,
    상기 파장 선택성 필터는 GaAs 기판에 GaAs/AlGaAs 층을 적층하여 제작되는 것을 특징으로 하는 외부 공진기형 레이저 장치.
  5. 제 1항에 있어서,
    상기 파장 감시용 포토 다이오드(700)를 흐르는 광전류를 상기 광세기 감시용 포토다이오드(600)로 흐르는 광전류를 나눈 값을 이용하여 파장 선택성 필터의 투과 파장 대역을 기준으로 레이저 빛의 파장을 알아내는 것을 특징으로 하는 외부 공진기형 레이저 장치.
PCT/KR2014/004176 2013-07-30 2014-05-12 파장 측정 장치가 내장된 외부 공진기형 레이저 WO2015016468A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480042981.4A CN105431989B (zh) 2013-07-30 2014-05-12 内置波长测定装置的外部谐振器型激光器
US14/908,749 US9634466B2 (en) 2013-07-30 2014-05-12 External-cavity type laser with built-in wavemeter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130089986A KR102217730B1 (ko) 2013-07-30 2013-07-30 파장 측정 장치가 내장된 외부 공진기형 레이저
KR10-2013-0089986 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016468A1 true WO2015016468A1 (ko) 2015-02-05

Family

ID=52431962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004176 WO2015016468A1 (ko) 2013-07-30 2014-05-12 파장 측정 장치가 내장된 외부 공진기형 레이저

Country Status (4)

Country Link
US (1) US9634466B2 (ko)
KR (1) KR102217730B1 (ko)
CN (1) CN105431989B (ko)
WO (1) WO2015016468A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017124147A1 (de) * 2017-10-17 2019-04-18 Osram Opto Semiconductors Gmbh Licht emittierendes Bauelement
KR102543260B1 (ko) * 2018-05-23 2023-06-14 엘지이노텍 주식회사 표면광방출레이저 패키지 및 자동초점장치
KR102486332B1 (ko) * 2018-06-18 2023-01-10 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 표면발광 레이저패키지 및 이를 포함하는 광 모듈
CN111211478A (zh) * 2018-11-22 2020-05-29 光宝电子(广州)有限公司 边射型激光的封装结构
CN109473864B (zh) * 2018-12-19 2024-07-12 武汉六九传感科技有限公司 一种高精度固定波长激光器
JP7209837B2 (ja) * 2019-07-02 2023-01-20 三菱電機株式会社 半導体レーザ装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237651A (ja) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp 波長モニタ装置および半導体レーザ装置
JP2006165598A (ja) * 2006-03-16 2006-06-22 Eudyna Devices Inc 光半導体装置
KR100871011B1 (ko) * 2008-01-23 2008-11-27 김정수 파장 잠금 기능을 갖는 티오형 레이저 다이오드 패키지 및 그 패키지에 구비된 경사필터의 제작 방법
KR20110094376A (ko) * 2010-02-16 2011-08-24 주식회사 포벨 레이저 다이오드 패키지
KR20130083765A (ko) * 2012-01-13 2013-07-23 주식회사 포벨 파장 측정 기능을 가지는 파장 가변형 레이저 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1258906A (en) * 1985-04-22 1989-08-29 Hiroshi Oinoue Semiconductor laser apparatus for optical head
EP0749119A3 (en) * 1995-05-31 1997-08-20 Daewoo Electronics Co Ltd Optical reading device
JP3663966B2 (ja) * 1999-03-31 2005-06-22 富士電機システムズ株式会社 波長計測装置
GB2359636B (en) * 2000-02-22 2002-05-01 Marconi Comm Ltd Wavelength selective optical filter
KR100859713B1 (ko) * 2005-12-07 2008-09-23 한국전자통신연구원 온도 무의존성 외부공진레이저
CN101689746B (zh) * 2007-03-19 2012-02-29 金定洙 一种自立式平行板分束器及其制作方法
WO2013105733A1 (ko) * 2012-01-13 2013-07-18 주식회사 포벨 파장 측정 기능을 가지는 파장 가변형 레이저 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237651A (ja) * 2000-12-06 2002-08-23 Mitsubishi Electric Corp 波長モニタ装置および半導体レーザ装置
JP2006165598A (ja) * 2006-03-16 2006-06-22 Eudyna Devices Inc 光半導体装置
KR100871011B1 (ko) * 2008-01-23 2008-11-27 김정수 파장 잠금 기능을 갖는 티오형 레이저 다이오드 패키지 및 그 패키지에 구비된 경사필터의 제작 방법
KR20110094376A (ko) * 2010-02-16 2011-08-24 주식회사 포벨 레이저 다이오드 패키지
KR20130083765A (ko) * 2012-01-13 2013-07-23 주식회사 포벨 파장 측정 기능을 가지는 파장 가변형 레이저 장치

Also Published As

Publication number Publication date
US9634466B2 (en) 2017-04-25
CN105431989B (zh) 2019-01-08
CN105431989A (zh) 2016-03-23
US20160181763A1 (en) 2016-06-23
KR20150014615A (ko) 2015-02-09
KR102217730B1 (ko) 2021-02-22

Similar Documents

Publication Publication Date Title
WO2015016468A1 (ko) 파장 측정 장치가 내장된 외부 공진기형 레이저
US6621580B2 (en) Single etalon wavelength locker
EP0818859B1 (en) Wavelength monitoring and control assembly for WDM optical transmission systems
JP3931545B2 (ja) 発光モジュール
US20020051270A1 (en) Optical fiber communication equipment and its applied optical systems
KR101541403B1 (ko) 파장 가변 레이저 장치
KR102237784B1 (ko) 파장 안정화 장치가 구비된 레이저 장치
KR101124173B1 (ko) 레이저 다이오드 패키지
KR101519628B1 (ko) 소형 제작이 가능한 파장 가변 레이저 장치
WO2004025789A2 (en) Miniaturized internal laser stabilizing apparatus with inline output for fiber optic applications
KR101140493B1 (ko) 광통신용 파장 안정화 장치
US6798799B2 (en) Wavelength locked integrated optical source structure using multiple microcavity
KR20130104353A (ko) 초소형으로 제작 가능한 외부 공진기형 레이저 장치
KR100343310B1 (ko) 파장안정화 광원 모듈
US20190052054A1 (en) Laser arrangement, method for controlling laser and measuring method
KR20150137780A (ko) 꺽어진 광도파로를 가지는 외부 공진기형 레이저
JP4234347B2 (ja) 波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法
GB2396249A (en) Wavelength locker
US6707072B2 (en) Semiconductor laser module
KR101556239B1 (ko) 소형 제작이 가능한 파장 가변 레이저 장치
KR20010073962A (ko) 파장안정화를 위한 파장검출 및 안정화 방법과 이를이용한 파장안정화 광원모듈
JP2010212700A (ja) 光伝送装置
KR100521138B1 (ko) 파장 검출 및 안정화 장치와 그 방법
GB2429766A (en) Light monitoring device
JP2002111124A (ja) 発光モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480042981.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831160

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908749

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831160

Country of ref document: EP

Kind code of ref document: A1