WO2015016343A1 - 有機トランジスタ、有機半導体膜および有機半導体材料ならびにそれらの応用 - Google Patents

有機トランジスタ、有機半導体膜および有機半導体材料ならびにそれらの応用 Download PDF

Info

Publication number
WO2015016343A1
WO2015016343A1 PCT/JP2014/070332 JP2014070332W WO2015016343A1 WO 2015016343 A1 WO2015016343 A1 WO 2015016343A1 JP 2014070332 W JP2014070332 W JP 2014070332W WO 2015016343 A1 WO2015016343 A1 WO 2015016343A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
substituted
hydrogen atom
substituent
Prior art date
Application number
PCT/JP2014/070332
Other languages
English (en)
French (fr)
Inventor
康智 米久田
高久 浩二
友樹 平井
健介 益居
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015016343A1 publication Critical patent/WO2015016343A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B21/00Thiazine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate

Definitions

  • the present invention relates to an organic transistor, an organic semiconductor film, an organic semiconductor material, and the like. Specifically, the present invention relates to a compound having triphenodithiazine and its similar skeleton structure or a compound having triphenodiselenazine and its similar skeleton structure, an organic transistor containing this compound, and a non-luminescent organic material containing this compound.
  • the present invention relates to an organic semiconductor material for a semiconductor device, an organic transistor material containing the compound, a coating solution for a non-luminescent organic semiconductor device containing the compound, and an organic semiconductor film for a non-luminescent organic semiconductor device containing the compound.
  • Devices using organic semiconductor materials are attracting a great deal of interest because they are expected to have various advantages over conventional devices using inorganic semiconductor materials such as silicon.
  • Examples of a device using an organic semiconductor material include a photoelectric conversion element such as an organic film solar cell and a solid-state imaging device using the organic semiconductor material as a photoelectric conversion material, and non-light-emitting properties (in this specification, “non-light-emitting properties”).
  • a photoelectric conversion element such as an organic film solar cell and a solid-state imaging device using the organic semiconductor material as a photoelectric conversion material
  • non-light-emitting properties in this specification, “non-light-emitting properties”.
  • Organic transistors (which means organic semiconductor devices excluding organic semiconductor devices).
  • a device using an organic semiconductor material may be capable of manufacturing a large-area element at a lower temperature and lower cost than a device using an inorganic semiconductor material. Furthermore, since the material characteristics can be easily changed by changing the molecular structure, there are a wide variety of materials, and it is possible to realize functions and elements that could not be achieved with inorganic semiconductor materials.
  • Non-Patent Document 1 discloses 2,9-bis (triisopropylsilylethynyl) triphenodioxazine (hereinafter also referred to as TIPS triphenodioxazine as an n-type organic semiconductor. Further, a triisopropylsilylethynyl group-substituted product is also referred to as TIPS).
  • TIPS triisopropylsilylethynyl group-substituted product.
  • An example is described in which the characteristics of an organic transistor using TIPS are compared with those of an organic transistor using TIPS pentacene as an n-type organic semiconductor in which electrons are carriers. According to this document, n-type TIPS it is the carrier mobility of the triphenodioxazine (i.e.
  • Non-Patent Document 2 describes the characteristics of an organic transistor using 2,9-ditrifluoromethyl-triphenodioxazine as an n-type organic semiconductor. Non-Patent Document 2 did not describe the use of 2,9-ditrifluoromethyl-triphenodioxazine as a p-type semiconductor material.
  • Non-Patent Document 3 uses an evaporated film of unsubstituted triphenodithiazine to evaluate the photocurrent and confirm the generation of photocurrent.
  • Non-patent document 3 describes the position of the basic physical property evaluation of triphenodithiazine, which has not been investigated, and the value of the carrier mobility of unsubstituted triphenodithiazine is 2 ⁇ 10 ⁇ . It was as low as 5 cm 2 / Vs.
  • the solubility of triphenodithiazine and its derivatives in an organic solvent was unknown.
  • Non-Patent Document 1 When the inventors actually applied the compounds described in Non-Patent Document 1 to Non-Patent Document 3 to organic transistors, there was a problem that sufficient transistor characteristics could not be obtained. It turned out to be. Specifically, when the compounds described in Non-Patent Documents 1 to 3 are applied to organic transistors as organic semiconductor materials, high carrier mobility cannot be obtained except for TIPS pentacene described in Non-Patent Document 1. It became clear by examination of the present inventors. In addition, the inventors have also clarified that the organic transistor using the compounds described in Non-Patent Documents 1 to 3, including TIPS pentacene, has a large threshold voltage change when driven repeatedly. . When the change in the threshold voltage becomes large, the reliability as a transistor decreases, and there is a problem that the transistor cannot be used for a long time. Such a change in the threshold voltage after repeated driving has not been known so far. It is a problem.
  • the problem to be solved by the present invention is a compound having a high carrier mobility when used in a semiconductor active layer of an organic transistor, a small threshold voltage change after repeated driving, and a high solubility in an organic solvent.
  • An organic transistor using this compound is provided.
  • L represents a divalent linking group represented by any one of the following general formulas (L-1) to (L-9) or two or more of the following general formulas (L-1) to ( L-9) represents a divalent linking group to which a divalent linking group represented by any one of R-9) is bonded, wherein R represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, ethyleneoxy This represents an oligoethyleneoxy group having a unit repeating number v of 2 or more or an oligosiloxane group having 2 or more silicon atoms.) (In the general formulas (L-1) to (L-9), the wavy line represents the bonding site with the aromatic hydrocarbon ring at the center of the skeleton, and * represents the general formulas (L-1) to (L-9).
  • m represents 4 and m in the general formulas (L-7) and (L-8) represents a bonding position with a divalent linking group represented by
  • R ′ each independently represents a hydrogen atom or a substituent.
  • R ′ in the general formulas (L-1) and (L-2) may be bonded to R adjacent to L to form a condensed ring.
  • X 1 and X 2 in the general formula (1) are preferably sulfur atoms.
  • n in the general formula (1) is preferably an integer of 1 to 3.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
  • General formula (2) (In General Formula (2), R 1 and R 2 each independently represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a group represented by General Formula (W). 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • L in the general formula (W) is the general formula (L-1), (L-3) or (L-6). It is preferable that it is a substituent represented by.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (3).
  • General formula (3) (In the general formula (3), R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number. Represents two or more oligosiloxane groups, R 2 represents a group represented by the general formula (W), and R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (2) is a compound represented by the following general formula (4): preferable.
  • General formula (4) (In the general formula (4), R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or silicon. And represents an oligosiloxane group having 2 or more atoms, R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (5).
  • General formula (5) (In the general formula (5), R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number. Represents two or more oligosiloxane groups, R ′ independently represents a hydrogen atom or a substituent, R 2 represents a group represented by the general formula (W), and R 3 to R 10 each independently represents hydrogen.
  • the compound represented by the general formula (2) is a compound represented by the following general formula (6): It is preferable that General formula (6) (In the general formula (6), R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group in which the number of ethyleneoxy unit repeats v is 2 or more, or silicon.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (7).
  • General formula (7) (In the general formula (7), R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number.
  • R 11 and R 12 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or silicon.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 3 to R 10 are each independently a hydrogen atom, a fluorine atom, or a carbon atom.
  • R 11 and R 12 all include a substituted or unsubstituted alkyl group. It is preferably a group.
  • R 11 and R 12 are all groups containing a branched alkyl group. It is preferable.
  • X 1 and X 2 each independently represent a sulfur atom or a selenium atom
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent
  • n R 1 and n At least one of R 2 in the formula represents a group represented by the following general formula (W):
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent, and n represents an integer of 1 to 6.
  • L represents a divalent linking group represented by any one of the following general formulas (L-1) to (L-9) or two or more of the following general formulas (L-1) to ( L-9) represents a divalent linking group to which a divalent linking group represented by any one of R-9) is bonded, wherein R represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, ethyleneoxy This represents an oligoethyleneoxy group having a unit repeating number v of 2 or more or an oligosiloxane group having 2 or more silicon atoms.) (In the general formulas (L-1) to (L-9), the wavy line represents the bonding site with the aromatic hydrocarbon ring at the center of the skeleton, and * represents the general formulas (L-1) to (L-9).
  • m represents 4 and m in the general formulas (L-7) and (L-8) represents a bonding position with a divalent linking group represented by
  • R ′ each independently represents a hydrogen atom or a substituent.
  • R ′ in the general formulas (L-1) and (L-2) may be bonded to R adjacent to L to form a condensed ring.
  • X 1 and X 2 in the general formula (1) are preferably sulfur atoms.
  • n in the general formula (1) is preferably 1 to 3.
  • the compound described in [15] is preferably a compound represented by the following general formula (2).
  • General formula (2) (In General Formula (2), R 1 and R 2 each independently represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a group represented by General Formula (W). 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • L is the general formula (L-1), (L-3), or (L-6). It is preferable that it is a substituent represented by these.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (3).
  • R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number.
  • R 2 represents a group represented by the general formula (W)
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (4): .
  • R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or silicon. And represents an oligosiloxane group having 2 or more atoms, R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (5).
  • R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number.
  • R ′ independently represents a hydrogen atom or a substituent
  • R 2 represents a group represented by the general formula (W)
  • R 3 to R 10 each independently represents hydrogen.
  • the compound according to any one of [18], [19] and [22] is a compound represented by the following general formula (6): Preferably there is.
  • General formula (6) (In the general formula (6), R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group in which the number of ethyleneoxy unit repeats v is 2 or more, or silicon. And represents an oligosiloxane group having 2 or more atoms, R ′ independently represents a hydrogen atom or a substituent, and R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (7).
  • General formula (7) (In the general formula (7), R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number. Represents two or more oligosiloxane groups, R ′ independently represents a hydrogen atom or a substituent, and m represents 4.
  • R 2 represents a group represented by the general formula (W), R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • the compound according to any one of [18], [19] and [24] is a compound represented by the following general formula (8): Preferably there is.
  • General formula (8) (In the general formula (8), R 11 and R 12 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or silicon.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 3 to R 10 are each independently a hydrogen atom, a fluorine atom, or a carbon number.
  • substituted or unsubstituted alkyl groups 1 to 3 substituted or unsubstituted alkyl groups, 2 to 3 carbon atoms substituted or unsubstituted alkynyl groups, 2 to 3 carbon atoms substituted or unsubstituted alkenyl groups, 1 to 2 carbon atoms substituted or unsubstituted And a substituted or unsubstituted aryl group having 6 to 10 carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 10 carbon atoms, or a substituted or unsubstituted methylthio group.
  • the compound according to any one of [20] to [26] is a group in which R 11 and R 12 all contain a substituted or unsubstituted alkyl group in the general formulas (3) to (8). It is preferable that [28] In the compound according to any one of [20] to [26], in the general formulas (3) to (8), R 11 and R 12 are all groups containing a branched alkyl group. Is preferred. [29] An organic semiconductor material for a non-light-emitting organic semiconductor device containing the compound represented by the general formula (1) according to any one of [15] to [28]. [30] An organic transistor material containing the compound represented by the general formula (1) according to any one of [15] to [28].
  • the organic semiconductor film for a non-light-emitting organic semiconductor device according to [33] or [34] is preferably produced by a solution coating method.
  • a compound having a high carrier mobility when used in a semiconductor active layer of an organic transistor, a small threshold voltage change after repeated driving, and a high solubility in an organic solvent, and the compound are used.
  • An organic transistor can be provided.
  • FIG. 1 is a schematic view showing a cross section of an example of the structure of the organic transistor of the present invention.
  • FIG. 2 is a schematic diagram showing a cross-section of the structure of an organic transistor manufactured as a FET characteristic measurement substrate in an example of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a hydrogen atom when used without being particularly distinguished in the description of each general formula represents that it also contains an isotope (such as a deuterium atom).
  • the atom which comprises a substituent represents that the isotope is also included.
  • the organic transistor of this invention contains the compound represented by following General formula (1) in a semiconductor active layer.
  • General formula (1) (In the general formula (1), X 1 and X 2 each independently represent a sulfur atom or a selenium atom, R 1 and R 2 each independently represent a hydrogen atom or a substituent, and n R 1 and n At least one of R 2 in the formula represents a group represented by the following general formula (W): R 3 to R 10 each independently represents a hydrogen atom or a substituent, and n represents an integer of 1 to 6.
  • L represents a divalent linking group represented by any one of the following general formulas (L-1) to (L-9) or two or more of the following general formulas (L-1) to ( L-9) represents a divalent linking group to which a divalent linking group represented by any one of R-9) is bonded, wherein R represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, ethyleneoxy This represents an oligoethyleneoxy group having a unit repeating number v of 2 or more or an oligosiloxane group having 2 or more silicon atoms.) (In the general formulas (L-1) to (L-9), the wavy line represents the bonding site with the aromatic hydrocarbon ring at the center of the skeleton, and * represents the general formulas (L-1) to (L-9).
  • m represents 4 and m in the general formulas (L-7) and (L-8) represents a bonding position with a divalent linking group represented by
  • R ′ each independently represents a hydrogen atom or a substituent.
  • the organic transistor of the present invention has high carrier mobility and small threshold voltage change after repeated driving.
  • the compound represented by the general formula (1) at least one of n R 1 and n R 2 has a group represented by the general formula (W). This is preferable from the viewpoint of molecular arrangement in the film. Thereby, the yield of the homogeneous organic applicable to an organic transistor can be improved, and manufacturing cost can be suppressed. Carrier transport characteristics such as carrier mobility and chemical and physical stability of the film are also improved.
  • substitution position of the group represented by the general formula (W) in the general formula (1) these positions are preferable because of excellent chemical stability of the compound, the HOMO level, and the molecular film. It is considered that this is also preferable from the viewpoint of packing.
  • the compound represented by the general formula (1) has a skeletal structure in which X 1 and X 2 are a sulfur atom or a selenium atom, the intercalation between chalcogen atoms is more than in the case where X 1 and X 2 are oxygen atoms.
  • the interaction between the mother skeletons becomes stronger, and the ionization potential in the film state becomes shallower than that of triphenodioxazine (the value of the ionization potential becomes smaller). Due to this mechanism, HOMO also becomes shallow, and holes are more likely to flow. Thereby, an organic transistor with high carrier mobility can be obtained.
  • an organic compound having high molecular order and high crystallinity is required as a semiconductor material for an organic transistor.
  • the ⁇ conjugate plane is preferably upright with respect to the substrate.
  • an organic EL element is required to have a high light emission efficiency and uniform light emission in the surface.
  • organic compounds with high crystallinity cause light emission defects such as in-plane electric field strength non-uniformity, light emission non-uniformity, and light emission quenching, so organic EL device materials have low crystallinity and are amorphous. High material is desired. For this reason, even if the organic compound constituting the organic EL element material is directly transferred to the organic semiconductor material, good transistor characteristics cannot be obtained immediately.
  • the HOMO of the organic semiconductor material is neither too shallow nor too deep, and the chemical stability of the organic semiconductor material (especially air oxidation resistance, redox stability).
  • the thermal stability of the film state, the high film density in which air and moisture do not easily enter, the film quality with few defects in which electric charges do not accumulate, and the like are necessary.
  • the compound represented by the general formula (1) has a skeletal structure in which X 1 and X 2 are sulfur atoms or selenium atoms, the HOMO is shallow as described above, and X 1 and X 2 are oxygen atoms.
  • the threshold voltage change after repeated driving is considered to be small. That is, in the organic transistor of the present invention having a small threshold voltage change after repeated driving, the semiconductor active layer has high chemical stability, film density, and the like, and can function effectively as a transistor for a long period of time.
  • the compound of the present invention and the organic transistor of the present invention will be described.
  • the compound of the present invention is represented by the following general formula (1).
  • the compound of this invention is contained in the below-mentioned semiconductor active layer in the organic transistor of this invention. That is, the compound of the present invention can be used as an organic transistor material.
  • General formula (1) (In the general formula (1), X 1 and X 2 each independently represent a sulfur atom or a selenium atom, R 1 and R 2 each independently represent a hydrogen atom or a substituent, and n R 1 and n At least one of R 2 in the formula represents a group represented by the following general formula (W): R 3 to R 10 each independently represents a hydrogen atom or a substituent, and n represents an integer of 1 to 6.
  • L represents a divalent linking group represented by any one of the following general formulas (L-1) to (L-9) or two or more of the following general formulas (L-1) to ( L-9) represents a divalent linking group to which a divalent linking group represented by any one of R-9) is bonded, wherein R represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, ethyleneoxy This represents an oligoethyleneoxy group having a unit repeating number v of 2 or more or an oligosiloxane group having 2 or more silicon atoms.) (In the general formulas (L-1) to (L-9), the wavy line represents the bonding site with the aromatic hydrocarbon ring at the center of the skeleton, and * represents the general formulas (L-1) to (L-9).
  • R ′ each independently represents a hydrogen atom or a substituent.
  • R ′ in the general formulas (L-1) and (L-2) may be bonded to R adjacent to L to form a condensed ring.
  • X 1 and X 2 each independently represent a sulfur atom or a selenium atom.
  • X 1 and X 2 may be the same or different from each other, but are preferably the same as each other. Both X 1 and X 2 are preferably sulfur atoms from the viewpoints of smaller atomic radii, higher molecular orientation order, and higher carrier mobility.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent, and at least one of n R 1 and n R 2 is represented by General Formula (W). It is a group. In the compound represented by the general formula (1), R 1 and R 2 may have another substituent other than the group represented by the general formula (W).
  • R 1 and R 2 in the above general formula (1) can adopt, a halogen atom, an alkyl group (methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl) Group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group and other alkyl groups having 1 to 40 carbon atoms, except that 2,6-dimethyloctyl group, 2-decyltetradecyl group, 2-hexyl Dodecyl, 2-ethyloctyl, 2-decyltetradecyl, 2-butyldecyl, 1-octylnonyl, 2-ethyloctyl, 2-octyltetradecyl, cycloalkyl, bi
  • the number of substituents other than the group represented by the general formula (W) is preferably 0-2. 0 or 1 is more preferable, and 0 is particularly preferable.
  • L represents a divalent linking group represented by any one of the following general formulas (L-1) to (L-9) or two or more of the following general formulas (L-1) to (L L-9) represents a divalent linking group to which a divalent linking group represented by any one of L-9) is bonded.
  • R ′ each independently represents a hydrogen atom or a substituent.
  • R ′ in the general formulas (L-1) and (L-2) may be bonded to R adjacent to L to form a condensed ring.
  • the general formulas (L-1) to (L-9) When the above L forms a linking group to which a divalent linking group represented by any of the general formulas (L-1) to (L-9) is bonded, the general formulas (L-1) to (L-9)
  • the number of bonds of the divalent linking group represented by any of (2) is preferably 2 to 9, and more preferably 2 or 3.
  • any one of the general formulas (L-1) to (L-9) is further inserted between * and R, and the above L
  • a divalent linking group represented by any one of formulas (L-1) to (L-9) is bonded to form a linking group.
  • R ′ in the general formulas (L-1), (L-2), (L-6), (L-7) and (L-8), R 1 in the above general formula (1) can be used. And those exemplified as the substituents which R 2 can adopt.
  • R ′ is independently a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a cyano group, or a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms.
  • a hydrogen atom, a fluorine atom, or a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms is more preferable.
  • R ′ in the general formulas (L-1) and (L-2) may be bonded to R adjacent to L to form a condensed ring.
  • M in the general formula (L-6) represents 4, and m in the general formulas (L-7) and (L-8) represents 2.
  • L is a divalent linking group represented by any one of the above general formulas (L-1), (L-3), (L-6), (L-8) and (L-9), or 2 of these A divalent linking group in which two or more valent linking groups are bonded is preferable.
  • the compounds represented by the general formulas (L-1), (L-3) and (L-6) Or a divalent linking group in which two or more of these divalent linking groups are bonded to each other, and the above general formulas (L-3) and (L-6) are more preferable.
  • L is a divalent linking group in which two or more divalent linking groups represented by any of the above general formulas (L-1) to (L-9) are bonded
  • a preferred combination is-(L -1)-(L-1)-*,-(L-1)-(L-2)-*,-(L-1)-(L-4)-*,-(L-2)-( L-6)-*,-(L-3)-(L-6)-*,-(L-5)-(L-6)-*, (L-8)-(L-1)-* And combinations thereof (* indicates a bonding position with any of the divalent linking groups represented by the general formulas (L-1) to (L-9) and R).
  • R is a hydrogen atom, a substituted or unsubstituted alkyl group, an oligoethyleneoxy group having an ethyleneoxy group repeating number of 2 or more, an oligosiloxane group having 2 or more silicon atoms, or a substituted or An unsubstituted silyl group is represented.
  • L adjacent to R is a divalent linking group represented by the general formula (L-1)
  • R is a hydrogen atom or a substituted or unsubstituted alkyl group. It is preferable.
  • R is a substituted or unsubstituted alkyl group, a substituted or unsubstituted group.
  • the silyl group is preferably a substituted or unsubstituted silyl group.
  • L adjacent to R is represented by the general formulas (L-2), (L-4), (L-5), (L-7), and (L-8).
  • R is preferably a substituted or unsubstituted alkyl group.
  • R is a hydrogen atom or a substituted or unsubstituted alkyl group. It is preferably a substituted or unsubstituted alkyl group.
  • R is a substituted or unsubstituted alkyl group, an ethyleneoxy group An oligoethyleneoxy group having 2 or more repeats and an oligosiloxane group having 2 or more silicon atoms are preferable, and a substituted or unsubstituted alkyl group is more preferable. The preferred range of each substituent will be described below.
  • the number of carbon atoms is preferably 2 to 18, and preferably 2 to 12 From the viewpoint of mechanical stability and carrier transportability, it is more preferably 2 to 10.
  • a linear or branched alkyl group is preferable. It is more preferable that it is a group from a viewpoint of improving solubility.
  • the substituted or unsubstituted alkyl group that R can take is preferably an alkyl group having 1 or more carbon atoms, and 1 to 18 carbon atoms.
  • the alkyl group is more preferably an alkyl group having 1 to 10 carbon atoms, and particularly preferably an alkyl group having 1 to 6 carbon atoms.
  • R is preferably a methyl group, and one of R ′ in the general formula (L-2) adjacent to R is a methyl group.
  • R is more preferably a methyl group from the viewpoint of improving carrier mobility and solubility.
  • the substituted or unsubstituted alkyl group that R can take is preferably an alkyl group having 2 or more carbon atoms, and having 3 to 18 carbon atoms. Are more preferable, an alkyl group having 3 to 12 carbon atoms is more preferable, and an alkyl group having 4 to 10 carbon atoms is particularly preferable.
  • the substituted or unsubstituted alkyl group which R can take when L is represented by the general formula (L-3), a linear or branched alkyl group is preferable. It is more preferable from the viewpoint of improving solubility.
  • an alkyl group that R can take is an alkyl group having 2 or more carbon atoms.
  • an alkyl group having 3 to 18 carbon atoms Preferably an alkyl group having 4 to 12 carbon atoms, and an alkyl group having 4 to 10 carbon atoms. Is particularly preferred.
  • Examples of the substituted or unsubstituted alkyl group that R can take include, when L is represented by the general formulas (L-4), (L-5), (L-7) to (L-9), Or it is preferable that it is a branched alkyl group, and it is more preferable from a viewpoint of improving solubility that it is a branched alkyl group.
  • L is represented by the general formula (L-6)
  • the alkyl group that R can take is preferably an alkyl group having 1 or more carbon atoms, and an alkyl group having 1 to 18 carbon atoms.
  • An alkyl group having 3 to 12 carbon atoms is more preferable, and an alkyl group having 4 to 12 carbon atoms is particularly preferable.
  • the substituted or unsubstituted alkyl group which R can take when L is represented by the above general formula (L-6), it is preferably a linear or branched alkyl group, It is more preferable from the viewpoint of improving solubility.
  • the compound represented by the general formula (1) includes an alkyl group in the group represented by the general formula (W), the carrier mobility is such that the alkyl group represented by R is not less than the lower limit of the above range. Becomes higher.
  • L includes the general formula (L-1) adjacent to R
  • R When the number of carbon atoms is greater than or equal to the lower limit of the above range, the carrier mobility is increased.
  • the substituent when R is an alkyl group having a substituent include a halogen atom, and a fluorine atom is preferable.
  • R is an alkyl group having a fluorine atom
  • all hydrogen atoms of the alkyl group may be substituted with a fluorine atom to form a perfluoroalkyl group.
  • R is preferably an unsubstituted alkyl group.
  • R in the general formula (W) is an oligoethyleneoxy group having an ethyleneoxy group repeating number of 2 or more
  • the “ethyleneoxy group” represented by R is defined as — (CH 2 CH 2 O) v in this specification. It means a group represented by Y (the repeating number v of ethyleneoxy units represents an integer of 2 or more, and Y at the terminal represents a hydrogen atom or a substituent).
  • Y at the terminal of the oligoethyleneoxy group is a hydrogen atom, it becomes a hydroxy group.
  • the repeating number v of the ethyleneoxy unit is preferably 2 to 4, and more preferably 2 to 3.
  • the terminal hydroxy group of the oligoethyleneoxy group is sealed, that is, Y represents a substituent.
  • the hydroxy group is preferably sealed with an alkyl group having 1 to 3 carbon atoms, that is, Y is preferably an alkyl group having 1 to 3 carbon atoms, and Y is a methyl group or an ethyl group. Is more preferable, and a methyl group is particularly preferable.
  • R in the above general formula (W) is an oligosiloxane group having 2 or more silicon atoms
  • the number of repeating siloxane units is preferably 2 to 4, more preferably 2 to 3.
  • a hydrogen atom or an alkyl group is bonded to the Si atom.
  • the alkyl group preferably has 1 to 3 carbon atoms, and for example, a methyl group or an ethyl group is preferably bonded.
  • the same alkyl group may be bonded to the Si atom, or different alkyl groups or hydrogen atoms may be bonded to it.
  • all the siloxane units which comprise an oligosiloxane group may be the same or different, it is preferable that all are the same.
  • R can take a substituted or unsubstituted silyl group only when L adjacent to R is a divalent linking group represented by the above general formulas (L-1) to (L-3).
  • L adjacent to R is a divalent linking group represented by the above general formulas (L-1) to (L-3).
  • a substituted or unsubstituted alkyl group is preferable and it is more preferable that it is a branched alkyl group.
  • R is a trialkylsilyl group
  • the alkyl group bonded to the Si atom preferably has 1 to 3 carbon atoms. For example, a methyl group, an ethyl group, or an isopropyl group is preferably bonded.
  • the group is more preferable, and the isopropyl group is particularly preferable.
  • the same alkyl group may be bonded to the Si atom, or different alkyl groups may be bonded thereto.
  • R is a trialkylsilyl group having a substituent on the alkyl group.
  • n R 1 and n pieces of R 2 is preferably the number of the groups represented by the general formula (W) is 1-4 .
  • the number of groups represented by the general formula (W) among the n R 1 and n R 2 is 1 to 2 is more preferable, and 2 is particularly preferable.
  • the number of groups represented by the general formula (W) is 2 to 4 among n R 1 and n R 2. Is preferable, 3 or 4 is more preferable, and 4 is particularly preferable.
  • n R 1 and n pieces of R 2, R 1 and R 2 are combined to have one of the general two places of R 1 and R 2 of the benzene ring
  • the group represented by the formula (W) By using the group represented by the formula (W), a high carrier concentration can be obtained.
  • n 3 and the number of groups represented by the general formula (W) is 4, two benzene rings out of three benzene rings to which R 1 and R 2 are bonded are R 2 locations of 1 and R 2 are groups represented by the above general formula (W), and the remaining 1 benzene ring is a hydrogen atom or other substituents at 2 locations of R 1 and R 2 Is preferred.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent, and the substituents that R 3 to R 10 can take are listed as substituents that R 1 and R 2 can take. Can be mentioned. Among them, R 3 to R 10 each independently represents a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 3 carbon atoms, or 2 to 3 carbon atoms.
  • An aryl group or a substituted or unsubstituted methylthio group is preferable, and a hydrogen atom, a fluorine atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.
  • R 3 to R 10 are substituents
  • the number of substituents is preferably 0 to 4, more preferably 0 to 2, and particularly preferably 0. preferable.
  • preferred positions of the substituents are preferably positions where the whole molecule has a point-symmetric structure, including the structure of the substituents. It is more preferable to have the same substituent at a position where the whole molecule has a point-symmetric structure so that the whole molecule has a point-symmetric structure.
  • n represents an integer of 1 to 6, and an integer of 1 to 3 is preferable to improve solubility, more preferably 1 or 2 from the same viewpoint, and 1 It is particularly preferred.
  • the compound represented by the general formula (1) is preferably a compound represented by the following general formula (2).
  • General formula (2) (In General Formula (2), R 1 and R 2 each independently represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a group represented by General Formula (W). 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent, and at least one of R 1 and R 2 represents a group represented by the general formula (W).
  • a preferred range of R 1 and R 2 in the general formula (2) is the same as the preferred ranges of R 1 and R 2 in the general formula (1).
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R 3 ⁇ R 10 in the general formula (2) is the same as the preferred ranges of R 3 ⁇ R 10 in the general formula (1).
  • the compound represented by the general formula (2) is preferably a compound represented by the following general formula (3), the following general formula (5) or the following general formula (7).
  • a compound represented by the formula (3) or the following general formula (5) is more preferable, and a compound represented by the following general formula (3) is particularly preferable.
  • General formula (3) (In the general formula (3), R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number.
  • General formula (5) (In the general formula (5), R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number.
  • R ′ independently represents a hydrogen atom or a substituent
  • R 2 represents a group represented by the general formula (W)
  • R 3 to R 10 each independently represents hydrogen.
  • R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number.
  • R ′ independently represents a hydrogen atom or a substituent
  • m represents 4.
  • R 2 represents a group represented by the general formula (W), R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number. Represents two or more oligosiloxane groups.
  • the preferable range of R 11 in the general formula (3) is the same as the preferable range of R when L included in the general formula (W) in the general formula (1) is (L-3).
  • R 2 represents a group represented by the general formula (W).
  • the preferred range of the group represented by the general formula (W) in the general formula (3) is the same as the preferred range of the group represented by the general formula (W) in the general formula (1).
  • More preferably, L contained in the general formula (W) is (L-3).
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R 3 ⁇ R 10 in the general formula (3) is the same as the preferred ranges of R 3 ⁇ R 10 in the general formula (1).
  • the compound represented by the general formula (3) is preferably a compound represented by the following general formula (4).
  • General formula (4) (In the general formula (4), R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or silicon. And represents an oligosiloxane group having 2 or more atoms, R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom It represents an oligosiloxane group having a number of 2 or more.
  • the preferred ranges of R 11 and R 12 in the general formula (4) are each independently a range of R in the case where L in the general formula (W) in the general formula (1) is (L-3). This is the same as the preferred range.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R 3 ⁇ R 10 in the general formula (4) is the same as the preferred ranges of R 3 ⁇ R 10 in the general formula (1).
  • R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number. Represents two or more oligosiloxane groups.
  • the preferred range of R 11 in the general formula (5) is the same as the preferred range of R when L contained in the general formula (W) in the general formula (1) is (L-1).
  • R ′ each independently represents a hydrogen atom or a substituent.
  • a preferable range of R ′ in the general formula (5) is included in (L-1) when L included in the general formula (W) in the general formula (1) is (L-1). This is the same as the preferable range of R ′.
  • R 2 represents a group represented by the general formula (W).
  • the preferred range of the group represented by the general formula (W) in the general formula (5) is the same as the preferred range of the group represented by the general formula (W) in the general formula (1). More preferably, L contained in the general formula (W) is (L-1).
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R 3 ⁇ R 10 in the general formula (5) is the same as the preferred ranges of R 3 ⁇ R 10 in the general formula (1).
  • the compound represented by the general formula (5) is preferably a compound represented by the following general formula (6).
  • General formula (6) (In the general formula (6), R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group in which the number of ethyleneoxy unit repeats v is 2 or more, or silicon. And represents an oligosiloxane group having 2 or more atoms, R ′ independently represents a hydrogen atom or a substituent, and R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or a silicon atom It represents an oligosiloxane group having a number of 2 or more.
  • the preferred ranges of R 11 and R 12 in the general formula (6) are each independently the value of R in the case where L in the general formula (W) in the general formula (1) is (L-1). This is the same as the preferred range.
  • R ′ each independently represents a hydrogen atom or a substituent.
  • a preferable range of R ′ in the general formula (6) is included in (L-1) when L included in the general formula (W) in the general formula (1) is (L-1). This is the same as the preferable range of R ′.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R 3 ⁇ R 10 in the general formula (6) is the same as the preferred ranges of R 3 ⁇ R 10 in the general formula (1).
  • R 11 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having an ethyleneoxy unit repeating number v of 2 or more, or a silicon atom number. Represents two or more oligosiloxane groups.
  • the preferable range of R 11 in the general formula (7) is the same as the preferable range of R when L included in the general formula (W) in the general formula (1) is (L-6).
  • R ′ each independently represents a hydrogen atom or a substituent.
  • a preferable range of R ′ in the general formula (7) is included in (L-6) when L included in the general formula (W) in the general formula (1) is (L-6). This is the same as the preferable range of R ′.
  • m represents 4.
  • R 2 represents a group represented by the general formula (W).
  • the preferred range of the group represented by the general formula (W) in the general formula (7) is the same as the preferred range of the group represented by the general formula (W) in the general formula (1). More preferably, L contained in the general formula (W) is (L-6).
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R 3 ⁇ R 10 in the general formula (7) is the same as the preferred ranges of R 3 ⁇ R 10 in the general formula (1).
  • the compound represented by the general formula (7) is preferably a compound represented by the following general formula (8).
  • General formula (8) (In the general formula (8), R 11 and R 12 are each a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or silicon. And represents an oligosiloxane group having 2 or more atoms, R ′ independently represents a hydrogen atom or a substituent, and m represents 4.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • R 11 and R 12 are a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted silyl group, an oligoethyleneoxy group having a repeating number v of ethyleneoxy units of 2 or more, or a silicon atom It represents an oligosiloxane group having a number of 2 or more.
  • the preferred ranges of R 11 and R 12 in the general formula (8) are each independently a range of R in the case where L in the general formula (W) in the general formula (1) is (L-6). This is the same as the preferred range.
  • R ′ each independently represents a hydrogen atom or a substituent.
  • a preferable range of R ′ in the general formula (8) is included in (L-6) when L included in the general formula (W) in the general formula (1) is (L-6). This is the same as the preferable range of R ′.
  • M in the general formula (8) represents 4.
  • R 3 to R 10 each independently represents a hydrogen atom or a substituent.
  • a preferred range of R 3 ⁇ R 10 in the general formula (8) is the same as the preferred ranges of R 3 ⁇ R 10 in the general formula (1).
  • the compound represented by the general formula (1) preferably has a molecular weight of 3000 or less, more preferably 2000 or less, still more preferably 1000 or less, and particularly preferably 850 or less. It is preferable to make the molecular weight not more than the above upper limit value because the solubility in a solvent can be increased. On the other hand, from the viewpoint of film quality stability of the film, the molecular weight is preferably 300 or more, more preferably 350 or more, and further preferably 400 or more. When the compound represented by the general formula (1) is a polymer compound having a repeating structure, the weight average molecular weight is preferably 30,000 or more, more preferably 50,000 or more, and 100,000 More preferably, it is the above.
  • the intermolecular interaction can be increased by setting the weight average molecular weight to be equal to or more than the above lower limit, and high mobility Is preferable.
  • the polymer compound having a repeating structure include a ⁇ -conjugated polymer in which the compound represented by the general formula (1) represents at least one arylene group or heteroarylene group (thiophene, bithiophene) and exhibits a repeating structure, A pendant polymer in which a compound represented by the formula (1) is bonded to a polymer main chain through a side chain is exemplified.
  • the polymer main chain polyacrylate, polyvinyl, polysiloxane, and the like are preferable. Is preferably an alkylene group or a polyethylene oxide group.
  • the compound represented by the general formula (1) is Journal of Chemical Society. C, Organic Chemistry, 1875 (1971), Organic Electronics, 13, 1392 (2012), and the like.
  • Any reaction conditions may be used in the synthesis of the compounds of the invention.
  • Any solvent may be used as the reaction solvent.
  • Optimum reaction conditions vary depending on the structure of the target triphenodithiazine derivative and a compound having a similar skeleton, or a derivative of a triphenodiselenazine derivative and a compound having a similar skeleton structure. It can be set with reference to the specific reaction conditions.
  • Synthesis intermediates having various substituents can be synthesized by combining known reactions. Each substituent may be introduced at any intermediate stage. After the synthesis of the intermediate, it is preferable to purify by sublimation purification after purification by column chromatography, recrystallization or the like. By sublimation purification, not only can organic impurities be separated, but inorganic salts and residual solvents can be effectively removed.
  • the organic transistor of the present invention has a semiconductor active layer containing the compound represented by the general formula (1).
  • the organic transistor of the present invention may further include other layers in addition to the semiconductor active layer.
  • the organic transistor of the present invention is preferably used as an organic field effect transistor (FET), and more preferably used as an insulated gate FET in which a gate-channel is insulated.
  • FET organic field effect transistor
  • an electrode, an insulator layer, a semiconductor active layer (organic semiconductor layer), and two electrodes are sequentially arranged on the upper surface of the lowermost substrate (bottom gate / top contact type) ).
  • the electrode on the upper surface of the lowermost substrate is provided on a part of the substrate, and the insulator layer is disposed so as to be in contact with the substrate at a portion other than the electrode.
  • the two electrodes provided on the upper surface of the semiconductor active layer are arranged separately from each other.
  • FIG. 1 is a schematic view showing a cross section of an example of the structure of the organic transistor of the present invention.
  • the organic transistor of FIG. 1 has a substrate 11 disposed in the lowermost layer, an electrode 12 is provided on a part of its upper surface, and further covers the electrode 12 and is in contact with the substrate 11 at a portion other than the electrode 12. 13 is provided. Further, the semiconductor active layer 14 is provided on the upper surface of the insulator layer 13, and the two electrodes 15a and 15b are disposed separately on a part of the upper surface.
  • the electrode 12 is a gate, and the electrodes 15a and 15b are drains or sources, respectively.
  • the organic transistor shown in FIG. 1 is an insulated gate FET in which a channel that is a current path between a drain and a source is insulated from a gate.
  • FIG. 2 is a schematic view showing a cross section of the structure of an organic transistor manufactured as a substrate for measuring FET characteristics in an embodiment of the present invention.
  • a substrate 31 is disposed in the lowermost layer, an electrode 32 is provided on a part of the upper surface thereof, and further, this insulator 32 is covered so as to be in contact with the substrate 31 at a portion other than the electrode 32.
  • 33 is provided.
  • the semiconductor active layer 35 is provided on the upper surface of the insulator layer 33, and the electrodes 34 a and 34 b are below the semiconductor active layer 35.
  • the electrode 32 is a gate
  • the electrode 34a and the electrode 34b are a drain or a source, respectively.
  • the organic transistor shown in FIG. 2 is an insulated gate FET in which a channel that is a current path between the drain and the source is insulated from the gate.
  • a top gate / top contact type element having an insulator and a gate electrode on the semiconductor active layer, and a top gate / bottom contact type element can also be preferably used.
  • the thickness of the entire transistor is preferably 0.1 to 0.5 ⁇ m.
  • the entire organic transistor element is made of a metal sealing can, glass, an inorganic material such as silicon nitride, a polymer material such as parylene, It may be sealed with a low molecular material or the like.
  • the organic transistor of the present invention preferably includes a substrate.
  • substrate A well-known material can be used, for example, polyester films, such as a polyethylene naphthalate (PEN) and a polyethylene terephthalate (PET), a cycloolefin polymer film, a polycarbonate film, a triacetyl cellulose (TAC) film, polyimide film, and those obtained by bonding these polymer films to ultrathin glass, ceramic, silicon, quartz, glass, and the like can be mentioned, and silicon is preferable.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • the organic transistor of the present invention preferably includes an electrode.
  • the constituent material of the electrode include metal materials such as Cr, Al, Ta, Mo, Nb, Cu, Ag, Au, Pt, Pd, In, Ni, and Nd, alloy materials thereof, carbon materials, and conductive materials. Any known conductive material such as a conductive polymer can be used without particular limitation.
  • the thickness of the electrode is not particularly limited, but is preferably 10 to 50 nm.
  • the gate width (or channel width) W and gate length (or channel length) L are not particularly limited, but the ratio W / L is preferably 10 or more, and more preferably 20 or more.
  • the material constituting the insulating layer is not particularly limited as long as the necessary insulating effect can be obtained.
  • fluorine polymer insulating materials such as silicon dioxide, silicon nitride, PTFE, CYTOP, polyester insulating materials, polycarbonate insulating materials, acrylic polymers Insulating material, epoxy resin insulating material, polyimide insulating material, polyvinylphenol resin insulating material, polyparaxylylene resin insulating material, and the like.
  • the upper surface of the insulating layer may be surface-treated.
  • an insulating layer whose surface is treated by applying hexamethyldisilazane (HMDS) or octadecyltrichlorosilane (OTS) to the silicon dioxide surface can be preferably used.
  • HMDS hexamethyldisilazane
  • OTS octadecyltrichlorosilane
  • the thickness of the insulating layer is not particularly limited, but when thinning is required, the thickness is preferably 10 to 400 nm, more preferably 20 to 200 nm, and particularly preferably 50 to 200 nm. .
  • the semiconductor active layer contains the compound represented by the general formula (1), that is, the compound of the present invention.
  • the semiconductor active layer may be a layer made of the compound of the present invention, or may be a layer further containing a polymer binder described later in addition to the compound of the present invention. Moreover, the residual solvent at the time of film-forming may be contained.
  • the content of the polymer binder in the semiconductor active layer is not particularly limited, but is preferably used in the range of 0 to 95% by mass, more preferably in the range of 10 to 90% by mass, It is preferably used in the range of 20 to 80% by mass, particularly preferably in the range of 30 to 70% by mass.
  • the thickness of the semiconductor active layer is not particularly limited, but when thinning is required, the thickness is preferably 10 to 400 nm, more preferably 10 to 200 nm, and particularly preferably 10 to 100 nm. preferable.
  • the present invention also relates to an organic semiconductor material for a non-light-emitting organic semiconductor device containing the compound represented by the general formula (1), that is, the compound of the present invention.
  • Non-luminescent organic semiconductor devices In the present specification, the “non-light emitting organic semiconductor device” means a device not intended to emit light.
  • the non-light-emitting organic semiconductor device is preferably a non-light-emitting organic semiconductor device using an electronic element having a thin film layer structure.
  • Non-light-emitting organic semiconductor devices include organic transistors (also called organic thin film transistors), organic photoelectric conversion elements (solid-state imaging devices for photosensors, solar cells for energy conversion, etc.), gas sensors, organic rectifiers, organic inverters, information Recording elements and the like are included.
  • the organic photoelectric conversion element can be used for both optical sensor applications (solid-state imaging elements) and energy conversion applications (solar cells).
  • An organic photoelectric conversion element and an organic transistor are preferable, and an organic transistor is more preferable. That is, the organic semiconductor material for a non-light-emitting organic semiconductor device of the present invention is preferably an organic transistor material as described above.
  • the “organic semiconductor material” is an organic material exhibiting semiconductor characteristics. Similar to semiconductors made of inorganic materials, there are p-type (hole-transporting) organic semiconductors that conduct holes as carriers, and n-type (electron-transporting) organic semiconductors that conduct electrons as carriers.
  • the compound of the present invention may be used as either a p-type organic semiconductor material or an n-type organic semiconductor material, but is more preferably used as a p-type.
  • the ease of carrier flow in the organic semiconductor is represented by carrier mobility ⁇ .
  • the carrier mobility ⁇ is preferably higher, preferably 1 ⁇ 10 ⁇ 3 cm 2 / Vs or higher, more preferably 5 ⁇ 10 ⁇ 3 cm 2 / Vs or higher, and more preferably 1 ⁇ 10 ⁇ 2 cm 2. / Vs or higher is particularly preferable, 1 ⁇ 10 ⁇ 1 cm 2 / Vs or higher is more preferable, and 1 cm 2 / Vs or higher is even more preferable.
  • the carrier mobility ⁇ can be obtained by characteristics when a field effect transistor (FET) element is manufactured or by a time-of-flight measurement (TOF) method.
  • FET field effect transistor
  • TOF time-of-flight measurement
  • Organic semiconductor film for non-luminescent organic semiconductor devices (material)
  • the present invention also relates to a compound represented by the above general formula (1), that is, an organic semiconductor film for a non-light-emitting organic semiconductor device containing the compound of the present invention.
  • the aspect in which the organic semiconductor film for a non-luminescent organic semiconductor device of the present invention contains the compound represented by the general formula (1), that is, the compound of the present invention and does not contain a polymer binder is also preferable.
  • the organic-semiconductor film for nonluminous organic-semiconductor devices of this invention may contain the compound represented by the said General formula (1), ie, the compound of this invention, and a polymer binder.
  • polymer binder examples include insulating polymers such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, and polypropylene, and co-polymers thereof.
  • insulating polymers such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, and polypropylene, and co-polymers thereof.
  • examples thereof include a polymer, a photoconductive polymer such as polyvinyl carbazole and polysilane, a conductive polymer such as polythiophene, polypyrrole, polyaniline, and polyparaphenylene vinylene, and a semiconductor polymer.
  • the above polymer binders may be
  • the organic semiconductor material and the polymer binder may be mixed uniformly, or a part or all of them may be phase-separated, but from the viewpoint of charge mobility, A structure in which the binder and the binder are phase-separated is most preferable because the binder does not hinder the charge transfer of the organic semiconductor.
  • a polymer binder having a high glass transition temperature is preferable, and in consideration of charge mobility, a polymer binder, a photoconductive polymer, or a conductive polymer having a structure containing no polar group is preferable.
  • the amount of the polymer binder used is not particularly limited, but is preferably used in the range of 0 to 95% by mass, more preferably 10 to 90% by mass in the organic semiconductor film for non-light-emitting organic semiconductor devices of the present invention. Is more preferably used within the range of 20 to 80% by mass, and particularly preferably within the range of 30 to 70% by mass.
  • an organic film with good film quality can be obtained when the compound has the structure described above. Specifically, since the compound obtained by the present invention has good crystallinity, a sufficient film thickness can be obtained, and the obtained organic semiconductor film for a non-luminescent organic semiconductor device of the present invention is of good quality. Become.
  • any method may be used for forming the compound of the present invention on the substrate.
  • the substrate may be heated or cooled, and the film quality and molecular packing in the film can be controlled by changing the temperature of the substrate.
  • the temperature of the substrate is not particularly limited, but is preferably between 0 ° C. and 200 ° C., more preferably between 15 ° C. and 100 ° C., and particularly between 20 ° C. and 95 ° C. preferable.
  • the compound of the present invention is formed on a substrate, it can be formed by a vacuum process or a solution process, both of which are preferable.
  • film formation by a vacuum process include physical vapor deposition methods such as vacuum deposition, sputtering, ion plating, molecular beam epitaxy (MBE), and chemical vapor deposition (CVD) such as plasma polymerization. ) Method, and it is particularly preferable to use a vacuum deposition method.
  • film formation by a solution process refers to a method in which an organic compound is dissolved in a solvent that can be dissolved and a film is formed using the solution.
  • coating methods such as casting method, dip coating method, die coater method, roll coater method, bar coater method, spin coating method, ink jet method, screen printing method, gravure printing method, flexographic printing method, offset printing
  • Conventional printing methods such as various printing methods such as micro contact printing method, Langmuir-Blodgett (LB) method, casting method, spin coating method, ink jet method, gravure printing method, flexographic printing method, offset It is particularly preferable to use a printing method or a microcontact printing method.
  • the organic semiconductor film for a non-luminescent organic semiconductor device of the present invention is preferably produced by a solution coating method. Further, when the organic semiconductor film for a non-light-emitting organic semiconductor device of the present invention contains a polymer binder, the material for forming the layer and the polymer binder are dissolved or dispersed in an appropriate solvent to form a coating solution. It is preferably formed by a coating method.
  • the coating solution for non-light-emitting organic semiconductor devices of the present invention that can be used for film formation by a solution process will be described.
  • the present invention also relates to a coating solution for a non-light-emitting organic semiconductor device containing the compound represented by the general formula (1), that is, the compound of the present invention.
  • the material for forming the layer is selected from hydrocarbons such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, and 1-methylnaphthalene.
  • Solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and other ketone solvents such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene and the like
  • Solvent for example, ester solvent such as ethyl acetate, butyl acetate, amyl acetate, for example, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl Alcohol solvents such as rosolve, ethyl cellosolve, ethylene glycol, for example, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole, such
  • a film can be formed by various coating methods.
  • a solvent may be used independently and may be used in combination of multiple. Among these, hydrocarbon solvents, halogenated hydrocarbon solvents or ether solvents are preferable, toluene, xylene, mesitylene, tetralin, dichlorobenzene or anisole are more preferable, and toluene, xylene, tetralin and anisole are particularly preferable.
  • the concentration of the compound represented by the general formula (1) in the coating solution is preferably 0.1 to 80% by mass, more preferably 0.1 to 10% by mass, and particularly preferably 0.5 to 10% by mass. By setting the ratio to%, a film having an arbitrary thickness can be formed.
  • the coating solution for a non-light-emitting organic semiconductor device of the present invention preferably includes an embodiment that contains the compound represented by the general formula (1), that is, the compound of the present invention and does not contain a polymer binder.
  • the coating solution for nonluminous organic semiconductor devices of this invention may contain the compound represented by the said General formula (1), ie, the compound of this invention, and a polymer binder.
  • the material for forming the layer and the polymer binder can be dissolved or dispersed in the above-mentioned appropriate solvent to form a coating solution, and a film can be formed by various coating methods.
  • the polymer binder can be selected from those described above.
  • Comparative compounds 1 to 4 used for the semiconductor active layer (organic semiconductor layer) of the comparative element were synthesized according to the methods described in each document (TIPS-pentacene was purchased from Aldrich). The structures of Comparative Compounds 1 to 4 are shown below.
  • Example 2 ⁇ Forming a semiconductor active layer (organic semiconductor layer) with a compound alone> A non-luminescent organic semiconductor device coating solution was prepared by mixing the compound of the present invention or a comparative compound (each 1 mg) and toluene (1 mL) and heating to 100 ° C. This coating solution is cast on an FET characteristic measurement substrate heated to 90 ° C. in a nitrogen atmosphere to form an organic semiconductor film for a non-light-emitting organic semiconductor device, and the organic transistor of Example 2 for FET characteristic measurement An element was obtained.
  • a silicon substrate having a gate / bottom contact structure (a schematic diagram of the structure is shown in FIG. 2) was used.
  • the FET characteristics of the organic transistor element of Example 2 are as follows: carrier mobility under normal pressure and nitrogen atmosphere using a semiconductor parameter analyzer (Agilent, 4156C) connected with a semi-auto prober (Vector Semicon, AX-2000). Evaluation was made in terms of changes in threshold voltage after repeated driving. The obtained results are shown in Table 1 below.
  • the source electrode of the (a) carrier mobility the organic transistor device (FET element) - between the drain electrode by applying a voltage of -80 V, the gate voltage is varied in a range of 20V ⁇ -100 V, equation representing the drain current I d I d (w / 2L) ⁇ C i (V g ⁇ V th ) 2 (where L is the gate length, W is the gate width, C i is the capacitance per unit area of the insulating layer, V g is the gate voltage, Carrier mobility ⁇ was calculated using Vth as a threshold voltage. In addition, since the characteristic is too low for the carrier mobility of less than 1 ⁇ 10 ⁇ 5 cm 2 / Vs, evaluation of the threshold voltage change after the subsequent (b) repeated driving is not performed.
  • Threshold voltage change after repeated driving A voltage of ⁇ 80 V is applied between the source electrode and the drain electrode of each organic transistor element (FET element), and the gate voltage is repeated 100 times in the range of +20 V to ⁇ 100 V (a The difference between the threshold voltage V before repeated driving and the threshold voltage V after repeated driving (
  • the threshold voltage change after repeated driving is preferably A evaluation.
  • the organic transistor element using the compound of the present invention had high carrier mobility and small threshold voltage change after repeated driving. Therefore, it turned out that the compound of this invention is preferably used as an organic-semiconductor material for nonluminous organic-semiconductor devices.
  • organic transistor elements using Comparative Compounds 1, 2 and 3 other than Comparative Compound 4 had low carrier mobility.
  • the organic transistor element using the comparative compounds 1, 2, 3 and 4 had a large threshold voltage change after repeated driving.
  • the organic transistor element of Example 3 for measuring FET characteristics was produced in the same manner as in Example 2 except that the above was used, and the same evaluation as in Example 2 was performed. The obtained results are shown in Table 2 below.
  • the organic transistor element in which the semiconductor active layer was formed using the compound of the present invention together with the binder had high carrier mobility and small threshold voltage change after repeated driving. Therefore, it turned out that the compound of this invention is preferably used as an organic-semiconductor material for nonluminous organic-semiconductor devices.
  • the organic transistor element in which the semiconductor active layer was formed using the comparative compounds 1, 2 and 3 other than the comparative compound 4 together with the binder had a low carrier mobility.
  • the organic transistor element in which the semiconductor active layer was formed using the comparative compounds 1, 2, 3, and 4 together with the binder had a large threshold voltage change after repeated driving.
  • the carrier mobility becomes very low
  • the compound of the present invention is used together with the binder. It was found that even when the semiconductor active layer was formed, an element having excellent carrier mobility, small change in threshold voltage after repeated driving, and extremely high film smoothness and uniformity can be obtained.
  • Example 4 ⁇ Semiconductor active layer (organic semiconductor layer) formation> A silicon wafer provided with SiO 2 (thickness: 370 nm) as a gate insulating film was used, and surface treatment was performed with octyltrichlorosilane. A non-luminescent organic semiconductor device coating solution was prepared by mixing the compound of the present invention or a comparative compound (each 1 mg) and toluene (1 mL) and heating to 100 ° C. This coating solution was cast on an octylsilane surface-treated silicon wafer heated to 90 ° C. in a nitrogen atmosphere to form an organic semiconductor film for a non-light-emitting organic semiconductor device.
  • FIG. 1 A schematic diagram of the structure is shown in FIG. 1).
  • the FET characteristics of the organic transistor element of Example 4 are as follows: carrier mobility under normal pressure / nitrogen atmosphere using a semiconductor parameter analyzer (Agilent, 4156C) connected to a semi-auto prober (Vector Semicon, AX-2000). Evaluation was made in terms of changes in threshold voltage after repeated driving. The obtained results are shown in Table 3 below.
  • the organic transistor element using the compound of the present invention has high carrier mobility and small threshold voltage change after repeated driving. Therefore, it turned out that the compound of this invention is preferably used as an organic-semiconductor material for nonluminous organic-semiconductor devices.
  • organic transistor elements using Comparative Compounds 1, 2 and 3 other than Comparative Compound 4 had low carrier mobility.
  • the organic transistor element using the comparative compounds 1, 2, 3 and 4 had a large threshold voltage change after repeated driving.
  • Electrode 11 Substrate 12 Electrode 13 Insulator Layer 14 Semiconductor Active Layer (Organic Material Layer, Organic Semiconductor Layer) 15a, 15b Electrode 31 Substrate 32 Electrode 33 Insulator layer 34a, 34b Electrode 35 Semiconductor active layer (organic material layer, organic semiconductor layer)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

一般式(1)で表される化合物を半導体活性層に含む有機トランジスタ(XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表し、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも一個が一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表し、nは1~6の整数を表す。Lは特定の2価の連結基を表す。Rは水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。)は、有機トランジスタの半導体活性層に用いたときにキャリア移動度が高く、かつ、繰り返し駆動後の閾値電圧変化が小さく、有機溶媒への高い溶解性を有する化合物を用いた有機トランジスタである。

Description

有機トランジスタ、有機半導体膜および有機半導体材料ならびにそれらの応用
 本発明は、有機トランジスタ、有機半導体膜および有機半導体材料などに関する。詳しくは、本発明は、トリフェノジチアジンおよびその類似骨格構造を有する化合物またはトリフェノジセレナジンおよびその類似骨格構造を有する化合物、この化合物を含有する有機トランジスタ、この化合物を含有する非発光性有機半導体デバイス用有機半導体材料、この化合物を含有する有機トランジスタ用材料、この化合物を含有する非発光性有機半導体デバイス用塗布溶液、この化合物を含有する非発光性有機半導体デバイス用有機半導体膜に関する。
 有機半導体材料を用いたデバイスは、従来のシリコンなどの無機半導体材料を用いたデバイスと比較して、様々な優位性が見込まれているため、高い関心を集めている。有機半導体材料を用いたデバイスの例としては、有機半導体材料を光電変換材料として用いた有機膜太陽電池や固体撮像素子などの光電変換素子や、非発光性(本明細書中、「非発光性」とは、室温、大気下0.1mW/cmの電流密度でデバイスに電流を流した場合に、1lm/W以下の発光効率のことを言う。換言すると、有機電界発光素子などの発光性有機半導体デバイスを除く有機半導体デバイスを意味する)の有機トランジスタが挙げられる。有機半導体材料を用いたデバイスは、無機半導体材料を用いたデバイスと比べて低温、低コストで大面積の素子を作製できる可能性がある。さらに分子構造を変化させることで容易に材料特性を変化させることが可能であるため材料のバリエーションが豊富であり、無機半導体材料ではなし得なかったような機能や素子を実現することができる。
 非特許文献1には、n型有機半導体として2,9-ビス(トリイソプロピルシリルエチニル)トリフェノジオキサジン(以下、TIPSトリフェノジオキサジンとも言う。また、トリイソプロピルシリルエチニル基置換体をTIPSとも言う)を用いた有機トランジスタの特性を、電子がキャリアとなるn型有機半導体としてTIPSペンタセンを用いた有機トランジスタと比較した例が記載されている。この文献によれば、n型有機半導体としてはTIPSペンタセンよりもTIPSトリフェノジオキサジンの方がキャリア移動度(すなわち電子移動度)が10倍高くなり、4×10-3cm/Vsとなったと記載されている。しかしながら、TIPSトリフェノジオキサジンはイオン化ポテンシャルが深いため、すなわちイオン化ポテンシャルが大きいため、正孔がキャリアとなるp型トランジスタ特性は得られなかったとの記載があった。また、n型有機半導体であることを考慮しても、有機半導体としてはキャリア移動度が小さかった。
 また、非特許文献2には、n型有機半導体として、2,9-ジトリフルオロメチル-トリフェノジオキサジンを用いた有機トランジスタの特性が記載されている。なお、非特許文献2には2,9-ジトリフルオロメチル-トリフェノジオキサジンをp型半導体材料として用いることについて記載されていなかった。
 一方、これらのトリフェノジオキサジン誘導体に類似する骨格の化合物として、非特許文献3では無置換トリフェノジチアジンの蒸着膜を用いて、光起電流を評価し、光電流の発生を確認した例が記載されている。非特許文献3は、ほとんど調べられていなかったトリフェノジチアジンの基礎的物性評価の位置付けであることが記載されており、また無置換トリフェノジチアジンのキャリア移動度の値は2×10-5cm/Vsと低かった。また、非特許文献3では蒸着膜を形成しているため、トリフェノジチアジンやその誘導体の有機溶媒への溶解性も不明であった。
Organic Electronics, 13, 1392 (2012) Org. Lett., 10, 3025 (2008) Bull. Chem. Soc. Jpn., 66, 3548 (1993)
 このような状況のもと、本発明者らが実際に非特許文献1~非特許文献3に記載の化合物を有機トランジスタに応用してみたところ、十分なトランジスタ特性を得ることができないという問題があることが判明した。具体的には、非特許文献1~3に記載の化合物を有機半導体材料として有機トランジスタに応用した場合、非特許文献1に記載のTIPSペンタセンを除き、高いキャリア移動度を得ることができないことが本発明者らの検討により明らかになった。その上、TIPSペンタセンも含めて非特許文献1~3に記載の化合物を用いた有機トランジスタは、繰り返し駆動した場合、閾値電圧の変化が大きくなることも本発明者らの検討により明らかになった。閾値電圧の変化が大きくなると、トランジスタとしての信頼性が低下し、長期間使用することができなくなってしまうという問題があり、このような繰り返し駆動後の閾値電圧変化はこれまで知られていなかった問題である。
 そこで本発明者らは、このような従来技術の課題を解決するために検討を進めた。本発明が解決しようとする課題は、有機トランジスタの半導体活性層に用いたときにキャリア移動度が高く、かつ、繰り返し駆動後の閾値電圧変化が小さく、有機溶媒への高い溶解性を有する化合物およびこの化合物を用いた有機トランジスタを提供することである。
 上記の課題を解決するために鋭意検討を行い、キャリア移動度が低く、有機溶媒への溶解性も不明であるため、通常は高いキャリア移動度を得られる発想には繋がらない非特許文献3に記載のトリフェノジチアジンやトリフェノセレナジンのイオン化ポテンシャルの計算値(真空状態での値)を検討したところ、実際にトリフェノジオキサジンとほぼ同じであった。しかしながら、本発明者らが実際に成膜して検討を行った結果、計算上の予測に反して、トリフェノジチアジンおよびその類似骨格の環またはトリフェノジセレナジンおよびその類似骨格の環を構成する骨格中央部の芳香族炭化水素基に特定の置換基を導入した化合物は、成膜すると母骨格間の相互作用が強くなり、膜状態でのイオン化ポテンシャルがトリフェノジオキサジンよりも浅くなる(イオン化ポテンシャルの値が小さくなる)ことがわかった。それによって、HOMOが浅くなって正孔が流れやすくなり、p型トランジスタ特性が得られ、キャリア移動度の高い有機トランジスタを得られることがわかった。また、これらの化合物は有機溶媒に対する溶解性も高く、塗布可能なトランジスタ用半導体材料としての十分な性能を示すことがわかった。
 さらに、本発明者らは、これらの化合物を半導体活性層に用いた有機トランジスタは、繰り返し駆動後の閾値電圧変化も小さいことを見出し、本発明に至った。
 上記課題を解決するための具体的な手段である本発明は、以下の構成を有する。
[1] 下記一般式(1)で表される化合物を半導体活性層に含む有機トランジスタ。
一般式(1)
Figure JPOXMLDOC01-appb-C000019
(一般式(1)において、XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表し、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも一個が下記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表し、nは1~6の整数を表す。)
-L-R   一般式(W)
(一般式(W)において、Lは下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基または2以上の下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した2価の連結基を表す。Rは水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。)
Figure JPOXMLDOC01-appb-C000020
(一般式(L-1)~(L-9)において、波線部分は骨格中央部の芳香族炭化水素環との結合部位を表し、*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す。一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す。一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)におけるR’はそれぞれ独立に水素原子または置換基を表す。ただし、一般式(L-1)および(L-2)中のR’は、それぞれLに隣接するRと結合して縮合環を形成してもよい。)
[2] [1]に記載の有機トランジスタは、上記一般式(1)におけるXおよびXが硫黄原子であることが好ましい。
[3] [1]または[2]に記載の有機トランジスタは、上記一般式(1)におけるnが1~3の整数であることが好ましい。
[4] [1]に記載の有機トランジスタは、上記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることが好ましい。
一般式(2)
Figure JPOXMLDOC01-appb-C000021
(一般式(2)において、RおよびRはそれぞれ独立に水素原子または置換基を表し、RおよびRのうち少なくとも一個が上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[5] [1]~[4]のいずれか一つに記載の有機トランジスタは、上記一般式(W)におけるLが上記一般式(L-1)、(L-3)または(L-6)で表される置換基であることが好ましい。
[6] [4]または[5]に記載の有機トランジスタは、上記一般式(2)で表される化合物が、下記一般式(3)で表される化合物であることが好ましい。
一般式(3)
Figure JPOXMLDOC01-appb-C000022
(一般式(3)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[7] [4]~[6]のいずれか一つに記載の有機トランジスタは、上記一般式(2)で表される化合物が、下記一般式(4)で表される化合物であることが好ましい。
一般式(4)
Figure JPOXMLDOC01-appb-C000023
(一般式(4)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[8] [4]または[5]に記載の有機トランジスタは、上記一般式(2)で表される化合物が、下記一般式(5)で表される化合物であることが好ましい。
一般式(5)
Figure JPOXMLDOC01-appb-C000024
(一般式(5)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[9] [4]、[5]および[8]のいずれか一つに記載の有機トランジスタは、上記一般式(2)で表される化合物が、下記一般式(6)で表される化合物であることが好ましい。
一般式(6)
Figure JPOXMLDOC01-appb-C000025
(一般式(6)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[10] [4]または[5]に記載の有機トランジスタは、上記一般式(2)で表される化合物が、下記一般式(7)で表される化合物であることが好ましい。
一般式(7)
Figure JPOXMLDOC01-appb-C000026
(一般式(7)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[11] [4]、[5]および[10]のいずれか一つに記載の有機トランジスタは、上記一般式(2)で表される化合物が、下記一般式(8)で表される化合物であることが好ましい。
一般式(8)
Figure JPOXMLDOC01-appb-C000027
(一般式(8)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[12] [1]~[11]のいずれか一つに記載の有機トランジスタは、上記一般式(1)~(8)において、R~R10がそれぞれ独立に水素原子、フッ素原子、炭素数1~3の置換または無置換のアルキル基、炭素数2~3の置換または無置換のアルキニル基、炭素数2~3の置換または無置換のアルケニル基、炭素数1~2の置換または無置換のアルコキシ基、炭素数6~10の置換または無置換のアリール基、炭素数3~10の置換または無置換のヘテロアリール基、あるいは、置換または無置換のメチルチオ基であることが好ましい。
[13] [6]~[12]のいずれか一つに記載の有機トランジスタは、上記一般式(3)~(8)において、R11およびR12が全て置換または無置換のアルキル基を含む基であることが好ましい。
[14] [6]~[12]のいずれか一つに記載の有機トランジスタは、上記一般式(3)~(8)において、R11およびR12が全て分枝アルキル基を含む基であることが好ましい。
[15] 下記一般式(1)で表される化合物。
一般式(1)
Figure JPOXMLDOC01-appb-C000028
(一般式(1)において、XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表し、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも一個が下記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表し、nは1~6の整数を表す。)
-L-R   一般式(W)
(一般式(W)において、Lは下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基または2以上の下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した2価の連結基を表す。Rは水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。)
Figure JPOXMLDOC01-appb-C000029
(一般式(L-1)~(L-9)において、波線部分は骨格中央部の芳香族炭化水素環との結合部位を表し、*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す。一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す。一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)におけるR’はそれぞれ独立に水素原子または置換基を表す。ただし、一般式(L-1)および(L-2)中のR’は、それぞれLに隣接するRと結合して縮合環を形成してもよい。)
[16] [15]に記載の化合物は、上記一般式(1)におけるXおよびXが硫黄原子であることが好ましい。
[17] [15]または[16]に記載の化合物は、上記一般式(1)におけるnが1~3であることが好ましい。
[18] [15]に記載の化合物は、下記一般式(2)で表される化合物であることが好ましい。
一般式(2)
Figure JPOXMLDOC01-appb-C000030
(一般式(2)において、RおよびRはそれぞれ独立に水素原子または置換基を表し、RおよびRのうち少なくとも一個が上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[19] [15]~[18]のいずれか一つに記載の化合物は、上記一般式(W)におけるLが上記一般式(L-1)、(L-3)または(L-6)で表される置換基であることが好ましい。
[20] [18]または[19]に記載の化合物は、上記一般式(2)で表される化合物が、下記一般式(3)で表される化合物であることが好ましい。
一般式(3)
Figure JPOXMLDOC01-appb-C000031
(一般式(3)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[21] [18]~[20]のいずれか一つに記載の化合物は、上記一般式(2)で表される化合物が、下記一般式(4)で表される化合物であることが好ましい。
一般式(4)
Figure JPOXMLDOC01-appb-C000032
(一般式(4)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[22] [18]または[19]に記載の化合物は、上記一般式(2)で表される化合物が、下記一般式(5)で表される化合物であることが好ましい。
一般式(5)
Figure JPOXMLDOC01-appb-C000033
(一般式(5)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[23] [18]、[19]および[22]のいずれか1つに記載の化合物は、上記一般式(2)で表される化合物が、下記一般式(6)で表される化合物であることが好ましい。
一般式(6)
Figure JPOXMLDOC01-appb-C000034
(一般式(6)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[24] [18]または[19]に記載の化合物は、上記一般式(2)で表される化合物が、下記一般式(7)で表される化合物であることが好ましい。
一般式(7)
Figure JPOXMLDOC01-appb-C000035
(一般式(7)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[25] [18]、[19]および[24]のいずれか1つに記載の化合物は、上記一般式(2)で表される化合物が、下記一般式(8)で表される化合物であることが好ましい。
一般式(8)
Figure JPOXMLDOC01-appb-C000036
(一般式(8)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
[26] [15]~[25]のいずれか一つに記載の化合物は、上記一般式(1)~(8)において、R~R10がそれぞれ独立に水素原子、フッ素原子、炭素数1~3の置換または無置換のアルキル基、炭素数2~3の置換または無置換のアルキニル基、炭素数2~3の置換または無置換のアルケニル基、炭素数1~2の置換または無置換のアルコキシ基、炭素数6~10の置換または無置換のアリール基、炭素数3~10の置換または無置換のヘテロアリール基、あるいは、置換または無置換のメチルチオ基であることが好ましい。
[27] [20]~[26]のいずれか一つに記載の化合物は、上記一般式(3)~(8)において、R11およびR12が全て置換または無置換のアルキル基を含む基であることが好ましい。
[28] [20]~[26]のいずれか一つに記載の化合物は、上記一般式(3)~(8)において、R11およびR12が全て分枝アルキル基を含む基であることが好ましい。
[29] [15]~[28]のいずれか一つに記載の上記一般式(1)で表される化合物を含有する非発光性有機半導体デバイス用有機半導体材料。
[30] [15]~[28]のいずれか一つに記載の上記一般式(1)で表される化合物を含有する有機トランジスタ用材料。
[31] [15]~[28]のいずれか一つに記載の上記一般式(1)で表される化合物を含有する非発光性有機半導体デバイス用塗布溶液。
[32] [15]~[28]のいずれか一つに記載の上記一般式(1)で表される化合物とポリマーバインダーを含有する非発光性有機半導体デバイス用塗布溶液。
[33] [15]~[28]のいずれか一つに記載の上記一般式(1)で表される化合物を含有する非発光性有機半導体デバイス用有機半導体膜。
[34] [15]~[28]のいずれか一つに記載の上記一般式(1)で表される化合物とポリマーバインダーを含有する非発光性有機半導体デバイス用有機半導体膜。
[35] [33]または[34]に記載の非発光性有機半導体デバイス用有機半導体膜は、溶液塗布法により作製されたことが好ましい。
 本発明によれば、有機トランジスタの半導体活性層に用いたときにキャリア移動度が高く、かつ、繰り返し駆動後の閾値電圧変化が小さく、有機溶媒への高い溶解性を有する化合物およびこの化合物を用いた有機トランジスタを提供することができる。
図1は、本発明の有機トランジスタの一例の構造の断面を示す概略図である。 図2は、本発明の実施例でFET特性測定用基板として製造した有機トランジスタの構造の断面を示す概略図である。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明において、各一般式の説明において特に区別されずに用いられている場合における水素原子は同位体(重水素原子等)も含んでいることを表す。さらに、置換基を構成する原子は、その同位体も含んでいることを表す。
[有機トランジスタ]
 本発明の有機トランジスタは、下記一般式(1)で表される化合物を半導体活性層に含む。
一般式(1)
Figure JPOXMLDOC01-appb-C000037
(一般式(1)において、XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表し、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも一個が下記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表し、nは1~6の整数を表す。)
-L-R   一般式(W)
(一般式(W)において、Lは下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基または2以上の下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した2価の連結基を表す。Rは水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。)
Figure JPOXMLDOC01-appb-C000038
(一般式(L-1)~(L-9)において、波線部分は骨格中央部の芳香族炭化水素環との結合部位を表し、*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す。一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す。一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)におけるR’はそれぞれ独立に水素原子または置換基を表す。)
 このような構成により、本発明の有機トランジスタは、キャリア移動度が高く、繰り返し駆動後の閾値電圧変化が小さい。
 上記一般式(1)で表される化合物は、n個のRおよびn個のRのうち少なくとも1つが上記一般式(W)で表される基を有するため、材料の溶液プロセス適性および膜中での分子配列の観点で好ましい。これにより有機トランジスタに適用できる均質な有機の歩留まりを向上させ、製造コストを抑制することができる。キャリア移動度をはじめとするキャリア輸送特性や膜の化学的、物理的安定性も向上する。上記一般式(1)における上記一般式(W)で表される基の置換位置として、これらの位置が好ましいのは、化合物の化学的安定性に優れ、HOMO準位、分子の膜中でのパッキングの観点からも好適であるためであると考えられる。
 さらに、上記一般式(1)で表される化合物は、XおよびXが硫黄原子またはセレン原子である骨格構造であるため、XおよびXが酸素原子である場合よりもカルコゲン原子間での相互作用のためか、成膜すると母骨格間の相互作用が強くなり、膜状態でのイオン化ポテンシャルがトリフェノジオキサジンよりも浅くなる(イオン化ポテンシャルの値が小さくなる)。そのメカニズムによってHOMOも浅くなって、より正孔が流れやすくなる。これにより、キャリア移動度が高い有機トランジスタを得ることができる。
 なお、多環縮合化合物が有機EL素子材料として有用であることは従来から知られている。しかし、有機EL素子材料として有用なものが、ただちに有機トランジスタ用半導体材料として有用であると言うことはできない。これは、有機EL素子と有機トランジスタでは、有機化合物に求められる特性が異なるためである。有機EL素子では通常膜の膜厚方向(通常数nm~数100nm)に電荷を輸送する必要があるのに対し、有機トランジスタでは膜面方向の電極間(通常数μm~数100μm)の長距離を電荷(キャリア)輸送する必要がある。このため、求められるキャリア移動度が格段に高い。そのため、有機トランジスタ用半導体材料としては、分子の配列秩序が高い、結晶性が高い有機化合物が求められている。また、高いキャリア移動度発現のため、π共役平面は基板に対して直立していることが好ましい。一方、有機EL素子では、発光効率を高めるため、発光効率が高く、面内での発光が均一な素子が求められている。通常、結晶性の高い有機化合物は、面内の電界強度不均一、発光不均一、発光クエンチ等、発光欠陥を生じさせる原因となるため、有機EL素子用材料は結晶性を低くし、アモルファス性の高い材料が望まれる。このため、有機EL素子材料を構成する有機化合物を有機半導体材料にそのまま転用しても、ただちに良好なトランジスタ特性を得ることができる訳ではない。
 一方、繰り返し駆動後の閾値電圧変化が小さいためには、有機半導体材料のHOMOが浅すぎずかつ深すぎないこと、有機半導体材料の化学的安定性(特に耐空気酸化性、酸化還元安定性)、膜状態の熱安定性、空気や水分が入りこみにくい高い膜密度、電荷がたまりにくい欠陥の少ない膜質、等が必要である。上記一般式(1)で表される化合物はXおよびXが硫黄原子またはセレン原子である骨格構造であるために上述のようにHOMOが浅くなり、かつ、XおよびXが酸素原子である場合よりもカルコゲン原子間での相互作用のためか、成膜するとcofacialなπスタック構造をとる母骨格間の相互作用が強くなってにより結晶後の膜質が良好となる効果が働く。そのため、これら特性を満足するため、繰り返し駆動後の閾値電圧変化が小さいと考えられる。すなわち、繰り返し駆動後の閾値電圧変化が小さい本発明の有機トランジスタは、半導体活性層が高い化学的安定性や膜密度等を有し、長期間に渡ってトランジスタとして有効に機能し得る。
 以下、本発明の化合物や本発明の有機トランジスタなどの好ましい態様を説明する。
<一般式(1)で表される化合物>
 本発明の化合物は、下記一般式(1)で表される。本発明の化合物は、本発明の有機トランジスタにおいて、後述の半導体活性層に含まれる。すなわち、本発明の化合物は、有機トランジスタ用材料として用いることができる。
一般式(1)
Figure JPOXMLDOC01-appb-C000039
(一般式(1)において、XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表し、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも一個が下記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表し、nは1~6の整数を表す。)
-L-R   一般式(W)
(一般式(W)において、Lは下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基または2以上の下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した2価の連結基を表す。Rは水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。)
Figure JPOXMLDOC01-appb-C000040
(一般式(L-1)~(L-9)において、波線部分は骨格中央部の芳香族炭化水素環との結合部位を表し、*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す。一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す。一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)におけるR’はそれぞれ独立に水素原子または置換基を表す。ただし、一般式(L-1)および(L-2)中のR’は、それぞれLに隣接するRと結合して縮合環を形成してもよい。)
 一般式(1)において、XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表す。XおよびXは互いに同一であっても異なっていてもよいが、互いに同一であることが好ましい。XおよびXはともに硫黄原子であることが、より原子半径が小さく、分子の配向秩序がより高くなり、キャリア移動度が高くなる点から好ましい。
 一般式(1)において、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも1つが上記一般式(W)で表される基である。
 上記一般式(1)で表される化合物は、RおよびRが上記一般式(W)で表される基以外のその他の置換基を有していてもよい。
 上記一般式(1)のRおよびRが採りうる置換基として、ハロゲン原子、アルキル基(メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等の炭素数1~40のアルキル基、ただし、2,6-ジメチルオクチル基、2-デシルテトラデシル基、2-ヘキシルドデシル基、2-エチルオクチル基、2-デシルテトラデシル基、2-ブチルデシル基、1-オクチルノニル基、2-エチルオクチル基、2-オクチルテトラデシル基、シクロアルキル基、ビシクロアルキル基、トリシクロアルキル基を含む)、アルケニル基(シクロアルケニル基、ビシクロアルケニル基を含む)、アルキニル基(1-ペンチニル基、トリメチルシリルエチニル基、トリエチルシリルエチニル基、トリ-i-プロピルシリルエチニル基、2-p-プロピルフェニルエチニル基等を含む)、アリール基(フェニル基、ナフチル基、p-ペンチルフェニル基、3,4-ジペンチルフェニル基、p-ヘプトキシフェニル基、3,4-ジヘプトキシフェニル基の炭素数6~20のアリール基等を含む)、複素環基(ヘテロ環基といってもよい。2-ヘキシルフラニル基等を含む)、シアノ基、ヒドロキシ基、ニトロ基、アシル基(ヘキサノイル基、ベンゾイル基等を含む)、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基、ヘキシロキシ基、ヘプトキシ基、オクトキシ基、ノニロキシ基、デシロキシ基、2-ヘキシルデシロキシ基、ウンデシロキシ基、ドデシロキシ基、トリデシロキシ基、テトラデシロキシ基、ペンタデシロキシ基等の炭素数1~40のアルコキシ基(好ましくは炭素数3~40のアルコキシ基、より好ましくは炭素数10~30のアルコキシ基))、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アンモニオ基、アシルアミノ基、アミノカルボニルアミノ基(ウレイド基含む)、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルおよびアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルおよびアリールスルフィニル基、アルキルおよびアリールスルホニル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールおよびヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、ホスホノ基、シリル基(ジトリメチルシロキシメチルブトキシ基)、ヒドラジノ基、ウレイド基、ボロン酸基(-B(OH))、ホスファト基(-OPO(OH))、スルファト基(-OSOH)、その他の公知の置換基が挙げられる。
 また、これら置換基は、さらに上記置換基を有していてもよい。
 また、これら置換基は、重合性基を有していてもよい。
 上記一般式(1)で表される化合物中において、RおよびRのうち、上記一般式(W)で表される基以外のその他の置換基の個数は0~2であることが好ましく、0または1個であることがより好ましく、0であることが特に好ましい。
 次に、下記一般式(W)で表される基について説明する。
-L-R   一般式(W)
 上記一般式(W)において、Lは下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基または2以上の下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した2価の連結基を表す。
Figure JPOXMLDOC01-appb-C000041
 一般式(L-1)~(L-9)において、波線部分は骨格中央部の芳香族炭化水素環との結合位置を示し、*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す。一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す。一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)におけるR’はそれぞれ独立に水素原子または置換基を表す。ただし、一般式(L-1)および(L-2)中のR’は、それぞれLに隣接するRと結合して縮合環を形成してもよい。
 上記Lが一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した連結基を形成する場合、一般式(L-1)~(L-9)のいずれかで表される2価の連結基の結合数は2~9であることが好ましく、2または3であることがより好ましい。
 特に、上記の一般式(L-6)~(L-8)においては、*とRの間にさらに一般式(L-1)~(L-9)のいずれかが挿入されて、上記Lが一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した連結基を形成することも好ましい。
 一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)中の置換基R’としては、上記の一般式(1)のRおよびRが採りうる置換基として例示したものを挙げることができる。R’としては、それぞれ独立に水素原子、フッ素原子、炭素数1~10の置換または無置換のアルキル基、シアノ基、あるいは、炭素数1~10の置換または無置換のアルコキシ基であることが好ましく、水素原子、フッ素原子、あるいは、炭素数1~3の置換または無置換のアルキル基であることがより好ましい。ただし、一般式(L-1)および(L-2)中のR’は、それぞれLに隣接するRと結合して縮合環を形成してもよい。
 一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す。
 Lは上記一般式(L-1)、(L-3)、(L-6)、(L-8)および(L-9)のいずれかで表される2価の連結基またはこれらの2価の連結基が2以上結合した2価の連結基であることが好ましく、化学的安定性、キャリア移動度の観点から一般式(L-1)、(L-3)および(L-6)のいずれかで表される2価の連結基またはこれらの2価の連結基が2以上結合した2価の連結基であることがより好ましく、上記一般式(L-3)および(L-6)のいずれかで表される2価の連結基であることが特に好ましく、上記一般式(L-3)で表される2価の連結基であることがより特に好ましい。
 Lが上記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が2以上結合した2価の連結基である場合、好ましい組合せとしては、-(L-1)-(L-1)-*、-(L-1)-(L-2)-*、-(L-1)-(L-4)-*、-(L-2)-(L-6)-*、-(L-3)-(L-6)-*、-(L-5)-(L-6)-*、(L-8)-(L-1)-*およびこれらの組み合わせを挙げることができる(*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す)。
 上記一般式(W)において、Rは水素原子、置換または無置換のアルキル基、エチレンオキシ基の繰り返し数が2以上のオリゴエチレンオキシ基、ケイ素原子数が2以上のオリゴシロキサン基、あるいは置換または無置換のシリル基を表す。
 上記一般式(W)において、Rに隣接するLが上記一般式(L-1)で表される2価の連結基である場合は、Rは水素原子、置換または無置換のアルキル基であることが好ましい。
 上記一般式(W)において、Rに隣接するLが上記一般式(L-3)で表される2価の連結基である場合は、Rは置換または無置換のアルキル基、置換または無置換のシリル基であることが好ましく、置換または無置換のシリル基であることがより好ましい。
 上記一般式(W)において、Rに隣接するLが上記一般式(L-2)、(L-4)、(L-5)、(L-7)、(L-8)で表される2価の連結基である場合は、Rは置換または無置換のアルキル基であることが好ましい。
 上記一般式(W)において、Rに隣接するLが上記一般式(L-6)で表される2価の連結基である場合は、Rは水素原子、置換または無置換のアルキル基であることが好ましく、置換または無置換のアルキル基であることがより好ましい。
 上記一般式(W)において、Rに隣接するLが上記一般式(L-9)で表される2価の連結基である場合は、Rは置換または無置換のアルキル基、エチレンオキシ基の繰り返し数が2以上のオリゴエチレンオキシ基、ケイ素原子数が2以上のオリゴシロキサン基であることが好ましく、置換または無置換のアルキル基であることがより好ましい。
 各置換基の好ましい範囲を以下において説明する。
 Rが採りうる置換または無置換のアルキル基としては、Lが上記一般式(L-1)で表される場合、炭素数は2~18であることが好ましく、2~12であることが化学的安定性、キャリア輸送性の観点からより好ましく、2~10であることがさらに好ましい。また、Rが採りうる置換または無置換のアルキル基としては、Lが上記一般式(L-1)で表される場合、直鎖または分枝のアルキル基であることが好ましく、分枝のアルキル基であることが溶解性を高める観点からより好ましい。
 Lが上記一般式(L-2)で表される場合はRが採りうる置換または無置換のアルキル基としては、炭素数が1以上のアルキル基であることが好ましく、炭素数が1~18のアルキル基であることがより好ましく、炭素数が1~10のアルキル基であることがより好ましく、炭素数が1~6のアルキル基であることが特に好ましい。また、LがRに隣接する一般式(L-2)を含む場合は、Rはメチル基であることが好ましく、Rに隣接する一般式(L-2)中のR’の一つがメチル基であり、かつ、Rがメチル基であることがキャリア移動度と溶解性を高める観点からより好ましい。
 Lが上記一般式(L-3)で表される場合はRが採りうる置換または無置換のアルキル基としては、炭素数が2以上のアルキル基であることが好ましく、炭素数が3~18のアルキル基であることがより好ましく、炭素数が3~12のアルキル基であることがさらに好ましく、炭素数が4~10のアルキル基であることが特に好ましい。Rが採りうる置換または無置換のアルキル基としては、Lが上記一般式(L-3)で表される場合、直鎖または分枝のアルキル基であることが好ましく、分枝のアルキル基であることが溶解性を高める観点からより好ましい。
 Lが上記一般式(L-4)、(L-5)、(L-7)~(L-9)で表される場合はRが採りうるアルキル基としては、炭素数が2以上のアルキル基であることが好ましく、炭素数が3~18のアルキル基であることが好ましく、炭素数が4~12のアルキル基であることがさらに好ましく、炭素数が4~10のアルキル基であることが特に好ましい。Rが採りうる置換または無置換のアルキル基としては、Lが上記一般式(L-4)、(L-5)、(L-7)~(L-9)で表される場合、直鎖または分枝のアルキル基であることが好ましく、分枝のアルキル基であることが溶解性を高める観点からより好ましい。
 Lが上記一般式(L-6)で表される場合はRが採りうるアルキル基としては、炭素数が1以上のアルキル基であることが好ましく、炭素数が1~18のアルキル基であることが好ましく、炭素数が3~12のアルキル基であることがさらに好ましく、炭素数が4~12のアルキル基であることが特に好ましい。Rが採りうる置換または無置換のアルキル基としては、Lが上記一般式(L-6)で表される場合、直鎖または分枝のアルキル基であることが好ましく、分枝のアルキル基であることが溶解性を高める観点からより好ましい。
 上記一般式(1)で表される化合物は、上記一般式(W)で表される基にアルキル基が含まれる場合、Rが表すアルキル基が上記範囲の下限値以上であるとキャリア移動度が高くなる。また、LがRに隣接する一般式(L-1)を含む場合は、一般式(L-1)で表されるアルキレン基およびRで表されるアルキル基が結合して形成されるアルキル基の炭素数が上記範囲の下限値以上であるとキャリア移動度が高くなる。
 Rが置換基を有するアルキル基である場合のこの置換基としては、ハロゲン原子などを挙げることができ、フッ素原子が好ましい。なお、Rがフッ素原子を有するアルキル基である場合はこのアルキル基の水素原子が全てフッ素原子で置換されてパーフルオロアルキル基を形成してもよい。ただし、Rは無置換のアルキル基であることが好ましい。
 上記一般式(W)におけるRがエチレンオキシ基の繰り返し数が2以上のオリゴエチレンオキシ基の場合、Rが表す「エチレンオキシ基」とは本明細書中、-(CHCHO)Yで表される基のことを言う(エチレンオキシ単位の繰り返し数vは2以上の整数を表し、末端のYは水素原子または置換基を表す)。なお、オリゴエチレンオキシ基の末端のYが水素原子である場合はヒドロキシ基となる。エチレンオキシ単位の繰り返し数vは2~4であることが好ましく、2~3であることがさらに好ましい。オリゴエチレンオキシ基の末端のヒドロキシ基は封止されていること、すなわちYが置換基を表すことが好ましい。この場合、ヒドロキシ基は、炭素数が1~3のアルキル基で封止されること、すなわちYが炭素数1~3のアルキル基であることが好ましく、Yがメチル基やエチル基であることがより好ましく、メチル基であることが特に好ましい。
 上記一般式(W)におけるRがケイ素原子数が2以上のオリゴシロキサン基の場合、シロキサン単位の繰り返し数は2~4であることが好ましく、2~3であることがさらに好ましい。また、Si原子には、水素原子やアルキル基が結合することが好ましい。Si原子にアルキル基が結合する場合、アルキル基の炭素数は1~3であることが好ましく、例えば、メチル基やエチル基が結合することが好ましい。Si原子には、同一のアルキル基が結合してもよく、異なるアルキル基または水素原子が結合してもよい。また、オリゴシロキサン基を構成するシロキサン単位はすべて同一であっても異なっていてもよいが、すべて同一であることが好ましい。
 Rに隣接するLが上記一般式(L-1)~(L-3)で表される2価の連結基である場合に限り、Rが置換または無置換のシリル基をとり得る。シリル基の置換基としては特に制限はないが、置換または無置換のアルキル基が好ましく、分枝アルキル基であることがより好ましい。Rがトリアルキルシリル基の場合、Si原子に結合するアルキル基の炭素数は1~3であることが好ましく、例えば、メチル基やエチル基やイソプロピル基が結合することが好ましく、エチル基およびイソプロピル基がより好ましく、イソプロピル基が特に好ましい。Si原子には、同一のアルキル基が結合してもよく、異なるアルキル基が結合してもよい。Rがアルキル基上にさらに置換基を有するトリアルキルシリル基である場合のこの置換基としては、特に制限はない。
 上記一般式(1)で表される化合物中において、n個のRおよびn個のRのうち、上記一般式(W)で表される基の個数は1~4であることが好ましい。
 上記一般式(1)で表される化合物においてnが1または2の場合、n個のRおよびn個のRのうち、上記一般式(W)で表される基の個数は1~2であることがより好ましく、2であることが特に好ましい。
 上記一般式(1)で表される化合物においてnが3以上の場合、n個のRおよびn個のRのうち、上記一般式(W)で表される基の個数は2~4であることが好ましく、3または4個であることがより好ましく、4個であることが特に好ましい。
 特に、上記一般式(1)において、n個のRおよびn個のRのうち、RおよびRが結合している1つのベンゼン環のRおよびRの2箇所を上記一般式(W)で表される基とすることにより、高いキャリア濃度を得ることができる。例えば、nが3であり、上記一般式(W)で表される基の個数が4である場合、RおよびRが結合している3つのベンゼン環のうち、2つのベンゼン環はRおよびRの2箇所が上記一般式(W)で表される基であり、残りの1つのベンゼン環はRおよびRの2箇所がいずれも水素原子または他の置換基であることが好ましい。
 上記一般式(1)において、R~R10はそれぞれ独立に水素原子または置換基を表し、R~R10がとり得る置換基としては、RおよびRが採りうる置換基として挙げた置換基を挙げることができる。
 中でも、R~R10は、それぞれ独立に水素原子、フッ素原子、炭素数1~3の置換または無置換のアルキル基、炭素数2~3の置換または無置換のアルキニル基、炭素数2~3の置換または無置換のアルケニル基、炭素数1~2の置換または無置換のアルコキシ基、炭素数6~10の置換または無置換のアリール基、炭素数3~10の置換または無置換のヘテロアリール基、あるいは、置換または無置換のメチルチオ基であることが好ましく、水素原子、フッ素原子、炭素数1~3の置換または無置換のアルキル基、炭素数6~10の置換または無置換のアリール基、置換または無置換のチエニル基であることがより好ましく、水素原子が特に好ましい。
 上記一般式(1)において、R~R10が置換基である場合、置換基の個数は0~4であることが好ましく、0~2であることがより好ましく、0であることが特に好ましい。
 上記一般式(1)において、R~R10が置換基である場合における置換基の好ましい位置は、分子全体が点対称の構造となる位置であることが好ましく、置換基の構造を含めて分子全体が点対称の構造となるように同じ置換基を分子全体が点対称の構造となる位置に有することがより好ましい。具体的には、RおよびRの位置に置換基(好ましくは同じ置換基)をともに有する場合、RおよびRの位置に置換基(好ましくは同じ置換基)をともに有する場合、RおよびRの位置に置換基(好ましくは同じ置換基)をともに有する場合、RおよびR10の位置に置換基(好ましくは同じ置換基)をともに有する場合、ならびにこれらの2以上の場合の組み合わせが好ましい。これらの中でも、RおよびRの位置に置換基をともに有する場合、RおよびRの位置に置換基をともに有する場合、R、R、RおよびR10の位置に置換基をともに有する場合がより好ましく、RおよびRの位置に同じ置換基をともに有する場合、RおよびRの位置に同じ置換基をともに有する場合、R、R、RおよびR10の位置に同じ置換基をともに有する場合が特に好ましい。
 上記一般式(1)において、nは1~6の整数を表し、1~3の整数であることが溶解性を高める好ましく、同様の観点から1または2であることがより好ましく、1であることが特に好ましい。
 本発明では、上記一般式(1)で表される化合物が、下記一般式(2)で表される化合物であることが好ましい。
一般式(2)
Figure JPOXMLDOC01-appb-C000042
(一般式(2)において、RおよびRはそれぞれ独立に水素原子または置換基を表し、RおよびRのうち少なくとも一個が上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
 上記一般式(2)において、RおよびRはそれぞれ独立に水素原子または置換基を表し、RおよびRのうち少なくとも一個が上記一般式(W)で表される基を表す。上記一般式(2)におけるRおよびRの好ましい範囲は上記一般式(1)におけるRおよびRの好ましい範囲と同様である。
 上記一般式(2)において、R~R10はそれぞれ独立に水素原子または置換基を表す。上記一般式(2)におけるR~R10の好ましい範囲は上記一般式(1)におけるR~R10の好ましい範囲と同様である。
 本発明では、上記一般式(2)で表される化合物が、下記一般式(3)、下記一般式(5)または下記一般式(7)で表される化合物であることが好ましく、下記一般式(3)または下記一般式(5)で表される化合物であることがより好ましく、下記一般式(3)で表される化合物であることが特に好ましい。
一般式(3)
Figure JPOXMLDOC01-appb-C000043
(一般式(3)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
一般式(5)
Figure JPOXMLDOC01-appb-C000044
(一般式(5)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
一般式(7)
Figure JPOXMLDOC01-appb-C000045
(一般式(7)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す。Rは上記一般式(W)で表される基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
 以下、上記一般式(3)で表される化合物、上記一般式(5)で表される化合物および上記一般式(7)で表される化合物についてこの順に説明する。
(上記一般式(3)で表される化合物)
一般式(3)
Figure JPOXMLDOC01-appb-C000046
 上記一般式(3)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。
 上記一般式(3)におけるR11の好ましい範囲は、上記一般式(1)において上記一般式(W)に含まれるLが(L-3)である場合のRの好ましい範囲と同様である。
 Rは上記一般式(W)で表される基を表す。上記一般式(3)における一般式(W)で表される基の好ましい範囲は、上記一般式(1)における一般式(W)で表される基の好ましい範囲と同様であり、その中でも上記一般式(W)に含まれるLが(L-3)であることがより好ましい。
 上記一般式(3)において、R~R10はそれぞれ独立に水素原子または置換基を表す。上記一般式(3)におけるR~R10の好ましい範囲は上記一般式(1)におけるR~R10の好ましい範囲と同様である。
 上記一般式(3)で表される化合物は、下記一般式(4)で表される化合物であることが好ましい。
一般式(4)
Figure JPOXMLDOC01-appb-C000047
(一般式(4)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
 一般式(4)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。上記一般式(4)におけるR11およびR12の好ましい範囲は、それぞれ独立に、上記一般式(1)において上記一般式(W)に含まれるLが(L-3)である場合のRの好ましい範囲と同様である。
 上記一般式(4)におけるR~R10はそれぞれ独立に水素原子または置換基を表す。上記一般式(4)におけるR~R10の好ましい範囲は上記一般式(1)におけるR~R10の好ましい範囲と同様である。
(上記一般式(5)で表される化合物)
一般式(5)
 上記一般式(5)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。
 上記一般式(5)におけるR11の好ましい範囲は、上記一般式(1)において上記一般式(W)に含まれるLが(L-1)である場合のRの好ましい範囲と同様である。
 上記一般式(5)におけるR’はそれぞれ独立に水素原子または置換基を表す。
 上記一般式(5)におけるR’の好ましい範囲は、上記一般式(1)において上記一般式(W)に含まれるLが(L-1)であるときに(L-1)中に含まれるR’の好ましい範囲と同様である。
 Rは上記一般式(W)で表される基を表す。上記一般式(5)における一般式(W)で表される基の好ましい範囲は、上記一般式(1)における一般式(W)で表される基の好ましい範囲と同様であり、その中でも上記一般式(W)に含まれるLが(L-1)であることがより好ましい。
 上記一般式(5)において、R~R10はそれぞれ独立に水素原子または置換基を表す。上記一般式(5)におけるR~R10の好ましい範囲は上記一般式(1)におけるR~R10の好ましい範囲と同様である。
 上記一般式(5)で表される化合物は、下記一般式(6)で表される化合物であることが好ましい。
一般式(6)
Figure JPOXMLDOC01-appb-C000049
(一般式(6)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
 一般式(6)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。上記一般式(6)におけるR11およびR12の好ましい範囲は、それぞれ独立に、上記一般式(1)において上記一般式(W)に含まれるLが(L-1)である場合のRの好ましい範囲と同様である。
 上記一般式(6)におけるR’はそれぞれ独立に水素原子または置換基を表す。上記一般式(6)におけるR’の好ましい範囲は、上記一般式(1)において上記一般式(W)に含まれるLが(L-1)であるときに(L-1)中に含まれるR’の好ましい範囲と同様である。
 上記一般式(6)におけるR~R10はそれぞれ独立に水素原子または置換基を表す。上記一般式(6)におけるR~R10の好ましい範囲は上記一般式(1)におけるR~R10の好ましい範囲と同様である。
(上記一般式(7)で表される化合物)
一般式(7)
Figure JPOXMLDOC01-appb-C000050
 上記一般式(7)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。
 上記一般式(7)におけるR11の好ましい範囲は、上記一般式(1)において上記一般式(W)に含まれるLが(L-6)である場合のRの好ましい範囲と同様である。
 上記一般式(7)におけるR’はそれぞれ独立に水素原子または置換基を表す。
 上記一般式(7)におけるR’の好ましい範囲は、上記一般式(1)において上記一般式(W)に含まれるLが(L-6)であるときに(L-6)中に含まれるR’の好ましい範囲と同様である。
 上記一般式(7)におけるmは4を表す。
 Rは上記一般式(W)で表される基を表す。上記一般式(7)における一般式(W)で表される基の好ましい範囲は、上記一般式(1)における一般式(W)で表される基の好ましい範囲と同様であり、その中でも上記一般式(W)に含まれるLが(L-6)であることがより好ましい。
 上記一般式(7)において、R~R10はそれぞれ独立に水素原子または置換基を表す。上記一般式(7)におけるR~R10の好ましい範囲は上記一般式(1)におけるR~R10の好ましい範囲と同様である。
 上記一般式(7)で表される化合物は、下記一般式(8)で表される化合物であることが好ましい。
一般式(8)
Figure JPOXMLDOC01-appb-C000051
(一般式(8)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す。R~R10はそれぞれ独立に水素原子または置換基を表す。)
 一般式(8)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す。上記一般式(8)におけるR11およびR12の好ましい範囲は、それぞれ独立に、上記一般式(1)において上記一般式(W)に含まれるLが(L-6)である場合のRの好ましい範囲と同様である。
 上記一般式(8)におけるR’はそれぞれ独立に水素原子または置換基を表す。上記一般式(8)におけるR’の好ましい範囲は、上記一般式(1)において上記一般式(W)に含まれるLが(L-6)であるときに(L-6)中に含まれるR’の好ましい範囲と同様である。
 上記一般式(8)におけるmは4を表す。
 上記一般式(8)におけるR~R10はそれぞれ独立に水素原子または置換基を表す。上記一般式(8)におけるR~R10の好ましい範囲は上記一般式(1)におけるR~R10の好ましい範囲と同様である。
 以下に上記一般式(1)で表される化合物の具体例を以下に示すが、本発明で用いることができる一般式(1)で表される化合物は、これらの具体例により限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 上記一般式(1)で表される化合物は、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることがさらに好ましく、850以下であることが特に好ましい。分子量を上記上限値以下とすることにより、溶媒への溶解性を高めることができるため好ましい。
 一方で、膜の膜質安定性の観点からは、分子量は300以上であることが好ましく、350以上であることがより好ましく、400以上であることがさらに好ましい。
 また、上記一般式(1)で表される化合物が繰り返し構造を有する高分子化合物の場合は、重量平均分子量が3万以上であることが好ましく、5万以上であることがより好ましく、10万以上であることがさらに好ましい。上記一般式(1)で表される化合物が繰り返し構造を有する高分子化合物である場合に、重量平均分子量を上記下限値以上とすることにより、分子間相互作用を高めることができ、高い移動度が得られるため好ましい。
 繰り返し構造を有する高分子化合物としては、一般式(1)で表される化合物が少なくとも1つ以上のアリーレン基、ヘテロアリーレン基(チオフェン、ビチオフェン)を表して繰り返し構造を示すπ共役ポリマーや、一般式(1)で表される化合物が高分子主鎖に側鎖を介して結合したペンダント型ポリマーがあげられ、高分子主鎖としては、ポリアクリレート、ポリビニル、ポリシロキサンなどが好ましく、側鎖としては、アルキレン基、ポリエチレンオキシド基などが好ましい。
 上記一般式(1)で表される化合物は、Journal of Chemical Society. C, Organic Chemistry, 1875 (1971)、Organic Electronics, 13, 1392 (2012)などを参考にして合成することができる。
 本発明の化合物の合成において、いかなる反応条件を用いてもよい。反応溶媒としては、いかなる溶媒を用いてもよい。また、環形成反応促進のために、酸または塩基を用いることが好ましく、特に塩基を用いることが好ましい。最適な反応条件は、目的とするトリフェノジチアジン誘導体およびその類似骨格を有する化合物の誘導体またはトリフェノジセレナジン誘導体およびその類似骨格構造を有する化合物の誘導体の構造により異なるが、上記の文献に記載された具体的な反応条件を参考に設定することができる。
 各種置換基を有する合成中間体は公知の反応を組み合わせて合成することができる。また、各置換基はいずれの中間体の段階で導入してもよい。中間体の合成後は、カラムクロマトグラフィー、再結晶等による精製を行った後、昇華精製により精製する事が好ましい。昇華精製により、有機不純物を分離できるだけでなく、無機塩や残留溶媒等を効果的に取り除くことができる。
<有機トランジスタの構造>
 本発明の有機トランジスタは、上記一般式(1)で表される化合物を含む半導体活性層を有する。
 本発明の有機トランジスタは、さらに上記半導体活性層以外にその他の層を含んでいてもよい。
 本発明の有機トランジスタは、有機電界効果トランジスタ(Field Effect Transistor、FET)として用いられることが好ましく、ゲート-チャンネル間が絶縁されている絶縁ゲート型FETとして用いられることがより好ましい。
 以下、本発明の有機トランジスタの好ましい構造の態様について、図面を用いて詳しく説明するが、本発明はこれらの態様に限定されるものではない。
(積層構造)
 有機電界効果トランジスタの積層構造としては特に制限はなく、公知の様々な構造のものとすることができる。
 本発明の有機トランジスタの構造の一例としては、最下層の基板の上面に、電極、絶縁体層、半導体活性層(有機半導体層)、2つの電極を順に配置した構造(ボトムゲート・トップコンタクト型)を挙げることができる。この構造では、最下層の基板の上面の電極は基板の一部に設けられ、絶縁体層は、電極以外の部分で基板と接するように配置される。また、半導体活性層の上面に設けられる2つの電極は、互いに隔離して配置される。
 ボトムゲート・トップコンタクト型素子の構成を図1に示す。図1は、本発明の有機トランジスタの一例の構造の断面を示す概略図である。図1の有機トランジスタは、最下層に基板11を配置し、その上面の一部に電極12を設け、さらにこの電極12を覆い、かつ電極12以外の部分で基板11と接するように絶縁体層13を設けている。さらに絶縁体層13の上面に半導体活性層14を設け、その上面の一部に2つの電極15aと15bとを隔離して配置している。
 図1に示した有機トランジスタは、電極12がゲートであり、電極15aと電極15bはそれぞれドレインまたはソースである。また、図1に示した有機トランジスタは、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
 本発明の有機トランジスタの構造の一例としては、ボトムゲート・ボトムコンタクト型素子を挙げることができる。
 ボトムゲート・ボトムコンタクト型素子の構成を図2に示す。図2は本発明の実施例でFET特性測定用基板として製造した有機トランジスタの構造の断面を示す概略図である。図2の有機トランジスタは、最下層に基板31を配置し、その上面の一部に電極32を設け、さらにこの電極32を覆い、かつ電極32以外の部分で基板31と接するように絶縁体層33を設けている。さらに絶縁体層33の上面に半導体活性層35を設け、電極34aと34bが半導体活性層35の下部にある。
 図2に示した有機トランジスタは、電極32がゲートであり、電極34aと電極34bはそれぞれドレインまたはソースである。また、図2に示した有機トランジスタは、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
 本発明の有機トランジスタの構造としては、その他、絶縁体、ゲート電極が半導体活性層の上部にあるトップゲート・トップコンタクト型素子や、トップゲート・ボトムコンタクト型素子も好ましく用いることができる。
(厚さ)
 本発明の有機トランジスタは、より薄いトランジスタとする必要がある場合には、例えばトランジスタ全体の厚さを0.1~0.5μmとすることが好ましい。
(封止)
 有機トランジスタ素子を大気や水分から遮断し、有機トランジスタ素子の保存性を高めるために、有機トランジスタ素子全体を金属の封止缶やガラス、窒化ケイ素などの無機材料、パリレンなどの高分子材料や、低分子材料などで封止してもよい。
 以下、本発明の有機トランジスタの各層の好ましい態様について説明するが、本発明はこれらの態様に限定されるものではない。
<基板>
(材料)
 本発明の有機トランジスタは、基板を含むことが好ましい。
 上記基板の材料としては特に制限はなく、公知の材料を用いることができ、例えば、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)などのポリエステルフィルム、シクロオレフィンポリマーフィルム、ポリカーボネートフィルム、トリアセチルセルロース(TAC)フィルム、ポリイミドフィルム、およびこれらポリマーフィルムを極薄ガラスに貼り合わせたもの、セラミック、シリコン、石英、ガラス、などを挙げることができ、シリコンが好ましい。
<電極>
(材料)
 本発明の有機トランジスタは、電極を含むことが好ましい。
 上記電極の構成材料としては、例えば、Cr、Al、Ta、Mo、Nb、Cu、Ag、Au、Pt、Pd、In、NiあるいはNdなどの金属材料やこれらの合金材料、あるいはカーボン材料、導電性高分子などの既知の導電性材料であれば特に制限することなく使用できる。
(厚さ)
 電極の厚さは特に制限はないが、10~50nmとすることが好ましい。
 ゲート幅(またはチャンネル幅)Wとゲート長(またはチャンネル長)Lに特に制限はないが、これらの比W/Lが10以上であることが好ましく、20以上であることがより好ましい。
<絶縁層>
(材料)
 絶縁層を構成する材料は必要な絶縁効果が得られれば特に制限はないが、例えば、二酸化ケイ素、窒化ケイ素、PTFE、CYTOP等のフッ素ポリマー系絶縁材料、ポリエステル絶縁材料、ポリカーボネート絶縁材料、アクリルポリマー系絶縁材料、エポキシ樹脂系絶縁材料、ポリイミド絶縁材料、ポリビニルフェノール樹脂系絶縁材料、ポリパラキシリレン樹脂系絶縁材料などが挙げられる。
 絶縁層の上面は表面処理がなされていてもよく、例えば、二酸化ケイ素表面をヘキサメチルジシラザン(HMDS)やオクタデシルトリクロロシラン(OTS)の塗布により表面処理した絶縁層を好ましく用いることができる。
(厚さ)
 絶縁層の厚さに特に制限はないが、薄膜化が求められる場合は厚さを10~400nmとすることが好ましく、20~200nmとすることがより好ましく、50~200nmとすることが特に好ましい。
<半導体活性層>
(材料)
 本発明の有機トランジスタは、上記半導体活性層が上記一般式(1)で表される化合物、すなわち本発明の化合物を含む。
 上記半導体活性層は、本発明の化合物からなる層であってもよく、本発明の化合物に加えて後述のポリマーバインダーがさらに含まれた層であってもよい。また、成膜時の残留溶媒が含まれていてもよい。
 上記半導体活性層中における上記ポリマーバインダーの含有量は、特に制限はないが、好ましくは0~95質量%の範囲内で用いられ、より好ましくは10~90質量%の範囲内で用いられ、さらに好ましくは20~80質量%の範囲内で用いられ、特に好ましくは30~70質量%の範囲内で用いられる。
(厚さ)
 半導体活性層の厚さに特に制限はないが、薄膜化が求められる場合は厚さを10~400nmとすることが好ましく、10~200nmとすることがより好ましく、10~100nmとすることが特に好ましい。
[非発光性有機半導体デバイス用有機半導体材料]
 本発明は、上記一般式(1)で表される化合物、すなわち本発明の化合物を含有する非発光性有機半導体デバイス用有機半導体材料にも関する。
(非発光性有機半導体デバイス)
 なお、本明細書において、「非発光性有機半導体デバイス」とは、発光することを目的としないデバイスを意味する。非発光性有機半導体デバイスは、薄膜の層構造を有するエレクトロニクス要素を用いた非発光性有機半導体デバイスとすることが好ましい。非発光性有機半導体デバイスには、有機トランジスタ(有機薄膜トランジスタとも言う)、有機光電変換素子(光センサ用途の固体撮像素子、エネルギー変換用途の太陽電池等)、ガスセンサ、有機整流素子、有機インバータ、情報記録素子などが包含される。有機光電変換素子は光センサ用途(固体撮像素子)、エネルギー変換用途(太陽電池)のいずれにも用いることができる。好ましくは、有機光電変換素子、有機トランジスタであり、さらに好ましくは有機トランジスタである。すなわち、本発明の非発光性有機半導体デバイス用有機半導体材料は、上述のとおり有機トランジスタ用材料であることが好ましい。
(有機半導体材料)
 本明細書において、「有機半導体材料」とは、半導体の特性を示す有機材料のことである。無機材料からなる半導体と同様に、正孔をキャリアとして伝導するp型(ホール輸送性)有機半導体と、電子をキャリアとして伝導するn型(電子輸送性)有機半導体がある。
 本発明の化合物はp型有機半導体材料、n型の有機半導体材料のどちらとして用いてもよいが、p型として用いることがより好ましい。有機半導体中のキャリアの流れやすさはキャリア移動度μで表される。キャリア移動度μは高い方がよく、1×10-3cm/Vs以上であることが好ましく、5×10-3cm/Vs以上であることがより好ましく、1×10-2cm/Vs以上であることが特に好ましく、1×10-1cm/Vs以上であることがより特に好ましく、1cm/Vs以上であることがよりさらに特に好ましい。キャリア移動度μは電界効果トランジスタ(FET)素子を作製したときの特性や飛行時間計測(TOF)法により求めることができる。
[非発光性有機半導体デバイス用有機半導体膜]
(材料)
 本発明は、上記一般式(1)で表される化合物、すなわち本発明の化合物を含有する非発光性有機半導体デバイス用有機半導体膜にも関する。
 本発明の非発光性有機半導体デバイス用有機半導体膜は、上記一般式(1)で表される化合物、すなわち本発明の化合物を含有し、ポリマーバインダーを含有しない態様も好ましい。
 また、本発明の非発光性有機半導体デバイス用有機半導体膜は、上記一般式(1)で表される化合物、すなわち本発明の化合物とポリマーバインダーを含有してもよい。
 上記ポリマーバインダーとしては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン、ポリプロピレンなどの絶縁性ポリマー、およびこれらの共重合体、ポリビニルカルバゾール、ポリシランなどの光伝導性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレンなどの導電性ポリマー、半導体ポリマーを挙げることができる。
 上記ポリマーバインダーは、単独で使用してもよく、あるいは複数併用してもよい。
 また、有機半導体材料と上記ポリマーバインダーとは均一に混合していてもよく、一部または全部が相分離していてもよいが、電荷移動度の観点では、膜中で膜厚方向に有機半導体とバインダーが相分離した構造が、バインダーが有機半導体の電荷移動を妨げず最も好ましい。
 膜の機械的強度を考慮するとガラス転移温度の高いポリマーバインダーが好ましく、電荷移動度を考慮すると極性基を含まない構造のポリマーバインダーや光伝導性ポリマー、導電性ポリマーが好ましい。
 ポリマーバインダーの使用量は、特に制限はないが、本発明の非発光性有機半導体デバイス用有機半導体膜中、好ましくは0~95質量%の範囲内で用いられ、より好ましくは10~90質量%の範囲内で用いられ、さらに好ましくは20~80質量%の範囲内で用いられ、特に好ましくは30~70質量%の範囲内で用いられる。
 さらに、本発明では、化合物が上述した構造をとることにより、膜質の良い有機膜を得ることができる。具体的には、本発明で得られる化合物は、結晶性が良いため、十分な膜厚を得ることができ、得られた本発明の非発光性有機半導体デバイス用有機半導体膜は良質なものとなる。
(成膜方法)
 本発明の化合物を基板上に成膜する方法はいかなる方法でもよい。
 成膜の際、基板を加熱または冷却してもよく、基板の温度を変化させることで膜質や膜中での分子のパッキングを制御することが可能である。基板の温度としては特に制限はないが、0℃から200℃の間であることが好ましく、15℃~100℃の間であることがより好ましく、20℃~95℃の間であることが特に好ましい。
 本発明の化合物を基板上に成膜するとき、真空プロセスあるいは溶液プロセスにより成膜することが可能であり、いずれも好ましい。
 真空プロセスによる成膜の具体的な例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子ビームエピタキシー(MBE)法などの物理気相成長法あるいはプラズマ重合などの化学気相蒸着(CVD)法が挙げられ、真空蒸着法を用いることが特に好ましい。
 溶液プロセスによる成膜とは、ここでは有機化合物を溶解させることができる溶媒中に溶解させ、その溶液を用いて成膜する方法をさす。具体的には、キャスト法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法、スピンコート法などの塗布法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法などの各種印刷法、Langmuir-Blodgett(LB)法などの通常の方法を用いることができ、キャスト法、スピンコート法、インクジェット法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法を用いることが特に好ましい。
 本発明の非発光性有機半導体デバイス用有機半導体膜は、溶液塗布法により作製されたことが好ましい。また、本発明の非発光性有機半導体デバイス用有機半導体膜がポリマーバインダーを含有する場合、層を形成する材料とポリマーバインダーとを適当な溶媒に溶解させ、または分散させて塗布液とし、各種の塗布法により形成されることが好ましい。
 以下、溶液プロセスによる成膜に用いることができる、本発明の非発光性有機半導体デバイス用塗布溶液について説明する。
[非発光性有機半導体デバイス用塗布溶液]
 本発明は、上記一般式(1)で表される化合物、すなわち本発明の化合物を含有する非発光性有機半導体デバイス用塗布溶液にも関する。
 溶液プロセスを用いて基板上に成膜する場合、層を形成する材料を適当な有機溶媒(例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエンなどのハロゲン化炭化水素系溶媒、例えば、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル系溶媒、例えば、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、例えば、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶媒、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチルー2-ピロリドン、1-メチルー2-イミダゾリジノン等のアミド・イミド系溶媒、ジメチルスルフォキサイドなどのスルホキシド系溶媒、アセトニトリルなどのニトリル系溶媒)および/または水に溶解、または分散させて塗布液とし、各種の塗布法により膜を形成することができる。溶媒は単独で用いてもよく、複数組み合わせて用いてもよい。これらの中でも、炭化水素系溶媒、ハロゲン化炭化水素系溶媒またはエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、テトラリン、ジクロロベンゼンまたはアニソールがより好ましく、トルエン、キシレン、テトラリン、アニソールが特に好ましい。その塗布液中の一般式(1)で表される化合物の濃度は、好ましくは、0.1~80質量%、より好ましくは0.1~10質量%、特に好ましくは0.5~10質量%とすることにより、任意の厚さの膜を形成できる。
 溶液プロセスで成膜するためには、上記で挙げた溶媒などに材料が溶解することが必要であるが、単に溶解するだけでは不十分である。通常、真空プロセスで成膜する材料でも、溶媒にある程度溶解させることができる。しかし、溶液プロセスでは、材料を溶媒に溶解させて塗布した後で、溶媒が蒸発して膜が形成する過程があり、溶液プロセス成膜に適さない材料は結晶性が高いものが多いため、この過程で不適切に結晶化(凝集)してしまい良好な膜を形成させることが困難である。一般式(1)で表される化合物は、このような結晶化(凝集)が起こりにくい点でも優れている。
 本発明の非発光性有機半導体デバイス用塗布溶液は、上記一般式(1)で表される化合物、すなわち本発明の化合物を含み、ポリマーバインダーを含有しない態様も好ましい。
 また、本発明の非発光性有機半導体デバイス用塗布溶液は、上記一般式(1)で表される化合物、すなわち本発明の化合物とポリマーバインダーを含有してもよい。この場合、層を形成する材料とポリマーバインダーとを前述の適当な溶媒に溶解させ、または分散させて塗布液とし、各種の塗布法により膜を形成することができる。ポリマーバインダーとしては、上述したものから選択することができる。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[実施例1]
<合成例1> 化合物22の合成
 以下のスキームに示した具体的合成手順にしたがって、一般式(1)で表される化合物である、化合物22を合成した。
Figure JPOXMLDOC01-appb-C000057
 2-アミノベンゼンチオールから化合物22までは以下論文を参照して合成した。
・Journal of Chemical Society. C, Organic Chemistry, 1875 (1971)
・Organic Electronics, 13, 1392 (2012)
 化合物cまでの合成と化合物22の合成方法の詳細を以下に示す。
(化合物aの合成)
 1Lナス型フラスコに水酸化ナトリウム(0.2mol、8g)と純水25mLを入れて撹拌しているところに2-アミノベンゼンチオール(東京化成製 、0.2mol、25g)をゆっくりと滴下する。そこに純水250mLを加え、60℃のウォーターバスで完溶するまで撹拌し、室温で3時間反応させる。不溶物をフィルターろ過した後、ろ液を塩化亜鉛(和光純薬製、0.11mol、15g)の酢酸溶液中(氷酢酸45mL、純水250mL)にゆっくりと注ぐ。15分間の還流後、白色固体をろ過・回収し、減圧乾燥することで化合物aを得た(30g)。
(化合物bの合成)
 110mLのエタノール中で化合物a(32mmol、10g)とブロマニル(東京化成製、32mmol、13.5g)を室温で1時間撹拌した後、還流下で6時間反応させる。析出物をろ過した後、エタノール、50℃まで暖めた希塩酸、水、エタノールの順に洗浄した。得られた粉をトルエンから再結晶精製することで化合物bを合成した(10g)。
(化合物cの合成)
 化合物a(10mmol、3.2g)と化合物b(11mmol、5g)を氷酢酸(40mL)に入れ、還流下4時間反応させた。放冷後、析出物をろ過し、エタノール、50℃まで暖めた希塩酸、水、エタノールの順に洗浄した。得られた粉をトルエンから再結晶することで化合物cを得た(3.3g)。
(化合物22の合成)
 窒素雰囲気下、テトラキストリフェニルホスフィンパラジウム(5mol%、0.24g)、2-(ジシクロヘキシルホスフィノ)ビフェニル(10mol%、0.15g)、テトラブチルアンモニウムアセテート(10mmol、3g)、(トリイソプロピルシリル)アセチレン(10mmol、1.8g)および化合物c(4.2mmol、2g)をジメチルホルムアミド溶液(230mL)中、90℃で24時間反応させた。反応終了後、1Nの塩酸(1.8L)に反応液を注ぎ、ジクロロメタンで抽出した。硫酸マグネシウム脱水処理した後、エバポレーションにより回収した素体を、カラムクロマトグラフィー(ヘキサン/トルエン=1/1)と再結晶(シクロヘキサン)により精製することで化合物22(1.9g)を合成した。
 構造はH-NMR、MALDI-TOF MassおよびX線単結晶構造解析により確認した。
 他の実施例に用いた一般式(1)で表される化合物も化合物22と同様にして合成した。
 比較素子の半導体活性層(有機半導体層)に用いた比較化合物1~4を、各文献に記載の方法にしたがって合成した(TIPS-ペンタセンはAldrichより購入)。比較化合物1~4の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000058
<素子作製・評価>
 素子作製に用いた材料は全て昇華精製を行い、高速液体クロマトグラフィー(東ソーTSKgel ODS-100Z)により純度(254nmの吸収強度面積比)が99.5%以上であることを確認した。
[実施例2]
<化合物単独で半導体活性層(有機半導体層)を形成>
 本発明の化合物または比較化合物(各1mg)とトルエン(1mL)を混合し、100℃に加熱したものを、非発光性有機半導体デバイス用塗布溶液とした。この塗布溶液を窒素雰囲気下、90℃に加熱したFET特性測定用基板上にキャストすることで、非発光性有機半導体デバイス用有機半導体膜を形成し、FET特性測定用の実施例2の有機トランジスタ素子を得た。FET特性測定用基板としては、ソースおよびドレイン電極としてくし型に配置されたクロム/金(ゲート幅W=100mm、ゲート長L=100μm)、絶縁膜としてSiO(膜厚200nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板(図2に構造の概略図を示した)を用いた。
 実施例2の有機トランジスタ素子のFET特性は、セミオートプローバー(ベクターセミコン製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent製、4156C)を用いて常圧・窒素雰囲気下で、キャリア移動度、繰り返し駆動後の閾値電圧変化の観点で評価した。
 得られた結果を下記表1に示す。
(a)キャリア移動度
 各有機トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を20V~-100Vの範囲で変化させ、ドレイン電流Iを表わす式I=(w/2L)μC(V-Vth(式中、Lはゲート長、Wはゲート幅、Cは絶縁層の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧)を用いてキャリア移動度μを算出した。なお、キャリア移動度が1×10-5cm/Vsを下回るものに関しては特性が低過ぎるため、後の(b)繰り返し駆動後の閾値電圧変化の評価は行っていない。
(b)繰り返し駆動後の閾値電圧変化
 各有機トランジスタ素子(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を+20V~-100Vの範囲で100回繰り返して(a)と同様の測定を行い、繰り返し駆動前の閾値電圧Vと繰り返し駆動後の閾値電圧Vの差(|V-V|)を以下の3段階で評価した。この値は小さいほど素子の繰り返し駆動安定性が高く、好ましい。実用上、繰り返し駆動後の閾値電圧変化はA評価であることが好ましい。
 A:|V-V|≦5V
 B:5V<|V-V|≦10V
 C:|V-V|>10V
Figure JPOXMLDOC01-appb-T000059
 上記表1より、本発明の化合物を用いた有機トランジスタ素子は、キャリア移動度が高く、繰り返し駆動後の閾値電圧変化が小さいことがわかった。そのため、本発明の化合物は非発光性有機半導体デバイス用有機半導体材料として好ましく用いられることがわかった。
 一方、比較化合物4以外の比較化合物1、2および3を用いた有機トランジスタ素子は、キャリア移動度が低いものであった。比較化合物1、2、3および4を用いた有機トランジスタ素子は、繰り返し駆動後の閾値電圧変化が大きいものであった。
[実施例3]
<化合物をバインダーとともに用いて半導体活性層(有機半導体層)を形成>
 本発明の化合物または比較化合物(各1mg)、PαMS(ポリ(α-メチルスチレン、Mw=300,000)、Aldrich製)1mg、トルエン(1mL)を混合し、100℃に加熱したものを塗布溶液として用いる以外は実施例2と同様にしてFET特性測定用の実施例3の有機トランジスタ素子を作製し、実施例2と同様の評価を行った。
 得られた結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000060
 上記表2より、本発明の化合物をバインダーとともに用いて半導体活性層を形成した有機トランジスタ素子は、キャリア移動度が高く、繰り返し駆動後の閾値電圧変化が小さいことがわかった。そのため、本発明の化合物は非発光性有機半導体デバイス用有機半導体材料として好ましく用いられることがわかった。
 一方、比較化合物4以外の比較化合物1、2および3をバインダーとともに用いて半導体活性層を形成した有機トランジスタ素子は、キャリア移動度が低いものであった。比較化合物1、2、3および4をバインダーとともに用いて半導体活性層を形成した有機トランジスタ素子は、繰り返し駆動後の閾値電圧変化が大きいものであった。
 さらに、実施例3で得られた各有機トランジスタ素子について、光学顕微鏡観察を行ったところ、バインダーとしてPαMSを用いた膜はいずれも膜の平滑性・均一性が非常に高いことが分かった。
 以上より、比較素子ではバインダーと比較化合物の複合系で半導体活性層を形成した場合にキャリア移動度が非常に低くなるのに対し、本発明の有機トランジスタ素子では本発明の化合物をバインダーとともに用いて半導体活性層を形成した場合も良好なキャリア移動度を示し、繰り返し駆動後の閾値電圧変化が小さく、膜の平滑性・均一性が非常に高い素子を得ることができることが分かった。
[実施例4]
<半導体活性層(有機半導体層)形成>
 ゲート絶縁膜としてSiO(膜厚370nm)を備えたシリコンウエハーを用い、オクチルトリクロロシランで表面処理をおこなった。
 本発明の化合物または比較化合物(各1mg)とトルエン(1mL)を混合し、100℃に加熱したものを、非発光性有機半導体デバイス用塗布溶液とした。この塗布溶液を窒素雰囲気下、90℃に加熱したオクチルシラン表面処理シリコンウエハー上にキャストすることで、非発光性有機半導体デバイス用有機半導体膜を形成した。
 更にこの膜表面にマスクを用いて金を蒸着することで、ソースおよびドレイン電極を作製し、ゲート幅W=5mm、ゲート長L=80μmのボトムゲート・トップコンタクト構造の実施例4の有機トランジスタ素子を得た(図1に構造の概略図を示した)。
 実施例4の有機トランジスタ素子のFET特性は、セミオートプローバー(ベクターセミコン製、AX-2000)を接続した半導体パラメーターアナライザー(Agilent製、4156C)を用いて常圧・窒素雰囲気下で、キャリア移動度、繰り返し駆動後の閾値電圧変化の観点で評価した。
 得られた結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000061
 上記表3より、本発明の化合物を用いた有機トランジスタ素子は、キャリア移動度が高く、繰り返し駆動後の閾値電圧変化が小さいことがわかった。そのため、本発明の化合物は非発光性有機半導体デバイス用有機半導体材料として好ましく用いられることがわかった。
 一方、比較化合物4以外の比較化合物1、2および3を用いた有機トランジスタ素子は、キャリア移動度が低いものであった。比較化合物1、2、3および4を用いた有機トランジスタ素子は、繰り返し駆動後の閾値電圧変化が大きいものであった。
11 基板
12 電極
13 絶縁体層
14 半導体活性層(有機物層、有機半導体層)
15a、15b 電極
31 基板
32 電極
33 絶縁体層
34a、34b 電極
35 半導体活性層(有機物層、有機半導体層)

Claims (35)

  1.  下記一般式(1)で表される化合物を半導体活性層に含む有機トランジスタ;
    一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    一般式(1)において、XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表し、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも一個が下記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表し、nは1~6の整数を表す;
    -L-R   一般式(W)
    一般式(W)において、Lは下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基または2以上の下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した2価の連結基を表す;Rは水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;
    Figure JPOXMLDOC01-appb-C000002
    一般式(L-1)~(L-9)において、波線部分は骨格中央部の芳香族炭化水素環との結合部位を表し、*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す;一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す;一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)におけるR’はそれぞれ独立に水素原子または置換基を表す;ただし、一般式(L-1)および(L-2)中のR’は、それぞれLに隣接するRと結合して縮合環を形成してもよい。
  2.  前記一般式(1)におけるXおよびXが硫黄原子である請求項1に記載の有機トランジスタ。
  3.  前記一般式(1)におけるnが1~3の整数である請求項1または2に記載の有機トランジスタ。
  4.  前記一般式(1)で表される化合物が、下記一般式(2)で表される化合物である請求項1に記載の有機トランジスタ;
    一般式(2)
    Figure JPOXMLDOC01-appb-C000003
    一般式(2)において、RおよびRはそれぞれ独立に水素原子または置換基を表し、RおよびRのうち少なくとも一個が前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  5.  前記一般式(W)におけるLが前記一般式(L-1)、(L-3)または(L-6)で表される置換基である請求項1~4のいずれか一項に記載の有機トランジスタ。
  6.  前記一般式(2)で表される化合物が、下記一般式(3)で表される化合物である請求項4または5に記載の有機トランジスタ;
    一般式(3)
    Figure JPOXMLDOC01-appb-C000004
    一般式(3)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;Rは前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  7.  前記一般式(2)で表される化合物が、下記一般式(4)で表される化合物である請求項4~6のいずれか一項に記載の有機トランジスタ;
    一般式(4)
    Figure JPOXMLDOC01-appb-C000005
    一般式(4)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  8.  前記一般式(2)で表される化合物が、下記一般式(5)で表される化合物である請求項4または5に記載の有機トランジスタ;
    一般式(5)
    Figure JPOXMLDOC01-appb-C000006
    一般式(5)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表す;Rは前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  9.  前記一般式(2)で表される化合物が、下記一般式(6)で表される化合物である請求項4、5および8のいずれか一項に記載の有機トランジスタ;
    一般式(6)
    Figure JPOXMLDOC01-appb-C000007
    一般式(6)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  10.  前記一般式(2)で表される化合物が、下記一般式(7)で表される化合物である請求項4または5に記載の有機トランジスタ;
    一般式(7)
    Figure JPOXMLDOC01-appb-C000008
    一般式(7)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す;Rは前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  11.  前記一般式(2)で表される化合物が、下記一般式(8)で表される化合物である請求項4、5および10のいずれか一項に記載の有機トランジスタ;
    一般式(8)
    Figure JPOXMLDOC01-appb-C000009
    一般式(8)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  12.  前記一般式(1)~(8)において、R~R10がそれぞれ独立に水素原子、フッ素原子、炭素数1~3の置換または無置換のアルキル基、炭素数2~3の置換または無置換のアルキニル基、炭素数2~3の置換または無置換のアルケニル基、炭素数1~2の置換または無置換のアルコキシ基、炭素数6~10の置換または無置換のアリール基、炭素数3~10の置換または無置換のヘテロアリール基、あるいは、置換または無置換のメチルチオ基である請求項1~11のいずれか一項に記載の有機トランジスタ。
  13.  前記一般式(3)~(8)において、R11およびR12が全て置換または無置換のアルキル基を含む基である請求項6~12のいずれか一項に記載の有機トランジスタ。
  14.  前記一般式(3)~(8)において、R11およびR12が全て分枝アルキル基を含む基である請求項6~12のいずれか一項に記載の有機トランジスタ。
  15.  下記一般式(1)で表される化合物;
    一般式(1)
    Figure JPOXMLDOC01-appb-C000010
    一般式(1)において、XおよびXはそれぞれ独立に硫黄原子またはセレン原子を表し、RおよびRはそれぞれ独立に水素原子または置換基を表し、n個のRおよびn個のRのうち少なくとも一個が下記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表し、nは1~6の整数を表す;
    -L-R   一般式(W)
    一般式(W)において、Lは下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基または2以上の下記一般式(L-1)~(L-9)のいずれかで表される2価の連結基が結合した2価の連結基を表す;Rは水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;
    Figure JPOXMLDOC01-appb-C000011
    一般式(L-1)~(L-9)において、波線部分は骨格中央部の芳香族炭化水素環との結合部位を表し、*は一般式(L-1)~(L-9)で表される2価の連結基およびRのいずれかとの結合位置を示す;一般式(L-6)におけるmは4を表し、一般式(L-7)および(L-8)におけるmは2を表す;一般式(L-1)、(L-2)、(L-6)、(L-7)および(L-8)におけるR’はそれぞれ独立に水素原子または置換基を表す;ただし、一般式(L-1)および(L-2)中のR’は、それぞれLに隣接するRと結合して縮合環を形成してもよい。
  16.  前記一般式(1)におけるXおよびXが硫黄原子である請求項15に記載の化合物。
  17.  前記一般式(1)におけるnが1~3である請求項15または16に記載の化合物。
  18.  下記一般式(2)で表される化合物である請求項15に記載の化合物;
    一般式(2)
    Figure JPOXMLDOC01-appb-C000012
    一般式(2)において、RおよびRはそれぞれ独立に水素原子または置換基を表し、RおよびRのうち少なくとも一個が前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  19.  前記一般式(W)におけるLが前記一般式(L-1)、(L-3)または(L-6)で表される置換基である請求項15~18のいずれか一項に記載の化合物。
  20.  前記一般式(2)で表される化合物が、下記一般式(3)で表される化合物である請求項18または19に記載の化合物;
    一般式(3)
    Figure JPOXMLDOC01-appb-C000013
    一般式(3)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;Rは前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  21.  前記一般式(2)で表される化合物が、下記一般式(4)で表される化合物である請求項18~20のいずれか一項に記載の化合物;
    一般式(4)
    Figure JPOXMLDOC01-appb-C000014
    一般式(4)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  22.  前記一般式(2)で表される化合物が、下記一般式(5)で表される化合物である請求項18または19に記載の化合物;
    一般式(5)
    Figure JPOXMLDOC01-appb-C000015
    一般式(5)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表す;Rは前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  23.  前記一般式(2)で表される化合物が、下記一般式(6)で表される化合物である請求項18、19および22のいずれか一項に記載の化合物;
    一般式(6)
    Figure JPOXMLDOC01-appb-C000016
    一般式(6)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  24.  前記一般式(2)で表される化合物が、下記一般式(7)で表される化合物である請求項18または19に記載の化合物;
    一般式(7)
    Figure JPOXMLDOC01-appb-C000017
    一般式(7)において、R11は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す;Rは前記一般式(W)で表される基を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  25.  前記一般式(2)で表される化合物が、下記一般式(8)で表される化合物である請求項18、19および24のいずれか一項に記載の化合物;
    一般式(8)
    Figure JPOXMLDOC01-appb-C000018
    一般式(8)において、R11およびR12は水素原子、置換または無置換のアルキル基、置換または無置換のシリル基、エチレンオキシ単位の繰り返し数vが2以上のオリゴエチレンオキシ基またはケイ素原子数が2以上のオリゴシロキサン基を表す;R’はそれぞれ独立に水素原子または置換基を表し、mは4を表す;R~R10はそれぞれ独立に水素原子または置換基を表す。
  26.  前記一般式(1)~(8)において、R~R10がそれぞれ独立に水素原子、フッ素原子、炭素数1~3の置換または無置換のアルキル基、炭素数2~3の置換または無置換のアルキニル基、炭素数2~3の置換または無置換のアルケニル基、炭素数1~2の置換または無置換のアルコキシ基、炭素数6~10の置換または無置換のアリール基、炭素数3~10の置換または無置換のヘテロアリール基、あるいは、置換または無置換のメチルチオ基である請求項15~25のいずれか一項に記載の化合物。
  27.  前記一般式(3)~(8)において、R11およびR12が全て置換または無置換のアルキル基を含む基である請求項20~26のいずれか一項に記載の化合物。
  28.  前記一般式(3)~(8)において、R11およびR12が全て分枝アルキル基を含む基である請求項20~26のいずれか一項に記載の化合物。
  29.  請求項15~28のいずれか一項に記載の前記一般式(1)で表される化合物を含有する非発光性有機半導体デバイス用有機半導体材料。
  30.  請求項15~28のいずれか一項に記載の前記一般式(1)で表される化合物を含有する有機トランジスタ用材料。
  31.  請求項15~28のいずれか一項に記載の前記一般式(1)で表される化合物を含有する非発光性有機半導体デバイス用塗布溶液。
  32.  請求項15~28のいずれか一項に記載の前記一般式(1)で表される化合物とポリマーバインダーを含有する非発光性有機半導体デバイス用塗布溶液。
  33.  請求項15~28のいずれか一項に記載の前記一般式(1)で表される化合物を含有する非発光性有機半導体デバイス用有機半導体膜。
  34.  請求項15~28のいずれか一項に記載の前記一般式(1)で表される化合物とポリマーバインダーを含有する非発光性有機半導体デバイス用有機半導体膜。
  35.  溶液塗布法により作製された請求項33または34に記載の非発光性有機半導体デバイス用有機半導体膜。
PCT/JP2014/070332 2013-08-02 2014-08-01 有機トランジスタ、有機半導体膜および有機半導体材料ならびにそれらの応用 WO2015016343A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-161827 2013-08-02
JP2013161827A JP6184234B2 (ja) 2013-08-02 2013-08-02 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料

Publications (1)

Publication Number Publication Date
WO2015016343A1 true WO2015016343A1 (ja) 2015-02-05

Family

ID=52431866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070332 WO2015016343A1 (ja) 2013-08-02 2014-08-01 有機トランジスタ、有機半導体膜および有機半導体材料ならびにそれらの応用

Country Status (2)

Country Link
JP (1) JP6184234B2 (ja)
WO (1) WO2015016343A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1213726A1 (ru) * 1983-03-31 1992-04-07 Ленинградский Технологический Институт Им.Ленсовета 3-Диметиламинопропиламид бензтиазино[2,3-в]фенотиазин-6-карбоновой кислоты, обладающий противоопухолевой активностью
JP2007149740A (ja) * 2005-11-24 2007-06-14 Ricoh Co Ltd 有機半導体装置及びその製造方法並びに表示装置
JP2007251093A (ja) * 2006-03-20 2007-09-27 Nippon Zeon Co Ltd ゲート絶縁膜、有機薄膜トランジスタ、該トランジスタの製造方法及び表示装置
JP2008098222A (ja) * 2006-10-06 2008-04-24 Toyo Ink Mfg Co Ltd 有機トランジスタ
JP2008124445A (ja) * 2006-10-17 2008-05-29 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法
JP2009533852A (ja) * 2006-04-13 2009-09-17 チバ ホールディング インコーポレーテッド 有機半導体としてのキノイド系

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136401A2 (en) * 2009-05-27 2010-12-02 Basf Se Polycyclic dithiophenes
US8283660B2 (en) * 2010-12-23 2012-10-09 Xerox Corporation Small molecule semiconductor
JP5948772B2 (ja) * 2011-09-21 2016-07-06 東ソー株式会社 ジチエノベンゾジチオフェン誘導体組成物及びこれを用いた有機薄膜トランジスタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1213726A1 (ru) * 1983-03-31 1992-04-07 Ленинградский Технологический Институт Им.Ленсовета 3-Диметиламинопропиламид бензтиазино[2,3-в]фенотиазин-6-карбоновой кислоты, обладающий противоопухолевой активностью
JP2007149740A (ja) * 2005-11-24 2007-06-14 Ricoh Co Ltd 有機半導体装置及びその製造方法並びに表示装置
JP2007251093A (ja) * 2006-03-20 2007-09-27 Nippon Zeon Co Ltd ゲート絶縁膜、有機薄膜トランジスタ、該トランジスタの製造方法及び表示装置
JP2009533852A (ja) * 2006-04-13 2009-09-17 チバ ホールディング インコーポレーテッド 有機半導体としてのキノイド系
JP2008098222A (ja) * 2006-10-06 2008-04-24 Toyo Ink Mfg Co Ltd 有機トランジスタ
JP2008124445A (ja) * 2006-10-17 2008-05-29 Semiconductor Energy Lab Co Ltd 半導体装置及び半導体装置の作製方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
K. G. OJHA ET AL.: "Synthesis of 1,2,4- trihalophenothiazin-3-ones and Their Conversion into (1,4)-Benzothiazino-(2,3-b)- Phenothiazines", ASIAN JOURNAL OF CHEMISTRY, vol. 7, no. 1, 1995, pages 123 - 126 *
KIYOSHI KITAHARA ET AL.: "Synthesis of triphenodithiazines and triphenodiselenazine having ester groups", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, 1986, pages 1329 *
MARYE ANNE FOX ET AL.: "Redox photochromism in a heteroatomic polycyclic quinone", THE JOUNAL OF ORGANIC CHEMISTRY, vol. 46, no. 7, 27 March 1981 (1981-03-27), pages 1235 - 1239, XP002535104, DOI: doi:10.1021/jo00320a001 *

Also Published As

Publication number Publication date
JP6184234B2 (ja) 2017-08-23
JP2015032714A (ja) 2015-02-16

Similar Documents

Publication Publication Date Title
WO2014034393A1 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6091151B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP5975834B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6061886B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6061888B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP5897050B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP5940104B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6091442B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6091445B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
WO2015105060A1 (ja) 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用有機半導体膜および非発光性有機半導体デバイス用有機半導体膜の製造方法
JP6247568B2 (ja) 有機薄膜トランジスタ、非発光性有機半導体デバイス用有機半導体材料およびその応用
JP2015156412A (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6033802B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP5972234B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6321965B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
WO2015098604A1 (ja) 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用有機半導体膜
WO2015111605A1 (ja) 有機トランジスタ、化合物、非発光性有機半導体デバイス用有機半導体材料、有機トランジスタ用材料、非発光性有機半導体デバイス用塗布溶液、非発光性有機半導体デバイス用有機半導体膜
WO2015016344A1 (ja) 化合物、有機トランジスタ及びその応用
JP6159188B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
JP6184234B2 (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
WO2015008753A1 (ja) 有機膜トランジスタ、有機半導体膜、有機半導体材料およびそれらの応用
JP2015038955A (ja) 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831833

Country of ref document: EP

Kind code of ref document: A1