WO2015016205A1 - 低エネルギx線画像形成装置及びその画像の形成方法 - Google Patents

低エネルギx線画像形成装置及びその画像の形成方法 Download PDF

Info

Publication number
WO2015016205A1
WO2015016205A1 PCT/JP2014/069906 JP2014069906W WO2015016205A1 WO 2015016205 A1 WO2015016205 A1 WO 2015016205A1 JP 2014069906 W JP2014069906 W JP 2014069906W WO 2015016205 A1 WO2015016205 A1 WO 2015016205A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
energy
kev
image forming
soft tissue
Prior art date
Application number
PCT/JP2014/069906
Other languages
English (en)
French (fr)
Inventor
吉衞 小寺
勉 山河
山本 修一郎
義治 小幡
Original Assignee
株式会社ジョブ
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジョブ, 国立大学法人名古屋大学 filed Critical 株式会社ジョブ
Priority to US14/908,178 priority Critical patent/US20160174922A1/en
Publication of WO2015016205A1 publication Critical patent/WO2015016205A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4035Arrangements for generating radiation specially adapted for radiation diagnosis the source being combined with a filter or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/06Diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4291Arrangements for detecting radiation specially adapted for radiation diagnosis the detector being combined with a grid or grating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise

Definitions

  • the present invention relates to a low-energy X-ray image forming apparatus that uses X-rays to image a soft tissue (soft tissue) to be imaged and a substance having characteristics corresponding to the soft tissue with respect to X-rays, and formation of the image. More particularly, the present invention relates to a low-energy X-ray image forming apparatus using X-rays in which the X-ray energy range is optimized based on the X-ray transmission characteristics of the soft tissue, and an image forming method thereof.
  • the breast cancer screening mainly uses palpation and mammography, but an ultrasonic device is also effective. Further, as a more detailed diagnostic method, MRI, CT, biopsy (biopsy) or the like is used. Among these, X-ray mammography is considered to be the simplest and most effective method for early detection.
  • this X-ray mammography used a high-sharp and high-contrast intensifying screen film system to detect minute calcifications and low-contrast tumors.
  • digital image systems using CR (computed radiography) and FPD (flat panel detector) have become mainstream due to advances in digital technology.
  • the energy generated from the X-ray generator is 10 This is dealt with by devising to keep it in the range of ⁇ 20keV.
  • This device uses molybdenum (Mo), which has characteristic X-rays at 17.5 keV and 19.6 keV, as a target (anode) material for an X-ray tube, and has a low energy component around 10 keV that greatly affects skin exposure, A molybdenum filter is used to suppress a component of 20 keV or more that causes a decrease in contrast.
  • Mo molybdenum
  • the current X-ray mammography can be said to be an imaging technique weighted to the characteristics of 17.5 keV and 19.6 keV, which are characteristic X-rays of molybdenum.
  • X-rays are taken of relatively light substances and small animals such as small fish and insects.
  • X-rays of about 10 keV to 25 keV are used, sufficient image quality cannot be obtained unless the X-ray tube current is increased or imaging time is secured to some extent.
  • contrast, sharpness, and noise characteristics which are the three elements of image quality, can be considered independently.
  • the main tissues of the breast, mammary gland and fat have an energy of 20 keV and linear attenuation coefficients of 0.8 cm-1 and 0.45 cm-1, respectively.
  • the linear attenuation coefficients of the mass and microcalcifications which are the main tissues of breast cancer, are 0.85 cm-1 and 1.45 cm-1, respectively, with the same energy, while the latter has a large contrast to the mammary tissue.
  • the contrast of the former is slight. Therefore, the X-ray energy used to keep this slight contrast large is low, and the film has a large contrast.
  • the tube voltage is set to 28 kV, Mo (molybdenum) is used as the target material, Mo is used as the filter material, while thick breasts are used.
  • Mo mobdenum
  • the tube voltage is set to 32kV
  • Mo is used as the target material
  • Rh rhodium
  • the remaining 99.5% is absorbed (exposed) in the body in the former and 98.6% in the latter, and does not contribute to the image at all. This means that most of the X-ray irradiation energy is exposed to the patient, and in particular, the side breast surface exposure to which X-rays are incident is very large.
  • the size of the quantum motor which is noise in general image systems, is 1 / ⁇ n of the average number n of X-ray quanta absorbed by the detector, X-rays absorbed by the detector The smaller the number of quanta, the greater the image noise. Therefore, the noise under these photographing conditions becomes very large, the effect of contrast obtained by lowering the energy is impaired, and the signal-to-noise ratio (SNR) or the contrast-to-noise ratio (CNR) is remarkably lowered.
  • SNR signal-to-noise ratio
  • CNR contrast-to-noise ratio
  • the X-ray tube current must be increased or the X-ray irradiation time must be increased.
  • the X-ray exposure dose to the breast increases. That is, a fine image and an X-ray exposure dose have a trade-off relationship.
  • the noise characteristics of the current detector system described above will be described. Regardless of whether the current digital type detector is a direct conversion method or an indirect conversion method, most of the methods obtain an output from the detector by integrating the X-ray dose for a certain period of time. In such an integral type signal detection method, integration is performed including electric noise generated when the output of the detector is converted into an electric signal. This electrical noise is generally generated without depending on the incident X-ray dose. For this reason, if the amount of signal (number of X-rays generated or energy) is small, the weight of the electrical noise component increases, and the X-ray transmission information tends to be buried in noise and cannot be seen. In mammography, this tendency is particularly noticeable because the X-ray energy handled is particularly low.
  • the present invention has been made in view of the problems in photographing soft tissue with X-rays, which are observed in the above-described conventional X-ray mammography and the like. Specifically, i) Significantly improve the signal-to-noise ratio due to electrical noise compared to a conventional imaging device equipped with an integral X-ray detector, ii) Circuits faced by conventional devices The contrast of the high-dose part and the low-dose part is insufficient due to the narrow dynamic length of the patient, so the X-ray energy must be lowered to ensure the contrast despite the large X-ray exposure dose of the patient. The objective is to improve the situation that cannot be obtained, or to prevent the X-ray dose contributing to imaging from changing depending on the size of the breast, resulting in a change in image quality.
  • a low energy X-ray image forming apparatus basically has an energy range higher than an effective energy in an energy region of 10 to 23 keV, and a lower limit energy value of 18 keV.
  • CNR contrast-to-noise ratio
  • the conventional integration type X-ray detector is faced with a poor SN ratio due to electrical noise and a narrow dynamic length of the circuit. Since the contrast discrimination ability is insufficient in the high-dose part and the low-dose part, the problem of having to secure the contrast by lowering the X-ray energy even though the patient's X-ray exposure dose is large is improved. can do.
  • FIG. 1 is a diagram illustrating an outline of a configuration of an X-ray mammography apparatus as a low energy X-ray image forming apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a graph illustrating the energy spectrum of raw X-rays exposed from the anode of the X-ray tube.
  • FIG. 3 is a graph illustrating the energy spectrum of X-rays irradiated from an X-ray tube and after passing through an aluminum filter.
  • FIG. 4 is a graph illustrating the difference in energy spectrum between the X-ray according to the present invention and the X-ray used in the conventional mammography.
  • FIG. 1 is a diagram illustrating an outline of a configuration of an X-ray mammography apparatus as a low energy X-ray image forming apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a graph illustrating the energy spectrum of raw X-rays exposed from the anode of the X-ray tube.
  • FIG. 5 is another graph (with characteristic X-rays) showing the energy spectrum of the X-rays irradiated from the X-ray tube and after passing through the aluminum filter.
  • FIG. 6 is a diagram schematically illustrating a front view of the apparatus illustrated in FIG. 1.
  • FIG. 7 is a partially broken plan view showing an outline of the X-ray detector.
  • FIG. 8 is a perspective view and a cross-sectional view illustrating an outline of a detection module.
  • FIG. 9 is a block diagram showing a data acquisition circuit individually connected to a semiconductor cell constituting each pixel.
  • FIG. 10 is a diagram for explaining a relationship between an electric pulse generated in response to incidence of X-ray photons (photons) and a threshold value for discriminating the intensity.
  • FIG. 10 is a diagram for explaining a relationship between an electric pulse generated in response to incidence of X-ray photons (photons) and a threshold value for discriminating the intensity.
  • FIG. 11 is a diagram illustrating a plurality of energy ranges (BIN) and X-ray photon collection / reconstruction for each energy range.
  • FIG. 12 is a block diagram showing a configuration of an electric system including a console.
  • FIG. 13 is a diagram for explaining an outline of the configuration of an X-ray foreign matter detection apparatus as a low energy X-ray image forming apparatus according to the second embodiment of the present invention.
  • FIG. 14 is a partially broken plan view showing an outline of the X-ray detector employed in the second embodiment.
  • the low energy X-ray image forming apparatus is intended for imaging a soft tissue (soft tissue) part of a human body or the like and a substance made of soft tissue.
  • low energy of “low energy X-ray image forming apparatus” means the lower X of the X-ray energy range used in general X-ray medical diagnostic equipment, excluding conventional mammography. This name is used in the sense of using linear energy.
  • the “formation” of “image formation” goes beyond the concept of taking an X-ray image, and creates an image by applying various processes to the X-ray signal transmitted through the object received by the detector. "Formation” in the sense that it also includes.
  • CNR contrast-to-noise ratio
  • soft tissue is a term for hard tissue and is defined as a collective term for connective tissue excluding bone tissue.
  • soft tissue is defined in terms of tube voltage and CNR in a form that includes the general concept of the medical field. For this reason, the soft tissue referred to in the present invention includes not only human breasts but also non-destructive inspection objects such as food (for example, vegetables such as peppers).
  • the low-energy X-ray image forming apparatus is also called an X-ray mammography apparatus or a mammography apparatus if it is used for imaging a human breast.
  • this low energy X-ray image forming apparatus has been in the spotlight as an X-ray foreign matter detection device as a non-destructive inspection device that detects foreign matters such as hair in food.
  • an X-ray mammography apparatus will be described in the first embodiment, and an X-ray foreign object detection apparatus will be described in the second embodiment.
  • This X-ray mammography apparatus images a breast of a subject.
  • X-ray detection is performed by a method called photon counting (photon counting), and the detected value is processed by a tomosynthesis method (tomosynthesis) method.
  • photon counting photon counting
  • tomosynthesis tomosynthesis
  • the process for obtaining this image may be to obtain a transmission image called a scanogram, or to obtain a CT (Computed Tomography) image.
  • the X-ray mammography apparatus 1 includes an upright gantry 11 and an arm unit 12 that is rotatably held by the gantry 11 in the lateral direction.
  • an orthogonal coordinate system having the longitudinal direction of the gantry 11 as the Y-axis direction is set as shown in FIG.
  • the arm portion 12 has a substantially C-shaped side shape, and the beam portions 12A and 12B extending in the upper and lower two lateral directions, and one end portion of each of the beam portions 12A and 12B in the vertical direction (Y-axis direction). 12C of link parts connected to.
  • one beam portion 12A includes an X-ray generator 21 that generates X-rays.
  • the other beam portion 12B includes an X-ray detection device 31 that detects X-rays and a photon counting method.
  • the apparatus 1 includes compression plates 32A and 32B that compress the breast BR of the subject P in a plate shape so that the position in the height direction (that is, the Y-axis direction) can be adjusted.
  • the compression plates 32A and 32B are made of an X-ray transmissive material.
  • the X-ray mammography apparatus 1 includes a high voltage generator 3 that supplies a high voltage for driving to an X-ray tube, which will be described later, and a console 4 for control and image processing.
  • the high voltage generator 3 is disposed inside the beam portion 12A described above.
  • the console 4 is provided separately from the gantry 11.
  • the console 4 includes an input device 5 and a display device 6 that are used as an interface by the operator.
  • the console 4 controls the drive unit (not shown) of the gantry 11, the arm unit 12, the X-ray detection device 31, and the compression plates 32 ⁇ / b> A and 32 ⁇ / b> B, and the electrical elements in the gantry 11 and the high voltage generator 3.
  • the drive is electrically controlled. For this reason, the console 4 is communicably connected to necessary parts of the gantry 11.
  • the X-ray generator 21 includes an X-ray tube 22 and a filter 23 disposed in order on the X-ray irradiation side of the X-ray tube 22.
  • the filter 23 is a filter in which an aluminum (Al) material is formed into a plate having a desired thickness, and is hereinafter referred to as an aluminum filter.
  • the high voltage is supplied to the X-ray tube 22 from the high voltage generator 3 that generates a high voltage by inverter control.
  • This X-ray tube 22 uses tungsten (W) as its anode material 22A.
  • pulsed X-rays are exposed from the X-ray tube 22 described above.
  • the X-ray is irradiated as a pulsed X-ray beam or continuous X-ray beam collimated toward the breast BR of the subject P through the aluminum filter 23 and the collimator (or slit) 24 (see the dotted line BM1 in FIG. 1). ).
  • the collimator 24 has a contour of the X-ray beam BM1 that is substantially perpendicular to the contour of the sternum side of the subject P, and the contour of the X-ray beam BM1 on the opposite side spreads in a fan shape.
  • X-rays are collimated as follows. This is because the breast BR is imaged as closely as possible to the edge of the sternum side, and an excessive X-ray exposure of the part on the sternum side is prevented.
  • the enlargement ratio 2 times, and the phase contrast effect can be obtained.
  • the following documents can be referred to.
  • the voltage applied to the X-ray tube 22 is, for example, 30 kV. In the present invention, this voltage is set to a value between 30 and 37 kV.
  • the energy of the X-ray generated by the X-ray tube 22 itself (that is, the X-ray before passing through the filter 23) has a spectrum as schematically shown in FIG.
  • energy [keV] is taken on the horizontal axis
  • X-ray photon (photon) count is taken on the vertical axis.
  • the amount of the vertical axis of the distribution is assigned to the photon count (number of photons).
  • the tube voltage is set to 30 kV, so that 30 keV is the upper limit of energy, and there is a spectrum peak in the vicinity of 25 keV, and the energy is lower than that. Distribution extends to the band. In other words, the distribution is broad continuously from the energy on the low band side almost 0 to 30 keV and has a peak near 25 keV.
  • the intensity and energy of the generated X-rays are raised or lowered accordingly. That is, the height (equivalent to the photon count) and the width (energy value) of the energy spectrum become large (wide) according to the rise and fall of the tube voltage.
  • This energy spectrum distribution is not suitable for X-ray mammography.
  • the energy spectrum distribution of the raw X-rays exposed from the X-ray tube 22 is corrected by the aluminum filter 23. That is, the aluminum filter 23 cuts or suppresses the energy spectrum on the low frequency side, that is, the energy component of about 18 keV or less in this example.
  • the plate thickness of the aluminum filter 23 is selected so that such energy components can be cut or suppressed.
  • the X-rays exposed from the X-ray tube 22 pass through the aluminum filter 23 and have an energy spectrum as shown in FIG. According to the figure, the spectrum distribution on the low band side is cut by both filters 23, and the wide band side is suppressed by the tube voltage 30 kV.
  • the tube voltage is 37 kV
  • the energy spectrum extends to 37 keV.
  • the tube voltage can be arbitrarily set between 30 and 37 keV according to the intention of the operator. Therefore, as shown in FIG.
  • CNR contrast-to-noise ratio
  • the condition of an energy range higher than the effective energy in the energy range of 10 to 23 keV was also considered from the viewpoint of improving the problems faced by conventional mammography.
  • the central band of 18 keV to 30 (-37) keV as the X-ray band to be used may be shifted.
  • the point in creating this desired X-ray spectrum is that the energy band used for mammography in the present invention is sufficiently higher than the energy band used in conventional mammography (approximately 10 keV to 23 keV).
  • the present inventors in this embodiment have an average X-ray energy that is at least higher than the energy band in which the conventional mammography apparatus is used, and overlap with the conventional energy region ( This is why the use of an energy band of 20% or less is proposed (see the hatched portion in FIG. 4 described later).
  • FIG. 4 shows a comparison between the energy spectrum of the X-rays exposed from the X-ray generator 21 toward the breast BR of the subject P and the mainstream of conventional X-ray mammography.
  • the energy spectrum for conventional X-ray mammography is an example in which molybdenum (Mo) is used for the anode of the X-ray tube and a rhodium (Rh) filter is used as the filter. This energy spectrum is illustrated as Mo / Rh.
  • FIG. 5 shows another energy spectrum applicable in the present invention.
  • This energy spectrum uses a material other than tungsten, for example, molybdenum or copper, as the anode material 22A of the X-ray tube 22.
  • the number of photons of energy of the characteristic X-ray can be increased.
  • the image contrast due to energy in the vicinity of 26 keV is the highest, the amount of information necessary for imaging can be optimized on the X-ray generation side.
  • the compression plates 32A and 32B are configured to sandwich the breast BR of the subject P between the upper surface of the X-ray detection apparatus 31 and compress the breast BR. This is because the lesioned part can be depicted more precisely by capturing an image in a state where the breast BR is deformed to be as thin as possible.
  • FIG. 6 shows an X-ray tube 22, a collimator (slit) 24, a breast BR, and a detector 42 (described later) when the gantry 11 shown in FIG. 1 is viewed from the front direction (the direction of the arrow FR). The geometric positional relationship with the center is shown.
  • the X-ray detection device 31 includes a grid 41 for preventing scattered X-rays, an X-ray detector (hereinafter simply referred to as a detector) 42 for detecting X-rays, and a high voltage applied to the detector 42. And a bias power source 43 for supplying a bias voltage of.
  • this detector 42 includes a substrate BD and three elongated rectangular shapes that are mounted on the substrate BD at a predetermined distance from each other and parallel to each other and in which X-ray imaging elements are two-dimensionally arranged.
  • Detectors 42A to 42C Each of the three detectors 42A to 42C provides a detection surface 42F.
  • the three detectors 42A to 42C are formed as blocks independent from each other, and are mounted on the substrate BD. In this way, by arranging the three detectors 42A to 42C in a discrete manner, the X-ray imaging elements are arranged in the entire region including the space between the detectors 42A to 42C, and the detector components are compared with the detector configuration. Cost can be reduced and the incidence of scattered radiation can be suppressed.
  • Each detector 42A (to 42C) is configured as a photon counting type X-ray detector of a direct conversion method using a semiconductor.
  • each detector 42A (to 42C) is configured by cascading a plurality of detection modules M 1 to M m with a gap of a predetermined width in one direction, and on the substrate BD in the scanning direction. It is inclined by ⁇ ° (for example, 16.5 °) with respect to the orthogonal direction.
  • Each detection module M 1 ( ⁇ M m ) has collection pixels C (for example, 12 ⁇ 80 pixels) arranged in a two-dimensional manner as shown in FIG. Accordingly, the collection pixel C is also arranged obliquely by ⁇ ° with respect to the scanning direction. Therefore, even if there is a gap between the detection modules M 1 to M m , the collection pixels C are arranged over the entire desired imaging range in the direction orthogonal to the scan direction. That is, signals are reliably collected from the portion corresponding to the gap.
  • the collimator 24 is formed so that X-rays are irradiated only to the detection surfaces 42F located obliquely of the three detectors 42A to 42C.
  • Each detection module M 1 ( ⁇ M m ) includes an ASIC (Application Specific Integrated Circuit) layer A1 mounted on the substrate BD and a detection layer A2 bonded and bonded between the ASIC layer A1.
  • ASIC Application Specific Integrated Circuit
  • Each detector 42A ( ⁇ 42C) has, for example, ten detection modules M arranged in a straight line, so each detector has a collection pixel C (for example, 12 ⁇ 800 pixels).
  • the size of each collection pixel C is, for example, 200 ⁇ m ⁇ 200 ⁇ m.
  • the size of the X-ray detection surface of each detector 42A ( ⁇ 42C) is, for example, 4 mm wide ⁇ 160 mm long).
  • the detector 42 individually counts the photons (photons) corresponding to the incident X-rays by the N pixels constituting the incident surface 42F of each detector 42A ( ⁇ 42C) and calculates the count value.
  • the reflected electric quantity data is output at a high frame rate of 300 to 3,300 fps, for example. This data is also called frame data.
  • Each of the plurality of collection pixels C includes a scintillator such as a cadmium telluride semiconductor (CdTe semiconductor), a cadmium zinc telluride semiconductor (CdZnTe semiconductor), a silicon semiconductor (Si semiconductor), CsI, and a photoelectric converter such as a C-MOS.
  • a scintillator such as a cadmium telluride semiconductor (CdTe semiconductor), a cadmium zinc telluride semiconductor (CdZnTe semiconductor), a silicon semiconductor (Si semiconductor), CsI, and a photoelectric converter such as a C-MOS.
  • Semiconductor cell (sensor) Sn (n 1 to N). Each of the semiconductor cells Sn detects incident X-rays and outputs a pulse electric signal corresponding to the energy value.
  • the X-ray detection material forming each collection pixel C is a scintillator with a fast decay time using a crystal such as Pr: LuAG (praseodymium-added lutetium, aluminum, garnet) or Ce: GAGG (gadolinium aluminum gallium garnet). It may be an element combining photoelectric conversion elements such as SiPM (silicon photomultiplier).
  • the structure of the group of semiconductor cells Sn is also known from Japanese Patent Application Laid-Open Nos. 2000-69369, 2004-325183, and 2006-101926.
  • the size (200 ⁇ m ⁇ 200 ⁇ m) of each collection pixel C described above is a sufficiently small value that can detect the number of X-rays as particles (X-ray photons).
  • the size capable of detecting X-rays as the particles means “an electric pulse signal in response to each incident when a plurality of radiation (for example, X-ray) particles are successively incident at or near the same position.
  • the occurrence of a superposition phenomenon (also called pile-up) is defined as “a size that can be substantially ignored or whose amount is predictable”.
  • each detector 42A (to 42C) is set to such a size that it can be assumed that this counting-out does not occur or substantially does not occur, or the counting-off amount can be estimated.
  • the feature of each detector 42A ( ⁇ 42C) is that the number of X-ray pulses can be accurately measured while accurately performing energy discrimination.
  • a waveform shaping circuit, a multistage circuit is provided at the subsequent stage of the charge amplifier. Comparator, multi-stage counter, multi-stage D / A converter, latch circuit, and serial converter. The circuit configuration of these is known from Japanese Patent Application Laid-Open No. 2006-101926.
  • one pulse signal can be individually compared with different analog amount threshold values th 1 to th 3 .
  • the reason for this comparison is that the energy value of the incident X-ray particle is in any of the energy regions ER EX , ER 1 to ER 3 (also referred to as BIN: see FIG. 11) set in advance in three.
  • the lowest analog amount threshold th 1 is usually used to prevent detection of disturbance, noise caused by circuits such as the semiconductor cell Sn and the charge amplifier, or low-energy radiation that is not necessary for imaging.
  • the band ER EX whose energy is lower than the lowest analog amount threshold th 1 is treated as “a non-measurable (non-measurement) region” because there is much information that depends on noise and disturbance.
  • the number of photons in the highest energy region ER 3 is counted, but is treated as a value not used for image reconstruction.
  • the counters 56 1 to 56 3 arranged in each data collection circuit 51 n enter the first (to third) energy region ER 1 (to ER 3 ) that they should be responsible for counting. Count the number of photons with energy and energy exceeding it. Therefore, if the number of X-ray photons having energy belonging to the first to third energy regions ER 1 to ER 3 , that is, the number of X-ray photons to be obtained for each energy region is W 1 , W 2 , and W 3.
  • the meaning of “acquisition” for each energy region of the number of X-ray photons according to the present application is the meaning of “determining by calculation” from the actual count value as described above, and the energy region as in a modification described later. Both meanings of directly “counting” the number of X-ray photons for each are included.
  • the counter 56 1-56 4 described above is given a signal to start and stop the controller to be described later of the console 4. Counting for a fixed time is managed from the outside using a reset circuit included in the counter itself.
  • the number of thresholds that is, the number of comparators is not necessarily limited to three, and may be two including the analog amount threshold th 1 or any number of three or more. Also good.
  • analog amount threshold values th 1 to th 3 described above are given digital values from the console 4 as calibrated values for each collection pixel C, that is, for each collection channel.
  • the number of X-ray particles incident on each detector 42A ( ⁇ 42C) is obtained by the three counters 56 1 to 563 during the fixed collection time reset at a fixed cycle, so that the collection pixel C It is measured every time and every energy region.
  • Count of the X-ray particle number count data W 1 of the digital value from each of the first to third counters 56 1 ⁇ 56 3 ', W 2', after being outputted in parallel as W 3 ', illustrated Not converted to serial format by serial converter.
  • This serial converter is serially connected to the serial converters of all remaining acquisition channels. For this reason, the count data of all digital quantities are serially output from the serial converter of the last channel and sent to the console 4.
  • the console 4 includes an interface (I / F) 61 that performs input and output of signals, and a controller (CPU) 63, a RAM ( A storage unit) 64, an image processor 65, and a ROM 70.
  • the interface 61 is connected to the input device 5 and the display device 6 and can communicate with the controller 63.
  • the controller 63 controls the driving of the gantry 11 in accordance with a program given in advance to the ROM 70. This control includes a command value sending command to the high voltage generator 3.
  • the RAM 64 temporarily stores the frame data sent from the gantry 11 via the interface 61.
  • the image processor 65 executes various processes under the management of the controller 63 based on a program given in advance to the ROM 70.
  • This process includes a process for executing a known CT reconstruction method or a process for executing a tomosynthesis method called “shift and add”.
  • a tomographic image of a desired cross section of the breast BR of the subject P is obtained using frame data based on the count value of the number of X-ray photons collected for each energy region output from each detector 42A ( ⁇ 42C). Created.
  • the display 6 displays the image created by the image processor 65.
  • the display device 6 is also responsible for displaying information indicating the operating status of the gantry 11 and operator operation information provided via the input device 5.
  • the input device 5 is used by an operator to give information necessary for imaging to the system.
  • the controller 63 and the image processor 65 include a CPU (central processing unit) that operates according to a given program. Those programs are stored in the ROM 70 in advance.
  • the arm portion 12 of the gantry 11 is rotated or rotated around the breast BR of the subject P under the control of the controller 63. During this rotation, X-rays are emitted from the X-ray generator 21 toward the breast BR to be imaged.
  • the energy spectrum of this X-ray is corrected by the aluminum filter 23 as described above. That is, the spectrum is corrected as shown in FIG. According to this corrected spectrum, it has a broad energy in a band of about 18-30 (or -35) keV. That is, energy is almost cut by the aluminum filter 23 in a band lower than about 18 keV. X-rays having main energy in the band of about 18-30 (or -37) keV pass through the breast BR, which is soft tissue.
  • the above-described frame data of the data directly converted from the X-rays into the digital electricity is output from the detectors 42A to 42C.
  • This frame data is data reflecting the integrated value of the number of X-ray photons for each energy band ER in each collection pixel C.
  • This frame data is collected for each frame at a constant frame rate while the arm unit 12 rotates around the center of rotation (see FIG. 6) or rotates or moves within a certain range.
  • the frame data is sequentially sent to the console 4 and stored in the RAM 64.
  • the image processor 65 reads out the frame data stored in the RAM 64 in accordance with an operator command from the input device 5, and uses this frame data to produce an image such as a breast.
  • An X-ray transmission image of a cross section with BR is reconstructed, for example, under the tomosynthesis method. From each collected pixel C, frame data of two energy regions ER 1 and ER 2 are obtained.
  • the image processor 65 for example, subjected to a weighting of low or zero frame data higher energy band ER 2, subjected to a high weighted by frame data of lower energy bands ER 2, they Each collection pixel C is mutually added. Thereby, collected data is created for each collection pixel C. As a result, data associated with the X-ray scan collected from all the collected pixels C is prepared, so that these collected data are processed by an appropriate reconstruction method to reconstruct an image of the breast BR (FIG. 11, step S1). This panoramic image is displayed on the display 36, for example (FIG. 11, step S12). Of course, the image may be reconstructed without weighting.
  • Photon counting detection technology is a technology in which X-rays are regarded as particles, the energy of the particles can be regarded as the height of the pulse, and the pulse signal is shaped and an energy threshold value is provided, so that only the pulses exceeding the threshold value are measured with a counter.
  • a system capable of independently measuring with pixels of about 200 ⁇ m ⁇ 200 ⁇ m and distinguishing a plurality of energy thresholds has been commercialized. This technique is characterized in that electric noise is not applied in order to set a threshold value for energy that is at least higher than electric noise.
  • the linear absorption coefficient of the material differs depending on the X-ray energy. Therefore, in a material having a high linear absorption coefficient, it is easy to obtain contrast at a high energy and the linear absorption coefficient is low. Substances tend to provide contrast with low energy. From this, it is possible to display both the mass and calcification optimally, or to perform a processing method that obtains the maximum contrast in either one by appropriately weighting and adding the images for each BIN. Become.
  • the SN ratio is poor due to electrical noise, which is confronted by the conventional integral X-ray detector, and the dynamic length of the circuit is low. Due to the narrowness, the contrast discrimination ability is insufficient in the high-dose part and the low-dose part, so the X-ray energy has to be lowered to ensure contrast even though the patient's X-ray exposure dose is large. The point can be improved.
  • the problem that the pixel size of 100 um or less is relatively difficult due to the large circuit mounting amount of the photon counting type detector is realized by using a small focus X-ray tube to realize an enlargement effect and a phase contrast effect. Resolve the resolution issue required for visualization. It is possible to optimize the imaging of a tumor with a relatively excellent linear absorption coefficient and a high calcification and a low linear absorption coefficient, which is a characteristic matter in X-ray mammography.
  • the X-ray detection method employs a photon counting type detector that can output at least two energy bands, and the resolution is less than twice that of the subject or object to be obtained. Resolution.
  • the X-ray generator has, for example, a filter disposed in an X-ray tube having an anode, which is a filter that suppresses the passage of X-ray particles having energy on the higher frequency side than the energy spectrum.
  • the tube focus size is 0.056 mm or less
  • the subject or test object is separated from the X-ray tube focus position by 0.5 m or more
  • the distance from the subject or test object to the detector is 0.5 m or more
  • the resolution is secured by the enlargement effect.
  • phase contrast effect for example, “Konica Minolta's phase contrast technology: 1406264584500_0.html” can be referred to.
  • the energy band in which the contrast is optimally obtained differs depending on the tumor or calcification. For this reason, an optimum image can be obtained by weighting and adding the obtained image for each energy band.
  • the CNR Contrast-to-Noise Ratio
  • the CNR can be optimized in order to optimize the depiction of the tumor in the energy band in the energy range from 18 keV to 30 keV to 35 keV. From this viewpoint, a technique of optimizing characteristic X-rays is also possible.
  • this X-ray foreign object detection device 80 is a food FD (substance corresponding to soft tissue of the human body from the viewpoint of contrast-to-noise ratio (CNR)) that is carried on a belt conveyor 81A, 81B, 82C. ) Is a device that detects hair HR as foreign matter that may be present in or around the X-ray. For this reason, this X-ray foreign material detection device 80 is provided on the belt conveyor 81B in the middle and periodically forms an X-ray image at regular intervals in a non-contact manner without stopping the food FD being conveyed. The hair HR is detected and appropriate processing such as notification is performed.
  • CNR contrast-to-noise ratio
  • the foreign object detection device 80 has a box-shaped casing 90, the X-ray generator 21 described above is provided inside the casing 90, and the collimator 24 is provided on the emission side of the X-ray generator 21. ing.
  • a flexible X-ray shield 90 ⁇ / b> A is provided at the food inlet and the food outlet of the casing 90.
  • an X-ray detector 83 that receives transmitted X-rays is provided below the belt conveyor 81B.
  • L1 L2.
  • the detector 83 may be positioned in the space 81S between the belts BL that move in opposite directions on the upper side and the lower side in the height direction (Y-axis direction) of the belt conveyor 81B.
  • the belt BL is made of a material having X-ray transparency.
  • the detector 83 is configured by arranging the 29 detection modules M described above in tandem in one direction.
  • the detector 83 is disposed on the substrate BD so as to be inclined by ⁇ ° (for example, 16.5 °) with respect to the scanning direction, that is, the direction in which the food FD is conveyed.
  • the detector 83 according to the second embodiment has a single number and a large number of modules arranged in tandem, that is, , Except that it is longer than that of the first embodiment.
  • the console 4 applies the frame data detected by the detector 83 at a high frame rate to a shift & add process in accordance with the moving speed of the belt conveyor 81B, for example.
  • a tomographic image along a virtual surface assumed at the same height as the detection surface 83F of the detector 83 or a virtual surface assumed at a desired height is formed at a constant period.
  • the food FD is reflected, and if there is a foreign object such as hair HR, it is reflected together in a state where it is superimposed on the food FD.
  • the console 4 recognizes this foreign substance by a known image recognition method, and performs a process of notifying the operator and giving an instruction to remove the corresponding food FD from the line.
  • the X-ray foreign matter detection device 80 in addition to the same operational effects as described above, the presence of foreign matter that is difficult to be imaged by conventional X-ray photography, such as hair and fine and fine foreign matter, is high-resolution. It can be detected through image formation. Further, the apparatus can be miniaturized by shortening the time for detecting the foreign matter or reducing the tube current. Furthermore, the manufacturing cost of the apparatus can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Mathematical Physics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 X線マンモグラフィやX線による異物検出に際し、線吸収係数が低い軟組織の画像形成の最適化を図る。低エネルギX線画像形成装置は、10~23keVのエネルギ領域の実効エネルギより高いエネルギ範囲であって、18keV~30keV(又は、~37keV)の間のエネルギ範囲に渡って連続的に分布するエネルギスペクトラムを持つX線を発生するX線発生器(22)を備える。この装置は更に、X線発生器から発生され、撮影対象の軟組織又はコントラスト対雑音比(CNR)の観点から当該軟組織に相当する組織を有する物質を透過してきたX線を検出する検出器(42A~42C,83)と、このX線の検出信号に基づいて撮影対象の軟組織又は物質の画像を取得するコンソール(4)と、を備える。軟組織又は物質は、X線管電圧=20kVの下でX線が照射されたときにコントラスト対雑音比(CNR)=3.8以上を呈する組織であると定義される。

Description

低エネルギX線画像形成装置及びその画像の形成方法
 本発明は、X線を用いて撮影対象の軟組織(軟部組織)やX線に対する特性がこの軟組織に相当する組織を有する物質をX線で撮影する低エネルギX線画像形成装置及びその画像の形成方法に係り、とくに、X線のエネルギ範囲をその軟組織のX線透過特性に基づいて最適化したX線を用いる低エネルギX線画像形成装置及びその画像の形成方法に関する。
 2011年にがんで死亡した人は357,305例(男性213,190例、女性144,115例)で、特に女性を中心とした乳房に発生するガンは、日本では女性の部位別罹患率の第1位(2008年)で、ガンでの死亡数の第5位(2011年)であり、その数は年々増加している。また欧米では日本と比べて乳癌の発生確率が高く、更に重要な位置付けとされている。乳癌は発見が早ければ予後は比較的良く、早期発見は重要な課題である。そのため、検診の必要性が強く求められているが、我が国では検診率が欧米に比べて低く12.1%(2010年)であり、検出に有効であると言われているマンモグラフィを用いた健診はわずか10.1%(2010年)である。
 乳癌の検診は主に触診とマンモグラフィを用いているが、そのほか超音波装置も有効である。また、さらに詳細な診断法としてはMRIやCT、生検(バイオプシー)などを用いる。これらの中で、最も簡便で早期発見に有効な手法がX線マンモグラフィであるとされている。
 このX線マンモグラフィは後述するように、微小な石灰化物や低コントラストの腫瘍を検出するために、高鮮鋭高コントラストの増感紙フィルム系を用いていた。しかし、近年のX線マンモグラフィでは、ディジタル技術の進歩により、CR(computed radiography)やFPD(flat panel detector)を用いたディジタル画像系が主流になっている。
 ディジタルX線マンモグラフィであっても、従来のマンモグラフィと同様に、石灰化(Micro Calcification)を検出するためには、100μm以下の分解能が要求される。これと同時に、腫瘤の検出のためには、わずかなX線吸収の差をコントラスト良く画像化することが要求される。
 前者の要求に係る分解能の改善については、検出画素サイズを小さくする方法がとられる。後者の要求については、検出器のノイズ特性や検出感度の制約と乳房が軟組織を中心に構成されていることから、特許文献1にみられるように、X線発生器からの発生エネルギを、10~20keVの領域に抑えるように工夫することで対処している。この工夫とは17.5keVと19.6keVに特性X線を有するモリブデン(Mo)をX線管のターゲット(陽極)材に使用し、皮膚被曝に大きな影響を与える10keV前後の低エネルギ成分と、コントラストの低下をもたらす20keV以上の成分とを抑えるためのモリブデン製のフィルタを用いることである。このフィルタのスペクトラムが持つ20keVのK吸収端に依る20keV以上のエネルギ成分のX線を抑制する効果と、そのフィルタの厚さに依存した低エネルギ成分のX線を抑制する効果とを利用し、所望のエネルギ領域(すなわち、10~20keVのエネルギ領域)のX線スペクトラムを得ている。
 また、乳房が大きい場合、更に高いエネルギを用いないと良好な画像が得られない。このため、乳房が大きい場合、K吸収端が23.2keVとわずかに高いロジューム(Rh)をフィルタとして用いる。いずれにせよ、現状のX線マンモグラフィでは、モリブデンの特性X線である17.5keVと19.6keVの特性に重み付けされたイメージング手法と言える。
 一方、非破壊検査の分野では、比較的軽い物質や、小さな魚や昆虫などの小動物などもX線撮影される。この場合も同様に、10keV~25keVぐらいのX線を用いるが、X線管電流を上げるか、撮像時間をある程度確保しないと十分な画質が得られない、という状況にある。また食品検査では髪の毛が食品に納入するのをX線検査で検査できないかというニーズがあるが、髪の毛(70~100um前後の太さ)を映像化するに必要な、解像度ならびに、検出器のコトラスト分解能、ならびにインラインで十分描出可能なフォトン数を得ることが困難なために、未だにX線検査する手法は皆無である。
 近年Si検出器を用いたフォトンカウンティング型の検出器を用いたマンモグラフィが製品化されている(Philips Medical社、現在Canon社から国内販売)が、Si検出器は比重が軽いために、現状のX線発生器の条件から被ばく線量の低減の視点で、大きく見直すことは難しい。またSi検出器は比重が軽く、現状のエネルギ帯域からX線エネルギを高くすると、Si検出器内での、コンプトン散乱が増加して、エネルギ帯域に分けた撮影を行っても、エネルギの特性に応じた帯域画像を得にくく、また検出感度が低くなるのも課題であった。
 また歯科X線領域ではCdTe半導体検出器を用いたパノラマ装置が製品化されており、センサ素材の比重がSiより重く、更に被ばく線量の低減の意味で、使用X線のエネルギを上げられる可能性はあるが、100μm以下の画素サイズの検出器の製造は、回路実装量の問題、チャージシェアリング量の増大、消費電力の問題で実用化するのが難しいのが現状である。
 よって、乳房撮影においても、非破壊検査においても、X線量を現状から下げながら、軟組織に相当するものの映像化し、かつ100μm以下の細かい解像度を得る技術は皆無であったと言える。
特願2009-154254(発明の名称:低エネルギX線画像形成装置)
 従来の増感紙フィルム系では、画質の3要素であるコントラスト、鮮鋭度、ノイズ特性はそれぞれ独立して考えることができた。乳房の主な組織である乳腺と脂肪は20keVのエネルギで線減弱係数はそれぞれ0.8cm-1と0.45cm-1である。これに対して、乳癌の主な組織である腫瘤と微小石灰化物の線減弱係数は、同じエネルギでそれぞれ0.85cm-1と1.45cm-1で、後者は乳腺組織に対して大きなコントラストを持つが、前者のコントラストは僅かである。したがって、この僅かなコントラストを大きく保つために使用するX線のエネルギは低くし、フィルムのコントラストは大きなものを用いている。具体的には、X線は被写体の乳房が平均の厚さ(約4cm)では管電圧を28kVに設定し、ターゲット材質にMo(モリブデン)を用い、フィルタ材質にMoを用い、一方、厚い乳房(約7cm)では管電圧を32kVに設定し,ターゲット材質にMoを用い,フィルタ材質にRh(ロジウム)を用いている場合が多い。
 ここで問題になることは以下の2点である。まず、X線のエネルギが非常に低いことから透過力が弱く、我々のモンテカルロシミュレーションによる計算では、4cm厚のPMMAファントムに対して、管電圧28kV、ターゲット/フィルタ材質Moの条件でX線を照射した時、ファントム表面の線量を1とすると、ファントムを透過するX線はわずか0.0513になる。7cm厚のPMMAファントムに対して管電圧32kV,ターゲット材質Mo,フィルタ材質Rhの条件でX線を照射した時は、透過するX線はわずか0.0136になる。すなわち、前者では残りの99.5%が、後者では98.6%が体内で吸収(被曝)されたことになり、画像には全く寄与しないことになる。これはX線照射エネルギのほとんどは患者の被爆で、特にX線が入射する側乳房表面被爆が非常に大きいことを意味する。
 さらに、一般的な画像系のノイズである量子モトルの大きさは検出器で吸収されるX線量子の平均の数nできまり1/√nとなることから、検出器で吸収されるX線量子の数が少ないほど画像のノイズは大きくなる。したがって、これらの撮影条件下でのノイズは非常に大きくなり、エネルギを低くして得たコントラストの効果を損ない、信号対雑音比(SNR)、あるいはコントラスト対雑音比(CNR)は著しく低くなる。
 このため、十分に診断可能な画像を得るためには、X線管電流を上げるか、X線照射時間を上げねばならない。そのようにすると、乳房へのX線被曝線量が増加する。つまり、精細な画像とX線被曝線量はトレードオフの関係である。
 女性の乳房検診に対してX線被曝への注意がなされるのはそのような理由に基づいている。
 前述した現状の検出器系のノイズ特性について説明する。現状のディジタル型の検出器が直接変換方式であれ、間接変換方式であれ、X線量を一定時間積分することで、検出器からの出力を得る方式がほとんどである。このような積分型の信号検出方式では、検出器の出力を電気信号に変換する際に発生する電気ノイズも含めて積分してしまう。この電気ノイズは一般的には、入射するX線量には依存せずに発生する。このため、信号の量(X線の発生数あるいはエネルギ)が少ないと、電気ノイズの成分のウエイトが上がり、X線透過情報がノイズに埋もれて見えなくなる傾向にある。マンモグラフィにおいては、特に取り扱うX線エネルギが低いため、この傾向が顕著である。
 本発明は、上述した従来のX線マンモグラフィ等でみられる、軟組織をX線で撮影するときの問題点に鑑みてなされたものである。具体的には、 i)従来の積分型のX線検出器を搭載した撮影装置に比べて、電気ノイズに起因したSN比を大幅に改善させること、ii)従来装置が直面している、回路のダイナミックレングが狭いために高線量部や低線量部でコントラスト識別能が不足することから、患者のX線被曝線量が大きいにも関わらず、X線エネルギを低くしてコントラストを確保せざるを得ない状況を改善する、あるいは乳房の大きさに依存して、画像化に寄与するX線量が変化し、結果として画質が変わることを抑えることを目的とする。
 加えて、X線マンモグラフィの場合には、X線マンモグラフィの特徴的な事項である、線吸収係数が相対的に秀でて高い石灰化と線吸収係数が低い腫瘤とのイメージングの最適化を図ることを、その目的とする。
 上述した課題を解決するため、本発明に係る低エネルギX線画像形成装置は、その基本的な構成として、10~23keVのエネルギ領域の実効エネルギより高いエネルギ範囲であって、下限エネルギ値を18keVとし、この下限エネルギ値から、30keV~37keVの間の上限エネルギ値までのエネルギ範囲に渡って連続的に分布するエネルギスペクトラムを持つX線を発生するX線発生器と、前記X線発生器から発生され、撮影対象の軟組織又はコントラスト対雑音比(CNR)の観点から当該軟組織に相当する組織を有する物質を透過してきた前記X線を検出する検出器と、前記検出器から出力される、前記X線の検出信号に基づいて前記撮影対象の軟組織又は前記物質の画像を形成する画像形成手段と、を備え、前記軟組織又は前記物質は、X線管電圧=20kVの下で前記X線が照射されたときに前記コントラスト対雑音比(CNR)=3.8以上であり、その付近を呈する組織であると定義される、ことを特徴とする。
 また、上述した画像形成装置と同等な機能を発揮する低エネルギX線による画像形成方法も提供される。
 本発明に係る画像形成装置及び画像形成方法によれば、従来の積分型のX線検出器が直面している、電気ノイズに起因してSN比が悪いこと、回路のダイナミックレングが狭いために高線量部や低線量部でコントラスト識別能が不足するため、患者のX線被曝線量が大きいにも関わらず、X線エネルギを低くしてコントラストを確保せざるを得ないなどの問題点を改善することができる。
 添付図面において、
図1は、本発明の第1の実施形態に係る、低エネルギX線画像形成装置としてのX線マンモグラフィ装置の構成の概要を説明する図。 図2は、X線管の陽極から曝射される生のX線のエネルギスペクトラムを例示するグラフ。 図3は、X線管から照射される、アルミニウムフィルタを通過した後のX線のエネルギスペクトラムを例示するグラフ。 図4は、本発明に係るX線と従来のマンモグラフィで使用していたX線との間のエネルギスペクトラムの違いを説明するグラフ。 図5は、X線管から照射される、アルミニウムフィルタを通過した後のX線のエネルギスペクトラムを示す別のグラフ(特性X線あり)。 図6は、図1に示す装置の正面図を模式的に説明する図。 図7は、X線検出器の概要を示す一部破断した平面図。 図8は、検出モジュールの概要を示す斜視図及び断面図。 図9は、各画素を成す半導体セルに個別に接続されるデータ収集回路を示すブロック図。 図10は、X線フォトン(光子)の入射に応答して発生する電気パルスと、その強度弁別のための閾値の関係を説明する図。 図11は、複数のエネルギ範囲(BIN)、及び、そのエネルギ範囲毎のX線フォトンの収集・再構成を説明する図。 図12は、コンソールを含めた電気系の構成を示すブロック図。 図13は、本発明の第2の実施形態に係る、低エネルギX線画像形成装置としてのX線異物検知装置の構成の概要を説明する図。 図14は、第2の実施形態で採用しているX線検出器の概要を示す一部破断した平面図。
 以下、添付図面を参照して、本発明に係る低エネルギX線画像形成装置、及び、その画像の形成方法の実施形態を説明する。
 本発明に係る低エネルギX線画像形成装置は、人体等が持つ軟組織(軟部組織)の部分や軟組織で成る物質を撮影の対象としている。
 ここで、「低エネルギX線画像形成装置」の「低エネルギ」とは、従来のマンモグラフィを除く、一般のX線医療診断機器で使用されているX線のエネルギ範囲のうち、低い方のX線エネルギを使用するという意味で、この名称を冠している。また、「画像形成」の「形成」とは、X線画像を撮影するという概念を超えて、検出器で受信した対象物を透過してきたX線の信号に各種の処理を加えて画像を作り出すことも含むという意味で「形成」としている。
 一方で、本発明が対象とする軟組織とは、この軟組織にX線管電圧=20kVの下でX線を照射したときに、コントラスト対雑音比(CNR)=3.8以上であり、その付近のコントラスト対雑音比を呈する物質を言う。医学分野では、軟組織(軟部組織)は、硬組織に対する用語であって、骨組織を除く結合組織の総称であると定義されている。本発明では、この医学分野の一般的概念を含む形で、軟組織を管電圧とCNRの観点から定義する。このため、本発明で言う軟組織には、人体の乳房は勿論のこと、食品(例えばピーマンなどの野菜類など)などの被非破壊検査の対象物も含まれる。
 このため、本発明に係る低エネルギX線画像形成装置は、人体の乳房の撮影用として実施すればX線マンモグラフィ装置又は乳房X線撮影装置とも呼ばれる。また、この低エネルギX線画像形成装置は、近年、食品の中の毛髪などの異物を検知する、非破壊検査装置としてのX線異物検知装置としても脚光を浴びている。本願では、本発明に係る低エネルギX線画像形成装置として、第1の実施形態においてX線マンモグラフィ装置を、第2の実施形態においてX線異物検知装置を説明する。
 [第1の実施形態]
 図1~図12を参照して、本発明の低エネルギX線画像形成装置に係るX線マンモグラフィ装置の実施形態を説明する。
 このX線マンモグラフィ装置は、被検体の乳房を撮像するもので、X線の検出をフォトンカウンティング(光子計数)と呼ばれる方式で行い、その検出値をトモシンセシス法(tomosynthesis)法で処理して乳房の断層像を得る例である。勿論、この画像を得るための処理は、スキャノグラムと呼ばれる透過像を得るものであってもよいし、CT(Computed Tomography)画像を得るものであってもよい。
 本実施形態に係るX線マンモグラフィ装置1は、図1に示すように、直立したガントリ11と、そのガントリ11にその横方向に向けられて回動可能に保持されたアーム部12とを備える。なお、説明の便宜上、このガントリ11の長手方向をY軸方向とする直交座標系を図1に示すように設定する。
 アーム部12は略C字状の側面形状を有し、上下2本の横方向に伸びる梁部12A,12Bと、これらの梁部12A,12Bの夫々の一端部を縦方向(Y軸方向)に繋ぐリンク部12Cと、を有する。このうち、一方の梁部12Aには、X線を発生させるX線発生器21を備える。もう一方の梁部12Bは、X線とフォトンカウンティング方式で検出するX線検出装置31を備える。また、本装置1には、被検体Pの乳房BRを板状に圧迫する圧迫板32A,32Bがその高さ方向(つまりY軸方向)の位置を調整可能に備えている。圧迫板32A,32BはX線透過性の素材で形成されている。
 また、このX線マンモグラフィ装置1には、後述するX線管に駆動用の高電圧を供給する高電圧発生装置3、及び、制御及び画像処理用のコンソール4を備える。高電圧発生装置3は、前述した梁部12Aの内部に配置されている。コンソール4は、ガントリ11は別体で設けられている。
 コンソール4は、操作者がインターフェースとして使用する、入力器5及び表示器6を備える。コンソール4は、ガントリ11、アーム部12、X線検出装置31、及び圧迫板32A,32Bの駆動部(図示せず)を制御するとともに、ガントリ11内の電気的要素及び高電圧発生装置3の駆動を電気的に制御する。このため、コンソール4は、ガントリ11の必要な各部と通信可能に接続されている。
 このうち、X線発生器21は、X線管22と、そのX線管22のX線照射側に順に配設されたフィルタ23とを備える。フィルタ23はアルミニウム(Al)材を所望厚さの板状に成形したフィルタであり、以下、アルミニウムフィルタと呼ぶ。
 X線管22には、インバータ制御で高電圧を発生させる高電圧発生装置3から高電圧が供給される。このX線管22は、その陽極材22Aとしてタングステン(W)が使用されている。
 上述のX線管22から例えばパルス状のX線が曝射される。そのX線はアルミニウムフィルタ23及びコリメータ(又はスリット)24を介して被検体Pの乳房BRに向けてコリメートされたパルス状X線ビームまたは連続X線ビームとして照射される(図1の点線BM1参照)。
 コリメータ24は、図1に示すように、X線ビームBM1の輪郭のうち、被検体Pの胸骨側のビーム輪郭がほぼ垂直になり、その反対側のX線ビームBM1の輪郭がファン状に広がるようにX線をコリメートする。これは、乳房BRのなるべく胸骨側の縁まできっちりと撮像し、かつ、胸骨側の部位の余分なX線被ばくを防止するためである。
 また、図1に示すように、焦点被写体間距離L1=0.5m、被写体検出器間距離L2=0.5m、X線管22の焦点サイズ=0.056mm以下の値にそれぞれ設定されている。これにより、拡大率=2倍となり、位相コントラスト効果が得られるようになっている。尚、位相コントラストについては、下記の文献を参照できる。
      [非特特許文献]位相コントラストマンモグラフィの画質特性
      Investigation of physical image characteristics and phenomenon of edge enhancement by phase contrast using equipment typical for mammography, 
      Asumi Yamazaki, Katsuhiro Ichikawa, Yoshie Kodera, Medical Physics, 35(11), 5135-5150, 2008.
 いま、X線管22に印加する電圧は例えば30kVとするが、本発明では、この電圧は30~37kVの間の値に設定される。
 この管電圧30~37kVの場合、X線管22自体が発生するX線(つまりフィルタ23を透過する前のX線)のエネルギは、模式的には、図2に示すようなスペクトラムを持つ。図2では、管電圧=30kVの場合の曲線を実線で示し、管電圧=37kVの場合の曲線を仮想線で示す。このスペクトラムの分布では、横軸にエネルギ[keV]を採り、縦軸にX線のフォトン(光子)のカウントを採っている。本実施形態は、フォトンカウンティング方式でX線検出を行っているので、かかる分布の縦軸の量をフォトンカウント(フォトン数)に割り当てている。
 この図2の実線で示す例の場合、管電圧を30kVに設定しているので、30keVをエネルギの上限値とし、その途中の25keV付近にスペクトラムのピークを有し、且つ、それよりも低いエネルギ帯域まで分布が伸びている。つまり、殆ど0に近い低域側のエネルギから30keVまで連続的にブロードであって、25keV付近にピークを有する分布を成している。管電圧を上下させると、その分、発生するX線の強度もエネルギも上下する。つまり、管電圧の上下に応じて、エネルギスペクトラムの高さ(フォトンのカウントに相当)も幅(エネルギ値)も大きく(広く)なる。
 このエネルギスペクトラムの分布は、このままではX線マンモグラフィに適さない。
 そこで、このX線管22から曝射された生のX線は、アルミニウムフィルタ23により、そのエネルギスペクトラムの分布が補正される。つまり、アルミニウムフィルタ23は、低域側のエネルギスペクトラム、すなわち、この例では、約18keV以下のエネルギ成分をカット又は抑制する。アルミニウムフィルタ23は、そのようなエネルギ成分のカット又は抑制が可能なように、その板厚が選択されている。
 この結果、X線管22から曝射されたX線は、アルミニウムフィルタ23を透過することで、図3に示すようなエネルギスペクトラムを有する。同図によれば、両フィルタ23で低域側のスペクトラム分布がカットされるともに、広域側は管電圧30kVで抑えられる。勿論、管電圧37kVにした場合、エネルギスペクトラムは37keVまで広がる。本実施形態では、前述したように、管電圧=30~37keVの間で任意に、操作者の意向に応じて選択的に設定可能にしている。このため、X線発生器21からコリメータ24を通って外部に照射されるX線は、図3に示すように、「下限値=18keV~上限値30keV」~「下限値=18keV~上限値37keV」の狭いエネルギ範囲で連続的なエネルギスペクトラムを呈する。スペクトラムのピークは25keV付近にあるが、管電圧を30~37kVの間にどの値に設定するかに応じて若干、高い方へシフトする。
 この狭いエネルギ範囲(「下限値=18keV~上限値30keV」~「下限値=18keV~上限値37keV」)は、本発明で定義している軟組織を耐ノイズ性及び高コントラストの両立という観点から最適に撮影可能なように設定されている。つまり、このエネルギ範囲は、軟組織にX線管電圧=20kVの下でX線を照射したときに、コントラスト対雑音比(CNR)=3.8以上を達成可能なものである。
 このCNR=3.8以上という値は、本発明者等が、「M. Ishida et al., “Digital Image Processing: Effect on Detectability of Simulated Low-Contrast Radiographic Patterns”, Radiology 1984; 150: 569-575」などの資料を参考に、正常乳腺組織、腫瘤、異物としての人の毛髪等の線吸収係数や密度を考慮して、医学的な軟組織のみならず、異物検知という観点から、その軟組織に相当する生体以外の物質(以下、軟組織相当の物質)をも含む値として設定された。この軟組織相当の物質の一例として、人の毛髪がある。毛髪は、線吸収係数がやや大きいが細くて小さいものの代表例として挙げられる。
 同時に、狭いエネルギ範囲を決定する上で、従来のマンモグラフィが直面している問題を改善する観点から、10~23keVのエネルギ領域の実効エネルギより高いエネルギ範囲という条件も加味された。
 なお、本実施形態において、使用するX線帯域としての18keV~30(~37)keVの中心帯域をずらしてもよい。この所望のX線スペクトラムを作成する上でのポイントは、本発明でマンモグラフィに使用するエネルギ帯域が従来のマンモグラフィで使用されているエネルギ帯域(概略10keV~23keV)よりも十分に高いことである。そのための一つの指標として、本発明者等は、本実施形態において、少なくとも従来のマンモグラフィ装置が使用されているエネルギ帯域よりも平均X線エネルギが高く、且つ、従来のエネルギ領域とのオーバーラップ(後述する図4の斜線部参照)が20%以下のエネルギ帯域を使用することを提案している訳である。
 図4には、X線発生器21から被検体Pの乳房BRに向けて曝射されるX線のエネルギスペクトラムと、従来のX線マンモグラフィで主流となっているそれとを比較して示す。図4において、従来のX線マンモグラフィ用のエネルギスペクトラムは、X線管の陽極にモリブデン(Mo)を、また上記フィルタとしてロジウム(Rh)によるフィルタを用いた例である。このエネルギスペクトラムは、Mo/Rhとして図示されている。
 図4に示す両スペクトラム、すなわち本実施形態に係るスペクトラムと、従来例に係るスペクトラムMo/Rhとを比較してみれば、その違いは一目瞭然である。本実施形態に係る2つのスペクトラムは共に、従来例に係るそれよりも高域側のエネルギ帯域を有し(主に、18~30(~37)keV)を有し、かつ、特性X線がない連続的な分布になっている。このエネルギスペクトラムは、従来のものよりも、高いX線エネルギを有し、X線マンモグラフィに適したものである。
 なお、図5に、本発明で適用可能な別のエネルギスペクトラムを示す。このエネルギスペクトラムはX線管22の陽極材22Aとして、タングステン以外の材料、例えば、モリブデンや銅を使用したものである。この場合、エネルギ=26keV付近に特性X線によるピークが出現する。これにより、この特性X線の持つエネルギのフォトン数を上げることができる。これは例えば26keV付近のエネルギによる画像コントラスが最も高い場合に、X線発生側で、撮影に必要な情報量の最適化を図ることができる。
 このように、そのエネルギの帯域が補正(制限)されたX線がX線発生器21から被検体Pの乳房BRに入射する。
 図1に戻って説明する。圧迫板32A,32Bは、X線検出装置31の上面との間で被検体Pの乳房BRを挟み込み、乳房BRを圧迫するように構成されている。これは、乳房BRを極力薄い状態に変形させた状態で撮像することで病変部の描出をより精細に行うためである。
 なお、図6に、図1に示すガントリ11を正面方向(矢印FRの方向)から見た場合の、X線管22、コリメータ(スリット)24、乳房BR、及び検出器42(後述する)を中心とした幾何学的な位置関係を示す。
 また、X線検出装置31は、X線の散乱線を防止するためのグリッド41と、X線を検出するX線検出器(以下、単に検出器と呼ぶ)42と、この検出器42に高圧のバイアス電圧を供給するバイアス電源43とを備える。
 この検出器42は、図7に示すように、基板BDと、この基板BD上に相互に所定距離ずつ離し且つ互いに平行に実装され且つX線撮像素子を2次元に配列した細長い矩形の3つの検出器42A~42Cとを有する。この3つの検出器42A~42Cの夫々が検出面42Fを提供する。この3つの検出器42A~42Cは互いに独立したブロックとして作成され、それらを基板BD上に実装されている。このように、3つの検出器42A~42Cを離散配置することで、検出器42A~42Cの相互間のスペースも含めその全域にX線撮像素子を並べて検出器構成に比べて、検出器の部品コストを低減でき、且つ、散乱線の入射を抑制できる。
 勿論、必要に応じて、必要な大きさの2次元領域をカバーする1つの検出器を用いることもできる。
 各検出器42A(~42C)は、半導体による直接変換方式のフォトンカウンティング型X線検出器として構成されている。
 具体的には、各検出器42A(~42C)は、複数の検出モジュールM~Mを一方向に所定幅の空隙を空けて縦列配置して構成され、基板BD上に、スキャン方向に直交する方向に対してθ°(例えば16.5°)だけ傾けられている。各検出モジュールM(~M)は、図7に示すように、2次元に配列された収集画素C(例えば12×80画素)を持つ。これにより、スキャン方向に対して、収集画素Cもθ°だけ斜めに傾けて配置される。したがって、検出モジュールM~Mの相互の間に空隙があっても、スキャン方向に直交する方向における所望撮影範囲の全域にわたって収集画素Cが並ぶことになる。つまり、その隙間に相当する部分からも確実に信号が収集される。
 なお、コリメータ24は、3つの検出器42A~42Cの夫々の、斜めに位置する検出面42FにのみX線が照射されるように形成されている。
 各検出モジュールM(~M)は、基板BD上に実装されたASIC(特定用途向け集積回路)層A1と、このASIC層A1との間でボンディング接合される検出層A2とを備える。
 各検出器42A(~42C)は、この検出モジュールMを例えば10個直線的に配置するので、検出器毎に、収集画素C(例えば12x800画素)を有する。各収集画素Cのサイズは、例えば200μm×200μmである。また、各検出器42A(~42C)のX線検出面のサイズは、例えば横4mm×縦160mm)である。
 このため、検出器42は、入射X線に応じた光子(フォトン)を、各検出器42A(~42C)の入射面42Fを構成するN個の画素が個々に計数して、その計数値を反映させた電気量のデータを例えば300~3,300fpsの高いフレームレートで出力する。このデータはフレームデータとも呼ばれる。
 この複数の収集画素Cのそれぞれは、テルル化カドミウム半導体(CdTe半導体)、カドミウムジンクテルライド半導体(CdZnTe半導体)、シリコン半導体(Si半導体)、CsI、などのシンチレータに、光電変換器をC-MOSなどの半導体セル(センサ)Sn(n=1~N)により構成される。この半導体セルSnは、それぞれ、入射するX線を検出して、そのエネルギ値に応じたパルス電気信号を出力する。つまり、各検出器42A(~42C)は、半導体セルSnの複数が2次元に配列されたセル群を備え、その半導体セルSnのそれぞれ、すなわち、2次元配列の複数の収集画素C(例えば、1~NのN個)それぞれの出力側にデータ収集回路51(n=1~N)が備えられている(図9参照)。
 なお、収集画素Cのそれぞれを形成するX線検出素材は、Pr:LuAG(プラセオジム添加ルテチウム・アルミニウム・ガーネット)あるいはCe:GAGG(ガドリニウムアルミニウムガリウムガーネット)などの結晶を用いた減衰時間の早いシンチレータとSiPM(シリコンフォトマルティプライヤー)などの光電変換素子を組み合わせた要素であってもよい。
 なお、この半導体セルSnの群の構造は、特開2000-69369号公報、特開2004-325183号公報、特開2006-101926号公報によっても知られている。
 ところで、前述した各収集画素Cのサイズ(200μm×200μm)は、X線を粒子(X線フォトン)としてその数を検出することが可能な十分小さい値になっている。本実施形態において、X線をその粒子として検出可能なサイズとは、「放射線(例えばX線)粒子が同一位置又はその近傍に複数個連続して入射したときの各入射に応答した電気パルス信号間の重畳現象(パイルアップとも呼ばれる)の発生を実質的に無視可能な又はその量が予測可能なサイズ」であると定義される。この重畳現象が発生すると、X線粒子の「入射数対実際の計測数」の特性にX線粒子の数え落とし(パイルアップカウントロスとも呼ばれる)が発生する。このため、各検出器42A(~42C)の収集画素Cのサイズは、この数え落としが発生しない又は実質的に発生しないと見做せる大きさに、又は、数え落し量が推定できる程度に設定されている。この各検出器42A(~42C)の特徴は、エネルギ弁別を正確に行いながら、X線パルスの数が正確に計測できることである。
 続いて、図9を参照して、各検出器42A(~42C)に電気的に繋がる回路を説明する。複数のデータ収集回路51(n=1~N)のそれぞれは、各半導体セルから出力されたアナログ量の電気信号を受けるチャージアンプを有し、このチャージアンプの後段に、波形整形回路、多段の比較器、多段のカウンタ、多段のD/A変換器、ラッチ回路、及びシリアル変換器などを備える。これらに回路構成は、特開2006-101926号公報により知られている。
 この要部を示すと、各データ収集回路51(n=1~N)において、波形整形回路の出力端は、例えば3段の比較器54~54の比較入力端にそれぞれ接続されている。この3つの比較器54~54それぞれの基準入力端には、図10に示す如くそれぞれ値が異なるアナログ量の閾値th(ここではi=1~3)が印加されている。これにより、1つのパルス信号を異なるアナログ量閾値th~thに各別に比較することができる。この比較の理由は、入射したX線粒子のエネルギ値が、事前に3つに分けて設定したエネルギ領域EREX,ER~ER3(BINとも呼ばれる:図11参照)のうちのどの領域に入るのかについて調べる(弁別)ためである。パルス信号の波高値(つまり、入射するX線粒子のエネルギ値を表す)がアナログ量閾値th~thのどの値を超えているかについて判断される。これにより、弁別されるエネルギ領域EREX,ER~ERが異なる。
 なお、最も低いアナログ量閾値thは、通常、外乱や、半導体セルSn、チャージアンプなどの回路に起因するノイズ、或いは、画像化に必要のない低エネルギの放射線を検出しないようにするための閾値として設定される。本実施形態では、この閾値thは、画像化に必要なエネルギ帯域の下限値=18keVに相当する値に設定されている。このため、最も低いアナログ量閾値thよりもエネルギが低い帯域EREXは、ノイズや外乱に左右される情報が多いとして、「計測不能(非計測)領域」として扱われる。一方、最も高いエネルギ領域ERのフォトン数は計数されるが、画像再構成には使用しない値として扱われる。そこで、最も高いアナログ量閾値thは、宇宙線による重畳現象(パイルアップ)を知るために、管電圧=30~37kVの間の所望値に設定される。図11の例では、35kVにされている。
 このため、本実施形態では、真ん中の2つの第1、第2のエネルギ領域ER,ERに属するエネルギを持つX線フォトンの数として計数される。具体的には、各データ収集回路51に配置されたカウンタ56~56は、それぞれ、自己が計数担当するべき第1(~第3)のエネルギ領域ER(~ER)に入るエネルギ及びそれを超えるエネルギを持つフォトン数をカウントする。このため、第1~第3のエネルギ領域ER~ERそれぞれに属するエネルギを持つX線フォトン数、つまり、エネルギ領域毎の求めたいX線フォトン数をW、W、Wとすると、第1~第3のカウンタ56~56の計数値W´、W´、W´との関係は、
       W=W´-W´
       W=W´-W´
となる。なお、W=W´はわずかな宇宙線との重畳現象のみに因る、意味の無い(つまり、X線フォトンが持つエネルギ領域を特定できない)情報であるので、その値は判るが、画像生成には使用されない。
 そこで、真に求めたい計数値W~Wは、後述するデータプロセッサで上式に基づく減算処理に求める。なお、理想的には、W=W´=0である。
 このように、本実施形態にあっては、第1~第2のエネルギ領域ER~ERそれぞれに属するX線フォトン数W~Wは、実際の計数値W´~W´から演算(減算)によって求める。これにより、データ計数回路51に実装する回路構成が簡単化される。
 このため、本願に係るX線フォトン数のエネルギ領域毎の「収集」の意味には、上述のように実際の計数値から「演算によって求める」という意味と、後述する変形例のようにエネルギ領域毎のX線フォトン数を直接的に「計数する」という両方の意味が含まれる。
 上述したカウンタ56~56にはコンソール4の後述するコントローラから起動及び停止の信号が与えられる。一定時間の計数は、カウンタ自身が有するリセット回路を使って外部から管理される。
 また、閾値の数、すなわち比較器の数は、必ずしも3個に限定されず、上記アナログ量閾値thの分を含めて2個であってもよいし、3個以上の何個であってもよい。この閾値の数は、BINと呼ばれる、X線フォトン数をカウントするエネルギ領域の数に依存するものである。そのエネルギ領域の数が1つの場合、閾値はth,thの2つであり、本実施例でこれを実施すれば、th=18keVに相当する基準電圧値に、th=30(~37)keVに相当する基準電圧値にそれぞれ設定される。また、カウント対象のエネルギ領域の数が3つの場合、閾値はth,th,th,thの4つであり、本実施例でこれを実施すれば、th=18keVに相当する基準電圧値に、th=30(~37)keVに相当する基準電圧値に、th,th=18~30(~37)keVの間の適宜な基準電圧値にそれぞれ設定される。つまり、図11の例においてエネルギ範囲18~30keVが3つもエネルギ領域に弁別され、その領域毎にX線フォトン数がカウントされる。カウント対象のエネルギ領域の数が4つの場合も同様に、図11の例においてエネルギ範囲18~30keVが4つもエネルギ領域に弁別され、その領域毎にX線フォトン数がカウントされる。
 本実施形態に戻ると、上述したアナログ量閾値th~thは、具体的には、コンソール4からディジタル値で収集画素C毎、即ち収集チャンネル毎にキャリブレーションした値が与えられる。
 このようにして、一定周期でリセットされる一定の収集時間の間に、3つのカウンタ56~56により、各検出器42A(~42C)に入射したX線の粒子数が、収集画素C毎に且つエネルギ領域毎に計測される。このX線粒子数の計数値は、第1~第3のカウンタ56~56のそれぞれからディジタル量の計数データW´、W´、W´として並列に出力された後、図示しないシリアル変換器によりシリアルフォーマットに変換される。このシリアル変換器は残り全ての収集チャンネルのシリアル変換器とシリアルに接続されている。このため、全てのディジタル量の計数データは、最後のチャンネルのシリアル変換器からシリアルに出力され、コンソール4に送られる。
 コンソール4は、図12に示すように、信号の入出力を担うインターフェース(I/F)61を備え、このインターフェース61にバス62を介して通信可能に接続されたコントローラ(CPU)63、RAM(記憶部)64、画像プロセッサ65、及びROM70を備えている。また、インターフェース61は入力器5及び表示器6に接続され、コントローラ63と通信可能になっている。
 コントローラ63は、ROM70に予め与えられたプログラムに沿ってガントリ11の駆動を制御する。この制御には、高電圧発生装置3への指令値の送出指令も含まれる。RAM64は、ガントリ11からインターフェース61を介して送られてきたフレームデータを一時保管する。
 画像プロセッサ65は、コントローラ63の管理の下に、ROM70に予め与えられたプログラムに基づいて、各種の処理を実行する。
 この処理には、公知のCT再構成法を実行する処理、又は、シフト・アンド・アッド(shift and add)と呼ばれるトモシンセシス法を実行する処理が含まれる。これらの処理により、各検出器42A(~42C)から出力されるエネルギ領域別に収集したX線フォトン数のカウント値に基づくフレームデータを使って、被検体Pの乳房BRの所望断面の断層像として作成される。
 表示器6は、画像プロセッサ65により作成された画像を表示する。また表示器6は、ガントリ11の動作状況を示す情報及び入力器5を介して与えられるオペレータの操作情報の表示も担う。入力器5は、オペレータが撮像に必要な情報をシステムに与えるために使用される。
 コントローラ63、画像プロセッサ65は、与えられたプログラムで稼動するCPU(中央処理装置)を備えている。それらのプログラムは、ROM70に事前に格納されている。
 この構成されたX線マンモグラフィ装置1では、コントローラ63の制御の下に、ガントリ11のアーム部12を被検体Pの乳房BRの周りに回転又は回動させられる。この回転中に、X線発生器21からX線が撮像対象である乳房BRに向けて照射される。
 このX線は、前述したように、アルミニウムフィルタ23により、そのエネルギスペクトラムが補正される。つまり、図3に示すようにスペクトラムが補正される。この補正されたスペクトラムによれば、約18~30(又は~35)keVの帯域にブロードなエネルギを有している。つまり、約18keVよりも低い帯域ではアルミニウムフィルタ23によりエネルギがほとんどカットされている。この約18~30(又は~37)keVの帯域に主要なエネルギを有するX線が軟組織である乳房BRを通過する。
 このX線のフォトンの一部は乳房BRの組織で吸収されるが、従来よりも多い、残りのフォトンが乳房BRを透過して検出器42A~42Cにより検出される。これにより、X線からディジタル電気量に直接変換されたデータが前述したフレームデータが検出器42A~42Cから出力される。このフレームデータは、各収集画素Cにおけるエネルギ帯域ER毎のX線フォトン数の積算値を反映したデータである。
 このフレームデータは、アーム部12が回転中心(図6参照)の周りに回転又は一定範囲内での回動又は移動している間に、一定のフレームレートでフレーム毎に収集される。このフレームデータは順次、コンソール4に送られ、RAM64に保存される。
 そこで、撮像、つまりデータ収集が終わると、画像プロセッサ65は、入力器5からの操作者の指令に応じて、RAM64に格納されているフレームデータを読み出し、このフレームデータを用いて画像、例えば乳房BRのある断面のX線透過画像を例えばトモシンセシス法の元で再構成する。各収集画素Cから2つのエネルギ領域ER、ERのフレームデータが得られる。
 このため、この画像の再構成において、画像プロセッサ65は、例えば、高いエネルギ帯域ERのフレームデータに低い又は零の重み付けを施し、低いエネルギ帯域ERのフレームデータにより高い重み付けを施し、それらを収集画素C毎に相互に加算する。これにより、収集画素C毎に、収集されたデータが作成される。これにより、全収集画素Cから収集したX線スキャンに伴うデータが揃うので、これらの収集データを適宜な再構成法で処理して乳房BRの画像を再構成する(図11、ステップS1)。このパノラマ画像は例えば表示器36で表示される(図11、ステップS12)。勿論、重み付けを施さずに画像を再構成してもよい。
 ここで、前述したX線の検出回路の電気ノイズについて述べる。この電気ノイズの影響を無くすという視点で、最近、フォトンカウンティング型の検出器を搭載した装置が製品化されている。フォトンカウンティング検出技術はX線を粒子とみなし、その粒子のエネルギをパルスの高さと見なせる、パルス信号に整形して、エネルギ閾値を設けることで、その閾値を越えたパルスのみカウンタで計測する技術で、200μmx200μm程度の画素で独立して計測し、しかも複数のエネルギ閾値を識別可能なシステムが製品化されている。この技術では少なくとも電気ノイズよりも高いエネルギに閾値設定をするために、電気ノイズが乗らないのが大きな特徴である。
 また複数のエネルギに分割した収集が可能なので、X線エネルギに応じて物質の線吸収係数が異なるために、線吸収係数が高い物質においては、高いエネルギでコントラストが得やすく、線吸収係数が低い物質では、低いエネルギでコントラストが得やすい傾向にある。このことからBIN毎の画像を適宜に重み付け加算することで、腫瘤と石灰化の両者を最適に表示したり、どちらかに最大限コントラストが得られるような処理方法を行ったりすることも可能になる。
 以上のように、本実施形態に係るX線マンモグラフィ装置によれば、従来の積分型のX線検出器が直面している、電気ノイズに起因してSN比が悪いこと、回路のダイナミックレングが狭いために高線量部や低線量部でコントラスト識別能が不足するため、患者のX線被曝線量が大きいにも関わらず、X線エネルギを低くしてコントラストを確保せざるを得ないなどの問題点を改善することができる。
 またフォトンカウンティング型検出器の回路実装量が多いことに起因した、画素サイズ100um以下が比較的難しいという課題を、小焦点X線管を用い、拡大効果と位相コントラスト効果を実現し、石灰化の映像化に必要な解像度の問題を解決する。X線マンモグラフィにおいて特徴的な事項である、線吸収係数が相対的に秀でて高い石灰化と線吸収係数が低い腫瘤とのイメージングの最適化を図ることができる。
 またX線検出方式は、少なくともエネルギ帯域を2つ以上に分けて出力することが可能なフォトンカウンティング型の検出器を採用しており、解像度は、求めたい被写体、あるいは被検物の2倍以下の分解能を有している。X線発生器は、例えば、陽極を有するX線管に配置されたフィルタを有し、これは前記エネルギスペクトラムよりも高域側のエネルギを有するX線粒子の通過を抑制するフィルタで、X線管焦点サイズは0.056mm以下で、X線管焦点位置から被写体、あるいは被検物を0.5m以上離し、かつ被写体、あるいは被検物から検出器までの距離を0.5m以上にして、位相コントラスト効果を狙いコントラストの強調を図ると同時に、拡大効果により、解像度の確保を行う。位相コントラスト効果は、例えば、「コニカミノルタの位相コントラスト技術:1406264584500_0.html」を参照できる。
 かかるフォトンカウンティング検出器の複数のエネルギBINに分けた画像が得られれば、腫瘍とか石灰化とかで最適にコントラストが得られるエネルギ帯域が異なる。このため、エネルギ帯域ごとに、得られた画像をウエイティング加算することで、最適な画像を得ることができる。加えて、18keVから30keV~35keVを上限とするエネルギ範囲のエネルギ帯域において、腫瘍の描出を最適化するためにCNR(Contrast-to-Noise Ratio)を最適化できる。この観点から、特性X線を最適化するという手法も可能である。
 [第2の実施形態]
 図13~図14を参照して、本発明の低エネルギX線画像形成装置としてのX線異物検知装置の実施例を説明する。
 この実施形態において、前述した第1の実施形態と同一又は同等の構成要素には同一符号を付して、その説明を省略又は簡略化する。
 図13に示すように、このX線異物検知装置80は、ベルトコンベア81A,81B,82Cに載せられて搬送される食品FD(コントラスト対雑音比(CNR)の観点から人体の軟組織に相当する物質)の内部又は周囲に存在するかもしれない異物としての毛髪HRをX線で検知する装置である。このため、このX線異物検知装置80は、途中のベルトコンベア81Bに設けられ、搬送される食品FDを止めないで非接触でX線画像を一定時間毎に周期的に形成し、その画像から毛髪HRを検知し、告知等の適宜な処理をするようになっている。
 この異物検知装置80は、ボックス状のケーシング90を有し、このケーシング90の内部に下向きに前述したX線発生器21が設けられ、このX線発生器21の出射側にコリメータ24が設けられている。ケーシング90の食品入口及び食品出口には、撓み性のあるX線シールド90Aが設けられている。
 また、ベルトコンベア81Bの下側には、透過してきたX線を受けるX線検出器83が設けられる。図13に示す例では、L1=L2に設定されている。
 なお、検出器83は、ベルトコンベア81Bにおける高さ方向(Y軸方向)の上側及び下側にて互いに逆方向に移動する帯状のベルトBLの間のスペース81Sに位置させてもよい。ベルトBLはX線透過性を有する素材で形成されている。
 検出器83は、図14に示すように、前述した検出モジュールMを29個、一方向に縦列配置して構成される。この検出器83は、基板BD上でスキャン方向、すなわち、食品FDが搬送される方向に対してθ°(例えば16.5°)だけ傾けて配置している。これにより、検出器83は、一例として、縦H=460mm及び横幅W=145mmのサイズを有する。
 前述した第1の実施形態における検出器42A~42Cと比べて、この第2の実施形態に係る検出器83は、その数が1つであること、縦列配置するモジュールの数が多いこと、すなわち、より長いことを除いて、第1の実施形態のそれと同一である。
 コンソール4は、検出器83で高速なフレームレートで検知されたフレームデータを、例えば、ベルトコンベア81Bの移動速度に合わせてシフト・アンド・アッド(shift & add)の処理に付す。これにより、例えば、検出器83の検出面83Fと同一の高さの位置に想定した仮想面又は所望高さの位置に想定した仮想面に沿った断層像を一定周期で形成する。この画像には、食品FDが写り込み、また毛髪HRなどの異物があれば、それが食品FDに重畳した状態で一緒に写り込む。コンソール4は、この異物を周知の画像認識法で認識し、オペレータに告知したり、該当する食品FDをラインから外すように指示を出したりする処理を行う。
 その他の構成は、第1の実施形態と同一又は同等であるので、前述したものと同等の作用効果が得られる。
 このため、このX線異物検知装置80によれば、前述したと同等の作用効果のほか、毛髪や、細く且つ細かい異物など、従来のX線撮影では画像化が難しい異物の存在を高解像度の画像形成を通して検知することができる。また、その異物検知の時間を短縮したり、管電流を低減したりすることで、装置を小型化できる。さらに、装置の製造コストを下げることもできる。
1 X線マンモグラフィ装置(低エネルギX線画像形成装置)
3 高電圧発生装置
4 コンソール(画像形成手段)
21 X線発生器
22 X線管
22A 陽極材
23 アルミニウムフィルタ(フィルタ)
31 X線検出装置
42、42A~42C 検出器
63 コントローラ
64 RAM(記憶部)
65 画像プロセッサ(CPU)
70 ROM
(~M) 検出モジュール
Sn 半導体セル
C 収集画素

Claims (14)

  1.  10~23keVのエネルギ領域の実効エネルギより高いエネルギ範囲であって、下限エネルギ値を18keVとし、この下限エネルギ値から、30keV~37keVの間の上限エネルギ値までのエネルギ範囲に渡って連続的に分布するエネルギスペクトラムを持つX線を発生するX線発生器と、
     前記X線発生器から発生され、撮影対象の軟組織又はコントラスト対雑音比(CNR)の観点から当該軟組織に相当する組織を有する物質を透過してきた前記X線を検出する検出器と、
     前記検出器から出力される、前記X線の検出信号に基づいて前記撮影対象の軟組織又は前記物質の画像を形成する画像形成手段と、を備え、
     前記軟組織又は前記物質は、X線管電圧が20kVの下で前記X線が照射されたときに前記コントラスト対雑音比(CNR)が3.8以上を呈する軟組織又は物質であると定義される、ことを特徴とする低エネルギX線画像形成装置。
  2.  前記X線発生器は、
     陽極を有し前記X線を発生するX線管と、
     前記X線管のX線照射側に配置され且つ前記陽極から発生する前記X線が通過する位置に配置されたフィルタと、を有し、
     前記フィルタは、
     前記エネルギスペクトラムよりも低域側のエネルギを有するX線の粒子の通過を抑制するフィルタを有することを特徴とする請求項1に記載の低エネルギX線画像形成装置。
  3.  前記X線発生器は、下限エネルギ値を18keVとし、この下限エネルギ値から、30keV~37keVの間の上限エネルギ値までのエネルギ範囲に特性X線のピークを持たないエネルギスペクトラムのX線を発生するように構成されている請求項2に記載の低エネルギX線画像形成装置。
  4.  前記X線発生器は、前記X線として、前記エネルギ範囲に特性X線のピークを持つエネルギスペクトラムのX線を発生するように構成されている請求項2に記載の低エネルギX線画像形成装置。
  5.  前記X線管は、前記下限エネルギ値を18keVとし、この下限エネルギ値から、30keV~37keVの間の上限エネルギ値までのエネルギ範囲であり、かつ、前記エネルギ範囲に前記特性X線を有するよう前記陽極の素材を設定したことを特徴とする請求項4に記載の低エネルギX線画像形成装置。
  6.  前記X線管は0.056mm以下の焦点サイズを有し、
     前記X線管の焦点の位置から前記撮影対象の軟組織又は前記物質までの距離を0.5m以上の距離に設定し、
     前記撮影対象の軟組織又は前記対象物から前記検出器までの距離を0.5m以上にし、これにより、位相コントラスト効果を有する状態で撮影することを特徴とした請求項1~5の何れか一項に記載の低エネルギX線画像形成装置。
  7.  前記検出器は、前記X線を粒子とみなし、画素毎に、その粒子の入射に応答して当該粒子の持つエネルギ値に応じた電気パルス信号を出力するX線検出器であり、
     前記X線検出器は、前記画素毎に、かつ、前記エネルギスペクトラムを少なくとも3つに分割したエネルギ領域のうちの最高位及び最下位のエネルギ領域を除く1つ又は複数のエネルギ領域のそれぞれ毎に、前記X線の粒子の数に応じた前記検出信号を出力する信号処理回路を備える、ことを特徴とする請求項1~6の何れか一項に記載の低エネルギX線
    画像形成装置。
  8.  前記X線検出器は、前記画素毎に、かつ、前記エネルギスペクトラムを少なくとも3つに分割したエネルギ領域のうちの最高位及び最下位のエネルギ領域を除く1つのエネルギ領域に、前記X線の粒子の数に応じた前記検出信号を出力する信号処理回路を備える、ことを特徴とする請求項7に記載の低エネルギX線画像形成装置。
  9.  前記検出器は、前記X線を検出する素子を縦長の2次元状に配列した2次元の画素列を持つモジュールを、複数、一列に相互に空隙を空けて配列した縦長型検出器であることを特徴とする請求項1~8の何れか一項に記載の低エネルギX線画像形成装置。
  10.  前記縦長型検出器が、相互に離間して複数、並置されている請求項9に記載の低エネルギX線画像形成装置。
  11.  前記縦長型検出器は、前記X線を前記撮影対象の軟組織又は前記物質に相対的に移動させる方向と直交する方向に対して、当該検出器の縦方向の前記画素の列が斜めに位置するように配置されていることを特徴とする請求項9又は10に記載の低エネルギX線画像形成装置。
  12.  前記撮影対象の軟組織は人体の乳房であり、
     前記低エネルギX線画像形成装置はX線マンモグラフィ装置であることを特徴とする請求項1~11の何れか一項に記載の低エネルギX線画像形成装置。
  13.  前記低エネルギX線画像形成装置は前記物質の内部又は周囲に存在する異物を検知する異物検知装置であることを特徴とする請求項1~11の何れか一項に記載の低エネルギX線画像形成装置。
  14.  10~23keVのエネルギ領域の実効エネルギより高いエネルギ範囲であって、下限エネルギ値を18keVとし、この下限エネルギ値から、30keV~37keVの間の上限エネルギ値までのエネルギ範囲に渡って連続的に分布するエネルギスペクトラムを持つX線を発生させ、
     前記X線発生器から発生され、撮影対象の軟組織又はコントラスト対雑音比(CNR)の観点から当該軟組織に相当する組織を有する物質を透過してきた前記X線を検出し、
     前記検出器から出力される、前記X線の検出信号に基づいて前記撮影対象の軟組織又は前記物質の画像を形成する、低エネルギX線による画像を形成する方法であって、
     前記軟組織又は前記物質は、X線管電圧が20kVの下で前記X線が照射されたときに前記コントラスト対雑音比(CNR)が3.8以上を呈する軟組織又は物質であると定義される、ことを特徴とする画像の形成方法。
PCT/JP2014/069906 2013-07-29 2014-07-29 低エネルギx線画像形成装置及びその画像の形成方法 WO2015016205A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/908,178 US20160174922A1 (en) 2013-07-29 2014-07-29 Low-energy x-ray image forming device and method for forming image thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-157073 2013-07-29
JP2013157073A JP2015024097A (ja) 2013-07-29 2013-07-29 低エネルギx線画像形成装置及びその画像の形成方法

Publications (1)

Publication Number Publication Date
WO2015016205A1 true WO2015016205A1 (ja) 2015-02-05

Family

ID=52431738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069906 WO2015016205A1 (ja) 2013-07-29 2014-07-29 低エネルギx線画像形成装置及びその画像の形成方法

Country Status (3)

Country Link
US (1) US20160174922A1 (ja)
JP (1) JP2015024097A (ja)
WO (1) WO2015016205A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371854B2 (en) 2015-09-08 2019-08-06 Nuctech Company Limited Safety inspection apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3500169B1 (en) * 2016-08-18 2022-10-12 Shenzhen Xpectvision Technology Co., Ltd. A dedicated breast computed tomography system
JP6890943B2 (ja) * 2016-10-06 2021-06-18 キヤノンメディカルシステムズ株式会社 放射線診断装置及び方法
JP6682150B2 (ja) * 2017-03-29 2020-04-15 富士フイルム株式会社 乳腺量取得装置、方法およびプログラム
CN111904446A (zh) * 2020-09-11 2020-11-10 深圳先进技术研究院 乳腺成像系统及其成像方法
WO2023137334A1 (en) * 2022-01-13 2023-07-20 Sigray, Inc. Microfocus x-ray source for generating high flux low energy x-rays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325183A (ja) * 2003-04-23 2004-11-18 M & C:Kk 放射線検出方法、放射線検出器、及び、この検出器を搭載した放射線撮像システム
JP2006101926A (ja) * 2004-09-30 2006-04-20 M & C:Kk 放射線検出装置、放射線画像診断装置、及び放射線画像の生成方法
JP2008073515A (ja) * 2006-08-22 2008-04-03 Konica Minolta Medical & Graphic Inc X線画像システム
JP2012040051A (ja) * 2010-08-13 2012-03-01 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置
JP2014113226A (ja) * 2012-12-07 2014-06-26 Tele Systems:Kk X線撮像装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5596200A (en) * 1992-10-14 1997-01-21 Primex Low dose mammography system
US5375158A (en) * 1993-04-23 1994-12-20 Regents Of The University Of California X-ray source for mammography
US6115452A (en) * 1998-01-08 2000-09-05 The Regents Of The University Of California X-ray radiography with highly charged ions
US6418193B1 (en) * 1999-11-01 2002-07-09 General Electric Company Imaging system including radiation filter for x-ray imaging
US6683934B1 (en) * 2000-06-05 2004-01-27 General Electric Company Dual energy x-ray imaging system and method for radiography and mammography
FR2814666A1 (fr) * 2000-07-07 2002-04-05 Ge Med Sys Global Tech Co Llc Procede et appareil d'examen d'un sein par injection d'un produit de contraste
SE524731C2 (sv) * 2002-06-07 2004-09-21 Xcounter Ab Metod och apparat för detektering av joniserande strålning
US7431500B2 (en) * 2003-04-01 2008-10-07 Analogic Corporation Dynamic exposure control in radiography
SE526838C2 (sv) * 2003-11-27 2005-11-08 Xcounter Ab Undersökningsmetod och anordning för detektion av joniserande strålning
US7430276B2 (en) * 2004-02-25 2008-09-30 Nanodynamics-88 Low dose X-ray mammography method
WO2005092195A1 (ja) * 2004-03-29 2005-10-06 National Institute Of Radiological Sciences ヒール効果補正フィルタ、x線照射装置、x線ct装置及びx線ct撮像方法
US7412024B1 (en) * 2004-04-09 2008-08-12 Xradia, Inc. X-ray mammography
CN1937960A (zh) * 2004-07-07 2007-03-28 株式会社东芝 X-射线检查方法及x-射线检查装置
US7120224B2 (en) * 2004-11-02 2006-10-10 Advanced X-Ray Technology, Inc. X-ray imaging apparatus and method for mammography and computed tomography
US7746976B2 (en) * 2005-12-30 2010-06-29 Carestream Health, Inc. Bone mineral density assessment using mammography system
WO2007087329A2 (en) * 2006-01-24 2007-08-02 The University Of North Carolina At Chapel Hill Systems and methods for detecting an image of an object by use of an x-ray beam having a polychromatic distribution
MX2011005779A (es) * 2008-12-01 2012-04-30 Univ North Carolina Sistemas y metodos para detectar una imagen de un objeto al utilizar creacion de imagenes que haces multiples a partir de un haz de rayos x que tiene una distribucion policromatica.
JP5399278B2 (ja) * 2009-03-31 2014-01-29 富士フイルム株式会社 乳腺含有率推定装置及び方法
JP5857800B2 (ja) * 2012-03-01 2016-02-10 コニカミノルタ株式会社 関節撮影装置及び撮影対象固定ユニット
US9044186B2 (en) * 2012-06-25 2015-06-02 George W. Ma Portable dual-energy radiographic X-ray perihpheral bone density and imaging systems and methods
KR101479212B1 (ko) * 2012-09-05 2015-01-06 삼성전자 주식회사 엑스선 영상 장치 및 엑스선 영상 생성 방법
KR102023511B1 (ko) * 2012-09-07 2019-09-30 삼성전자주식회사 엑스선 영상 생성 방법 및 장치
DE102012217301B4 (de) * 2012-09-25 2021-10-14 Bayer Pharma Aktiengesellschaft Kombination aus Kontrastmittel und Mammographie-CT-System mit vorgegebenem Energiebereich und Verfahren zur Erzeugung tomographischer Mammographie-CT-Aufnahmen durch diese Kombination
KR20140050479A (ko) * 2012-10-19 2014-04-29 삼성전자주식회사 엑스선 발생 모듈, 엑스선 촬영 장치 및 엑스선 촬영 방법
JP6117524B2 (ja) * 2012-11-22 2017-04-19 富士フイルム株式会社 放射線画像撮影システム、放射線画像撮影方法及びプログラム
US9001967B2 (en) * 2012-12-28 2015-04-07 Carestream Health, Inc. Spectral grating-based differential phase contrast system for medical radiographic imaging
KR102095760B1 (ko) * 2012-12-28 2020-04-02 삼성전자주식회사 엑스선 촬영 장치, 엑스선 검출 장치 및 엑스선 영상 생성 방법
KR20140087246A (ko) * 2012-12-28 2014-07-09 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
KR20140111818A (ko) * 2013-03-12 2014-09-22 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
KR102103419B1 (ko) * 2013-08-30 2020-04-24 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
KR20150043630A (ko) * 2013-10-14 2015-04-23 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
KR102201407B1 (ko) * 2013-11-18 2021-01-12 삼성전자주식회사 엑스선 영상장치 및 그 제어방법
KR20150058672A (ko) * 2013-11-19 2015-05-29 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325183A (ja) * 2003-04-23 2004-11-18 M & C:Kk 放射線検出方法、放射線検出器、及び、この検出器を搭載した放射線撮像システム
JP2006101926A (ja) * 2004-09-30 2006-04-20 M & C:Kk 放射線検出装置、放射線画像診断装置、及び放射線画像の生成方法
JP2008073515A (ja) * 2006-08-22 2008-04-03 Konica Minolta Medical & Graphic Inc X線画像システム
JP2012040051A (ja) * 2010-08-13 2012-03-01 Konica Minolta Medical & Graphic Inc 放射線画像撮影装置
JP2014113226A (ja) * 2012-12-07 2014-06-26 Tele Systems:Kk X線撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371854B2 (en) 2015-09-08 2019-08-06 Nuctech Company Limited Safety inspection apparatus

Also Published As

Publication number Publication date
US20160174922A1 (en) 2016-06-23
JP2015024097A (ja) 2015-02-05

Similar Documents

Publication Publication Date Title
Siewerdsen et al. Optimization of x‐ray imaging geometry (with specific application to flat‐panel cone‐beam computed tomography)
Kappler et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT
Shikhaliev Energy-resolved computed tomography: first experimental results
Shikhaliev Computed tomography with energy-resolved detection: a feasibility study
WO2015016205A1 (ja) 低エネルギx線画像形成装置及びその画像の形成方法
US7724865B2 (en) System and method of optimizing a monochromatic representation of basis material decomposed CT images
Kappler et al. Multi-energy performance of a research prototype CT scanner with small-pixel counting detector
US20100232669A1 (en) Dynamic optimization of the signal-to-noise ratio of dual-energy attenuation data for reconstructing images
US20070205367A1 (en) Apparatus and method for hybrid computed tomography imaging
EP2002397B1 (en) Noise reduction in dual-energy x-ray imaging
US20120069952A1 (en) System and method of spectral calibration and basis material decomposition for x-ray ct systems
US9320477B2 (en) Method and apparatus for adaptive scatter correction
Cho et al. Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging
JP2004077132A (ja) Ct装置
Kappler et al. Contrast-enhancement, image noise, and dual-energy simulations for quantum-counting clinical CT
JP2014113226A (ja) X線撮像装置
Pani et al. K-edge subtraction imaging using a pixellated energy-resolving detector
Kappler et al. Dual-energy performance of dual kVp in comparison to dual-layer and quantum-counting CT system concepts
EP1687616B1 (en) Examination method and apparatus
Lundqvist et al. Measurements on a full-field digital mammography system with a photon counting crystalline silicon detector
Cai et al. Scatter correction using beam stop array algorithm for cone-beam CT breast imaging
Taibi 2.05 Breast Imaging
JP2017051437A (ja) X線フィルタ、放射線検出装置及び放射線検査装置
JP2016137097A (ja) 放射線検出器及び放射線断層撮影装置
March Hyperspectral x-ray imaging: a comparison of iodinated and gold nanoparticle contrast media for the application of contrast-enhanced digital mammography.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832174

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908178

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832174

Country of ref document: EP

Kind code of ref document: A1