WO2015016070A1 - 黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法 - Google Patents

黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法 Download PDF

Info

Publication number
WO2015016070A1
WO2015016070A1 PCT/JP2014/068944 JP2014068944W WO2015016070A1 WO 2015016070 A1 WO2015016070 A1 WO 2015016070A1 JP 2014068944 W JP2014068944 W JP 2014068944W WO 2015016070 A1 WO2015016070 A1 WO 2015016070A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
peripheral surface
carbon
based adhesive
graphite member
Prior art date
Application number
PCT/JP2014/068944
Other languages
English (en)
French (fr)
Inventor
馬嶋 一隆
栄太 伊吉
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2015016070A1 publication Critical patent/WO2015016070A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/03Electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/02Ohmic resistance heating

Definitions

  • the present invention relates to a graphite structure, a graphite heater, a method for manufacturing a graphite structure, and a method for manufacturing a graphite heater.
  • graphite materials are widely used as structural members for high-temperature furnaces because they have heat resistance and chemical stability.
  • the triple point of graphite is high in both pressure and temperature, and has the property of sublimating without melting at normal pressure. For this reason, graphite cannot be welded, and a structural member having a complicated shape is obtained by cutting or joining. In the case of obtaining a structural member by cutting, an integral structural member is obtained. Therefore, there is a problem that a material yield is poor instead of obtaining a high-strength structural member.
  • Patent Document 1 introduces a graphite heater by bonding. Since the graphite heater by joining is originally a separate member, when the operating temperature rises or the usage time is prolonged, deformation and creep occur, and the joint is distorted and deformed, resulting in gaps in the joint. It describes what you can do. Furthermore, it is described that when used as a graphite heater, electric discharge occurs at the joint and cracks and breakage occur. In order to solve this problem, in the graphite heater described in Patent Document 1, by fixing the member with a bolt through a flexible expanded graphite sheet, the gap between the members is eliminated, and the discharge between the members and the joining portion are prevented. It describes that the generated heat is suppressed.
  • an expanded graphite sheet is sandwiched between the members, and the expanded graphite sheet has a feature in which the hexagonal network surface of the crystal spreads in the plane direction. is there.
  • the hexagonal network surface of the crystal spreads in the plane direction. is there.
  • the member which has a recessed part may be tightened with a volt
  • the present invention has been made in order to solve the conventional problems, and provides a graphite structure, a graphite heater, a method for manufacturing a graphite structure, and a method for manufacturing a graphite heater, which realize low-resistance and high-strength bonding.
  • the purpose is to do.
  • the graphite structure of the present invention includes a substantially cylindrical first graphite member, a small-diameter portion that is coaxially disposed on the first graphite member, has a smaller diameter than the first graphite member, and has an uneven surface on the outer peripheral surface.
  • a second graphite member in which the small-diameter portion can be inserted and a concave portion surrounding the substantially cylindrical space is provided on the end surface, and the concave portion is coaxially connected to the first graphite member, and the small-diameter portion
  • a peripheral surface carbon-based adhesive portion interposed between the outer peripheral surface and the inner peripheral surface of the concave portion, and the maximum diameter dimension of the small diameter portion and the inner diameter dimension of the concave portion are equal.
  • the first graphite member and the small diameter portion are integrally formed.
  • the graphite structure of the present invention is provided with irregularities on the inner peripheral surface of the concave portion.
  • the graphite structure of the present invention is provided with a first groove on the outer peripheral surface of the small diameter portion.
  • the first groove is provided in a spiral shape.
  • a plurality of second grooves are provided on the inner peripheral surface of the recess.
  • each of the second grooves is provided in a spiral shape.
  • the peripheral surface carbon-based adhesive portion includes an aggregate in which at least one of the outer peripheral surface of the small diameter portion and the inner peripheral surface of the concave portion is cut. is there.
  • the graphite structure of the present invention is such that the end face of the first graphite member and the end face of the second graphite member facing each other are joined via an end face carbon-based adhesive portion.
  • the peripheral surface carbon-based adhesive portion and the end surface carbon-based adhesive portion are made of the same material.
  • At least one of the peripheral surface carbon-based adhesive portion and the end surface carbon-based adhesive portion is a carbide of Copna resin.
  • the graphite heater of the present invention uses any of the graphite structures described above.
  • the method for producing a graphite structure of the present invention includes a first graphite member having a substantially cylindrical shape and a second graphite member having a concave portion surrounding a substantially cylindrical space on an end surface, the concave portion being coaxial with the first graphite member.
  • the small-diameter portion is cut into the concave portion while scraping at least one of the outer peripheral surface of the small-diameter portion and the inner peripheral surface of the concave portion Perform the insertion process to insert,
  • the first graphite member and the second graphite member are heated to cure the circumferential carbon-based adhesive by carbonization to form a circumferential carbon-based adhesive portion
  • the first groove is spirally provided in advance on the outer peripheral surface of the small diameter portion.
  • a plurality of rows of second grooves are provided in advance on the inner peripheral surface of the recess.
  • the second grooves are formed in a spiral shape.
  • the method for producing a graphite structure according to the present invention includes an end face carbon-based adhesive in which an end face carbon-based adhesive is applied to at least one of the end face of the first graphite member and the end face of the second graphite member facing each other.
  • the coating process is performed before the heat treatment process.
  • At least one of the peripheral surface carbon-based adhesive and the end surface carbon-based adhesive is a copna resin.
  • the method for producing a graphite heater according to the present invention uses any of the methods for producing a graphite structure described above.
  • the first graphite member and the second graphite member are processed by cutting. However, it is difficult to precisely process the outer diameter of the small diameter portion and the inner diameter of the concave portion due to wear of the blade to be processed, deformation of the material, and the like. is there.
  • the maximum diameter of the small diameter portion of the first graphite member can be inserted into the concave portion of the second graphite member, but is formed larger than the inner diameter of the concave portion, and inserted while rubbing the surface irregularities with each other.
  • both the first graphite member and the second graphite member are made of graphite, the uneven portion where the first graphite member and the second graphite member interfere with each other is inserted while being shaved by wear, and the small diameter portion of the first graphite member is inserted.
  • the outer diameter and the inner diameter of the recess of the second graphite member can be made equal.
  • a peripheral carbon-based adhesive portion is interposed between the outer peripheral surface of the small diameter portion and the inner peripheral surface of the concave portion. Moreover, the 1st groove
  • the peripheral surface carbon-based adhesive portion is formed through curing and carbonization of the resin contained therein.
  • the peripheral carbon-based adhesive portion is once softened before being cured.
  • the softened peripheral carbon-based adhesive portion is absorbed by the porous first graphite member and second graphite member, and the peripheral carbon-based adhesive portion shrinks in size. When the size shrinks, the first graphite member and the second graphite member are likely to move with each other, and cracks are likely to occur in the peripheral surface carbon-based adhesive portion being cured.
  • the contact resistance between the first graphite member and the second graphite member is reduced.
  • the electrical resistance can be lowered.
  • the outer diameter of the small diameter portion of the first graphite member is equal to the inner diameter of the concave portion of the second graphite member. For this reason, since the small diameter part of the 1st graphite member and the crevice of the 2nd graphite member directly contact without going through a peripheral surface carbon system adhesion part, the contact resistance between the 1st graphite member and the 2nd graphite member is made small. It is possible to provide a graphite heater that has low electrical resistance and realizes high-strength bonding.
  • the inner diameter of the concave portion of the second graphite member is smaller than the maximum outer diameter of the small diameter portion of the first graphite member. For this reason, when inserting the small diameter portion of the first graphite member into the concave portion of the second graphite member, the small diameter portion of the first graphite member is inserted while cutting the outer peripheral surface of the small diameter portion or the inner peripheral surface of the concave portion.
  • the recesses of the second graphite member can be in direct contact with each other.
  • the small-diameter portion of the first graphite member has the spiral first groove on the outer peripheral surface, the graphite particles generated by being scraped when inserted are peripheral surfaces held in the first groove. Mixes with carbon adhesive and functions as an aggregate. In the peripheral carbon-based adhesive, the resin included therein is cured and carbonized to form a peripheral carbon-based adhesive portion.
  • the circumferential carbon-based adhesive is softened once before it is cured.
  • the softened circumferential carbon-based adhesive is absorbed by the porous first graphite member and second graphite member, and the circumferential carbon-based adhesive shrinks.
  • the size shrinks the first graphite member and the second graphite member easily move with each other, and cracks are likely to occur in the circumferential surface carbon-based adhesive during curing.
  • the contact resistance between the first graphite member and the second graphite member is reduced.
  • the electrical resistance can be lowered.
  • the manufacturing method of the graphite heater of this invention uses the manufacturing method of the graphite structure mentioned above. That is, the inner diameter of the concave portion of the second graphite member is smaller than the maximum outer diameter of the small diameter portion. For this reason, when inserting the small diameter portion of the first graphite member into the concave portion of the second graphite member, the small diameter portion of the first graphite member is inserted while cutting the outer peripheral surface of the small diameter portion or the inner peripheral surface of the concave portion.
  • the recesses of the second graphite member can be in direct contact with each other. Thereby, the contact resistance between a 1st graphite member and a 2nd graphite member can be made small, and the manufacturing method of the graphite heater which implement
  • (A) is an exploded perspective view showing the graphite structure of the first embodiment according to the present invention
  • (B) is a sectional view taken along the line BB in (A).
  • (A) is sectional drawing which shows the relationship between the small diameter part and recessed part before joining a 1st graphite member and a 2nd graphite member
  • (B) is sectional drawing of the state which inserts a small diameter part in a recessed part.
  • a perspective view showing an example of a graphite heater using a graphite structure is an exploded perspective view showing a graphite structure of a second embodiment according to the present invention, and (B) is a sectional view taken along the line BB in (A).
  • (A) is an exploded perspective view showing a graphite structure according to a third embodiment of the present invention, and (B) is a sectional view taken along the line BB in (A).
  • (A) is sectional drawing which shows the relationship between the small diameter part of a 1st graphite member, and the recessed part of a 2nd graphite member,
  • (B) is sectional drawing which shows the state which inserts a small diameter part in a recessed part
  • (A) is an exploded perspective view showing a graphite structure of a fourth embodiment according to the present invention, and (B) is a cross-sectional view of the bonded graphite structure at the position BB in (A).
  • the graphite structure 10 ⁇ / b> A of the first embodiment includes a first graphite member 20 and a second graphite member 30.
  • the first graphite member 20 is formed by forming a graphite material into a substantially cylindrical shape, and a small-diameter portion 22 arranged coaxially is integrally formed on a first graphite member tip surface (end surface) 21.
  • the small-diameter portion 22 has a columnar shape having a smaller diameter than the outer diameter of the first graphite member 20, and the outer peripheral surface 221 is provided with irregularities 23.
  • the second graphite member 30 is formed by forming a graphite material into a substantially columnar shape, and has a concave portion 32 surrounding a substantially columnar space coaxially arranged on the tip surface (end surface) 31 of the second graphite member. It is desirable to provide the unevenness 33 also on the inner peripheral surface 321 of the recess 32.
  • the second graphite member 30 is illustrated and described as having a substantially cylindrical shape, but may be a plate shape as described later.
  • the unevenness 23 provided on the outer peripheral surface 221 of the small-diameter portion 22 can take various forms and is not limited.
  • FIG. 4 shows an example of the measurement result of the unevenness 23 on the outer peripheral surface 221 of the small diameter portion 22.
  • the position of the zero point on the Y axis is relative and has no special meaning, and the maximum diameter dimension of the small diameter portion is defined on the basis of the position where the maximum value is obtained.
  • the unevenness 23 can be provided with, for example, a plurality of grooves provided in a circular or elliptical shape along the circumferential direction in parallel along the longitudinal direction. Alternatively, the groove can be provided in a spiral shape along the outer peripheral surface 221.
  • the spiral-shaped first groove 231 can be provided with a plurality of spirals in parallel or with a plurality of spirals intersecting each other.
  • the rotation direction of a spiral is not specifically limited, It can utilize either clockwise or counterclockwise with respect to the advancing direction.
  • the number of strips of the spiral first groove 231 is not particularly limited. The number may be one or two or more. Since the 1st groove
  • the cross-sectional shape of the first groove 231 is not particularly limited. A triangular groove, a semicircular groove, a trapezoidal groove, a rectangular groove, or the like may be used. Further, on the outer peripheral surface of the small-diameter portion 22, a peripheral carbon-based adhesive portion 24 to which a peripheral carbon-based adhesive 241 is applied is provided.
  • the depth of the plurality of rows of first grooves 231 that circulate around the outer peripheral surface 221 of the small diameter portion 22 is not particularly limited, but is preferably 5 to 500 ⁇ m. If the depth of the first groove 231 is 5 ⁇ m or more, the circumferential carbon-based adhesive 241 that can maintain sufficient strength even if absorbed into the pores of the first graphite member 20 and the second graphite member 30 is used as the groove. Can be held. When the depth of the first groove 231 is 500 ⁇ m or less, a sufficient thickness can be secured in the small diameter portion 22, so that even if a tensile stress is applied, the stress concentration is small and the small diameter portion 22 is not easily broken. be able to.
  • the first groove 231 is preferably formed on the entire outer peripheral surface 221 of the small diameter portion 22.
  • the first graphite member 20 and the second graphite member 30 are located at any location of the circumferential carbon-based adhesive 241 held in the first groove 231. Therefore, it is possible to provide the graphite structure 10A having high strength.
  • the inner diameter D2 of the recess 32 of the second graphite member 30 is equal to the maximum diameter D1 of the small diameter portion 22 of the first graphite member 20.
  • the maximum diameter dimension D1 is the outermost side of the projections and depressions 23.
  • the maximum diameter dimension D1 refers to the outer diameter that connects the peaks.
  • the length L1 of the small diameter portion 22 is shorter than the depth L2 of the recess 32. This is formed as follows. That is, the graphite material is generally shaped by cutting. For this reason, it is difficult to process with the maximum diameter dimension D1 of the small-diameter portion 22 and the inner diameter dimension D2 of the recess 32 strictly aligned due to wear of the blade to be processed, deformation of the material, and the like.
  • the maximum diameter dimension D1 of the small diameter portion 22 of the first graphite member 20 can be inserted into the recess 32 of the second graphite member 30, but is larger than the inner diameter dimension D2 of the recess 32. And are configured to be inserted while rubbing surfaces against each other.
  • FIG. 6 shows the relationship between the difference between the maximum diameter dimension D1 of the small diameter portion 22 and the inner diameter dimension D2 of the recess 32 and the bending strength.
  • 100 ⁇ m on the horizontal axis indicates that the amount of overlap between the small diameter portion 22 and the concave portion 32, that is, the maximum diameter dimension D 1 of the small diameter portion 22 is 100 ⁇ m larger than the inner diameter dimension D 2 of the concave portion 32.
  • the maximum diameter dimension D1 of the small diameter portion 22 is 10 ⁇ m larger than the inner diameter dimension D2 of the concave portion 32 at 10 ⁇ m. Further, ⁇ 100 ⁇ m indicates that the maximum diameter dimension D1 of the small diameter portion 22 is 100 ⁇ m smaller than the inner diameter dimension D2 of the recess 32. As a result, it was found that when the difference between the maximum diameter dimension D1 of the small diameter portion 22 and the inner diameter dimension D2 of the recess 32 is 10 ⁇ m, the Weibull coefficient of the bending strength is maximized, which is most advantageous in terms of strength.
  • the first graphite member 20 and the second graphite member 30 are both made of graphite, when the small diameter portion 22 is inserted into the concave portion 32, the small diameter portion 22 and the concave portion 32 are formed.
  • the interfering portion is inserted while being worn, and is scraped by friction to generate graphite particles BP.
  • the cut graphite particle BP is held in the first groove 231, and the maximum diameter dimension D1 of the small diameter portion 22 and the inner diameter dimension D2 of the concave portion 32 become equal.
  • the cut graphite particles BP are included in the peripheral surface carbon-based adhesive portion 24 as an aggregate.
  • the resin contained therein is cured, and the peripheral carbon-based adhesive portion 24 is formed through carbonization.
  • the circumferential carbon-based adhesive 241 is once softened before it is cured.
  • the softened circumferential carbon-based adhesive 241 is absorbed by the porous first graphite member 20 and the second graphite member 30, and the circumferential carbon-based adhesive 241 shrinks in size.
  • the first graphite member 20 and the second graphite member 30 are likely to move with each other, and the peripheral surface carbon-based adhesive 241 that is in the process of being cured is likely to crack.
  • the first graphite member front end surface 21 is an end surface around the small diameter portion 22.
  • the second graphite member front end surface 31 is an end surface around the recess 32.
  • the end face carbon-based adhesive 251 may be applied to the first graphite member front end surface 21 or may be applied to the second graphite member front end surface 31. It is also possible to apply to both.
  • the first graphite member front end surface 21 and the second graphite member front end surface 31 By joining the first graphite member front end surface 21 and the second graphite member front end surface 31 via the end surface carbon-based adhesive portion 25 made of the end surface carbon-based adhesive 251, higher strength bonding can be realized. Further, since the maximum diameter dimension D1 of the small diameter portion 22 and the inner diameter dimension D2 of the concave portion 32 are the same, the first graphite member 20 is generated by frictional force even without the end face carbon-based adhesive portion 25 and the peripheral carbon-based adhesive portion 24. And the second graphite member 30 are firmly fixed.
  • peripheral surface carbon-based adhesive portion 24 and the end surface carbon-based adhesive portion 25 are made of the same material.
  • the peripheral carbon-based adhesive portion 24 and the end face carbon-based adhesive portion 25 may be formed of the same material using the same carbon-based adhesive. If the peripheral carbon-based adhesive portion 24 and the end-face carbon-based adhesive portion 25 are formed using the same carbon-based adhesive, the behavior of curing is the same, so that it can be cured and carbonized under the same conditions, and the strength deteriorates. Can be reduced.
  • peripheral surface carbon-based adhesive portion 24 and the end surface carbon-based adhesive portion 25 are carbides of copna resin. Since the copna resin can be directly bonded to carbon atoms by a dehydration condensation reaction, a high-strength graphite structure can be obtained.
  • the graphite material used for the first graphite member 20 and the second graphite member 30 is not particularly limited, but extruded graphite and isotropic graphite are preferable. Since these graphite materials have high heat resistance, a high-strength graphite structure can be provided by combining with high-strength bonding. Among these, isotropic graphite is preferably used for the graphite material used for the first graphite member 20 and the second graphite member 30. Since the isotropic graphite has a fine structure and particularly high strength, the graphite structure 10A having higher strength can be provided by combining with isotropic strength bonding.
  • ⁇ Graphite heater ⁇ 7 and 8 show an example of a graphite heater using the above-described graphite structure 10A.
  • the graphite heater 50 ⁇ / b> A is configured by combining a heating element 51 and a connector 52.
  • the heating element 51 corresponds to the first graphite member 20 described above
  • the connector 52 corresponds to the second graphite member 30 described above although it is plate-shaped. Therefore, the joint between the small-diameter portion 22 of the first graphite member 20 and the concave portion 32 of the second graphite member 30 described above is applied to the joint portion 53 between the heating element 51 and the connector 52.
  • the joint portion 54 between the heating elements 51 it can be considered similarly by regarding one heating element 51 as the first graphite member 20 and considering the other heating element 51 as the second graphite member 30.
  • the graphite heater 50 ⁇ / b> B is configured by combining a heating element 55 and a connector 56.
  • the heating element 55 is plate-shaped but corresponds to the second graphite member 30 described above
  • the connector 56 corresponds to the first graphite member 20 described above. Therefore, the junction 57 between the heating element 55 and the connector 56 is applied to the junction between the small-diameter portion 22 of the first graphite member 20 and the recess 32 of the second graphite member 30 described above.
  • the peripheral carbon-based adhesive 241 used for the peripheral carbon-based adhesive portion 24 that joins the first graphite member 20 and the second graphite member 30 is carbonized through curing. It is a solid-phase carbonized material.
  • the graphite material constituting the first graphite member 20 and the second graphite member 30 is a liquid phase carbonized substance in which the pitch is carbonized with the liquid phase maintained. Since liquid phase carbonization is a carbonization process in which carbon atoms are carbonized while freely rearranging, a graphite material with high crystallinity and low resistance is easily obtained.
  • the peripheral surface carbon-based adhesive portion 24 is obtained by solid-phase carbonization, it is difficult to increase the crystallinity and to obtain low resistance. For this reason, the maximum diameter dimension D1 of the small diameter portion 22 of the first graphite member 20 and the inner diameter dimension D2 of the concave portion 32 of the second graphite member 30 are equal, and the first graphite member 20 and the second graphite member 30 are in direct contact. Thereby, the peripheral surface carbon-type adhesion part 24 does not generate
  • the graphite material of graphite heater 50A, 50B is not specifically limited. Extruded graphite, isotropic graphite and the like can be used. Among them, isotropic graphite has a small anisotropy of specific resistance, so that it is not necessary to consider the direction of current flow when designing the heater, and can be suitably used as the graphite heaters 50A and 50B.
  • the graphite structure 10A is formed by connecting a first graphite member 20 having a small diameter portion 22 to a second graphite member 30 having a recess 32.
  • the first graphite member tip end surface of the first graphite member 20 is formed with a small diameter portion 22 having a smaller diameter than the first graphite member 20 and the outer peripheral surface 221 provided with the unevenness 23. 21 is arranged coaxially.
  • the second graphite member tip end surface 31 of the second graphite member 30 is provided with a recess 32 into which the small diameter portion 22 can be inserted.
  • the small-diameter portion 22 has a plurality of rows of first grooves 231 that circulate around the outer peripheral surface 221, and the concave portion 32 has an inner diameter dimension D ⁇ b> 2 that is smaller than the maximum diameter dimension D ⁇ b> 1 of the small-diameter section 22 and larger than the average diameter of the small-diameter section 22.
  • the peripheral carbon-based adhesive 241 is applied to at least one of the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the recess 32.
  • the small diameter portion 22 is inserted into the recess 32.
  • at least one of the outer peripheral surface 221 of the small-diameter portion 22 and the inner peripheral surface 321 of the concave portion 32 is inserted while being scraped (see FIG. 2B).
  • the peripheral carbon-based adhesive 241 is cured by carbonization to form the peripheral carbon-based adhesive portion 24 (See FIG. 3).
  • the average diameter of the small diameter portion 22 is the diameter of a cylinder having the same volume and the same height as the inner portion of the outer peripheral surface 221 of the small diameter portion 22. That is, the volume-based average diameter.
  • the depth of the first groove 231 is overwhelmingly small compared to the maximum diameter dimension D1 of the small-diameter portion 22, the inner portion of the contour formed by the outer peripheral surface 221 of the small-diameter portion 22 approximately divided by the central axis And the width (the length in the radial direction) of the rectangle having the same area and height.
  • the small diameter portion 22 of the first graphite member 20 has a cylindrical shape.
  • the cylindrical small-diameter portion 22 has a plurality of rows of first grooves 231 that circulate around the outer peripheral surface 221.
  • first groove 231 a plurality of annular grooves, a spiral groove, or the like can be used.
  • the rotation direction is not particularly limited, and it can be used either clockwise or counterclockwise with respect to the traveling direction.
  • the number of strips is not particularly limited. The number may be one or two or more.
  • the shape of the plurality of rows of first grooves 231 that circulate around the outer peripheral surface 221 of the small diameter portion 22 is not particularly limited.
  • a triangular groove, a semicircular groove, a trapezoidal groove, a rectangular groove, or the like may be used.
  • the plurality of rows of the first grooves 231 can be manufactured by any method and is not particularly limited. For example, it can be formed by turning on a lathe. When forming by turning, a plurality of annular grooves can be formed by fixing the turning tip and processing in multiple times, and forming a spiral groove by moving while turning the turning tip be able to.
  • the depth of the plurality of rows of first grooves 231 that circulate around the outer peripheral surface 221 of the small diameter portion 22 is not particularly limited, but is preferably 5 to 500 ⁇ m.
  • the depth of the first groove 231 is 5 ⁇ m or more, the circumferential carbon-based adhesive 241 that can maintain sufficient strength even when absorbed into the pores of the first graphite member 20 and the second graphite member 30 is formed in the first 1 groove 231 can be held.
  • the depth of the first groove 231 is 500 ⁇ m or less, a sufficient thickness can be secured in the small diameter portion 22, so that even if a tensile stress is applied, the stress concentration is small and the small diameter portion 22 is not easily broken. be able to.
  • the plurality of rows of first grooves 231 are preferably formed on the entire outer peripheral surface 221 of the small diameter portion 22.
  • the circumferential carbon-based adhesive portion 24 held in the first groove 231 may be connected to the first graphite member 20 and the second at any location. Since the graphite member 30 can be joined, the graphite structure 10A joined with high strength can be provided.
  • the recess 32 of the second graphite member 30 has an inner diameter D2 that is smaller than the maximum diameter D1 of the small diameter portion 22 of the first graphite member 20 and larger than the average diameter of the small diameter portion 22. This is due to the following reason. Graphite material is shaped by cutting. For this reason, it is difficult to process with the maximum diameter dimension D1 of the small-diameter portion 22 and the inner diameter dimension D2 of the recess 32 strictly aligned due to wear of the blade to be processed, deformation of the material, and the like.
  • the maximum diameter dimension D1 of the small diameter portion 22 of the first graphite member 20 is once made larger than the inner diameter dimension D2 of the recess 32 of the second graphite member 30, and the surfaces are rubbed against each other. (See FIG. 1B). Since the material of both the first graphite member 20 and the second graphite member 30 is graphite, the graphite particles BP are scraped by friction, and the portions where the first graphite member 20 and the second graphite member 30 interfere with each other wear. (See FIG. 2B).
  • the graphite particles BP shaved at this time are held in the first groove 231 and the maximum diameter dimension D1 of the small diameter portion 22 of the first graphite member 20 is equal to the inner diameter dimension D2 of the recess 32 of the second graphite member 30. , Can be in direct contact with each other.
  • the resin contained therein is cured and carbonized to form the peripheral carbon-based adhesive portion 24.
  • the circumferential carbon-based adhesive 241 is once softened before it is cured.
  • the softened circumferential carbon-based adhesive 241 is absorbed by the porous first graphite member 20 and second graphite member 30 and the circumferential carbon-based adhesive 241 shrinks in size.
  • the first graphite member 20 and the second graphite member 30 easily move with each other, and the circumferential carbon-based adhesive 241 that is in the process of being hardened is likely to crack, but the maximum diameter of the small-diameter portion 22 of the first graphite member 20 is maximum.
  • the circumferential carbon-based adhesive 241 does not easily form a layer at the portion where the small-diameter portion 22 of the first graphite member 20 and the concave portion 32 of the second graphite member 30 are in contact, the circumferential carbon-based adhesive Thus, it is possible to provide a strong graphite structure 10A that is hardly affected by the dimensional shrinkage of 241.
  • the peripheral surface carbon-based adhesive portion 24 is inside the first groove 231 and can connect the concave portion 32 and the small diameter portion 22.
  • a carbide of a carbon-based adhesive material containing a thermosetting resin, pitch, or the like can be used. These carbon-based adhesives are applied in a liquid state and are carbonized through curing. For this reason, the circumferential surface carbon-based adhesive 241 can connect the first graphite member 20 and the second graphite member 30.
  • peripheral surface carbon-based adhesive 241 before curing is in a liquid state, it penetrates into the pores of the first graphite member 20 and the second graphite member 30 and is directly bonded to the first graphite member 20 and the second graphite member 30. It is possible to reinforce the joining of the parts to be performed.
  • the peripheral carbon-based adhesive portion 24 includes graphite particles BP in which the outer peripheral surface 221 of the small-diameter portion 22 of the first graphite member 20 or the inner peripheral surface 321 of the concave portion 32 of the second graphite member 30 is cut as an aggregate. It is preferable.
  • the maximum diameter dimension D ⁇ b> 1 of the small diameter portion 22 of the first graphite member 20 is larger than the inner diameter dimension D ⁇ b> 2 of the recess 32 of the second graphite member 30. For this reason, when inserting, it inserts, rubbing a surface mutually.
  • both the first graphite member 20 and the second graphite member 30 are made of graphite, the graphite particles BP are scraped by friction to generate graphite particles BP.
  • the generated graphite particles BP are arranged in a plurality of rows that circulate around the outer peripheral surface 221 of the small diameter portion 22. It is caught in the first groove 231 and stays at the bottom.
  • the applied circumferential carbon-based adhesive 241 is held in the first groove 231, and the generated graphite particles BP can be mixed with the circumferential carbon-based adhesive 241 and function as an aggregate.
  • the graphite particles BP formed by cutting are originally formed between the small-diameter portion 22 and the concave portion 32, so that the graphite particles BP are added to the peripheral surface carbon-based adhesive 241 and are supplied from the outside. Even if the particle diameter is large, it can be contained in the peripheral carbon-based adhesive portion 24. For this reason, the effect
  • the first graphite member 20 has a first graphite member front end surface 21, and the second graphite member 30 has a second graphite member front end surface 31.
  • the end face carbon-based adhesive 251 is preferably applied to the first graphite member front end surface 21 or the second graphite member front end surface 31.
  • the end face carbon-based adhesive application step is performed before the heat treatment step. Since the first graphite member front end surface 21 and the second graphite member front end surface 31 are bonded via the end surface carbon-based adhesive portion 25 in which the end surface carbon-based adhesive 251 is cured and carbonized, bonding with higher strength is achieved. It is possible to provide a method of manufacturing the graphite structure 10A that realizes the above.
  • the small-diameter portion 22 of the first graphite member 20 has a plurality of rows of first grooves 231 that circulate around the outer peripheral surface 221.
  • the concave portion 32 of the second graphite member 30 has an inner diameter dimension D ⁇ b> 2 that is smaller than the maximum diameter dimension D ⁇ b> 1 of the small diameter portion 22 and larger than the average diameter of the small diameter portion 22. For this reason, in the insertion step, the small-diameter portion 22 is inserted into the recess 32 while scraping the outer peripheral surface 221 of the small-diameter portion 22 or the inner peripheral surface 321 of the recess 32. Even if 24 is not provided, the first graphite member 20 and the second graphite member 30 are firmly fixed by the frictional force.
  • the peripheral carbon-based adhesive 241 applied to the small-diameter portion 22 or the recess 32 and the end-surface carbon-based adhesive 251 applied to the first graphite member tip surface 21 or the second graphite member tip surface 31 may be the same. preferable. If the peripheral carbon-based adhesive 241 and the end-surface carbon-based adhesive 251 are the same, the behavior of curing is the same, so that they can be cured and carbonized under the same conditions, and the deterioration in strength can be reduced. it can.
  • the carbon-based adhesive in the method for producing the graphite structure 10A is preferably a Copna resin.
  • the copna resin becomes carbonaceous after firing, the carbonization yield is as high as 50% or more, and since it is a resin that can form a chemical bond with a carbon atom by a dehydration condensation reaction, a high-strength graphite structure 10A can be obtained. .
  • the graphite material used for the first graphite member 20 and the second graphite member 30 in the method for producing a graphite structure is not particularly limited, but extruded graphite and isotropic graphite are preferable. Since these graphite materials have high heat resistance, a high-strength graphite structure 10A can be provided by combining with high-strength bonding. Among these, isotropic graphite is preferably used for the graphite material used for the first graphite member 20 and the second graphite member 30. Since the isotropic graphite has a fine structure and particularly high strength, the graphite structure 10A having higher strength can be provided by combining with isotropic strength bonding.
  • the above-described method for producing a graphite structure can be applied to the method for producing a graphite heater.
  • the maximum diameter dimension D1 of the small diameter portion 22 of the first graphite member 20 and the inner diameter dimension D2 of the recess 32 of the second graphite member 30 are equal.
  • the 1st graphite member 20 and the 2nd graphite member 30 can touch directly.
  • the peripheral carbon-based adhesive 241 used for the peripheral carbon-based adhesive portion 24 that joins the first graphite member 20 and the second graphite member 30 is a solid-phase carbonized material that has been carbonized through curing.
  • the graphite material constituting the first graphite member 20 and the second graphite member 30 is a liquid phase carbonized substance in which the pitch is carbonized with the liquid phase maintained. Since liquid phase carbonization is a carbonization process in which carbon atoms are carbonized while freely rearranging, a graphite material with high crystallinity and low resistance is easily obtained. However, since the peripheral surface carbon-based adhesive portion 24 is obtained by solid-phase carbonization, it is difficult to increase the crystallinity and to obtain low resistance.
  • the maximum diameter dimension D1 of the small diameter portion 22 of the first graphite member 20 and the inner diameter dimension D2 of the concave portion 32 of the second graphite member 30 are equal, and the first graphite member 20 and the second graphite member 30 are in direct contact.
  • the peripheral surface carbon-based adhesive portion 24 hardly generates heat and can be suitably used as the graphite heaters 50A and 50B.
  • the graphite material of graphite heater 50A, 50B is not specifically limited. Extruded graphite, isotropic graphite and the like can be used. Among them, isotropic graphite has a small anisotropy of specific resistance, so that it is not necessary to consider the direction of current flow when designing the heater, and can be suitably used as the graphite heaters 50A and 50B.
  • the graphite structure 10 ⁇ / b> A includes a substantially columnar first graphite member 20, a small-diameter portion 22 coaxially disposed on the first graphite member 20, and a substantially columnar second that is coaxially connected to the first graphite member 20.
  • the small diameter portion 22 has a smaller diameter than the first graphite member 20, and the unevenness 23 is provided on the outer peripheral surface 221.
  • the second graphite member 30 is provided with a concave portion 32 into which the small-diameter portion 22 can be inserted in the second graphite member front end surface 31.
  • a peripheral surface carbon-based adhesive portion 24 is interposed between the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the concave portion 32, and the inner diameter dimension D ⁇ b> 2 of the concave portion 32 is the maximum diameter dimension of the small diameter portion 22. Equal to D1.
  • the unevenness 23 of the outer peripheral surface 221 of the small-diameter portion 22 is scraped and pressed into the small-diameter portion of the first graphite member 20.
  • the portion 22 and the second graphite member 30 are equal and come into direct contact.
  • the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the concave portion 32 are adhered and adhered by the scraped graphite powder and the peripheral surface carbon-based adhesive portion 24.
  • the 1st graphite member 20 and the 2nd graphite member 30 have low electrical resistance, and can be joined with high intensity.
  • first graphite member 20 and the small diameter portion 22 are integrally formed in the graphite structure 10A, the first graphite member 20 is joined by joining the small diameter portion 22 to the concave portion 32 of the second graphite member 30. And the second graphite member 30 can be reliably bonded.
  • the graphite structure 10 ⁇ / b> A is provided with the unevenness 33 on the inner peripheral surface 321 of the recess 32, the graphite structure 10 ⁇ / b> A is rubbed and scraped in the same manner as the unevenness 23 of the outer peripheral surface 221 of the small diameter portion 22. Are combined.
  • the peripheral surface carbon-based adhesive 241 that can maintain sufficient strength is provided in the first groove 231. Can be held.
  • the peripheral carbon-based adhesive 241 held in the first groove 231 can join the first graphite member 20 and the second graphite member 30 at any location, high strength joining can be performed. it can.
  • the graphite structure 10A has a first groove 231 provided in a spiral shape. For this reason, when the small diameter portion 22 of the first graphite member 20 is inserted into the concave portion 32 of the second graphite member 30, the protruding portion formed by the two adjacent first grooves 231 is always on the inlet side of the concave portion 32. Touch the end. Thereby, there is little fluctuation
  • the peripheral surface carbon-based adhesive portion 24 includes an aggregate in which at least one of the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the concave portion 32 is cut. That is, when the small-diameter portion 22 of the first graphite member 20 is inserted into the recess 32 of the second graphite member 30, the surfaces are mutually rubbed, so that the graphite particles BP are generated by friction. The generated graphite particles BP are caught in the first groove 231 of the small diameter portion 22 and stay on the bottom. The applied circumferential carbon-based adhesive 241 is held in the first groove 231, and the generated graphite particles BP are mixed with the circumferential carbon-based adhesive 241 and function as an aggregate. For this reason, adhesive force can be strengthened.
  • the graphite structure 10 ⁇ / b> A joined the first graphite member front end surface 21 of the first graphite member 20 and the second graphite member front end surface 31 of the second graphite member 30 via the end face carbon-based adhesive portion 25.
  • the 1st graphite member 20 and the 2nd graphite member 30 can be joined strongly.
  • the graphite structure 10A uses the same carbon-based adhesive for the peripheral surface carbon-based adhesive portion 24 and the end surface carbon-based adhesive portion 25, and therefore has the same curing behavior and is cured and carbonized under the same conditions. And deterioration in strength can be reduced.
  • the graphite heaters 50A and 50B are formed using the graphite structure 10A described above. Accordingly, when the small diameter portion 22 of the first graphite member 20 is pushed into the concave portion 32 of the second graphite member 30, the unevenness 23 on the outer peripheral surface 221 of the small diameter portion 22 is scraped and scraped, so that the small diameter portion 22 of the first graphite member 20 is scraped. And the recess 32 of the second graphite member 30 are in direct contact. Further, the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the concave portion 32 are adhered and adhered by the scraped graphite powder and the peripheral surface carbon-based adhesive portion 24. Thereby, the 1st graphite member 20 and the 2nd graphite member 30 have low electrical resistance, and can be joined with high intensity.
  • the first graphite member tip surface 21 of the first graphite member 20 is coaxially disposed with a small diameter portion 22 having a smaller diameter than the first graphite member 20 and an outer peripheral surface 221 provided with irregularities 23.
  • the second graphite member tip end surface 31 of the second graphite member 30 is provided with a recess 32 into which the small diameter portion 22 can be inserted and has an inner diameter dimension D2 smaller than the maximum diameter dimension D1 of the small diameter section 22.
  • the peripheral carbon-based adhesive 241 is applied to at least one of the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the recess 32. Thereafter, in the inserting step, the small diameter portion 22 is inserted into the concave portion 32 while scraping at least one of the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the concave portion 32. Then, in the heat treatment step, the first graphite member 20 and the second graphite member 30 are heated to harden the peripheral carbon-based adhesive 241 by carbonization to form the peripheral carbon-based adhesive portion 24. .
  • the small-diameter portion 22 of the first graphite member 20 is pushed into the recess 32 of the second graphite member 30, the unevenness 23 of the outer peripheral surface 221 of the small-diameter portion 22 or the unevenness 33 of the inner peripheral surface 321 of the recess 32 is scraped off. And press-fitted. Thereby, the small diameter part 22 of the 1st graphite member 20 and the internal peripheral surface 321 of the recessed part 32 of the 2nd graphite member 30 contact directly. Further, the outer peripheral surface 221 of the small diameter portion 22 and the inner peripheral surface 321 of the concave portion 32 are adhered and adhered by the scraped graphite powder and the peripheral surface carbon-based adhesive portion 24. Thereby, the 1st graphite member 20 and the 2nd graphite member 30 have low electrical resistance, and can be joined with high intensity.
  • the first groove 231 is spirally provided on the outer peripheral surface 221 of the small diameter portion 22 in advance. For this reason, when the small diameter portion 22 of the first graphite member 20 is inserted into the concave portion 32 of the second graphite member 30, the protruding portion formed by the two adjacent first grooves 231 is always on the inlet side of the concave portion 32. Touching the edge. Thereby, there is little fluctuation
  • the method for producing a graphite structure includes end face carbon-based adhesion to at least one of the first graphite member front end surface 21 of the first graphite member 20 and the second graphite member front end surface 31 of the second graphite member 30 facing each other.
  • the end face carbon-based adhesive coating process for coating the material 251 is performed before the heat treatment process. For this reason, since the 1st graphite member front end surface 21 and the 2nd graphite member front end surface 31 are joined via the end face carbon system adhesion part 25, the 1st graphite member 20 and the 2nd graphite member 30 are strengthened strongly. Can be joined.
  • the manufacturing method of the graphite structure used a copna resin for at least one of the peripheral surface carbon-based adhesive 241 and the end surface carbon-based adhesive 251. Since the copna resin can be directly bonded to carbon atoms by a dehydration condensation reaction, a high-strength graphite structure 10A can be obtained.
  • the function and effect of the method for manufacturing the graphite heater will be described. Since the method for manufacturing a graphite heater uses any one of the above-described methods for manufacturing a graphite structure, the first graphite member 20 and the second graphite member 30 are bonded with low electrical resistance and high strength. Can do.
  • the inner diameter dimension of the first graphite member recess 26 is smaller than the maximum diameter dimension of the small diameter portion 22.
  • Concavities and convexities 27 similar to the concavities and convexities 33 of the concave portions 32 are provided on the inner peripheral surface 261 of the first graphite member concave portion 26.
  • the relationship between the small diameter part 22B and the 2nd graphite member 30 is the same as that of 10 A of graphite structures of 1st Embodiment.
  • the small diameter portion 22B is inserted into the first graphite member recess 26 of the first graphite member 20B and joined. Thereafter, the graphite structure 10B is manufactured by a manufacturing method similar to the manufacturing method of the graphite structure in the first embodiment.
  • the protruding portion formed by two adjacent grooves is always in contact with the inlet side end of the recess 32. For this reason, there is little fluctuation
  • the spiral shape pitch or angle
  • the spiral shape is set so that the first groove 231 and the second groove 331 are not screwed together.
  • the direction of the spiral since the second groove 331 has a double spiral shape, the first groove 231 is prevented from screwing with one of the spirals.
  • peripheral carbon-based adhesive portion 24 coated with the peripheral carbon-based adhesive 241 also in the second groove 331 it is preferable to provide the peripheral carbon-based adhesive portion 24 coated with the peripheral carbon-based adhesive 241 also in the second groove 331.
  • the peripheral surface carbon-based adhesive portion 24 is inside the first groove 231 and the second groove 331 and can connect the concave portion 32 and the small diameter portion 22.
  • a carbide of a carbon-based adhesive material containing a thermosetting resin, pitch, or the like can be used for the peripheral surface carbon-based adhesive portion 24 .
  • These carbon-based adhesives are applied in a liquid state and are carbonized through curing.
  • the circumferential surface carbon-based adhesive 241 inside the second groove 331 can connect the first graphite member 20 and the second graphite member 30C.
  • the peripheral surface carbon-based adhesive 241 before being cured is in a liquid state, it penetrates into the pores of the first graphite member 20 and the second graphite member 30C and is directly bonded to the first graphite member 20 and the second graphite member 30C. It is possible to reinforce the joining of the parts to be performed.
  • the cross-sectional shape of the second groove 331 is not particularly limited.
  • a triangular groove, a semicircular groove, a trapezoidal groove, a rectangular groove, or the like may be used.
  • the depth of the second groove 331 is not particularly limited, but is preferably 5 to 500 ⁇ m. When the depth of the second groove 331 is 5 ⁇ m or more, the peripheral surface carbon-based adhesive 241 that can maintain sufficient strength even when absorbed into the pores of the first graphite member 20 and the second graphite member 30C is provided. It can be held in the two grooves 331.
  • the second groove 331 is preferably formed on the entire inner peripheral surface of the recess 32.
  • the peripheral carbon-based adhesive portions 24 held in the second grooves 331 are located at any location in the first graphite member 20 and the second graphite. Since the member 30C can be joined, the graphite structure 10C joined with high strength can be provided.
  • the peripheral surface carbon-based adhesive portion 24 includes graphite particles BP in which the outer peripheral surface of the small-diameter portion 22 of the first graphite member 20 or the inner peripheral surface of the concave portion 32 of the second graphite member 30C is scraped as an aggregate. Is preferred.
  • the maximum diameter dimension D1 of the small diameter portion 22 of the first graphite member 20 is larger than the inner diameter dimension D2 of the recess 32 of the second graphite member 30C. For this reason, when inserting the small diameter part 22 in the recessed part 32, it inserts, rubbing a surface mutually.
  • the graphite particles BP are scraped by friction to generate graphite particles BP.
  • the generated graphite particles BP are a plurality of rows that circulate around the inner peripheral surface 321 of the recess 32. It is caught in the second groove 331 and stays at the bottom.
  • the applied circumferential carbon-based adhesive 241 is held in the second groove 331, and the generated graphite particles BP can be mixed with the circumferential carbon-based adhesive 241 and function as an aggregate.
  • the graphite particles BP formed by cutting are originally formed between the small-diameter portion 22 and the concave portion 32, so that the particles are more than the aggregate added to the peripheral carbon-based adhesive 241 and supplied from the outside. Even if the diameter is large, it can be contained in the peripheral carbon-based adhesive portion 24. For this reason, the effect
  • the concave portion 32 of the second graphite member 30 ⁇ / b> C has a plurality of rows of second grooves 331 that circulate around the inner peripheral surface 321 as the concave and convex portions 33, and the peripheral surface carbon-based adhesive portion 24 is also disposed inside the second groove 331. It is preferable to have. Since the second groove 331 has a double spiral shape, when the first graphite member 20 is inserted into the second graphite member 30C, the protruding portion formed by two adjacent second grooves 331 is always present. The small diameter portion 22 is in contact with the distal end surface. For this reason, there is little fluctuation
  • the peripheral surface carbon capable of maintaining sufficient strength.
  • the system adhesive 241 can be held in the second groove 331.
  • the peripheral carbon-based adhesive 241 held in the second groove 331 can join the first graphite member 20 and the second graphite member 30C at any location, high strength joining can be performed. it can.
  • the second groove 331 is provided in a spiral shape. For this reason, when the first graphite member 20 is inserted into the second graphite member 30 ⁇ / b> C, the protruding portion formed by the two adjacent second grooves 331 always contacts the inlet side end of the small diameter portion 22. Thereby, there is little fluctuation
  • a plurality of second grooves 331 are provided in advance on the inner peripheral surface 321 of the recess 32. For this reason, since a plurality of second grooves 331 are provided on the inner peripheral surface 321 of the recess 32, the peripheral surface carbon-based adhesive 241 capable of maintaining sufficient strength is held in the second groove 331. Can do. Further, since the peripheral carbon-based adhesive 241 held in the second groove 331 joins the first graphite member 20 and the second graphite member 30C at any location, high-strength joining can be performed.
  • each second groove 331 is formed in a spiral shape. For this reason, when the first graphite member 20 is inserted into the second graphite member 30 ⁇ / b> C, the protruding portion formed by the two adjacent second grooves 331 always contacts the inlet side end of the small diameter portion 22. Thereby, there is little fluctuation
  • the graphite structure of the fourth embodiment will be described.
  • symbol is attached
  • the first graphite member 20D and the second graphite member 30D are circular hollow members.
  • the small diameter portion 22D is also a hollow member.
  • An opening is also provided in the bottom surface 322 of the recess 32. Accordingly, the hollow portion 28 is continuously provided in the longitudinal direction at the center portion of the graphite structure 10D, and the whole is a circular tube.
  • the graphite structure 10D can be used as a tubular member.
  • the graphite structure, graphite heater, graphite structure manufacturing method, and graphite heater manufacturing method of the present invention are not limited to the above-described embodiments, and appropriate modifications, improvements, and the like are possible.
  • the present invention can be applied to a graphite structure, a graphite heater, a method for manufacturing a graphite structure, and a method for manufacturing a graphite heater, which have low electrical resistance and realize high strength bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Resistance Heating (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

 電気抵抗が低く、高強度の接合を実現する黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法を提供する。 黒鉛構造体10Aは、小径部22を有する略円柱形状の第1黒鉛部材20と、第1黒鉛部材20に連結される略円柱形状の第2黒鉛部材30とを有する。小径部22は、外周面221に凹凸23が設けられている。第2黒鉛部材30は、小径部22の最大直径寸法D1よりも小さく小径部22が挿入可能な凹部32を端面31に有し、小径部22の外周面221および凹部32の内周面321間には、周面炭素系接着部24が介装される。このため、小径部22を凹部32に押し込むと、小径部22の外周面221の凹凸23が擦れて削れるので、小径部22と第2黒鉛部材30とが直接接触する。また、小径部22の外周面221と凹部32の内周面321とが、削れた黒鉛の粉と周面炭素系接着部24により密着して接着される。これにより、第1黒鉛部材20と第2黒鉛部材30とを、電気抵抗が低く、高強度で接合することができる。

Description

黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法
 本発明は、黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法に関するものである。
 従来、黒鉛材料は、耐熱性、化学的安定性を有しているので、高温炉の構造部材として広く用いられている。黒鉛の3重点は、圧力、温度とも高く、常圧では溶融することなく昇華する性質を備えている。
 このため、黒鉛は溶接することができず、複雑形状の構造部材は、切削加工によるか、接合により得られている。切削加工で構造部材を得る場合には、一体的な構造部材が得られるので、高強度の構造部材が得られる代わりに材料歩留まりが悪いといった問題がある。
 特許文献1には、接合による黒鉛ヒータが紹介されている。接合による黒鉛ヒータでは、もともと別の部材であるので、使用温度の上昇や、使用時間の長期化すると、変形、クリープが生じることにより、接合部に歪み、変形が集中し、接合部に隙間ができることが記載されている。
 さらに、黒鉛ヒータとして使用される場合、接合部で放電が起こり、亀裂や破損が生じることが記載されている。
 これを解消するために、特許文献1に記載の黒鉛ヒータでは、可撓性膨張黒鉛シートを介して部材をボルトで固定することにより、部材間の隙間を無くし、部材間の放電、接合部に発生する熱を抑えることが記載されている。
特開平7-288178号公報
 しかしながら、特許文献1に記載されている可撓性膨張黒鉛シートを挟んでボルトで接合する方法は、ボルトによってのみ固定されているので一体的な構造部材と比べ大幅に強度が低下する。
 さらに、可撓性膨張黒鉛シートを常に圧縮するように締め付けなければならず、ボルトには常に張力をかけていなければならない。
 このため、破壊強度は、ボルトにかかっている張力の分を減じて考慮しなければならず、強い強度が得られる接合方法ではないという問題がある。
 また、部材間には、膨張黒鉛シートが挟まれており、膨張黒鉛シートは、面方向に結晶の六角網面が広がった特徴を有しているので、厚み方向には電気抵抗が高い材料である。
 このため、部材間に空隙がある場合より電気抵抗を下げる効果はあるものの、膨張黒鉛シートの厚み分の抵抗によって発熱しやすくなるといった問題がある。
 さらに、ボルトによって凹部を有する部材を締め込むように接合されているため、ボルトと、凹部壁面との間には空隙を有し、電気抵抗を高める原因の1つとなっている。
 本発明は、従来の問題を解決するためになされたもので、電気抵抗が低く、高強度の接合を実現する黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法を提供することを目的とする。
 本発明の黒鉛構造体は、略円柱形状の第1黒鉛部材と、前記第1黒鉛部材に同軸配置され、前記第1黒鉛部材よりも小径、かつ、外周面に凹凸が設けられた小径部と、前記小径部が挿入可能であって、略円柱形状の空間を囲む凹部が端面に設けられ、前記第1黒鉛部材に対して前記凹部が同軸連結された第2黒鉛部材と、前記小径部の外周面および前記凹部の内周面間に介装された周面炭素系接着部とを備え、前記小径部の最大直径寸法と前記凹部の内径寸法とが等しいものである。
 また、本発明の黒鉛構造体は、前記第1黒鉛部材および前記小径部が一体的に形成されているものである。
 また、本発明の黒鉛構造体は、前記凹部の内周面に凹凸が設けられているものである。
 また、本発明の黒鉛構造体は、前記小径部の外周面に第1の溝が設けられているものである。
 また、本発明の黒鉛構造体は、前記第1の溝が螺旋状に設けられているものである。
 また、本発明の黒鉛構造体は、前記凹部の内周面に第2の溝が複数列設けられているものである。
 また、本発明の黒鉛構造体は、前記各第2の溝が螺旋状に設けられているものである。
 また、本発明の黒鉛構造体は、前記周面炭素系接着部は、前記小径部の外周面および前記凹部の内周面のうちの少なくとも一方が削られた骨材が含まれているものである。
 また、本発明の黒鉛構造体は、互いに対向する前記第1黒鉛部材の端面および前記第2黒鉛部材の端面が端面炭素系接着部を介して接合されているものである。
 また、本発明の黒鉛構造体は、前記周面炭素系接着部および前記端面炭素系接着部が同一材質であるものである。
 さらに、本発明の黒鉛構造体は、前記周面炭素系接着部および前記端面炭素系接着部のうちの少なくとも一方がコプナ樹脂の炭化物であるものである。
 本発明の黒鉛ヒータは、前述したいずれかに記載の黒鉛構造体を用いたものである。
 本発明の黒鉛構造体の製造方法は、略円柱形状の第1黒鉛部材および略円柱形状の空間を囲む凹部を端面に有する第2黒鉛部材とを、前記第1黒鉛部材に対して凹部を同軸配置させる黒鉛構造体の製造方法であって、前記第1黒鉛部材よりも小径、かつ、外周面に凹凸が設けられた小径部を前記第1黒鉛部材の端面に同軸配置するとともに、前記第2黒鉛部材の端面の凹部は前記小径部が挿入可能、かつ、前記小径部の最大直径寸法よりも小さな内径寸法を有し、前記小径部の外周面および前記凹部の内周面のうちの少なくとも一方に周面炭素系接着材を塗布する周面炭素系接着材塗布工程を行った後、前記小径部の外周面および前記凹部の内周面のうちの少なくとも一方を削りながら前記小径部を前記凹部に挿入させる挿入工程を行い、次いで、前記第1黒鉛部材および前記第2黒鉛部材を加熱することにより、前記周面炭素系接着材を炭素化させることにより硬化させて周面炭素系接着部を形成する熱処理工程を行うものである。
 また、本発明の黒鉛構造体の製造方法は、あらかじめ前記小径部の外周面に第1の溝を螺旋状に設けておくものである。
 また、本発明の黒鉛構造体の製造方法は、あらかじめ前記凹部の内周面に複数列の第2の溝を設けておくものである。
 また、本発明の黒鉛構造体の製造方法は、前記各第2の溝を螺旋状に形成しておくものである。
 また、本発明の黒鉛構造体の製造方法は、互いに対向する前記第1黒鉛部材の端面および前記第2黒鉛部材の端面のうちの少なくとも一方に端面炭素系接着材を塗布する端面炭素系接着材塗布工程を前記熱処理工程の以前に行うものである。
 さらに、本発明の黒鉛構造体の製造方法は、前記周面炭素系接着材および前記端面炭素系接着材のうちの少なくとも一方がコプナ樹脂であるものである。
 本発明の黒鉛ヒータの製造方法は、前述したいずれかに記載の黒鉛構造体の製造方法を用いたものである。
 第1黒鉛部材および第2黒鉛部材は切削加工によって形状加工されるが、加工する刃の摩耗、材料の変形などにより厳密に小径部の外径及び凹部の内径を揃えて加工することは困難である。
 本発明では、一旦、第1黒鉛部材の小径部の最大直径寸法を、第2黒鉛部材の凹部に挿入可能だが凹部の内径よりも大きく形成し、互いに表面の凹凸を摩擦しながら挿入するように構成する。
 第1黒鉛部材と第2黒鉛部材は共に材質が黒鉛であるので、第1黒鉛部材と第2黒鉛部材とが干渉する凹凸部分は摩耗によって削られながら挿入され、第1黒鉛部材の小径部の外径と、第2黒鉛部材の凹部の内径が等しくすることができる。
 小径部の外周面および凹部の内周面間には、周面炭素系接着部が介装されている。また、小径部の外周面には第1の溝が形成されている。
 第1黒鉛部材と第2黒鉛部材は共に材質が黒鉛であるので、摩擦によって削られ黒鉛粒子が生じるが、削られた黒鉛粒子は第1の溝に保持される。また、第1の溝には塗布された周面炭素系接着部が保持されており、生じた黒鉛粒子は周面炭素系接着部と混ざって骨材として機能する。
 周面炭素系接着部は、内部に含まれる樹脂が硬化、炭素化を経て形成される。周面炭素系接着部は、硬化する前に一旦軟化する。軟化した周面炭素系接着部は多孔質である第1黒鉛部材及び第2黒鉛部材に吸収されるとともに周面炭素系接着部が寸法収縮する。寸法収縮すると、第1黒鉛部材及び第2黒鉛部材が互いに動きやすくなり、硬化途中の周面炭素系接着部に亀裂が生じやすくなる。しかし、第1黒鉛部材の小径部の外径と、第2黒鉛部材の凹部の内径が等しくなっているので互いに動きにくい上に、第1黒鉛部材の小径部と、第2黒鉛部材の凹部と接触する部分には周面炭素系接着部を形成しにくい。
 このため、周面炭素系接着部の寸法収縮の影響を受けにくく強固な黒鉛構造体を提供することができる。また、第1黒鉛部材の小径部と、第2黒鉛部材の凹部が、周面炭素系接着部を介することなく直接接触するので第1黒鉛部材と第2黒鉛部材との間の接触抵抗を小さくすることができ、電気抵抗を低くできる。
 本発明の黒鉛ヒータは、上述した黒鉛構造体を用いるので、第1黒鉛部材の小径部の外径と、第2黒鉛部材の凹部の内径が等しくなる。
 このため、第1黒鉛部材の小径部と、第2黒鉛部材の凹部が周面炭素系接着部を介することなく直接接触するので第1黒鉛部材と第2黒鉛部材との間の接触抵抗を小さくすることができ、電気抵抗が低く、高強度の接合を実現する黒鉛ヒータを提供することができる。
 本発明の黒鉛構造体の製造方法では、第2黒鉛部材の凹部の内径は、第1黒鉛部材の小径部の最大外径より小さい。
 このため、第1黒鉛部材の小径部を第2黒鉛部材の凹部に挿入する際に、小径部の外周面または凹部の内周面を削りながら挿入されるので、第1黒鉛部材の小径部と第2黒鉛部材の凹部は、互いに直接接触することができる。
 また、第1黒鉛部材の小径部は外周面に螺旋状の第1の溝を有しているので、挿入する際に削られて生じた黒鉛粒子は、第1の溝に保持された周面炭素系接着材と混ざり、骨材として機能する。周面炭素系接着材は、内部に含まれる樹脂が硬化、炭素化を経て周面炭素系接着部が形成される。
 周面炭素系接着材は、硬化する前に一旦軟化する。軟化した周面炭素系接着材は多孔質である第1黒鉛部材及び第2黒鉛部材に吸収されるとともに周面炭素系接着材が寸法収縮する。寸法収縮すると、第1黒鉛部材及び第2黒鉛部材が互いに動きやすくなり、硬化途中の周面炭素系接着材に亀裂が生じやすくなる。しかし、第1黒鉛部材の小径部の外径と、第2黒鉛部材の凹部の内径が等しくなっているので互いに動きにくい上に、第1黒鉛部材の小径部と、第2黒鉛部材の凹部と接触する部分には炭素系接着材が層を形成しにくい。
 このため、炭素系接着材の寸法収縮の影響を受けにくく強固な黒鉛構造体の製造方法を提供することができる。また、第1黒鉛部材の小径部と、第2黒鉛部材の凹部が、周面炭素系接着部を介することなく直接接触するので第1黒鉛部材と第2黒鉛部材との間の接触抵抗を小さくすることができ、電気抵抗を低くできる。
 また、本発明の黒鉛ヒータの製造方法は、上述した黒鉛構造体の製造方法を用いている。
 すなわち、第2黒鉛部材の凹部の内径は、小径部の最大外径より小さい。
 このため、第1黒鉛部材の小径部を第2黒鉛部材の凹部に挿入する際に、小径部の外周面または凹部の内周面を削りながら挿入されるので、第1黒鉛部材の小径部と第2黒鉛部材の凹部は、互いに直接接触することができる。
 これにより、第1黒鉛部材と第2黒鉛部材との間の接触抵抗を小さくすることができ、電気抵抗が低く、高強度の接合を実現する黒鉛ヒータの製造方法を提供することができる。
(A)は本発明に係る第1実施形態の黒鉛構造体を示す分解斜視図であり、(B)は(A)中B-B位置の断面図 (A)は第1黒鉛部材と第2黒鉛部材を接合する前の小径部と凹部との関係を示す断面図であり、(B)は小径部を凹部に挿入する状態の断面図 第1黒鉛部材と第2黒鉛部材との接合部の断面図 小径部の外周面の凹凸を示すグラフ 小径部の最大直径寸法と凹部の内径寸法との重なり量に対する曲げ強度を示すグラフ 小径部の最大直径寸法と凹部の内径寸法との重なり量に対する曲げ強度のワイブル係数を示すグラフ 黒鉛構造体を用いた黒鉛ヒータの一例を示す斜視図 黒鉛構造体を用いた黒鉛ヒータの別の例を示す斜視図 (A)は本発明に係る第2実施形態の黒鉛構造体を示す分解斜視図であり、(B)は(A)中B-B位置の断面図 (A)は本発明に係る第3実施形態の黒鉛構造体を示す分解斜視図であり、(B)は(A)中B-B位置の断面図 (A)は第1黒鉛部材の小径部と第2黒鉛部材の凹部との関係を示す断面図であり、(B)は小径部を凹部に挿入する状態を示す断面図 (A)は本発明に係る第4実施形態の黒鉛構造体を示す分解斜視図であり、(B)は結合した黒鉛構造体の(A)中B-B位置の断面図
(第1実施形態)
≪黒鉛構造体≫
 以下、本発明に係る第1実施形態の黒鉛構造体について、図面を用いて説明する。
 図1(A)および図(B)に示すように、第1実施形態の黒鉛構造体10Aは、第1黒鉛部材20と、第2黒鉛部材30を有する。
 第1黒鉛部材20は、黒鉛材料を略円柱形状に形成したものであり、第1黒鉛部材先端面(端面)21に、同軸配置された小径部22が一体的に形成されている。小径部22は、第1黒鉛部材20の外径よりも小径の円柱形状を呈しており、外周面221に凹凸23が設けられている。
 また、第2黒鉛部材30は、黒鉛材料を略円柱形状に形成したものであり、第2黒鉛部材先端面(端面)31に、同軸配置された略円柱形状の空間を囲む凹部32を有する。凹部32の内周面321にも、凹凸33を設けることが望ましい。
 なお、第2黒鉛部材30は、ここでは略円柱形状の場合を図示して説明するが、後述するように板状の場合も可能である。
 小径部22の外周面221に設ける凹凸23は、種々の態様が可能であり、限定するものではない。図4には、小径部22の外周面221の凹凸23の測定結果の一例が示されている。Y軸の0点の位置は、相対的のもので特別な意味がなく、小径部の最大直径寸法は、最大値をとる位置を基準に定義される。
 凹凸23は、例えば、周方向に沿って円形や楕円形状に設けた溝を、長手方向に沿って複数個平行に設けることができる。あるいは、溝を外周面221に沿って螺旋形状に設けることができる。
 なお、以下の説明においては、凹凸23として螺旋形状の第1の溝231を設けた場合について主に説明する。
 螺旋形状の第1の溝231は、複数本の螺旋を平行に設けたり、複数本の螺旋を交差させて設けることができる。また、螺旋の回転方向は特に限定されず、進行方向に対し右回り、左回りいずれでも利用することができる。
 また、螺旋状の第1の溝231は、条数は特に限定されない。1条であっても、2条あるいはそれ以上の条数であっても良い。第1の溝231が螺旋状であるので、第1黒鉛部材20の小径部22を第2黒鉛部材30の凹部32に挿入する際に、隣り合う二つの第1の溝231が形成する突起部分が常に凹部32の入口側の端部に接触する。
 このため、挿入する際に必要な力に変動が少なく、突起部分に大きな欠けを生じにくくすることができる。
 第1の溝231の断面形状は特に限定されない。三角形の溝、半円形の溝、台形の溝、矩形の溝などどのようなものでも良い。
 また、小径部22の外周面には、周面炭素系接着材241が塗布された周面炭素系接着部24が設けられている。
 小径部22の外周面221を周回する複数列の第1の溝231の深さは特に限定されないが、5~500μmであることが好ましい。第1の溝231の深さが5μm以上であると第1黒鉛部材20及び第2黒鉛部材30の気孔内部に吸収されても十分な強度を維持できるだけの周面炭素系接着材241を溝に保持することができる。第1の溝231の深さが500μm以下であると、小径部22に十分な太さを確保することができるので、引っ張り応力がかかっても応力集中が小さく、小径部22が折損しにくくすることができる。
 第1の溝231は、小径部22の外周面221の全面に形成されていることが好ましい。第1の溝231が小径部22の全面に形成されていると、第1の溝231に保持された周面炭素系接着材241がいずれの箇所でも第1黒鉛部材20と第2黒鉛部材30を接合することができるので、高強度の接合をした黒鉛構造体10Aを提供することができる。
 図1(B)に示すように、第2黒鉛部材30の凹部32の内径寸法D2は、第1黒鉛部材20の小径部22の最大直径寸法D1と等しい。ここで、最大直径寸法D1とは、凹凸23の最も外側であり、例えば凹凸23が山および谷を有する場合には、山の頂点を結ぶ外径を云う。なお、小径部22の長さL1は、凹部32の深さL2よりも短い。
 これは次のように形成される。
 すなわち、一般に黒鉛材料は切削加工によって形状加工される。このため、加工する刃の摩耗、材料の変形などにより厳密に小径部22の最大直径寸法D1及び凹部32の内径寸法D2を揃えて加工することは困難である。
 このため、図2(A)に示すように、第1黒鉛部材20の小径部22の最大直径寸法D1を、第2黒鉛部材30の凹部32に挿入可能だが凹部32の内径寸法D2よりも大きく形成し、互いに表面を摩擦しながら挿入するように構成する。
 図6には、小径部22の最大直径寸法D1と凹部32の内径寸法D2の差と曲げ強度との関係が示されている。ここで、横軸の100μmとは、小径部22と凹部32との重なり量、すなわち、小径部22の最大直径寸法D1が凹部32の内径寸法D2よりも100μm大きいことを示す。同様に、10μmは、小径部22の最大直径寸法D1が凹部32の内径寸法D2よりも10μm大きい。また、-100μmとは、小径部22の最大直径寸法D1が凹部32の内径寸法D2がよりも100μm小さいことを示す。
 その結果、小径部22の最大直径寸法D1と凹部32の内径寸法D2の差が10μmのときに、曲げ強度のワイブル係数が最大となり、強度的に最も有利になることがわかった。
 図2(B)に示すように、第1黒鉛部材20と第2黒鉛部材30は共に材質が黒鉛であるので、小径部22を凹部32に挿入する際に、小径部22と凹部32とが干渉する部分は摩耗しながら挿入され、摩擦によって削られて黒鉛粒子BPが生じる。
 削られた黒鉛粒子BPは、第1の溝231に保持され、小径部22の最大直径寸法D1と、凹部32の内径寸法D2が等しくなる。削られた黒鉛粒子BPは、骨材として周面炭素系接着部24に含まれる。
 周面炭素系接着材241は、内部に含まれる樹脂が硬化し、炭素化を経て周面炭素系接着部24を形成する。周面炭素系接着材241は、硬化する前に一旦軟化する。軟化した周面炭素系接着材241は、多孔質である第1黒鉛部材20及び第2黒鉛部材30に吸収されるとともに、周面炭素系接着材241が寸法収縮する。
 寸法収縮すると、第1黒鉛部材20及び第2黒鉛部材30が互いに動きやすくなり、硬化途中の周面炭素系接着材241に亀裂が生じやすくなる。しかし、第1黒鉛部材20の小径部22の最大直径寸法D1と、第2黒鉛部材30の凹部32の内径寸法D2が等しくなっているので摩擦を生じ互いに動きにくい。
 さらに、第1黒鉛部材20の小径部22と、第2黒鉛部材30の凹部32とが接触する部分には、周面炭素系接着材241が層を形成しにくいので、周面炭素系接着材241の寸法収縮の影響を受けにくく強固な黒鉛構造体10Aを提供することができる。
 図3に示すように、第1黒鉛部材20の第1黒鉛部材先端面21および第2黒鉛部材30の第2黒鉛部材先端面31が、端面炭素系接着材251からなる端面炭素系接着部25を介して接合されるのが好ましい。
 ここで、第1黒鉛部材先端面21は、小径部22の周囲の端面である。また、第2黒鉛部材先端面31は、凹部32の周囲の端面である。
 なお、端面炭素系接着材251は、第1黒鉛部材先端面21に塗布しても良いし、第2黒鉛部材先端面31に塗布しても良い。また、両方に塗布することも可能である。
 第1黒鉛部材先端面21と第2黒鉛部材先端面31とが、端面炭素系接着材251からなる端面炭素系接着部25を介して接合されることによって、より高強度の接合が実現できる。
 また、小径部22の最大直径寸法D1と凹部32の内径寸法D2が同じになるので、端面炭素系接着部25および周面炭素系接着部24がなくても、摩擦力によって第1黒鉛部材20と第2黒鉛部材30とが強固に固定されている。
 このため、端面炭素系接着材251が硬化、炭素化し端面炭素系接着部25となる過程で、第1黒鉛部材先端面21と第2黒鉛部材先端面31にずれが生じにくく、硬化途中の端面炭素系接着材251に亀裂を生じにくくすることができる。
 これにより、端面炭素系接着部25の強度低下を起こしにくく、高強度の接合を実現することができる。
 周面炭素系接着部24と端面炭素系接着部25は、同一材質であることが好ましい。周面炭素系接着部24と端面炭素系接着部25が同一材質であるとは、同じ炭素系接着材を用いて形成したものであればよい。
 同じ炭素系接着材を用いて、周面炭素系接着部24と端面炭素系接着部25を形成すると、硬化の挙動が同じであるので同じ条件で硬化、炭素化することができ、強度の劣化を小さくすることができる。
 また、周面炭素系接着部24及び前記端面炭素系接着部25はコプナ樹脂の炭化物であることが好ましい。コプナ樹脂は脱水縮合反応によって炭素原子と直接結びつくことができるので高強度の黒鉛構造体を得ることができる。
 第1黒鉛部材20および第2黒鉛部材30に用いる黒鉛材料は、特に限定されないが押出黒鉛、等方性黒鉛が好ましい。これらの黒鉛材料は、耐熱性が高いので、高強度の接合と組み合わせることによって高強度の黒鉛構造体を提供することができる。
 中でも、第1黒鉛部材20および第2黒鉛部材30に用いる黒鉛材料には、等方性黒鉛を用いることが好ましい。等方性黒鉛は、組織が細かく特に高強度であるので、高強度の接合と組み合わせることによってさらに高強度の黒鉛構造体10Aを提供することができる。
≪黒鉛ヒータ≫
 図7および図8には、前述した黒鉛構造体10Aを用いた黒鉛ヒータの一例が示されている。
 図7に示すように、黒鉛ヒータ50Aは、発熱体51とコネクタ52とを組み合わせて構成されている。
 例えば、発熱体51が前述した第1黒鉛部材20に該当し、コネクタ52が板状ではあるが前述した第2黒鉛部材30に該当するものである。
 従って、発熱体51とコネクタ52との接合部53は、前述した第1黒鉛部材20の小径部22と第2黒鉛部材30の凹部32との接合が適用される。
 なお、発熱体51同士の接合部54においては、一方の発熱体51を第1黒鉛部材20と見なし、他方の発熱体51を第2黒鉛部材30と見なすことにより、同様に考えることができる。
 図8に示すように、黒鉛ヒータ50Bは、発熱体55とコネクタ56とを組み合わせて構成されている。
 例えば、発熱体55は板状だが前述した第2黒鉛部材30に該当し、コネクタ56が前述した第1黒鉛部材20に該当するものである。
 従って、発熱体55とコネクタ56との接合部57は、前述した第1黒鉛部材20の小径部22と第2黒鉛部材30の凹部32との接合が適用される。
 以上説明したような黒鉛ヒータ50A、50Bにおいては、第1黒鉛部材20と第2黒鉛部材30を接合する周面炭素系接着部24に用いる周面炭素系接着材241は、硬化を経て炭素化している固相炭素化した物質である。
 これに対し、第1黒鉛部材20および第2黒鉛部材30を構成する黒鉛材料は、ピッチが液相のまま炭素化した液相炭素化した物質である。液相炭素化は炭素原子が自由に再配列しながら炭素化していく炭素化のプロセスであるので、結晶化度が高く、低抵抗の黒鉛材料が得られやすい。
 しかしながら、周面炭素系接着部24は固相炭素化によって得られているので、結晶化度が高めにくく、低い抵抗が得られにくい。このため、第1黒鉛部材20の小径部22の最大直径寸法D1と第2黒鉛部材30の凹部32の内径寸法D2が等しくなって、第1黒鉛部材20と第2黒鉛部材30が直接接する。
 これにより、周面炭素系接着部24が発熱しにくく、黒鉛ヒータ50A、50Bとして好適に利用することができる。
 なお、黒鉛ヒータ50A、50Bの黒鉛材料は特に限定されない。押出黒鉛、等方性黒鉛などを利用することができる。中でも等方性黒鉛は、固有抵抗の異方性が小さいので、ヒータ設計時に電流の流れる方向の考慮が不要であるので黒鉛ヒータ50A、50Bとして好適に利用できる。
≪黒鉛構造体の製造方法≫
 次に、黒鉛構造体の製造方法について説明する。
 図1(A)および図1(B)に示すように、黒鉛構造体10Aは、凹部32を有する第2黒鉛部材30に、小径部22を有する第1黒鉛部材20が接続されて形成される。
 まず、図1(B)に示すように、第1黒鉛部材20よりも小径、かつ、外周面221に凹凸23が設けられた小径部22を、第1黒鉛部材20の第1黒鉛部材先端面21に同軸配置する。また、第2黒鉛部材30の第2黒鉛部材先端面31に、小径部22が挿入可能な凹部32を設ける。
 小径部22は、外周面221を周回する複数列の第1の溝231を有し、凹部32は、小径部22の最大直径寸法D1より小さく、小径部22の平均直径より大きい内径寸法D2を有する。
 次いで、周面炭素系接着材塗布工程において、小径部22の外周面221および凹部32の内周面321のうちの少なくとも一方に周面炭素系接着材241を塗布する。
 その後、挿入工程において、小径部22を凹部32に挿入する。その際、両者の摩擦力により小径部22の外周面221および凹部32の内周面321のうちの少なくとも一方を削りながら挿入する(図2(B)参照)。
 そして、熱処理工程において、第1黒鉛部材20および第2黒鉛部材30を加熱することにより、周面炭素系接着材241を炭素化させることにより硬化させて周面炭素系接着部24を形成する(図3参照)。
 小径部22の平均直径とは、小径部22の外周面221の内側部分と同一体積と同一高さの円柱の直径のことである。即ち、体積基準の平均直径である。
 小径部22の最大直径寸法D1と比較して第1の溝231の深さが圧倒的に小さい場合、近似的に中心軸で分割される小径部22の外周面221が形成する輪郭の内側部分と同一面積と同一高さの長方形の幅(径方向の長さ)とすることができる。
 第1黒鉛部材20の小径部22は、円柱形状である。円柱形状の小径部22には、外周面221を周回する複数列の第1の溝231を有している。第1の溝231は、複数の環状の溝、螺旋状の溝などを用いることができる。
 螺旋状の溝の場合、回転方向は特に限定されず、進行方向に対し右回り、左回りいずれでも利用することができる。また、螺旋状の溝の場合、条数は特に限定されない。1条であっても、2条あるいはそれ以上の条数であっても良い。
 中でも螺旋状の溝の場合には、第1黒鉛部材20を第2黒鉛部材30に挿入する際に、常に隣り合う二つの第1の溝231が形成する突起部分が凹部32の入口側の端部に接触している。
 このため、挿入する際に必要な力に変動が少なく突起部分に大きな欠けを生じにくくすることができる。
 小径部22の外周面221を周回する複数列の第1の溝231の形状は特に限定されない。三角形の溝、半円形の溝、台形の溝、矩形の溝などどのようなものでも良い。
 複数列の第1の溝231は、どのような方法でも製造することができ特に限定されない。例えば、旋盤で旋削することにより形成することができる。旋削で形成する場合、旋削チップを固定し複数回に分けて加工することにより、複数の環状の溝を形成ることができ、旋削チップを動かしながら加工することにより、螺旋状の溝を形成することができる。
 小径部22の外周面221を周回する複数列の第1の溝231の深さは、特に限定されないが、5~500μmであることが好ましい。第1の溝231の深さが5μm以上であると、第1黒鉛部材20及び第2黒鉛部材30の気孔内部に吸収されても十分な強度を維持できるだけの周面炭素系接着材241を第1の溝231に保持することができる。第1の溝231の深さが500μm以下であると、小径部22に十分な太さを確保することができるので、引っ張り応力がかかっても応力集中が小さく、小径部22が折損しにくくすることができる。
 複数列の第1の溝231は、小径部22の外周面221の全面に形成されていることが好ましい。複数列の第1の溝231が小径部22の全面に形成されていると、第1の溝231に保持された周面炭素系接着部24がいずれの箇所でも第1黒鉛部材20と第2黒鉛部材30を接合することができるので、高強度の接合をした黒鉛構造体10Aを提供することができる。
 第2黒鉛部材30の凹部32は、第1黒鉛部材20の小径部22の最大直径寸法D1より小さく、小径部22の平均直径より大きい内径寸法D2を有する。
 これは以下の理由による。
 黒鉛材料は切削加工によって形状加工される。このため、加工する刃の摩耗、材料の変形などにより厳密に小径部22の最大直径寸法D1及び凹部32の内径寸法D2を揃えて加工することは困難である。
 このため、本発明の製造方法では、一旦第1黒鉛部材20の小径部22の最大直径寸法D1を、第2黒鉛部材30の凹部32の内径寸法D2よりも大きく形成し、互いに表面を摩擦しながら挿入するように構成する(図1(B)参照)。
 第1黒鉛部材20と第2黒鉛部材30は共に材質が黒鉛であるので、摩擦によって削られ黒鉛粒子BPが生じるが、第1黒鉛部材20と第2黒鉛部材30とが干渉する部分は摩耗しながら挿入される(図2(B)参照)。
 このとき削られた黒鉛粒子BPは、第1の溝231に保持され、第1黒鉛部材20の小径部22の最大直径寸法D1と、第2黒鉛部材30の凹部32の内径寸法D2が等しくなり、互いに直接接触することができる。
 周面炭素系接着材241は、内部に含まれる樹脂が硬化、炭素化を経て周面炭素系接着部24が形成される。周面炭素系接着材241は、硬化する前に一旦軟化する。軟化した周面炭素系接着材241は多孔質である第1黒鉛部材20及び第2黒鉛部材30に吸収されるとともに周面炭素系接着材241が寸法収縮する。
 寸法収縮すると、第1黒鉛部材20及び第2黒鉛部材30が互いに動きやすくなり、硬化途中の周面炭素系接着材241に亀裂が生じやすくなるが、第1黒鉛部材20の小径部22の最大直径寸法D1と、第2黒鉛部材30の凹部32の内径寸法D2が等しくなっているので摩擦で互いに動きにくい。
 その上、第1黒鉛部材20の小径部22と、第2黒鉛部材30の凹部32とが接触する部分には周面炭素系接着材241が層を形成しにくいので、周面炭素系接着材241の寸法収縮の影響を受けにくく強固な黒鉛構造体10Aを提供することができる。
 また、周面炭素系接着部24は、第1の溝231の内部にあって凹部32と小径部22とを接続することができる。周面炭素系接着部24は、熱硬化性樹脂、ピッチなどを含有する炭素系接着材の炭化物が利用できる。
 これらの炭素系接着材は、液状で塗布され硬化を経て炭素化される。このため、周面炭素系接着材241は、第1黒鉛部材20と第2黒鉛部材30とを接続することができる。また、硬化前の周面炭素系接着材241は液状であるので、第1黒鉛部材20及び第2黒鉛部材30の気孔内部に浸透し、第1黒鉛部材20及び第2黒鉛部材30の直接接合する部位の接合を補強することができる。
 周面炭素系接着部24は、第1黒鉛部材20の小径部22の外周面221または第2黒鉛部材30の凹部32の内周面321が削られた黒鉛粒子BPを骨材として含んでいることが好ましい。
 黒鉛構造体10Aでは、第1黒鉛部材20の小径部22の最大直径寸法D1は、第2黒鉛部材30の凹部32の内径寸法D2より大きい。このため、挿入する際には互いに表面を摩擦しながら挿入することとなる。
 第1黒鉛部材20と第2黒鉛部材30は共に材質が黒鉛であるので、摩擦によって削られ黒鉛粒子BPが生じるが、生じた黒鉛粒子BPは小径部22の外周面221を周回する複数列の第1の溝231に捕らえられ、底に滞留する。
 また、第1の溝231には塗布された周面炭素系接着材241が保持されており、生じた黒鉛粒子BPは周面炭素系接着材241と混ざり、骨材として機能することができる。また、削られて形成した黒鉛粒子BPは、もともと小径部22と凹部32との間で形成されたものであるので、周面炭素系接着材241に添加され外部から供給される骨材よりも粒子径が大きくても周面炭素系接着部24に含有させることができる。
 このため、周面炭素系接着材241の寸法収縮を小さくする作用を小さくすることができる。
 第1黒鉛部材20は、第1黒鉛部材先端面21を有し、第2黒鉛部材30は、第2黒鉛部材先端面31を有する。
 端面炭素系接着材塗布工程において、第1黒鉛部材先端面21または第2黒鉛部材先端面31に、端面炭素系接着材251を塗布することが好ましい。端面炭素系接着材塗布工程は、熱処理工程の前に行う。
 第1黒鉛部材先端面21と、第2黒鉛部材先端面31とが、端面炭素系接着材251が硬化及び炭素化した端面炭素系接着部25を介して接着されるので、より高強度の接合を実現する黒鉛構造体10Aの製造方法を提供することができる。
 また、第1黒鉛部材20の小径部22は外周面221を周回する複数列の第1の溝231を有する。第2黒鉛部材30の凹部32は、小径部22の最大直径寸法D1より小さく、小径部22の平均直径より大きい内径寸法D2を有する。
 このため、挿入工程においては、小径部22の外周面221または凹部32の内周面321を削りながら凹部32に小径部22を挿入するので、端面炭素系接着部25および周面炭素系接着部24がなくても摩擦力によって第1黒鉛部材20と第2黒鉛部材30とが強固に固定される。
 このため、第1黒鉛部材先端面21と第2黒鉛部材先端面31との間に挟まれた端面炭素系接着材251が硬化、炭素化して端面炭素系接着部25となる過程で、第1黒鉛部材先端面21と第2黒鉛部材先端面31にずれが生じにくく、硬化途中の端面炭素系接着材251に亀裂を生じにくくすることができる。
 これにより、端面炭素系接着部25の強度低下を起こしにくく、高強度の接合を実現する黒鉛構造体10Aを得ることができる。
 小径部22または凹部32に塗布する周面炭素系接着材241と、第1黒鉛部材先端面21または第2黒鉛部材先端面31に塗布する端面炭素系接着材251とは、同一であることが好ましい。
 周面炭素系接着材241と、端面炭素系接着材251とが同一であると、硬化の挙動が同じであるので同じ条件で硬化、炭素化することができ、強度の劣化を小さくすることができる。
 黒鉛構造体10Aの製造方法の炭素系接着材はコプナ樹脂であることが好ましい。コプナ樹脂は、焼成後炭素質となり、この炭化収率が50%以上と高く、さらに脱水縮合反応によって炭素原子と化学結合を形成できる樹脂であるので高強度の黒鉛構造体10Aを得ることができる。
 黒鉛構造体の製造方法の第1黒鉛部材20および第2黒鉛部材30に用いる黒鉛材料は、特に限定されないが押出黒鉛、等方性黒鉛が好ましい。これらの黒鉛材料は、耐熱性が高いので、高強度の接合と組み合わせることによって高強度の黒鉛構造体10Aを提供することができる。
 中でも、第1黒鉛部材20および第2黒鉛部材30に用いる黒鉛材料には、等方性黒鉛を用いることが好ましい。等方性黒鉛は、組織が細かく特に高強度であるので、高強度の接合と組み合わせることによってさらに高強度の黒鉛構造体10Aを提供することができる。
≪黒鉛ヒータの製造方法≫
 黒鉛ヒータの製造方法には、上述した黒鉛構造体の製造方法を適用することができる。上述した黒鉛構造体の製造方法で得られる黒鉛構造体10Aは、第1黒鉛部材20の小径部22の最大直径寸法D1と第2黒鉛部材30の凹部32の内径寸法D2が等しくなるので、第1黒鉛部材20と第2黒鉛部材30が直接接することができる。
 第1黒鉛部材20と第2黒鉛部材30を接合する周面炭素系接着部24に用いる周面炭素系接着材241は、硬化を経て炭素化している固相炭素化した物質である。
 これに対し、第1黒鉛部材20および第2黒鉛部材30を構成する黒鉛材料は、ピッチが液相のまま炭素化した液相炭素化した物質である。液相炭素化は炭素原子が自由に再配列しながら炭素化していく炭素化のプロセスであるので、結晶化度が高く、低抵抗の黒鉛材料が得られやすい。
 しかしながら、周面炭素系接着部24は固相炭素化によって得られているので、結晶化度が高めにくく、低い抵抗が得られにくい。このため、第1黒鉛部材20の小径部22の最大直径寸法D1と第2黒鉛部材30の凹部32の内径寸法D2が等しくなって、第1黒鉛部材20と第2黒鉛部材30が直接接するので、周面炭素系接着部24が発熱しにくく黒鉛ヒータ50A、50Bとして好適に利用することができる。
 また、黒鉛ヒータ50A、50Bの黒鉛材料は特に限定されない。押出黒鉛、等方性黒鉛などを利用することができる。中でも等方性黒鉛は、固有抵抗の異方性が小さいので、ヒータ設計時に電流の流れる方向の考慮が不要であるので黒鉛ヒータ50A、50Bとして好適に利用できる。
 次に、黒鉛構造体の作用効果について説明する。
 黒鉛構造体10Aは、略円柱形状の第1黒鉛部材20と、第1黒鉛部材20に同軸配置された小径部22と、第1黒鉛部材20に対して同軸連結された略円柱形状の第2黒鉛部材30と、を有する。小径部22は、第1黒鉛部材20よりも小径で、かつ、外周面221に凹凸23が設けられている。
 また、第2黒鉛部材30は、小径部22が挿入可能な凹部32が第2黒鉛部材先端面31に設けられている。
 そして、小径部22の外周面221および凹部32の内周面321間には、周面炭素系接着部24が介装されるとともに、凹部32の内径寸法D2は、小径部22の最大直径寸法D1と等しい。
 このため、第1黒鉛部材20の小径部22を第2黒鉛部材30の凹部32に押し込むと、小径部22の外周面221の凹凸23が擦れて削れて圧入され、第1黒鉛部材20の小径部22と第2黒鉛部材30とが等しくなり直接接触するようになる。
 また、小径部22の外周面221と凹部32の内周面321とが、削れた黒鉛の粉と周面炭素系接着部24により密着して接着される。
 これにより、第1黒鉛部材20と第2黒鉛部材30とを、電気抵抗が低く、高強度で接合することができる。
 また、黒鉛構造体10Aは、第1黒鉛部材20および小径部22が一体的に形成されているので、小径部22を第2黒鉛部材30の凹部32に接合することにより、第1黒鉛部材20と第2黒鉛部材30とを確実に接合することができる。
 また、黒鉛構造体10Aは、凹部32の内周面321にも凹凸33が設けられているので、小径部22の外周面221の凹凸23と同様に擦れて削れ、周面炭素系接着材241により結合される。
 また、黒鉛構造体10Aは、小径部22の外周面221に第1の溝231が設けられているので、十分な強度を維持できるだけの周面炭素系接着材241を、第1の溝231に保持することができる。
 また、第1の溝231に保持された周面炭素系接着材241がいずれの箇所でも第1黒鉛部材20と第2黒鉛部材30を接合することができるので、高強度の接合を行うことができる。
 また、黒鉛構造体10Aは、第1の溝231が螺旋状に設けられている。このため、第1黒鉛部材20の小径部22を第2黒鉛部材30の凹部32に挿入する際に、常に隣り合う二つの第1の溝231が形成する突起部分が、凹部32の入口側の端部に接触する。
 これにより、挿入する際に必要な力に変動が少なく突起部分に大きな欠けを生じにくくすることができる。
 また、黒鉛構造体10Aでは、周面炭素系接着部24には、小径部22の外周面221および凹部32の内周面321のうちの少なくとも一方が削られた骨材が含まれている。
 すなわち、第1黒鉛部材20の小径部22を第2黒鉛部材30の凹部32に挿入する際には、互いに表面を摩擦しながら挿入するので、摩擦によって削られ黒鉛粒子BPが生じる。生じた黒鉛粒子BPは小径部22の第1の溝231に捕らえられ、底に滞留する。
 また、第1の溝231には塗布された周面炭素系接着材241が保持されており、生じた黒鉛粒子BPは周面炭素系接着材241と混ざり、骨材として機能する。
 このため、接着力を強化することができる。
 また、黒鉛構造体10Aは、第1黒鉛部材20の第1黒鉛部材先端面21と第2黒鉛部材30の第2黒鉛部材先端面31とを、端面炭素系接着部25を介して接合した。
 これにより、第1黒鉛部材20と第2黒鉛部材30とを、強力に接合できる。
 また、黒鉛構造体10Aは、周面炭素系接着部24および端面炭素系接着部25に、同じ炭素系接着材を用いたので、硬化の挙動が同じであり、同じ条件で硬化、炭素化することができ、強度の劣化を小さくすることができる。
 また、黒鉛構造体10Aは、周面炭素系接着部24および端面炭素系接着部25のうちの少なくとも一方にコプナ樹脂の炭化物を用いた。
 コプナ樹脂は脱水縮合反応によって炭素原子と直接結びつくことができるので高強度の黒鉛構造体10Aを得ることができる。
 次に、黒鉛ヒータの作用効果について説明する。
 黒鉛ヒータ50A、50Bは、前述した黒鉛構造体10Aを用いて形成される。
 これにより、第1黒鉛部材20の小径部22を第2黒鉛部材30の凹部32に押し込むと、小径部22の外周面221の凹凸23が擦れて削れるので、第1黒鉛部材20の小径部22と第2黒鉛部材30の凹部32とが直接接触する。
 また、小径部22の外周面221と凹部32の内周面321とが、削れた黒鉛の粉と周面炭素系接着部24により密着して接着される。
 これにより、第1黒鉛部材20と第2黒鉛部材30とを、電気抵抗が低く、高強度で接合することができる。
 次に、黒鉛構造体の製造方法の作用効果について説明する。
 黒鉛構造体の製造方法は、第1黒鉛部材20の第1黒鉛部材先端面21に、第1黒鉛部材20よりも小径、かつ、外周面221に凹凸23が設けられた小径部22を同軸配置する。また、第2黒鉛部材30の第2黒鉛部材先端面31に、小径部22が挿入可能、かつ、小径部22の最大直径寸法D1よりも小さな内径寸法D2を有する凹部32を設ける。
 そして、周面炭素系接着材塗布工程において、小径部22の外周面221および凹部32の内周面321のうちの少なくとも一方に周面炭素系接着材241を塗布する。
 その後、挿入工程において、小径部22の外周面221および凹部32の内周面321のうちの少なくとも一方を削りながら小径部22を凹部32に挿入させる。
 次いで、熱処理工程において、第1黒鉛部材20および第2黒鉛部材30を加熱することにより、周面炭素系接着材241を炭素化させることにより硬化させて、周面炭素系接着部24を形成する。
 このため、第1黒鉛部材20の小径部22を第2黒鉛部材30の凹部32に押し込むと、小径部22の外周面221の凹凸23または凹部32の内周面321の凹凸33が擦れて削れて圧入される。
 これにより、第1黒鉛部材20の小径部22と第2黒鉛部材30の凹部32の内周面321とが直接接触する。また、小径部22の外周面221と凹部32の内周面321とが、削れた黒鉛の粉と周面炭素系接着部24により密着して接着される。
 これにより、第1黒鉛部材20と第2黒鉛部材30とを、電気抵抗が低く、高強度で接合することができる。
 また、黒鉛構造体の製造方法は、あらかじめ小径部22の外周面221に第1の溝231を螺旋状に設けておく。
 このため、第1黒鉛部材20の小径部22を第2黒鉛部材30の凹部32に挿入する際に、常に隣り合う二つの第1の溝231が形成する突起部分が、凹部32の入口側の端部に接触している。
 これにより、挿入する際に必要な力に変動が少なく突起部分に大きな欠けを生じにくくすることができる。
 また、黒鉛構造体の製造方法は、互いに対向する第1黒鉛部材20の第1黒鉛部材先端面21および第2黒鉛部材30の第2黒鉛部材先端面31のうちの少なくとも一方に端面炭素系接着材251を塗布する端面炭素系接着材塗布工程を熱処理工程の以前に行う。
 このため、第1黒鉛部材先端面21と第2黒鉛部材先端面31とを、端面炭素系接着部25を介して接合するので、第1黒鉛部材20と第2黒鉛部材30とを、強力に接合することができる。
 また、黒鉛構造体の製造方法は、周面炭素系接着材241および端面炭素系接着材251のうちの少なくとも一方にコプナ樹脂を用いた。
 コプナ樹脂は脱水縮合反応によって炭素原子と直接結びつくことができるので高強度の黒鉛構造体10Aを得ることができる。
 次に、黒鉛ヒータの製造方法の作用効果について説明する。
 黒鉛ヒータの製造方法は、前述したいずれかに記載の黒鉛構造体の製造方法を用いたので、第1黒鉛部材20と第2黒鉛部材30とを、電気抵抗が低く、高強度で接合することができる。
(第2実施形態)
 次に、第2実施形態の黒鉛構造体について説明する。
 なお、前述した第1実施形態の黒鉛構造体10Aと共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図9(A)および図9(B)に示すように、第2実施形態の黒鉛構造体10Bでは、小径部22Bが第1黒鉛部材20Bと別体で設けられている。第1黒鉛部材20Bの第1黒鉛部材先端面21には、第2黒鉛部材30の凹部32と同様の第1黒鉛部材凹部26が設けられている。従って、第1黒鉛部材凹部26の内径寸法は、小径部22の最大直径寸法よりも小さい。
 第1黒鉛部材凹部26の内周面261には、凹部32の凹凸33と同様の凹凸27が設けられている。
 なお、小径部22Bと第2黒鉛部材30との関係は、第1実施形態の黒鉛構造体10Aと同様である。
 従って、黒鉛構造体10Bを製造する際には、まず、小径部22Bを第1黒鉛部材20Bの第1黒鉛部材凹部26に挿入して接合する。
 その後は、第1実施形態における黒鉛構造体の製造方法と同様の製造方法によって、黒鉛構造体10Bを製造する。
 このように構成しても、前述した第1実施形態の黒鉛構造体10Aと同様の作用、効果を得ることができる。
(第3実施形態)
 次に、第3実施形態の黒鉛構造体について説明する。
 なお、前述した第1実施形態の黒鉛構造体10Aおよび第2実施形態の黒鉛構造体10Bと共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図10(A)、図10(B)、図11(A)および図11(B)に示すように、第3実施形態の黒鉛構造体10Cでは、凹部32の内周面321に、凹凸33として複数列の螺旋状の第2の溝331を設けた。複数列の第2の溝331は、二重螺旋形状に設けられている。
 このため、第1黒鉛部材20を第2黒鉛部材30Cに挿入する際に、常に隣り合う二つの溝が形成する突起部分が凹部32の入口側の端部に接触している。このため、挿入する際に必要な力に変動が少なく突起部分に大きな欠けを生じにくくすることができる。
 なお、第1の溝231および第2の溝331を螺旋形状の溝とする場合には、第1の溝231と第2の溝331とが螺合しないように、螺旋の形状(ピッチや角度)や、螺旋の向き等を異なるものとする。ここでは、第2の溝331は、二重螺旋形状となっているので、第1の溝231は、その一方の螺旋とも螺合しないようにする。
 また、第2の溝331の内部にも、周面炭素系接着材241を塗布した周面炭素系接着部24を設けることが好ましい。
 これにより、周面炭素系接着部24は、第1の溝231および第2の溝331の内部にあって、凹部32と小径部22とを接続することができる。
 周面炭素系接着部24は、熱硬化性樹脂、ピッチなどを含有する炭素系接着材の炭化物が利用できる。これらの炭素系接着材は、液状で塗布され硬化を経て炭素化される。このため、第2の溝331の内部にある周面炭素系接着材241は、第1黒鉛部材20と第2黒鉛部材30Cとを接続することができる。
 また、硬化前の周面炭素系接着材241は液状であるので、第1黒鉛部材20及び第2黒鉛部材30Cの気孔内部に浸透し、第1黒鉛部材20及び第2黒鉛部材30Cの直接接合する部位の接合を補強することができる。
 第2の溝331の断面形状は特に限定されない。三角形の溝、半円形の溝、台形の溝、矩形の溝などどのようなものでも良い。
 第2の溝331の深さは特に限定されないが、5~500μmであることが好ましい。第2の溝331の深さが5μm以上であると、第1黒鉛部材20及び第2黒鉛部材30Cの気孔内部に吸収されても十分な強度を維持できるだけの周面炭素系接着材241を第2の溝331に保持することができる。
 第2の溝331の深さが500μm以下であると、凹部32の外側の第2黒鉛部材30Cに十分な断面積を確保することができるので、引っ張り応力がかかっても応力集中が小さくなり、凹部32を折損しにくくすることができる。
 第2の溝331は、凹部32の内周面の全面に形成されていることが好ましい。複数列の第2の溝331が凹部32の全面に形成されていると、第2の溝331に保持された周面炭素系接着部24がいずれの箇所でも第1黒鉛部材20と第2黒鉛部材30Cを接合することができるので、高強度の接合をした黒鉛構造体10Cを提供することができる。
 周面炭素系接着部24には、第1黒鉛部材20の小径部22の外周面または第2黒鉛部材30Cの凹部32の内周面が削られた黒鉛粒子BPを骨材として含んでいることが好ましい。黒鉛構造体10Cでは、第1黒鉛部材20の小径部22の最大直径寸法D1が、第2黒鉛部材30Cの凹部32の内径寸法D2よりも大きい。
 このため小径部22を凹部32に挿入する際には、互いに表面を摩擦しながら挿入することとなる。第1黒鉛部材20と第2黒鉛部材30Cは共に材質が黒鉛であるので、摩擦によって削られ黒鉛粒子BPが生じるが、生じた黒鉛粒子BPは凹部32の内周面321を周回する複数列の第2の溝331に捕らえられ、底に滞留する。
 また、第2の溝331には塗布された周面炭素系接着材241が保持されており、生じた黒鉛粒子BPは周面炭素系接着材241と混ざり、骨材として機能することができる。また、削られて形成した黒鉛粒子BPはもともと小径部22と凹部32との間で形成されたものであるので、周面炭素系接着材241に添加され外部から供給される骨材よりも粒子径が大きくても周面炭素系接着部24に含有させることができる。このため、周面炭素系接着材241の寸法収縮を小さくする作用を小さくすることができる。
 第2黒鉛部材30Cの凹部32は、凹凸33として内周面321を周回する複数列の第2の溝331を有し、周面炭素系接着部24はさらに第2の溝331の内部にも有していることが好ましい。
 第2の溝331は、二重螺旋形状をしているので、第1黒鉛部材20を第2黒鉛部材30Cに挿入する際に、常に隣り合う二つの第2の溝331が形成する突起部分が、小径部22の先端面に接触している。
 このため、挿入する際に必要な力に変動が少なく突起部分に大きな欠けを生じにくくすることができる。
 以上、説明した第3実施形態の黒鉛構造体10Cによれば、凹部32の内周面321には、第2の溝331が複数設けられているので、十分な強度を維持できるだけの周面炭素系接着材241を第2の溝331に保持することができる。
 また、第2の溝331に保持された周面炭素系接着材241がいずれの箇所でも第1黒鉛部材20と第2黒鉛部材30Cを接合することができるので、高強度の接合を行うことができる。
 また、黒鉛構造体10Cでは、第2の溝331は、螺旋状に設けられている。このため、第1黒鉛部材20を第2黒鉛部材30Cに挿入する際に、常に隣り合う二つの第2の溝331が形成する突起部分が、小径部22の入口側の端部に接触する。
 これにより、挿入する際に必要な力に変動が少なく突起部分に大きな欠けを生じにくくすることができる。
 また、黒鉛構造体の製造方法では、あらかじめ凹部32の内周面321に複数の第2の溝331を設けておく。
 このため、凹部32の内周面321には、第2の溝331が複数設けられているので、十分な強度を維持できるだけの周面炭素系接着材241を第2の溝331に保持することができる。
 また、第2の溝331に保持された周面炭素系接着材241が、いずれの箇所でも第1黒鉛部材20と第2黒鉛部材30Cを接合するので、高強度の接合を行うことができる。
 また、黒鉛構造体の製造方法では、各第2の溝331を螺旋状に形成する。
 このため、第1黒鉛部材20を第2黒鉛部材30Cに挿入する際に、常に隣り合う二つの第2の溝331が形成する突起部分が、小径部22の入口側の端部に接触する。
 これにより、挿入する際に必要な力に変動が少なく突起部分に大きな欠けを生じにくくすることができる。
(第4実施形態)
 次に、第4実施形態の黒鉛構造体について説明する。
 なお、前述した第1実施形態の黒鉛構造体10Aないし第3実施形態の黒鉛構造体10Cと共通する部位には同じ符号を付して、重複する説明を省略することとする。
 図12(A)および図12(B)に示すように、第4実施形態の黒鉛構造体10Dでは、第1黒鉛部材20Dおよび第2黒鉛部材30Dが、円管状の中空部材となっている。小径部22Dも中空部材となっている。また、凹部32の底面322にも開口が設けられている。
 従って、黒鉛構造体10Dの中心部には、中空部28が長手方向に連続して設けられており、全体が円管状となっている。
 このように構成しても、第1実施形態ないし第3実施形態と同様の作用、効果を得ることができる。
 さらに、黒鉛構造体10Dは、管状部材としての使用も可能となる。
 本発明の黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法は、前述した各実施形態に限定されるものでなく、適宜な変形、改良等が可能である。
 本発明は、電気抵抗が低く、高強度の接合を実現する黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法に適用できる。
 10A、10B、10C、10D 黒鉛構造体
 20、20B、20D 第1黒鉛部材
 21 第1黒鉛部材先端面(端面)
 22、22B、22D 小径部
 221 外周面
 23 凹凸
 231 第1の溝
 24 周面炭素系接着部
 241 周面炭素系接着材
 25 端面炭素系接着部
 251 端面炭素系接着材
 30、30D 第2黒鉛部材
 31 第2黒鉛部材先端面(端面)
 32 凹部
 321 内周面
 33 凹凸
 331 第2の溝
 50A、50B 黒鉛ヒータ
 D1 最大直径寸法
 D2 内径寸法

Claims (19)

  1.  略円柱形状の第1黒鉛部材と、
     前記第1黒鉛部材に同軸配置され、前記第1黒鉛部材よりも小径、かつ、外周面に凹凸が設けられた小径部と、
     前記小径部が挿入可能であって、略円柱形状の空間を囲む凹部が端面に設けられ、前記第1黒鉛部材に対して前記凹部が同軸連結された第2黒鉛部材と、
     前記小径部の外周面および前記凹部の内周面間に介装された周面炭素系接着部とを備え、
     前記小径部の最大直径寸法と前記凹部の内径寸法とが等しい黒鉛構造体。
  2.  請求項1に記載の黒鉛構造体であって、
     前記第1黒鉛部材および前記小径部が一体的に形成されている黒鉛構造体。
  3.  請求項1または請求項2に記載の黒鉛構造体であって、
     前記凹部の内周面に凹凸が設けられている黒鉛構造体。
  4.  請求項1ないし請求項3のうちのいずれか1項に記載の黒鉛構造体であって、
     前記小径部の外周面に第1の溝が設けられている黒鉛構造体。
  5.  請求項4に記載の黒鉛構造体であって、
     前記第1の溝が螺旋状に設けられている黒鉛構造体。
  6.  請求項4または請求項5に記載の黒鉛構造体であって、
     前記凹部の内周面に第2の溝が複数列設けられている黒鉛構造体。
  7.  請求項6に記載の黒鉛構造体であって、
     前記各第2の溝が螺旋状に設けられている黒鉛構造体。
  8.  請求項1ないし請求項5のうちのいずれか1項に記載の黒鉛構造体であって、
     前記周面炭素系接着部は、前記小径部の外周面および前記凹部の内周面のうちの少なくとも一方が削られた骨材が含まれている黒鉛構造体。
  9.  請求項1ないし請求項8のうちのいずれか1項に記載の黒鉛構造体であって、
     互いに対向する前記第1黒鉛部材の端面および前記第2黒鉛部材の端面が端面炭素系接着部を介して接合されている黒鉛構造体。
  10.  請求項9に記載の黒鉛構造体であって、
     前記周面炭素系接着部および前記端面炭素系接着部が同一材質である黒鉛構造体。
  11.  請求項9に記載の黒鉛構造体であって、
     前記周面炭素系接着部および前記端面炭素系接着部のうちの少なくとも一方がコプナ樹脂の炭化物である黒鉛構造体。
  12.  請求項1ないし請求項11のうちのいずれか1項に記載の黒鉛構造体を用いた黒鉛ヒータ。
  13.  略円柱形状の第1黒鉛部材および略円柱形状の空間を囲む凹部を端面に有する第2黒鉛部材とを、前記第1黒鉛部材に対して凹部を同軸配置させる黒鉛構造体の製造方法であって、
     前記第1黒鉛部材よりも小径、かつ、外周面に凹凸が設けられた小径部を前記第1黒鉛部材の端面に同軸配置するとともに、
     前記第2黒鉛部材の端面の凹部は前記小径部が挿入可能、かつ、前記小径部の最大直径寸法よりも小さな内径寸法を有し、
     前記小径部の外周面および前記凹部の内周面のうちの少なくとも一方に周面炭素系接着材を塗布する周面炭素系接着材塗布工程を行った後、
     前記小径部の外周面および前記凹部の内周面のうちの少なくとも一方を削りながら前記小径部を前記凹部に挿入させる挿入工程を行い、
     次いで、前記第1黒鉛部材および前記第2黒鉛部材を加熱することにより、前記周面炭素系接着材を炭素化させることにより硬化させて周面炭素系接着部を形成する熱処理工程を行う黒鉛構造体の製造方法。
  14.  請求項13に記載の黒鉛構造体の製造方法であって、
     あらかじめ前記小径部の外周面に第1の溝を螺旋状に設けておく黒鉛構造体の製造方法。
  15.  請求項11に記載の黒鉛構造体の製造方法であって、
     あらかじめ前記凹部の内周面に複数列の第2の溝を設けておく黒鉛構造体の製造方法。
  16.  請求項15に記載の黒鉛構造体の製造方法であって、
     前記各第2の溝を螺旋状に形成しておく黒鉛構造体の製造方法。
  17.  請求項13ないし請求項16のうちのいずれか1項に記載の黒鉛構造体の製造方法であって、
     互いに対向する前記第1黒鉛部材の端面および前記第2黒鉛部材の端面のうちの少なくとも一方に端面炭素系接着材を塗布する端面炭素系接着材塗布工程を前記熱処理工程の以前に行う黒鉛構造体の製造方法。
  18.  請求項13ないし請求項17のうちのいずれか1項に記載の黒鉛構造体の製造方法であって、
     前記周面炭素系接着材および前記端面炭素系接着材のうちの少なくとも一方がコプナ樹脂である黒鉛構造体の製造方法。
  19.  請求項13ないし請求項18のうちのいずれか1項に記載の黒鉛構造体の製造方法を用いた黒鉛ヒータの製造方法。
PCT/JP2014/068944 2013-07-31 2014-07-16 黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法 WO2015016070A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158740 2013-07-31
JP2013158740A JP6109003B2 (ja) 2013-07-31 2013-07-31 黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法

Publications (1)

Publication Number Publication Date
WO2015016070A1 true WO2015016070A1 (ja) 2015-02-05

Family

ID=52431610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068944 WO2015016070A1 (ja) 2013-07-31 2014-07-16 黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法

Country Status (2)

Country Link
JP (1) JP6109003B2 (ja)
WO (1) WO2015016070A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190494A1 (ja) * 2014-06-09 2015-12-17 イビデン株式会社 黒鉛構造体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101939466B1 (ko) * 2017-05-29 2019-01-16 엘지전자 주식회사 탄소 히터

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125087U (ja) * 1983-02-14 1984-08-23 助川電気工業株式会社 発熱ユニツトの接続構造
JPS61138186U (ja) * 1985-02-18 1986-08-27
JPH02103885A (ja) * 1988-10-11 1990-04-16 Hanawa Netsuden Kinzoku Kk 発熱装置
JPH0353791U (ja) * 1989-09-28 1991-05-24
JP2007250403A (ja) * 2006-03-17 2007-09-27 Shin Etsu Chem Co Ltd セラミックスヒーターおよびヒーター給電部品
JP2014080314A (ja) * 2012-10-16 2014-05-08 Ibiden Co Ltd 黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125087U (ja) * 1983-02-14 1984-08-23 助川電気工業株式会社 発熱ユニツトの接続構造
JPS61138186U (ja) * 1985-02-18 1986-08-27
JPH02103885A (ja) * 1988-10-11 1990-04-16 Hanawa Netsuden Kinzoku Kk 発熱装置
JPH0353791U (ja) * 1989-09-28 1991-05-24
JP2007250403A (ja) * 2006-03-17 2007-09-27 Shin Etsu Chem Co Ltd セラミックスヒーターおよびヒーター給電部品
JP2014080314A (ja) * 2012-10-16 2014-05-08 Ibiden Co Ltd 黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015190494A1 (ja) * 2014-06-09 2015-12-17 イビデン株式会社 黒鉛構造体

Also Published As

Publication number Publication date
JP2015030626A (ja) 2015-02-16
JP6109003B2 (ja) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5202306B2 (ja) 口金用の異種材料接合体の製造方法
JP2014198650A5 (ja)
JP6109003B2 (ja) 黒鉛構造体、黒鉛ヒータ、黒鉛構造体の製造方法および黒鉛ヒータの製造方法
JP2014198652A5 (ja)
RU2668434C2 (ru) Способ и устройство упрочнения и/или покрытия изнутри материала
EP2642231A1 (en) Heat conduction member
US20080142196A1 (en) Heat Pipe with Advanced Capillary Structure
WO2014124969A1 (fr) Piece obtenue par fusion selective d'une poudre comprenant un element principal et des elements secondaires rigides
AU2015341864A1 (en) Bonding objects together
JP3186554U (ja) 黒鉛電極
CN103443515B (zh) 采用螺纹接头和粘接剂连接陶瓷阀塞顶端和钢支撑部件的方法
US10488235B2 (en) Measuring tube for a magneto-inductive flow measuring device and magneto-inductive flow measuring device
JP5889481B2 (ja) 断熱体及びその製造方法
CN107002790B (zh) 非编织和裂缝减少的制动盘预制品和制动片
US10100960B2 (en) High-pressure-standable pipe connector and high-pressure-standable connector
US10807313B2 (en) Bonding objects together
KR20190110107A (ko) 물체들을 함께 본딩하는 방법
CN101043867A (zh) 针灸针与针管的固定方法及带有针管的针灸针
JP5366520B2 (ja) 接合部材の作成方法および接合構造
JP2007027035A (ja) 加熱装置の製造方法
US7352792B2 (en) Enhanced joints for pins and electrodes with asymmetric properties
JP5576887B2 (ja) トレランスストリップ
US20140290852A1 (en) Method for producing bonded body
FR3084120A1 (fr) Composant de fixation, procede d’assemblage et dispositif d’assemblage
FR3076480A1 (fr) Couteau monobloc en carbure de tungstene pour decoupe par ultrasons

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832303

Country of ref document: EP

Kind code of ref document: A1