WO2015016271A1 - プリント配線基板用銅箔 - Google Patents
プリント配線基板用銅箔 Download PDFInfo
- Publication number
- WO2015016271A1 WO2015016271A1 PCT/JP2014/070090 JP2014070090W WO2015016271A1 WO 2015016271 A1 WO2015016271 A1 WO 2015016271A1 JP 2014070090 W JP2014070090 W JP 2014070090W WO 2015016271 A1 WO2015016271 A1 WO 2015016271A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper foil
- printed wiring
- tensile strength
- wiring board
- temperature
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/02—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
- H01B1/026—Alloys based on copper
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0332—Structure of the conductor
- H05K2201/0335—Layered conductors or foils
- H05K2201/0355—Metal foils
Definitions
- the present invention relates to a copper foil for a printed wiring board.
- the flexible printed wiring board is formed by bonding polyimide and copper foil to form FCCL (Flexible Copper Clad Laminates), and then printing the wiring pattern on the copper foil surface of the FCCL (resist process), and unnecessary copper foil Is removed by etching (etching process). Furthermore, if necessary, it is commercialized through processes such as thinning copper foil by soft etching and drilling-filling plating with a drill.
- FCCL Flexible Copper Clad Laminates
- FCCL There are two methods for manufacturing FCCL: a cast method and a laminate method.
- a polyamic acid which is a polyimide precursor
- a copper foil as a support
- dried at about 130 ° C. in order to volatilize the solvent, and these steps are repeated several times to form a polyamic acid on the copper foil surface.
- a copper foil is pressure-bonded to a polyimide film having a thermoplastic polyimide layer as an adhesive layer with a roll laminate, and the copper foil and the polyimide film are bonded by heat treatment at a curing temperature.
- the thickness of the copper foil used for the flexible printed wiring board tends to be thin in order to simplify the soft etching accompanying fine patterning and thinning of the circuit thickness.
- the thickness of copper foil used in FCCL or FPC is mainly 18 ⁇ m or less, and 9 ⁇ m and 6 ⁇ m are being used for thin ones.
- the level required for the folding mounting of the wiring board is not low, and a certain folding property is required as an FPC board.
- higher flexibility is required.
- the characteristics required for the copper foil for FPC are that a thin foil of 18 ⁇ m or less does not cause foil breakage or wrinkle by roll-to-roll conveyance, while after heat treatment at the polyimide curing temperature. There is a need for a copper foil that sufficiently softens and exhibits high bendability and bendability.
- Patent Document 1 discloses a copper foil having a low strength of 270 MPa or less after 300 ° C. heat treatment.
- the copper foil of the present invention has a low strength of 350 MPa or less in a normal state, the foil is likely to be cut or wrinkled during the roll-to-roll conveyance.
- Patent Document 2 discloses a method for producing an electrolytic copper foil having a strength of 450 MPa or more in a normal state.
- the copper foil produced according to the present invention is softened by heating at about 130 degrees lower than the pre-drying temperature, and the strength is reduced, so that it is not suitable for roll-to-roll production in the casting method. It is.
- Patent Document 3 discloses a copper foil having a high strength and thermal stability of a tensile strength of 650 MPa or more in a normal state and 450 MPa or more after heating at 300 ° C. However, because of excellent thermal stability at 300 ° C., sufficient softening does not occur at the polyimide curing temperature, and high flexibility required for FPC applications cannot be satisfied.
- Japanese Patent No. 4712759 Japanese Patent Laid-Open No. 2008-013847
- Japanese Patent No. 4349690 JP 2001-11684 A
- the present invention is a thin foil having a thickness of 18 ⁇ m or less required for a copper foil for a printed wiring board (hereinafter simply referred to as a printed wiring board) such as FCCL or FPC. It is intended to provide a copper foil that does not wrinkle and is sufficiently softened after heat treatment at a polyimide curing temperature to exhibit high bendability and bendability.
- a printed wiring board such as FCCL or FPC.
- the copper foil for printed wiring boards of the present invention is a copper foil for printed wiring boards made of copper or an alloy containing copper and having a thickness of 18 ⁇ m or less, and is represented by the formula (1) in a region where the heat treatment temperature is 400 ° C. or less.
- the temperature Tmax at which the tensile strength gradient S is maximum is 150 ° C. or higher and 370 ° C. or lower, the gradient S at that time is 0.8 or higher, and the tensile strength after heat treatment at the temperature Tmax for 1 hour is 80 in the normal state. % Or less.
- S (Ts (T-50) -Ts (T)) / 50 (1)
- Ts (T) is a tensile strength at normal temperature after heat treatment at T ° C. for 1 hour.
- the temperature Tmax at which the gradient S of the tensile strength expressed by the above formula (1) is maximum is preferably 180 ° C. or higher and 310 ° C. or lower. Further, in the region where the heat treatment temperature is 400 ° C. or lower, the tensile strength after heat treatment for 1 hour at the temperature Tmax at which the tensile strength gradient S represented by the above formula (1) is maximum may be 70% or less of the normal state. preferable.
- the copper foil for printed wiring board of the present invention preferably has a normal tensile strength of 500 MPa or more, and preferably 750 MPa or less. Moreover, it is preferable that the copper foil for printed wiring boards of this invention is 450 Mpa or less after carrying out the heat processing for 1 hour at the heat processing temperature of 300 degreeC.
- the copper foil for printed wiring board of the present invention is preferably an electrolytic copper foil.
- the copper foil for printed wiring boards of the present invention is provided with a roughened particle layer on at least the surface of the copper foil to which a film is attached, and a metal surface treatment for heat resistance, chemical resistance and rust prevention on the layer. It is preferable to provide a layer.
- the metal surface treatment layer includes silicon (Si), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn). ) Or at least one of these alloys is preferably provided on the surface of the copper foil or the roughened particle layer.
- the copper foil of the present invention is a copper foil for FCCL or FPC, even if it is a thin foil having a thickness of 18 ⁇ m or less, it does not cause foil breakage or wrinkles during roll-to-roll conveyance, and is heated at the polyimide curing temperature. It is a copper foil that is sufficiently softened after processing and exhibits high bendability and flexibility.
- FIG. 1 is a graph showing the relationship between the tensile strength of copper foil and the heating temperature.
- Copper foil form The thickness of the copper foil is set to 18 ⁇ m or less because the thickness required for the copper foil for a printed wiring board is 18 ⁇ m or less, and wrinkles during roll-to-roll conveyance are not a problem when the thickness is 18 ⁇ m or more. is there.
- the temperature at which the copper foil is heated and softened is pre-drying of polyimide. It is desirable to exist between the temperature and the curing temperature.
- the pre-drying temperature of polyimide is generally about 130 ° C. However, since a general copper foil already softens at this temperature, it is necessary to improve the softening temperature.
- the curing temperature of polyimide is 300 ° C. or higher and 400 ° C. or lower, and it is desirable that the copper foil be softened at this temperature.
- a copper foil that does not soften at 130 ° C. or lower and softens in a region of 130 ° C. or higher and 400 ° C. or lower is required.
- the inventors of the present invention have a tensile strength gradient S of 0.8 or more in the graph of FIG. 1 showing the relationship between the heating temperature and the tensile strength. It has been found that a copper foil satisfying the above preconditions can be obtained when the maximum temperature Tmax is 150 ° C. or higher and 370 ° C. or lower.
- an opinion was obtained that if the temperature Tmax at which the gradient S of the tensile strength represented by the formula (1) is maximum is 180 ° C.
- Ts (T) is the tensile strength after heat treatment at T ° C. for 1 hour.
- the tensile strength gradient S expressed by the formula (1) is 0.8 or more because the copper foil of 0.8 or less is clear. This is because, since it does not have a softening point, the tensile strength is not lowered by heating, that is, the flexibility is not improved, and the high flexibility required for the copper foil for printed wiring boards cannot be satisfied.
- the tensile strength gradient S shown in the formula (1) at temperature T is 0.8 or more and the tensile strength after heat treatment at temperature T for 1 hour is 80% or less of the normal state, after heating at the polyimide curing temperature
- the strength of the copper foil becomes sufficiently low, and the minimum bendability and bendability required for the original flexible substrate application can be satisfied. More preferably, the tensile strength after heat treatment at temperature T for 1 hour is 70% or less. Since the bendability and bendability are improved, it is possible to deal with applications that require repeated bends, such as the working part of a folding mobile phone.
- the tensile strength is preferably 500 MPa or more. If it is lower than 500 MPa, foil breakage and wrinkles are likely to occur when the tension of the polyimide bonding line is high.
- the normal tensile strength is preferably 750 MPa or less. This is because the strength and elongation of the copper foil are in a trade-off relationship, and if the strength is higher than 750 MPa, the elongation is small and the foil breaks easily.
- the tensile strength after heat treatment at 300 ° C. for 1 hour is preferably 450 MPa or less.
- the curing temperature of the polyimide is at least 300 ° C., and if the tensile strength at this temperature is 450 MPa or less, the minimum bendability and bendability can be satisfied when any polyimide is used. .
- the production method thereof such as electrolytic copper foil and rolled copper foil is not limited. Below, it explains in full detail about the electrolytic copper foil manufactured using the electrolyte solution which has a sulfuric acid and copper sulfate as a main component.
- the electrolytic copper foil can control the normal strength and thermal stability by using an organic additive in the electrolytic solution.
- Nitrogen-containing water-soluble polymers such as polyethylene glycol and polyethylene glycol are incorporated into the copper foil to refine the copper crystal grains and improve the normal strength.
- chloride ion has a role which assists water-soluble polymer being taken in in copper foil.
- strength decreases at around 120 ° C., which is the softening temperature of copper, and recrystallization at normal temperature occurs in copper foil containing chlorine.
- normal temperature softening There is also a problem called “normal temperature softening” in which the strength decreases with the passage of time immediately after.
- the present inventors have one sulfur and two nitrogens coordinated to carbon and form a heterocyclic ring, for example, the structure of (Chemical Formula 2) or the structure of (Chemical Formula 3).
- the organic additive A and the organic additive B which is a water-soluble polymer containing nitrogen, such as glue and polyethylene glycol, and producing a copper foil using an electrolytic solution having a lower chlorine concentration than conventional ones. The production of an electrolytic copper foil that satisfies the above characteristics was successful.
- the organic additive A is taken into the grain boundary and exhibits a pinning effect and inhibits recrystallization during heating.
- the organic additive A has a structure in which one sulfur and two nitrogens are coordinated to carbon, and since it forms a heterocyclic ring, the decomposition temperature is high, and the pinning effect even when heated at high temperatures. Can be demonstrated. By combining this effect with the effect of improving the normal strength of the organic additive B, and suppressing recrystallization in the normal state at a chlorine concentration lower than that of the conventional, at 150 to 370 ° C. characteristic of the present invention. Can be achieved.
- a roughened particle layer is provided on the surface to which at least a film of copper foil is attached, and a metal surface treatment layer is provided thereon.
- the formation of the roughened particle layer does not need to be provided by a special method, and a commonly used method of forming a roughened particle layer (roughening treatment) can be employed.
- Roughening treatment As an example of a roughening treatment method in which a roughened particle layer is provided on a copper foil in order to improve the adhesion between the copper foil and the polyimide film, the treatment is performed in the order of roughening plating treatment 1 ⁇ roughening plating treatment 2. The method to do is illustrated.
- Roughening plating process 1 Copper sulfate: 20-160 g / L Sulfuric acid concentration: 30-200g / L Fe: 0.1 to 10 g / L Mo: 0.1 to 5.0 g / L Liquid temperature: 20-60 ° C Current density: 10 to 60 A / dm 2
- a metal surface treatment layer for the purpose of heat resistance, chemical resistance and rust prevention is provided on the surface of the roughened particle layer or on the copper foil surface where the roughened particle layer is not provided.
- the metal surface treatment layer is plated with at least one kind of metal according to the kind and use of polyimide applied on the copper foil.
- the metal includes chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), or an alloy thereof. Hydrates, etc. An example of the metal plating bath and plating conditions will be described.
- Ni-Mo plating bath Ni 10-100g / L Mo 1-30g / L Trisodium citrate dihydrate 30-200 g / L Bath temperature 10-70 ° C Current density 1 ⁇ 50A / dm 2 Treatment time 1 second to 2 minutes pH 1.0 to 4.0
- silane is applied on the surface of which these are plated.
- examples of the silane to be applied include commonly used amino, vinyl, and epoxy types.
- Form of printed wiring board There is no particular limitation, and for example, a laminate method or a cast method can be used.
- Example (Manufacture of copper foil) Examples 1 to 8 use a cathode made of titanium whose surface is polished with # 2000 polishing paper, use an electrolyte described below, a bath temperature of 30 to 75 ° C., and a current density of 30 to 100 A. Electric current was applied so as to have a thickness shown in Table 1 at / dm 2 to produce an electrolytic copper foil.
- Electrolytic solution composition An electrolytic solution was prepared by adding 200 to 500 g / L of copper sulfate and 20 to 200 g / L of sulfuric acid as a basic bath composition and adding the additives shown in Table 1 to the basic bath.
- organic additive A 2-mercapto-5-benzimidazolesulfonic acid is representative of an additive having the structure of Chemical Formula 2
- 3 (5-mercapto-1H— is representative of an additive having the structure of Chemical Formula 3.
- Tetrazolyl) benzenesulfonate is used, but other than the above may be used as long as one sulfur and two nitrogens are coordinated to carbon and the organic additive forms a heterocyclic ring. It has been confirmed that an effect can be obtained.
- Example 1 the produced copper foil was directly subjected to metal surface treatment.
- Example 5 a roughened particle layer was applied to the manufactured copper foil by the following roughening treatment method, and a metal surface treatment layer was applied on the roughened particle layer.
- the roughening treatment was performed in the order of roughening plating treatment 1 ⁇ roughening plating treatment 2.
- Example 9 is a rolled copper alloy foil produced by casting and rolling. Copper, chromium (Cr), tin (Sn), and zinc (Zn) raw materials were dissolved in a high-frequency melting furnace, and then cast at a cooling rate of 0.5 to 150 ° C./second to obtain an ingot. The ingot contained alloy components of Cr 0.3 mass%, Sn 0.3 mass%, and Zn 0.1 mass%, and the balance was formed of Cu and inevitable impurities.
- Cr chromium
- Sn tin
- Zn zinc
- the obtained ingot was subjected to a homogenizing heat treatment at a temperature of 1000 ° C. for 8 hours, and then hot-rolled at a temperature of 600 to 1050 ° C. as it was.
- the temperature range of 600 to 1050 ° C. for hot rolling is a temperature range from the start to the end of hot rolling.
- the processing rate was 85 to 97%.
- cooling is performed by water cooling at a cooling rate of at least 600 ° C. to 200 ° C. at 30 ° C./second, intermediate cold rolling with a processing rate of 80 to 99.8% is performed, and aging is maintained at 300 to 540 ° C. for 4 hours.
- Heat treatment was performed and final cold rolling was performed at a processing rate of 86% to produce a rolled copper alloy foil having a foil thickness of 12 ⁇ m.
- Comparative Examples 1 to 3 were manufactured using the cathode made of titanium whose surface was polished with # 2000 polishing paper under the electrolytic solution and electrolytic conditions shown in Table 2.
- Comparative Example 1 is in Example 1 of Patent Document 2 (Japanese Patent No. 4349690, Japanese Patent Application Laid-Open No. 2001-11684), and Comparative Example 2 is in Example 1 of Patent Document 4 (Japanese Patent Application Laid-Open No. 9-306504).
- Comparative Example 3 is an electrolytic copper foil prepared based on Example 1 of Patent Document 5 (Japanese Patent Laid-Open No. 2013-28848).
- Comparative Example 4 is a commercially available Cu-0.015 to 0.03 Zr rolled copper alloy foil (trade name: HCL (registered trademark) -02Z, manufactured by Hitachi Cable, Ltd.) having a thickness of 12 ⁇ m.
- Epoxysilane coating reagent name S510 (manufactured by Chisso Corporation) Concentration 0.25 wt% Processing time 2 seconds
- the copper foils of the examples and comparative examples were subjected to heat treatment for 1 hour in increments of 10 degrees from room temperature to 400 ° C., the tensile strength at each temperature was measured, and the gradient S and the equation (1) at each temperature were A temperature Tmax at which S becomes a maximum value was determined.
- the tensile strength was measured based on JISZ2241-1880.
- Example 9 and Comparative Example 4 which are rolled copper foils, a tensile test was performed in a 45 ° direction with respect to the rolling direction, and the tensile strength was measured.
- the tensile strength ratio was determined by dividing the tensile strength value when heat-treated at temperature T by the normal tensile strength value. The results are shown in Table 3.
- the tensile strength at 300 ° C. is also shown in Table 3 as a reference value.
- the surface of the copper foil was placed in contact with a polyimide film having a thickness of 50 ⁇ m (UPILEX-VT manufactured by Ube Industries), the whole was sandwiched between two smooth stainless steel plates, and 300 ° C. or 370 ° C. by a 20 torr vacuum press.
- the film was subjected to thermocompression bonding at a pressure of 2 kg / cm 2 for 10 minutes and at 50 kg / cm 2 for 5 minutes to prepare a copper foil with film (wiring board), and an MIT test was performed.
- the curvature (R) at this time was 0.8 (mm), and the load was measured over 500 g.
- the evaluation result of the bending test is the number of times until rupture in the MIT test, with less than 200 times x (failed) and 200 times to less than 450 times satisfying the bending properties required as a flexible printed wiring board. ), It was judged as ⁇ for having excellent flexibility capable of withstanding repeated bending over 450 times.
- the evaluation results are shown in Table 3.
- the maximum value Smax of the gradient S shown in the equation (1) is 0.8 or more, and the temperature Tmax at which S becomes the maximum value is 150 ° C. or more and 370 ° C. or less.
- the tensile strength after heat treatment at Tmax for 1 hour is 80% or less of the normal state (25 ° C.), and both the carrying test and the bending test show the performance that can withstand practical use.
- both the transport test and the bending test show particularly excellent results.
- the metal surface treatment layer was provided on the roughened particle layer.
- the carrying test and the number of bendings were different from the other examples in terms of the carrying test and the number of bendings. There was no significant impact on
- Example 1 the tensile strength gradient Smax is low.
- the normal tensile strength is less than 500 MPa, so that the line speed tends to be wrinkled, but the line speed is set low. If it does, it is the range which is satisfactory.
- Example 3 and 7 since the normal tensile strength exceeds 750 MPa, the flexibility at 300 ° C. does not satisfy the standard, but the heating at 370 ° C. clears the bending test, so the temperature of the polyimide curing process is high. Is usable.
- Example 2 the tensile strength ratio between Tmax and the normal state exceeds 70%, and the portability and the flexibility when heated at 300 ° C. are slightly inferior, but the performance can withstand practical use.
- Example 4 using the electrolytic copper foil showed excellent results in both the transport test and the number of bendings.
- Comparative Example 1 had a low Tmax, wrinkles occurred in the transport test.
- Smax was as small as 0.8 or less, and wrinkles were generated in the transport test.
- the fact that Smax is small means that the copper foil does not have a clear softening point, and is a characteristic characteristic of a foil in which normal temperature softening occurs. Copper foil softened at room temperature tends to wrinkle when tension is applied.
- the tensile strength ratio exceeds 80%. Such a foil hardly softens in the polyimide curing process and breaks quickly in a bending test. Since Comparative Example 4 had a high Tmax, it was not sufficiently softened in the polyimide curing step, and breakage was accelerated in the bending test.
- the copper foil of the present invention is a thin foil having a thickness of 18 ⁇ m or less, which is required for a printed wiring board copper foil such as FCCL or FPC, and does not cause foil breakage or wrinkles during roll-to-roll conveyance.
- the copper foil is sufficiently softened after heat treatment at the polyimide curing temperature and exhibits high bendability and flexibility, and exhibits excellent effects as a copper foil for printed wiring boards.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
キャスト方式では、支持体となる銅箔上にポリイミド前駆体であるポリアミック酸を塗布し、溶媒を揮発させるために130℃程度で乾燥させ、これらの工程を複数回繰り返して銅箔表面にポリアミック酸を均一に塗工し、ポリイミドの硬化温度である300℃以上の高温で加熱処理し、銅箔とポリイミドとを接着させる。
その際、銅箔にはロールテンションなどの機械的外力及び乾燥工程による熱的な変化が加わる。この機械的外力と加熱によってライン中で銅箔にシワや箔切れが生じることがある。
このように、FPC用銅箔に求められる特性は、18μm以下の薄箔であっても、ロール・ツー・ロールの搬送で箔切れやシワが起こらず、一方でポリイミド硬化温度での加熱処理後には十分に軟化して、高い折り曲げ性や屈曲性を発揮する銅箔が求められている。
S=(Ts(T-50)-Ts(T))/50 (1)
ここで、Ts(T)はT℃で1時間加熱処理を行った後の常温における抗張力である。
また、加熱処理温度400℃以下の領域において、前記(1)式で示される抗張力の勾配Sが最大となる温度Tmaxで1時間加熱処理した後の抗張力は、常態の70%以下であることが好ましい。
また、本発明のプリント配線基板用銅箔は、加熱処理温度300℃で1時間熱処理を行なった後の抗張力が450MPa以下であることが好ましい。
前記金属表面処理層は、ケイ素(Si)、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)又はこれら合金の内の少なくとも1種類を前記銅箔の表面もしくは前記粗化粒子層の上に設けることが好ましい。
銅箔の厚みを18μm以下としたのは、プリント配線基板用銅箔に求められる厚さが18μm以下であり、また、ロール・ツー・ロールの搬送中のシワが18μm以上では問題とならないためである。
ロール・ツー・ロール搬送時にシワや箔切れが起こらず、銅張積層板(フィルム)となった際に優れた屈曲性を発揮するためには銅箔の加熱軟化する温度が、ポリイミドのプレ乾燥温度と硬化温度の間に存在することが望ましい。ポリイミドのプレ乾燥温度は一般的に130℃程度である。しかし、一般的な銅箔ではこの温度で既に軟化が起こってしまうため、軟化温度を向上させる必要がある。一方で、ポリイミドの硬化温度は300℃以上400℃以下であり、この温度では銅箔が軟化されることが望ましい。
S=(Ts(T-50)-Ts(T))/50 (1)
ここでTs(T)はT℃で1時間加熱処理を行った後の抗張力である。
本発明では上記の特性を満足する銅箔であれば、電解銅箔、圧延銅箔等その製造方法等は問わない。
以下では、硫酸および硫酸銅を主成分とする電解液を用いて製造された電解銅箔につき詳述する。
本実施形態では必要により銅箔の少なくともフィルムを貼り付ける面に粗化粒子層を設け、その上に金属表面処理層を設ける。なお、粗化粒子層の形成は特別な方法で設ける必要はなく、通常行われている粗化粒子層形成(粗化処理)方法を採用することができる。
銅箔とポリイミドフィルムとの密着性を向上させるために銅箔上に粗化粒子層を設ける粗化処理方法の一例として、粗化めっき処理1→粗化めっき処理2の順に処理する方法を例示する。
粗化めっき処理1
硫酸銅:20~160g/L
硫酸濃度:30~200g/L
Fe:0.1~10g/L
Mo:0.1~5.0g/L
液温:20~60℃
電流密度:10~60A/dm2
硫酸銅:80~360g/L
硫酸濃度:30~150g/L
液温:20~65℃
電流密度:5~65A/dm2
金属表面処理層は銅箔上に施すポリイミドの種類や用途に応じて、少なくとも1種類以上の金属をめっきする。その金属にはクロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)の単体、またはそれらの合金、水和物などが上げられる。上記金属のめっき浴とめっき条件の一例を記載する。
Ni 10~100g/L
H3BO3 1~50g/L
PO2 0~10g/L
浴温 10~70℃
電流密度 1~50A/dm2
処理時間 1秒~2分
pH 2.0~4.0
Ni 10~100g/L
Mo 1~30g/L
クエン酸3ナトリウム2水和物 30~200g/L
浴温 10~70℃
電流密度 1~50A/dm2
処理時間 1秒~2分
pH 1.0~4.0
Mo 1~20g/L
Co 1~10g/L
クエン酸3ナトリウム2水和物 30~200g/L
浴温 10~70℃
電流密度 1~50A/dm2
処理時間 1秒~2分
Zn 1~30g/L
NaOH 10~300g/L
浴温 5~60℃
電流密度 0.1~10A/dm2
処理時間 1秒~2分
Cr 0.5~40g/L
浴温 20~70℃
電流密度 0.1~10A/dm2
処理時間 1秒~2分
pH 3.0以下
特段の限定はなく、例えばラミネート方式やキャスト方式を用いることが可能である。
(銅箔の製造)
実施例1~8は表面を#2000の研磨紙を用いて研磨を行ったチタンからなる陰極を用いて、以下に記載の電解液を使用して浴温30~75℃、電流密度30~100A/dm2で表1に示す厚さになるように通電を行い、電解銅箔を製造した。
硫酸銅 200~500 g/L、硫酸 20~200 g/Lを基本浴組成とし、表1に記載の添加剤を基本浴に添加することで電解液を調製した。なお、有機添加剤Aには化学式2の構造を持つ添加剤の代表として2-メルカプト-5-ベンズイミダゾールスルホン酸を、化学式3の構造を持つ添加剤の代表として3(5-メルカプト-1H-テトラゾールイル)ベンゼンスルホナートをそれぞれ使用しているが、炭素にひとつの硫黄と二つの窒素が配位しており、かつ複素環を形成する有機添加剤であれば、上記以外を使用しても効果が得られることは確認済みである。
粗化めっき処理1
硫酸銅:90g/L
硫酸濃度:150g/L
Fe:3g/L
Mo:0.3g/L
液温:25℃
電流密度:40A/dm2
粗化めっき処理2
硫酸銅:240g/L
硫酸濃度:120g/L
液温:50℃
電流密度:10A/dm2
さらに少なくとも600℃~200℃の間の冷却速度を30℃/秒で水冷により冷却し、加工率が80~99.8%の中間冷間圧延を行い、300~540℃で4時間保持する時効熱処理を行い、86%の加工率で最終冷間圧延を行い、箔厚が12μmの圧延銅合金箔を作製した。
比較例1~3は表面を#2000の研磨紙を用いて研磨を行ったチタンからなる陰極を用いて表2に記載の電解液および電解条件で製造した。
なお、比較例1は特許文献2(特許第4349690号、特開2001‐11684号公報)の実施例1に、比較例2は特許文献4(特開平9-306504号公報)の実施例1に、比較例3は特許文献5(特開2013-28848号公報)の実施例1に基づき作成した電解銅箔である。
比較例4は12μm厚さの市販のCu-0.015~0.03Zr圧延銅合金箔(商品名:HCL(登録商標)-02Z、日立電線株式会社製)である。
実施例1~4、6~8および比較例1~3に基づき製造した銅箔上に、また実施例5に基づき製造した銅箔については粗化処理層上に、Ni、Zn、Crの順に金属めっきを施し、その後に市販のエポキシシランを塗布した。各金属めっきおよびシランの塗布条件は下記の通りである。
Niめっき
Ni 40g/L
H3BO3 5g/L
浴温 20℃
電流密度 0.2A/dm2
処理時間 10秒
pH 3.6
Zn 2.5g/L
NaOH 40g/L
浴温 20℃
電流密度 0.3A/dm2
処理時間 5秒
Cr 5g/L
浴温 30℃
電流密度 5A/dm2
処理時間 5秒
試薬名 S510(チッソ(株)製)
濃度 0.25 wt%
処理時間 2秒
各実施例、比較例の銅箔を常温から400℃まで10度刻みで1時間の加熱処理を行い、各温度での抗張力を測定し、各温度での(1)式に示される勾配SおよびSが最大値となる温度Tmaxを求めた。抗張力の測定は、JISZ2241-1880に基づき測定した。
なお、圧延銅箔である実施例9、比較例4は圧延方向に対して45°方向に引っ張り試験を行い、抗張力を測定している。
温度Tで加熱処理した際の抗張力の値を常態の抗張力の値で割ることで抗張力比を求めた。結果を表3に示す。なお、300℃における抗張力を参考値として表3に併記した。
特に実施例4はいずれの項目もより好ましい範囲にあるため、通搬試験、屈曲試験ともに特に優れた結果を示している。なお、実施例5は粗化粒子層上に金属表面処理層を設けたが、通搬試験、屈曲回数共に他の実施例と遜色なく、粗化処理層を設けることが通搬試験、屈曲回数に大きく影響することはなかった。
実施例2は、Tmaxと常態の抗張力比が70%を超えており、通搬性及び300℃で加熱したときの屈曲性が若干劣っているが、実用には耐えうる性能である。
圧延銅箔を使用した実施例9に対し、電解銅箔を使用した実施例4は、通搬試験、屈曲回数共に優れた結果を示した。
比較例2はSmaxが0.8以下と小さく、通搬試験でシワが発生した。Smaxが小さいことは、銅箔が明確な軟化点を持たないということであり、常温軟化が起こる箔に特徴的な特性である。常温軟化した銅箔は張力をかけた際にシワになりやすい。
比較例3は、抗張力比が80%を超えている。このような箔はポリイミド硬化工程でほとんど軟化が起こらず、屈曲試験において破断が早まる。
比較例4はTmaxが高いため、ポリイミド硬化工程で十分に軟化されず、屈曲試験において破断が早まった。
Claims (10)
- 銅または銅を含む合金からなる厚さ18μm以下のプリント配線基板用銅箔であり、加熱処理温度400℃以下の領域において、(1)式で示される抗張力の勾配Sが最大となる温度Tmaxが150℃以上370℃以下であり、その際の勾配Smaxが0.8MPa/℃以上であり、且つ、Tmaxで1時間加熱処理した後の抗張力が常態の80%以下であるプリント配線基板用銅箔。
S=(Ts(T-50)-Ts(T))/50 (1)
ここで、Ts(T)はT℃で1時間加熱処理を行った後の抗張力である。 - 加熱処理温度400℃以下の領域において、前記(1)式により求められる勾配Sの最大値Smaxが1.8以上であることを特徴とする請求項1に記載のプリント配線基板用銅箔。
- 加熱処理温度400℃以下の領域において、前記(1)式で示される抗張力の勾配Sが最大となる温度Tmaxが180℃以上310℃以下である請求項2に記載のプリント配線基板用銅箔。
- 加熱処理温度400℃以下の領域において、前記(1)式で示される抗張力の勾配Sが最大となる温度Tmaxで1時間加熱処理した後の抗張力が常態の70%以下である請求項1~3のいずれかに記載のプリント配線基板用銅箔。
- 常態の抗張力が500MPa以上である請求項1~4のいずれかに記載のプリント配線基板用銅箔。
- 常態の抗張力が750MPa以下であることを特徴とする請求項1~5のいずれかに記載のプリント配線基板用銅箔。
- 300℃で1時間加熱処理を行なった後の抗張力が450MPa以下である請求項1~6のいずれかに記載のプリント配線基板用銅箔。
- 前記銅箔が、電解銅箔である請求項1~7のいずれかに記載のプリント配線基板用銅箔。
- 前記プリント配線基板用銅箔の少なくともフィルムを貼り付ける面に粗化粒子層を設けたことを特徴とする請求項1~8のいずれかに記載のプリント配線基板用銅箔。
- 前記プリント配線基板用銅箔の少なくともフィルムを貼り付ける面に、ケイ素(Si)、クロム(Cr)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)又はこれら合金の内の少なくとも1種類の金属表面処理層を設けたことを特徴とする請求項1~9のいずれかに記載のプリント配線基板用銅箔。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014556672A JP5889443B2 (ja) | 2013-08-01 | 2014-07-30 | プリント配線基板用銅箔 |
CN201480042286.8A CN105492660B (zh) | 2013-08-01 | 2014-07-30 | 配线基板用铜箔 |
KR1020167001515A KR101813818B1 (ko) | 2013-08-01 | 2014-07-30 | 프린트 배선 기판용 구리박 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-160312 | 2013-08-01 | ||
JP2013160312 | 2013-08-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015016271A1 true WO2015016271A1 (ja) | 2015-02-05 |
Family
ID=52431801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/070090 WO2015016271A1 (ja) | 2013-08-01 | 2014-07-30 | プリント配線基板用銅箔 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP5889443B2 (ja) |
KR (1) | KR101813818B1 (ja) |
CN (1) | CN105492660B (ja) |
TW (1) | TWI639363B (ja) |
WO (1) | WO2015016271A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106069A (ja) * | 2015-12-09 | 2017-06-15 | 古河電気工業株式会社 | プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板 |
TWI627307B (zh) * | 2015-12-09 | 2018-06-21 | Furukawa Electric Co Ltd | 印刷配線板用表面處理銅箔、印刷配線板用覆銅積層板及印刷配線板 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101734840B1 (ko) * | 2016-11-11 | 2017-05-15 | 일진머티리얼즈 주식회사 | 내굴곡성이 우수한 이차전지용 전해동박 및 그의 제조방법 |
US10190225B2 (en) * | 2017-04-18 | 2019-01-29 | Chang Chun Petrochemical Co., Ltd. | Electrodeposited copper foil with low repulsive force |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188969A (ja) * | 1993-10-22 | 1995-07-25 | Gould Electron Inc | 電着銅箔およびその製造方法 |
JPH10330983A (ja) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | 電解銅箔及びその製造方法 |
JP2004339558A (ja) * | 2003-05-14 | 2004-12-02 | Fukuda Metal Foil & Powder Co Ltd | 低粗面電解銅箔及びその製造方法 |
JP2012172195A (ja) * | 2011-02-22 | 2012-09-10 | Jx Nippon Mining & Metals Corp | 銅電解液 |
JP2012211369A (ja) * | 2011-03-31 | 2012-11-01 | Jx Nippon Mining & Metals Corp | 銅電解液 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MY138743A (en) * | 1996-05-13 | 2009-07-31 | Mitsui Mining & Smelting Co | High tensile strength electrodeposited copper foil and the production process of the same |
KR101154203B1 (ko) * | 2006-04-28 | 2012-06-18 | 미쓰이 긴조꾸 고교 가부시키가이샤 | 전해 동박, 그 전해 동박을 이용한 표면 처리 동박 및 그 표면 처리 동박을 이용한 동박 적층판 및 그 전해 동박의 제조 방법 |
JP5771392B2 (ja) * | 2010-12-28 | 2015-08-26 | 日本電解株式会社 | 電解銅箔およびその製造方法 |
-
2014
- 2014-07-30 JP JP2014556672A patent/JP5889443B2/ja active Active
- 2014-07-30 KR KR1020167001515A patent/KR101813818B1/ko active IP Right Grant
- 2014-07-30 CN CN201480042286.8A patent/CN105492660B/zh active Active
- 2014-07-30 WO PCT/JP2014/070090 patent/WO2015016271A1/ja active Application Filing
- 2014-08-01 TW TW103126351A patent/TWI639363B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07188969A (ja) * | 1993-10-22 | 1995-07-25 | Gould Electron Inc | 電着銅箔およびその製造方法 |
JPH10330983A (ja) * | 1997-05-30 | 1998-12-15 | Fukuda Metal Foil & Powder Co Ltd | 電解銅箔及びその製造方法 |
JP2004339558A (ja) * | 2003-05-14 | 2004-12-02 | Fukuda Metal Foil & Powder Co Ltd | 低粗面電解銅箔及びその製造方法 |
JP2012172195A (ja) * | 2011-02-22 | 2012-09-10 | Jx Nippon Mining & Metals Corp | 銅電解液 |
JP2012211369A (ja) * | 2011-03-31 | 2012-11-01 | Jx Nippon Mining & Metals Corp | 銅電解液 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017106069A (ja) * | 2015-12-09 | 2017-06-15 | 古河電気工業株式会社 | プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板 |
WO2017099093A1 (ja) * | 2015-12-09 | 2017-06-15 | 古河電気工業株式会社 | プリント配線板用表面処理銅箔、プリント配線板用銅張積層板及びプリント配線板 |
TWI627307B (zh) * | 2015-12-09 | 2018-06-21 | Furukawa Electric Co Ltd | 印刷配線板用表面處理銅箔、印刷配線板用覆銅積層板及印刷配線板 |
Also Published As
Publication number | Publication date |
---|---|
CN105492660A (zh) | 2016-04-13 |
JP5889443B2 (ja) | 2016-03-22 |
JPWO2015016271A1 (ja) | 2017-03-02 |
CN105492660B (zh) | 2017-12-01 |
TW201524277A (zh) | 2015-06-16 |
TWI639363B (zh) | 2018-10-21 |
KR101813818B1 (ko) | 2017-12-29 |
KR20160037888A (ko) | 2016-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI633195B (zh) | 可撓性印刷基板用銅箔、使用其之覆銅積層體、可撓性印刷基板及電子機器 | |
KR101935128B1 (ko) | 플렉시블 프린트 기판용 구리박, 그것을 사용한 구리 피복 적층체, 플렉시블 프린트 기판 및 전자 기기 | |
JP5889443B2 (ja) | プリント配線基板用銅箔 | |
TW201440915A (zh) | 附有銅鍍層的壓延銅箔 | |
TWI549575B (zh) | Flexible printed wiring board with copper foil, copper clad laminate, flexible printed wiring board and electronic equipment | |
JP6348621B1 (ja) | フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器 | |
WO2018180920A1 (ja) | 圧延銅箔 | |
JP6643287B2 (ja) | フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器 | |
JP5933943B2 (ja) | フレキシブルプリント配線板用圧延銅箔、銅張積層板、フレキシブルプリント配線板及び電子機器 | |
JP2003041334A (ja) | 積層板用銅合金箔 | |
JP2017140838A (ja) | プリント配線板用積層体、プリント配線板の製造方法及び電子機器の製造方法 | |
JP4777206B2 (ja) | フレキシブル銅張積層板の製造方法 | |
TWI718025B (zh) | 可撓性印刷基板用銅箔、使用其之覆銅積層體、可撓性印刷基板及電子機器 | |
JP6647253B2 (ja) | フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器 | |
JP4539960B2 (ja) | プリント配線基板用金属材料 | |
JP2006336045A (ja) | プリント配線基板用金属材料 | |
JP2003041332A (ja) | 積層板用銅合金箔 | |
JP2003034829A (ja) | 積層板用銅合金箔 | |
JP2020056081A (ja) | フレキシブルプリント基板用銅箔、それを用いた銅張積層体、フレキシブルプリント基板、及び電子機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201480042286.8 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2014556672 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14833051 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167001515 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14833051 Country of ref document: EP Kind code of ref document: A1 |