JP4234347B2 - 波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法 - Google Patents

波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法 Download PDF

Info

Publication number
JP4234347B2
JP4234347B2 JP2002001560A JP2002001560A JP4234347B2 JP 4234347 B2 JP4234347 B2 JP 4234347B2 JP 2002001560 A JP2002001560 A JP 2002001560A JP 2002001560 A JP2002001560 A JP 2002001560A JP 4234347 B2 JP4234347 B2 JP 4234347B2
Authority
JP
Japan
Prior art keywords
light
wavelength
signal
etalon
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002001560A
Other languages
English (en)
Other versions
JP2003204111A (ja
Inventor
潤 ▲吉▼野
瑞記 大池
寛 松浦
敦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2002001560A priority Critical patent/JP4234347B2/ja
Publication of JP2003204111A publication Critical patent/JP2003204111A/ja
Application granted granted Critical
Publication of JP4234347B2 publication Critical patent/JP4234347B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光通信に使用される波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法に関する。
【0002】
【従来の技術】
近年、光通信の分野において、互いに異なる波長を有する複数の信号光を多重化して伝搬させるWDM(Wavelength Division Multiplexing;波長分割多重)通信が注目されている。そして、このWDM通信では、伝搬される情報量の増加に対応して、信号光の隣り合う波長間隔を狭くすることが要請されるようになった。その場合、光源から出力される信号光が常に所定の波長に安定的に保持されることが必要不可欠である。
【0003】
ところで、WDM通信の光源としては、DFB(Distributed Feedback;分布帰還型)レーザが一般的に使用される。しかし、このDFBレーザ光源は、温度などの要因によってその出射光の波長が変動するという性質がある。このため、DFBレーザの出射光の波長変動を検出し、その発光波長が常に一定になるように制御するための波長ロッカーモジュールが必要となる。
【0004】
この波長ロッカーモジュールでは、DFBレーザ光源から出射された信号光の一部を測定光として分岐した後、この測定光の波長変動やパワー変動を検知し、電気信号に変換する。この電気信号を制御回路で受けて、波長変動やパワー変動の程度を検出する。そして、波長変動やパワー変動を是正するための制御信号をDFBレーザ光源に付属するコントローラに出力する。
【0005】
例えば波長変動を是正してDFBレーザの発光波長を安定化させる場合、主に温度制御を用いることが多い。例えばコントローラに設置されたペルチェ素子によりDFBレーザ光源を冷却する度合いを制御する方法などが用いられる。以下、従来の波長ロッカーモジュールの一例を説明する。
図8に示されるように、DFBレーザ光源(図示せず)から出射された信号光の一部が測定光として分岐され、伝搬されてくる。この測定光が、波長ロッカーにおいて、特定の波長の光を選択的に透過することが可能なバンドパスフィルタ40に入射される。
【0006】
このバンドパスフィルタ40を波長選択的に透過した透過光は、フォトダイオードPD3において受光され、透過光の光量に対応する電流信号が出力される。また、バンドパスフィルタ40によって反射された反射光は、フォトダイオードPD4において受光され、反射光の光量に対応する電流信号が出力される。
これらフォトダイオードPD3、PD4から出力される電流信号は、図9のグラフの特性線ε、ζにそれぞれ示されるようになる。即ち、フォトダイオードPD3の出力電流信号は、特性線εに示されるように、バンドパスフィルタ40の透過特性を反映して、測定光の特定の波長λ0 において最大となる。他方、フォトダイオードPD4の出力電流信号は、特性線ζに示されるように、上記の特性線εと補完関係になり、測定光の特定の波長λ0 において最小となる。
【0007】
そして、このようなバンドパスフィルタ40の透過光の光量及び反射光の光量にそれぞれ対応する特性線ε、ζに基づいた適宜の演算により、DFBレーザ光源の発光波長の変動が算出される。なお、DFBレーザ光源の発光波長の変動を算出する適宜の演算については、特開平10−209546号公報に詳細に説明されている。
【0008】
【発明が解決しようとする課題】
しかし、上記した従来の波長ロッカーモジュールにおいては、図9のグラフから明らかなように、バンドパスフィルタ40の透過特性に規定されて、ロッキングすることが可能な波長域が狭いという欠点がある。このため、図8におけるバンドパスフィルタ40の代わりに、エタロンを用いることが好適である。
【0009】
エタロンは、広い波長域において、波長に対する周期的な透過特性を有しており、エタロンを波長選択的に透過した透過光を受光したフォトダイオードPD3から出力される電流信号は、図10のグラフの特性線ηに示されるように、光の波長λの変化に対して周期的に変化する。このため、信号光の規定波長(ITU−Grid)に合せて作製される波長ロッカーモジュールに、エタロンを使用すると、バンドパスフィルタ40を使用する場合に較べて、多数の規定波長を選択することができるという利点があり、波長多重化された複数の信号光をカバーすることが可能になる。
【0010】
例えば50GHzバンドパスフィルタを使用した場合、チューニングの際の角度調整の関係と帯域幅との兼ね合いから1〜2nm程度の信号光波長をカバーすることができ、50GHzの規定波長を4〜5本程度カバーすることができる。これに対して、例えばCバンド(1530〜1580nm)用に設計されたエタロンを使用した場合、そのままCバンドの50nmをカバーすることができ、120本を超える数の規定波長をカバーすることができる。
【0011】
従って、エタロンを使用することにより、WDM通信に適した波長ロッカーモジュールを実現することが可能になると考えられる。しかも、エタロンは、その厚さによって透過特性を変えることができるという利点をも有している。
しかし、従来の波長ロッカーモジュールにおいてエタロンを用いると、次のような問題が生じてくる。
【0012】
即ち、エタロンは、その厚さを厚くするにつれて良好な反射光を得ることが困難になる。このため、エタロンの透過光をフォトダイオードPD3において受光してその光量に対応する特性線ηに示されるような出力電流信号を得ることは容易である反面、反射光をフォトダイオードPD4において受光してその光量に対応する出力電流信号を得ることは難しくなる場合が生じる。従って、上記した従来のバンドパスフィルタを用いる波長ロッカーモジュールの場合と同様の演算方法を用いてDFBレーザ光源の発光波長の変動を算出することができなくなるという問題が生じた。
【0013】
本発明は、上記した問題を考慮してなされたものであり、波長多重化された複数の信号光をカバーすることを可能にして、WDM通信に適した波長ロッカーモジュール装置及びこの波長ロッカーモジュールを用いたレーザ光源の発光波長の安定化方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、レーザ光源からの信号光の一部が分岐された測定光を2つ以上に分岐するプリズムと、このプリズムによって分岐された2つ以上の測定光の一つが入射されるエタロンと、このエタロンを波長選択的に透過した透過光を受光し、該透過光の光量に対応する信号を出力する第1の光量検出手段と、プリズムによって分岐された2つ以上の測定光の他の一つを直接に受光し、該測定光の光量に対応する信号を出力する第2の光量検出手段と、を有することを特徴とする波長ロッカーモジュールが提供される。
【0015】
ここで、「波長選択的に透過」とは、エタロンのもつ波長に対する周期的な透過特性に基づき、所定の波長帯域の測定光が各波長に対するそれぞれの透過率で透過することを意味する。
また、本発明においては、上記の波長ロッカーモジュールで、第1及び第2の光量検出手段から出力された信号に基づいてレーザ光源の波長変動を算出し、該算出結果に応じてレーザ光源の発光波長を制御するための制御信号を発信する制御回路が設けられている、波長ロッカーモジュールが提供される。
【0016】
また、本発明においては、上記の制御回路が、第1の光量検出手段から出力された、エタロンの透過光の光量に対応する信号を第1の信号とし、第1及び第2の光量検出手段から出力された信号の差分から求められた、エタロンの反射光の光量と等価の光量に対応する信号を第2の信号とし、これら第1及び第2の信号に基づいてレーザ光源の波長変動を算出する回路である、波長ロッカーモジュールが提供される。
【0017】
また、本発明においては、レーザ光源からの信号光の一部を分岐して測定光とし、該測定光をプリズムによって2つ以上に分岐するステップと、プリズムによって分岐された2つ以上の測定光の一つをエタロンに入射し、このエタロンを波長選択的に透過した透過光を第1の光量検出手段によって受光して、該透過光の光量に対応する信号を出力するステップと、プリズムによって分岐された2つ以上の測定光の他の一つを第2の光量検出手段によって直接に受光して、該測定光の光量に対応する信号を出力するステップと、第1及び第2の光量検出手段から出力された信号に基づいてレーザ光源の波長変動を算出し、該算出結果に応じてレーザ光源の発光波長を制御する制御信号を発信するステップと、を有することを特徴とする波長ロッカーモジュールを用いたレーザ光源の発光波長の安定化方法が提供される。
【0018】
また、本発明においては、上記のレーザ光源の発光波長の安定化方法で、第1及び第2の光量検出手段から出力された信号に基づいてレーザ光源の波長変動を算出する際に、第1の光量検出手段から出力された、エタロンの透過光の光量に対応する信号を第1の信号とし、第1及び第2の光量検出手段から出力された信号の差分からエタロンの反射光の光量と等価の光量に対応する第2の信号を求め、これら第1及び第2の信号に基づいてレーザ光源の波長変動を算出する、波長ロッカーモジュールを用いたレーザ光源の発光波長の安定化方法が提供される。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について添付図面を参照しつつ説明する。
図1に示されるように、発光波長を連続的に変化させることが可能なDFBレーザ光源10には、そこから出射された信号光を伝搬する光ファイバ12が接続されている。この光ファイバ12の途中には、信号光の一部を測定光として分岐する光カプラ14が設置されている。この光カプラ14には、測定光を伝搬する光ファイバ16の一端が接続されており、この光ファイバ16の他端は波長ロッカー18に接続されている。
【0020】
波長ロッカー18には、光ファイバ16の端面から出射された測定光を平行光線化するコリメーターレンズ20、このコリメーターレンズ20からの平行光線化される測定光を2つに分岐する2つの傾斜面22a、22bが屋根型に形成された光入射面を有する屋根型プリズム22が配置されている。また、この屋根型プリズム22によって分岐される2つの測定光の一つが入射されるエタロン24が配置されている。更に、このエタロン24を波長選択的に透過した透過光を受光し、その透過光の光量に対応する電流信号を出力する第1の光量検出手段としてのフォトダイオードPD1が配置されている。また、屋根型プリズム22によって分岐された2つの測定光の他の一つを直接に受光し、その測定光の光量に対応する電流信号を出力する第2の光量検出手段としてのフォトダイオードPD2が配置されている。
【0021】
なお、フォトダイオードPD1、PD2のそれぞれの入射側には、集光レンズ(図示せず)が設けられている。また、屋根型プリズム22については、後に改めて詳述する。
波長ロッカー18におけるフォトダイオードPD1のアノード(anode)側端子a1及びカソード(cathode)側端子b1並びにフォトダイオードPD2のアノード側端子a2及びカソード側端子b2は、それぞれ制御回路26に接続されている。この制御回路26は、フォトダイオードPD1、PD2から出力された電流信号に基づいてDFBレーザ光源10の波長変動を算出し、その算出結果に応じてDFBレーザ光源10の発光波長を制御するための制御信号を発信するものである。こうして、波長ロッカー18と制御回路26から波長ロッカーモジュール28が構成されている。
【0022】
また、制御回路26には、例えばペルチェ素子などを内蔵するコントローラ30が接続され、制御回路26からの制御信号を受けてDFBレーザ光源10の発光条件を制御するようになっている。
次いで、制御回路26について更に詳しく説明する。
制御回路26は、第1及び第2の出力モニタとしてそれぞれ電流計A1、A2を有しており、これらの電流計A1、A2とフォトダイオードPD1、PD2とは、図2の回路図に示されるように配線されている。即ち、電流計A1の一端はフォトダイオードPD1のアノード側端子a1に接続され、その他端はフォトダイオードPD2のカソード側接点b2に接続されている。また、電流計A2の一端はフォトダイオードPD2のカソード側端子b2に接続され、その他端はフォトダイオードPD1のカソード側端子b1とフォトダイオードPD2のアノード側端子a2との節点(node)に接続されている。
【0023】
また、この図2に示される回路において、フォトダイオードPD1、PD2は電流源として動作するため、図2の回路を電流計A1、A2から見ると、それぞれ図3及び図4の回路図に示されるようになる。即ち、図3に示されるように、電流計A1の一端はフォトダイオードPD1のアノード側端子a1に接続され、その他端はフォトダイオードPD1のカソード側端子b1に接続されている。また、図4に示されるように、電流計A2の一端はフォトダイオードPD1のアノード側端子a1とフォトダイオードPD2のカソード側端子b2との節点に接続され、その他端はフォトダイオードPD1のカソード側端子b1とフォトダイオードPD2のアノード側端子a2との節点に接続されている。
【0024】
次に、波長ロッカーモジュール28の動作を説明する。
DFBレーザ光源10から出射された信号光は光ファイバ12を通って伝搬される。この信号光の一部は、光ファイバ12の途中に設置された光カプラ14によって測定光として分岐され、光ファイバ16を通って波長ロッカー18に伝搬される。なお、この測定光を除いた残余の信号光は、光ファイバ12を通って所定の用途に供される。
【0025】
波長ロッカー18においては、光ファイバ16の端面から出射された測定光がコリメーターレンズ20によって平行光線化された後、屋根型プリズム22の光入射面をなす屋根型の2つの傾斜面22a、22bに入射され、2つに分岐される。この分岐された2つの測定光の一つはエタロン24に入射され、このエタロン24を波長選択的に透過する。この透過光はフォトダイオードPD1において受光され、透過光の光量に対応する電流信号I1 が出力される。また、分岐された2つの測定光の他の一つは、フォトダイオードPD2において直接に受光され、測定光の光量に対応する電流信号I2 が出力される。
【0026】
これらフォトダイオードPD1、PD2の各出力電流信号I1 、I2 は、図5のグラフの特性線α、βにそれぞれ示されるようになる。即ち、電流信号I1 の特性線αは、エタロン24の波長に対する周期的な透過特性を反映して、測定光の波長λの変化に対して周期的に変化する。他方、電流信号I2 の特性線βは、測定光の波長λが変化しても一定の電流値を維持する。
【0027】
続いて、フォトダイオードPD1、PD2の各出力電流信号I1 、I2 は、それぞれ制御回路26に入力され、演算される。具体的には、図2〜図4に示される回路において、電流計A1によりフォトダイオードPD1の出力電流信号I=I1 が検出される。これは、前述したように、エタロン24の透過光の光量に対応するものである。また、電流計A2によりフォトダイオードPD2の出力電流信号I2 とフォトダイオードPD1の出力電流信号I1 との差I=I2 −I1 が検出される。これは、エタロン24を通過しなかった測定光の光量からエタロン24の透過光の光量を減算した光量、換言すればエタロン24の反射光の光量と等価の光量に対応するものである。
【0028】
このようにして制御回路26においては、エタロン24の透過光の光量に対応する電流信号I1 と、エタロン24の反射光の光量と等価の光量に対応する電流信号(I2 −I1 )がそれぞれ検出される。その結果は、図6のグラフの特性線γ、δにそれぞれに示されるようになる。
続いて、エタロン24の透過光の光量及び反射光の光量と等価の光量にそれぞれ対応する特性線γ、δに基づいた適宜の演算を行い、DFBレーザ光源10の発光波長の変動を算出する。なお、この演算は、上記図9に示した従来の波長ロッカーモジュールにおけるバンドパスフィルタの透過光の光量及び反射光の光量にそれぞれ対応する特性線ε、ζに基づいて演算した場合と同様であるため、その詳細な説明は省略する。
【0029】
その後、この波長ロッカーモジュール28の制御回路26における算出結果に基づいて、DFBレーザ光源10の発光波長を制御するための制御信号が制御回路26からコントローラ30に発信される。この制御信号を受信したコントローラ30は、内蔵するペルチェ素子などを作動させてDFBレーザ光源10の温度制御を行う。例えばDFBレーザ光源10の発光波長が短波長側にシフトした場合には、DFBレーザ光源10の温度を上昇させ、その逆に、長波長側にシフトした場合には、温度を下降させる。こうして、DFBレーザ光源10の波長変動を是正し、発光波長を安定化させる。
【0030】
以上のように本実施形態に係る波長ロッカーモジュール28によれば、広い波長域において波長に対する周期的な透過特性を有し、その透過特性を厚さによって変えることが可能なエタロン24を用いているため、波長多重化された複数の信号光をカバーすることが可能になり、WDM通信に適した波長ロッカーモジュールを実現することができる。
【0031】
また、その際に、エタロン24の透過光の光量は直接に検出する一方、エタロン24の反射光の光量と等価の光量は測定光全体の光量から透過光の光量を減算して検出する方法を採用しているため、たとえエタロン24の厚さが十分に厚くなって良好な反射光を得ることが困難になる場合であっても、エタロン24の反射光の光量と等価の光量を正確に検出することができる。従って、DFBレーザ光源10の波長変動を是正するための正確な制御信号を発信することができ、DFBレーザ光源10の発光波長を安定化させることができる。
【0032】
また、この場合に、従来のバンドパスフィルタを用いる波長ロッカーモジュールの場合と同様の演算方法をそのまま用いてDFBレーザ光源10の発光波長の変動を算出することが可能になるため、その回路構成が容易になり、コストの上昇を抑制することができる。
なお、上記の実施形態においては、DFBレーザ光源10の発光波長の変動を算出するために波長ロッカーモジュール28を用いる場合について説明したが、例えば波長980nmや1480nmの光ランプ用の光の波長変動の算出のために用いることも可能である。
【0033】
また、屋根型プリズム22も種々の変形例が考えられる。上記実施形態における屋根型プリズム22及びその変形例について、図7(a)〜(f)を用いて説明する。なお、図7(a)〜(f)において、各種のプリズムに入射する測定光を矢印で示し、その入射点を丸印で示す。
先ず、図7(a)に示されるように、上記実施形態における屋根型プリズム22は、2つの傾斜面22a、22bが屋根型に形成された光入射面を有する屋根型形状となっている。このため、コリメーターレンズ20によって平行光線化された測定光が傾斜面22a、22bの境界線近傍の領域に入射されると、一方の傾斜面22aに入射された測定光と他方の傾斜面22bに入射された測定光とに分岐される。そして、三角プリズムを屋根とする五角形状であるため、光路長の調整が可能になる利点を有している。なお、ここで、光入射面をなす傾斜面22a、22bには、AR(Anti Reflection)コート等の偏光特性をもたないコーティングが施されていることが好ましい。
【0034】
また、上記のように平行光線化された測定光を分岐する機能を有するプリズムであれば、図7(a)に示されるような屋根型形状に限定する必要はない。例えば図7(b)に示されるように、2つの傾斜面32a、32bからなる光入射面を有する三角プリズム32を用いてもよい。この三角プリズム32は、1本の光束を2つに分岐する基本的なプリズムである。
【0035】
また、図7(c)に示されるように、1つの傾斜面34aと1つの平面34bからなる光入射面を有する一方直進型プリズム34を用いてもよい。この一方直進型プリズム34は、図7(d)に示されるように、2つに分岐された光束のうち、1本の光束はそのまま直進するプリズムである。
また、図7(e)に示されるように、2つの傾斜面36a、36bからなる光入射面を有する出射角垂直型プリズム36を用いてもよい。この出射角垂直型プリズム36は、図7(f)に示されるように、2つに分岐された光束の双方とも、出射面から垂直に出射するプリズムである。
【0036】
更に、上記の変形例においては、いずれも測定光を2つに分岐するプリズムの場合について述べたが、例えば3つ以上の傾斜面が屋根型に形成されている光入射面を有するプリズムでもよい。この場合、測定光が3つ以上の傾斜面の頂点近傍の領域に入射されると、各傾斜面に応じて3つ以上に分岐される。このため、そのうちの2つの測定光は波長ロッカーモジュール用に使用し、その他の測定光は他の目的に使用することが可能になる。
【0037】
【発明の効果】
以上詳細に説明したように、本発明によれば、広い波長域において波長に対する周期的な透過特性をもつエタロンが用いられているため、波長多重化された複数の信号光をカバーすることが可能になり、WDM通信に適した波長ロッカーモジュールを実現することができる。
【0038】
また、本発明によれば、エタロンを透過した測定光の光量に対応する信号と、エタロンを透過しない測定光の光量に対応する信号に基づいて、レーザ光源の波長変動を算出し、その算出結果に応じてレーザ光源の発光波長を制御するための制御信号を発信する制御回路が設けらているため、たとえエタロンの厚さが十分に厚くなって良好な反射光を得ることが困難になる場合であっても、レーザ光源の波長変動を是正するための正確な制御信号を発信することができ、レーザ光源の発光波長を安定化させることができる。
【0039】
また、本発明によれば、レーザ光源の波長変動を算出する際に、エタロンの透過光の光量に対応する信号を第1の信号とし、エタロンを透過しない測定光の光量に対応する信号とエタロンを透過した測定光の光量に対応する信号との差分からエタロンの反射光の光量と等価の光量に対応する第2の信号を求め、これら第1及び第2の信号に基づいてレーザ光源の波長変動を算出することから、従来のバンドパスフィルタを用いる波長ロッカーモジュールの場合と同様の演算方法をそのまま用いてレーザ光源の発光波長の変動を算出することが可能になるため、回路構成が容易になり、コストの上昇を抑制することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る波長ロッカーモジュールを示す概略図である。
【図2】図1の波長ロッカーモジュールのフォトダイオードPD1、PD2及びそれに接続する制御回路を示す回路図である。
【図3】図2に示す回路を電流計A1から見た場合の回路図である。
【図4】図2に示す回路を電流計A2から見た場合の回路図である。
【図5】図1の波長ロッカーモジュールのフォトダイオードPD1、PD2の出力電流信号の波長依存特性を示すグラフである。
【図6】図3及び図4に示す電流計A1、A2の検出電流信号の波長依存特性を示すグラフである。
【図7】(a)は図1の波長ロッカーモジュールの屋根型プリズムを示す概略斜視図、(b)、(c)、(e)はそれぞれ(a)の変形例に係るプリズムを示す概略斜視図、(d)、(f)はそれぞれ(c)、(e)における光の進路を示す概略平面図である。
【図8】従来のバンドパスフィルタを用いた波長ロッカーモジュールを示す概略図である。
【図9】図8の波長ロッカーモジュールのフォトダイオードPD3、PD4の出力電流信号の波長依存特性を示すグラフである。
【図10】図8のバンドパスフィルタの代わりにエタロンを用いた場合のフォトダイオードPD3の出力電流信号の波長依存特性を示すグラフである。
【符号の説明】
10 DFBレーザ光源
12 光ファイバ
14 光カプラ
16 光ファイバ
18 波長ロッカー
20 コリメーターレンズ
22a、22b 光入射面をなす傾斜面
22 屋根型プリズム
24 エタロン
26 制御回路
28 波長ロッカーモジュール
30 コントローラ
32 三角プリズム
34 一方直進型プリズム
36 出射角垂直型プリズム
32a、32b、34a、36a、36b 光入射面をなす傾斜面
34b 光入射面をなす平面
PD1 第1の光量検出手段としてのフォトダイオード
PD2 第2の光量検出手段としてのフォトダイオード
A1 第1の出力モニタとしての電流計
A2 第2の出力モニタとしての電流計
a1 フォトダイオードPD1のアノード側端子
a2 フォトダイオードPD2のアノード側端子
b1 フォトダイオードPD1のカソード側端子
b2 フォトダイオードPD2のカソード側端子

Claims (5)

  1. レーザ光源からの信号光の一部が分岐された測定光を2つ以上に分岐するプリズムと、
    前記プリズムによって分岐された2つ以上の測定光の一つが入射されるエタロンと、
    前記エタロンを波長選択的に透過した透過光を受光し、該透過光の光量に対応する信号を出力する第1の光量検出手段と、
    前記プリズムによって分岐された2つ以上の測定光の他の一つを直接に受光し、該測定光の光量に対応する信号を出力する第2の光量検出手段と、
    前記第1及び第2の光量検出手段から出力された信号に基づいて前記レーザ光源の波長変動を算出し、該算出結果に応じて前記レーザ光源の発光波長を制御するための制御信号を発信する制御回路と、
    を有し、前記制御回路は、前記第1の光量検出手段から出力された、前記エタロンの透過光の光量に対応する信号を第1の信号とし、前記第1及び第2の光量検出手段から出力された信号の差分から求められた、前記エタロンの反射光の光量と等価の光量に対応する信号を第2の信号とし、前記第1及び第2の信号に基づいて前記レーザ光源の波長変動を算出する回路であることを特徴とする波長ロッカーモジュール。
  2. 前記第1及び第2の光量検出手段がそれぞれ第1及び第2のフォトダイオードであり、一端が前記第1のフォトダイオードのアノード側端子に接続され、他端が前記第のフォトダイオードのカソード側端子に接続された第1の出力モニタと、一端が前記第のフォトダイオードのカソード側端子に接続され、他端が前記第1のフォトダイオードのカソード側端子と前記第2のフォトダイオードのアノード側端子との節点に接続された第2の出力モニタとが配置され、前記第1の信号が前記第1の出力モニタによって検出され、前記第2の信号が前記第2の出力モニタによって検出される、請求項記載の波長ロッカーモジュール。
  3. 前記第1及び第2の出力モニタがそれぞれ第1及び第2の電流計であり、前記第1の信号が前記第1の電流計によって検出された前記第1のフォトダイオードの出力電流信号であり、前記第2の信号が前記第2の電流計によって検出された前記第2のフォトダイオードと前記第1のフォトダイオードとの出力電流信号の差分である、請求項記載の波長ロッカーモジュール。
  4. 前記プリズムが、前記レーザ光源からの測定光を2つに分岐する2つの斜面が屋根型に形成された光入射面を有する屋根型プリズムである、請求項1記載の波長ロッカーモジュール。
  5. レーザ光源からの信号光の一部を分岐して測定光とし、該測定光をプリズムによって2つ以上に分岐するステップと、
    前記プリズムによって分岐された2つ以上の測定光の一つをエタロンに入射し、前記エタロンを波長選択的に透過した透過光を第1の光量検出手段によって受光して、該透過光の光量に対応する信号を出力するステップと、
    前記プリズムによって分岐された2つ以上の測定光の他の一つを第2の光量検出手段によって直接に受光して、該測定光の光量に対応する信号を出力するステップと、
    前記第1の光量検出手段から出力された、前記エタロンの透過光の光量に対応する信号を第1の信号とし、前記第1及び第2の光量検出手段から出力された信号の差分から前記エタロンの反射光の光量と等価の光量に対応する第2の信号を求め、前記第1及び第2の信号に基づいて前記レーザ光源の波長変動を算出し、該算出結果に応じて前記レーザ光源の発光波長を制御するための制御信号を発信するステップと、
    を有することを特徴とする波長ロッカーモジュールを用いたレーザ光源の発光波長の安定化方法。
JP2002001560A 2002-01-08 2002-01-08 波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法 Expired - Fee Related JP4234347B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002001560A JP4234347B2 (ja) 2002-01-08 2002-01-08 波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002001560A JP4234347B2 (ja) 2002-01-08 2002-01-08 波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法

Publications (2)

Publication Number Publication Date
JP2003204111A JP2003204111A (ja) 2003-07-18
JP4234347B2 true JP4234347B2 (ja) 2009-03-04

Family

ID=27641653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002001560A Expired - Fee Related JP4234347B2 (ja) 2002-01-08 2002-01-08 波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法

Country Status (1)

Country Link
JP (1) JP4234347B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701121B1 (ko) * 2004-12-08 2007-03-28 한국전자통신연구원 파장 가변 레이저 다이오드의 측정 시스템 및 방법
JP5058850B2 (ja) * 2008-03-06 2012-10-24 株式会社リコー 半導体レーザ光記録装置およびこれを用いた画像形成装置
JP2012151441A (ja) 2010-12-28 2012-08-09 Ricoh Co Ltd 光デバイス、光走査装置及び画像形成装置
JP5293867B2 (ja) * 2012-08-01 2013-09-18 株式会社リコー 半導体レーザ光記録装置およびこれを用いた画像形成装置
KR101491815B1 (ko) 2014-01-02 2015-02-12 (주)엠이엘 텔레콤 광통신용 파장 분석기

Also Published As

Publication number Publication date
JP2003204111A (ja) 2003-07-18

Similar Documents

Publication Publication Date Title
JP3979703B2 (ja) 波長分割多重光伝送システム用の波長監視制御装置
EP1156563B1 (en) Laser wavelength stabilisation system for optical commmunication
US6587214B1 (en) Optical power and wavelength monitor
US7680364B2 (en) Wavelength locking and power control systems for multi-channel photonic integrated circuits (PICS)
US6782017B1 (en) Wavelength locker and wavelength discriminating apparatus
US7366422B2 (en) Dispersion compensating device and optical transmission system
JP2009081512A (ja) 光送信装置および設定値決定方法
WO2015016468A1 (ko) 파장 측정 장치가 내장된 외부 공진기형 레이저
JP2001007438A (ja) 光送信器とこの光送信器を用いた波長多重光伝送装置
JP4234347B2 (ja) 波長ロッカーモジュール及びそれを用いたレーザ光源の発光波長の安定化方法
JP4124942B2 (ja) 波長モニタ装置、およびその調整方法、並びに波長安定化光源
JP2014165384A (ja) 半導体レーザモジュール
EP1380822A1 (en) Wavelength determining apparatus and method
US10673205B2 (en) Wavelength tunable laser module and method of controlling wavelength thereof
JP4222469B2 (ja) 波長モニタ及び半導体レーザモジュール
US20030116695A1 (en) Optical semiconductor module for detecting wavelength and light intensity
KR100343310B1 (ko) 파장안정화 광원 모듈
US6704334B2 (en) Compact semiconductor laser diode module
JP4780694B2 (ja) 波長安定化レーザモジュール及びレーザ光の波長安定化方法
US6838658B2 (en) Simple and compact laser wavelength locker
US6597483B1 (en) Laser oscillation wavelength monitoring device
KR20010073962A (ko) 파장안정화를 위한 파장검출 및 안정화 방법과 이를이용한 파장안정화 광원모듈
JP2010212700A (ja) 光伝送装置
US20020081065A1 (en) Fabry-perot etalon, wavelength measuring apparatus, and wavelength tunable light source device with built-in wavelength measuring apparatus
JP2004132704A (ja) 波長モニタ及びその基準値設定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20050908

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050916

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20061102

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4234347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees