WO2015016020A1 - ユーザ端末、無線基地局及び通信制御方法 - Google Patents

ユーザ端末、無線基地局及び通信制御方法 Download PDF

Info

Publication number
WO2015016020A1
WO2015016020A1 PCT/JP2014/068220 JP2014068220W WO2015016020A1 WO 2015016020 A1 WO2015016020 A1 WO 2015016020A1 JP 2014068220 W JP2014068220 W JP 2014068220W WO 2015016020 A1 WO2015016020 A1 WO 2015016020A1
Authority
WO
WIPO (PCT)
Prior art keywords
user terminal
base station
measurement
measurement gap
start offset
Prior art date
Application number
PCT/JP2014/068220
Other languages
English (en)
French (fr)
Inventor
浩樹 原田
リュー リュー
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US14/908,916 priority Critical patent/US9693291B2/en
Priority to CN201480043498.8A priority patent/CN105432124A/zh
Publication of WO2015016020A1 publication Critical patent/WO2015016020A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to a user terminal, a radio base station, and a communication control method in a next generation mobile communication system in which a small cell is arranged in a macro cell.
  • LTE Long Term Evolution
  • LTE successor systems for example, LTE Advanced, FRA (Future Radio Access), 4G, etc.
  • macrocells with a relatively large coverage with a radius of several hundred meters to several kilometers.
  • wireless communication systems for example, also called HetNet (Heterogeneous Network)
  • small cells including picocells, femtocells, etc.
  • Non-Patent Document 1 Non-Patent Document 1
  • a scenario in which both the macro cell and the small cell use the same frequency band F1, and different frequency bands F1, F2 for the macro cell and the small cell, respectively. Scenarios using non-co-channel deployment and separate frequency deployment are being studied. In addition, a scenario (without macro coverage) in which a small cell cluster is formed by a plurality of small cells without arranging a macro cell is also being studied.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS Cell-specific Reference Signal
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CRS Cell-specific Reference Signal
  • a detection / measurement signal for example, a discovery signal
  • a time required for detection is shorter than that of PSS, SSS, and CRS and a transmission cycle is longer is being studied. According to such a detection / measurement signal, it is possible to prevent an increase in power consumption of the user terminal accompanying detection and / or measurement of the small cell.
  • the user terminal may not be able to detect the small cell. .
  • the present invention has been made in view of this point, and provides a user terminal, a radio base station, and a communication control method capable of detecting a small cell more reliably while preventing an increase in power consumption of the user terminal. With the goal.
  • a communication control method is a communication control method in a wireless communication system in which a small cell using a second frequency is arranged in a macro cell using a first frequency, in the macro base station forming the macro cell.
  • Measurement gap pattern information indicating the same repetition period as the transmission period of the detection / measurement signal in the small cell and the same time length as the transmission period of the detection / measurement signal, and the start offset of the transmission period,
  • a step of notifying a user terminal and a step of setting a measurement gap of the repetition period and the time length using the same start offset as the start offset in the user terminal.
  • a small cell can be detected more reliably while preventing an increase in power consumption of the user terminal.
  • FIG. 2 is an explanatory diagram of an example of a wireless communication system in which introduction of a discovery signal is considered.
  • a radio communication system includes a radio base station that forms a macro cell (hereinafter referred to as a macro base station (MeNB: Macro eNodeB)) and a radio base station that forms a small cell 1-3 (hereinafter referred to as a small cell). It includes a base station (referred to as SeNB: Small eNodeB) 1-3 and a user terminal (UE: User Equipment).
  • SeNB Small eNodeB
  • UE User Equipment
  • a relatively low frequency (carrier) F1 such as 2 GHz or 800 MHz is used in the macro cell, and a relative frequency such as 3.5 GHz or 10 GHz is used in the small cell 1-3.
  • High frequency (carrier) F2 is used. 2A is merely an example, and the same frequency (carrier) may be used in the macro cell and the small cell 1-3.
  • a user terminal communicates with a macro base station. Further, the user terminal detects the small cell 1-3 based on the discovery signal (DS) from the small base station 1-3.
  • the discovery signal is a small cell detection / measurement signal, and may be configured by updating a reference signal such as CSI-RS (Channel State Information-Reference Signal) or PRS (Positioning Reference Signal). It may be newly configured.
  • discovery signals are arranged in subframes with higher resource density and inter-cell orthogonality than macro cell detection / measurement signals (for example, PSS and SSS). For this reason, as shown in FIG. 2B, the time required for the user terminal to detect the discovery signal is shorter than the time required to detect the PSS and SSS. As a result, when the discovery signal is used as the small cell detection / measurement signal, it is possible to prevent an increase in power consumption of the user terminal required for the measurement compared to the case where PSS or SSS is used.
  • the discovery signal is transmitted in a longer cycle than PSS, SSS, CRS, and the like.
  • CRS is transmitted in each subframe
  • PSS and SSS are transmitted every 5 subframes. More specifically, in the radio frame, subframes 1 and 6 in which PSS, SSS, and CRS are arranged and subframes 2-5 and 7-10 in which CRS is arranged are provided. In subframes 1 and 6, CRS is arranged in four OFDM symbols, SSS is arranged in the sixth OFDM symbol, and PSS is arranged in the seventh OFDM symbol. In subframes 2-5 and 7-10, CRSs are arranged in four OFDM symbols.
  • the discovery signal is transmitted every 100 subframes (100 ms cycle), for example. In such a case, it is possible to prevent an increase in overhead due to discovery signal transmission and an increase in interference that the discovery signal gives to user terminals in neighboring cells.
  • the measurement means that the user terminal receives a detection / measurement signal (for example, PSS, SSS, CRS, discovery signal, etc.), finds the detection / measurement signal, and determines its reception quality. Is to measure. If the reception quality of the detection / measurement signal at the user terminal satisfies a predetermined quality, a cell is detected.
  • the reception quality measured at the user terminal is, for example, RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), and the like.
  • the measurement includes an inter-frequency measurement and an inter-frequency measurement.
  • the different frequency measurement is to receive a detection / measurement signal transmitted at a frequency different from that of the connected cell and measure the reception quality of the detection / measurement signal.
  • the same frequency measurement is to receive a detection / measurement signal transmitted at the same frequency as the connected cell and measure the reception quality of the detection / measurement signal.
  • a user terminal connected to a macro base station switches the reception frequency from the frequency F1 to the frequency F2 in the measurement gap (Measurement Gap).
  • a small cell is detected by measuring the reception quality of a detection / measurement signal (for example, a discovery signal) transmitted at the frequency F2.
  • the measurement gap is a period for measuring (detecting) a detection / measurement signal transmitted using a different frequency F2, and stopping reception at the frequency F1 during communication. Another frequency F2 is received.
  • the measurement gap repeats a predetermined time length (hereinafter referred to as Measurement Gap Length (MGL)) in a predetermined repetition period (hereinafter referred to as Measurement Gap Repetition Period (MGRP)).
  • MML Measurement Gap Length
  • MGRP Measurement Gap Repetition Period
  • DRX discontinuous reception
  • a measurement gap pattern that is a combination of the MGL and MGRP is defined.
  • a measurement gap pattern 0 in which MGL is 6 ms and MGRP is 40 ms, and a measurement gap pattern 1 in which MGL is 6 ms and MGRP is 80 ms are defined.
  • the gap offset (Gap offset) is notified by RRC signaling.
  • the gap offset is a start offset from the beginning of the radio frame until the measurement gap starts, and indicates the timing of the measurement gap.
  • the user terminal may specify the measurement gap pattern (see FIG. 4A) based on the notified gap offset. In this case, the measurement gap pattern of FIG. 4A is notified implicitly.
  • FIG. 4B shows a measurement gap pattern in which MGL is 6 ms and MGRP is 40 ms or 80 ms.
  • the CRS is transmitted in each subframe, and the PSS and SSS are transmitted every 5 subframes.
  • the user terminal can receive CRS, PSS, and SSS in a measurement gap of 6 ms MGL, and can detect a small cell.
  • the DS transmission duration is 1 ms and the DS cycle is 100 ms.
  • the DS transmission period is a discovery signal transmission period and has a predetermined time length.
  • the DS cycle is a discovery signal transmission cycle.
  • discovery signals are not frequently transmitted like CRS, PSS and SSS in FIG. 4B.
  • CRS CRS
  • PSS PSS
  • SSS SSS
  • the present inventors have come up with the idea that a small cell can be reliably detected while preventing an increase in power consumption of the user terminal by matching the timings of the DS transmission period and the measurement gap.
  • FIG. 6 is a conceptual diagram of the different frequency measurement according to the present invention.
  • a measurement gap pattern 2 for detecting a discovery signal is defined.
  • MGL has a time length equal to the DS transmission period (for example, 1 ms).
  • MGRP has a time length equal to a DS transmission cycle (for example, 100 ms).
  • the macro base station notifies measurement gap pattern information to the user terminal.
  • the measurement gap pattern information is, for example, a gap pattern identifier (Gap Pattern Id) (see FIG. 6A) indicating MGL and MGRP, but is not limited thereto.
  • the measurement gap pattern information may be any information (for example, the gap offset) as long as it is information indicating the MGL and MGRP, that is, the measurement gap pattern.
  • the measurement gap pattern information is notified to the user terminal by upper layer signaling such as RRC (Radio Resource Control) signaling.
  • the macro base station transmits discovery signal (DS) configuration information to the user terminal.
  • the DS configuration information is information relating to the configuration of the discovery signal, and includes at least one of the DS transmission period, the DS cycle, and the DS start offset.
  • the DS start offset is a start offset (for example, a subframe number at which the DS transmission period is started) from the beginning of the radio frame to the start of the DS transmission period, and indicates the transmission timing of the discovery signal.
  • the DS transmission period starts based on the DS start offset and is set in the DS cycle.
  • the user terminal receives measurement gap pattern information indicating the same MGRP (repetition period) as the DS cycle and the same MGL (time length) as the DS transmission period, and the DS start offset from the macro base station. Receive.
  • the user terminal sets the measurement gap of the MGRP and the MGL using the same start offset as the DS start offset. Thereby, the timings of the DS transmission period and the measurement gap coincide.
  • the user terminal receives the discovery signal transmitted using the frequency F2 in the measurement gap set as described above, and measures the reception quality of the discovery signal.
  • the user terminal notifies the macro base station of the measurement result as a measurement report.
  • the measurement gap of the same MGRP as the DS cycle and the same MGL as the DS transmission period is set using the same start offset as the DS start offset.
  • the timing coincides with the measurement gap. For this reason, when using a discovery signal in order to prevent the increase in the power consumption of a user terminal, a user terminal can detect a small cell more reliably.
  • the communication control method according to the present embodiment is used in a radio communication system in which a small cell using a second frequency is arranged in a macro cell using a first frequency.
  • the macro base station determines whether or not the user terminal can detect the discovery signal based on the capability information of the user terminal.
  • the measurement gap pattern information indicating the measurement gap pattern 2 (that is, the same MGL as the DS transmission period and the same MGRP as the DS period)
  • DS The configuration information is notified to the user terminal.
  • FIG. 7 is an explanatory diagram of the communication control method according to the first aspect.
  • user terminals 1 and 2 are assumed to be located in macro cell 1.
  • a small cell shall be arrange
  • the user terminal 1 notifies the macro base station 1 of the capability information (UE capability) of the user terminal 1 (step S101). Moreover, the user terminal 2 notifies the capability information of the user terminal 2 to the macro base station 1 (step S102).
  • the capability information is notified using higher layer signaling such as RRC signaling, for example.
  • the macro base station 1 determines whether or not the user terminals 1 and 2 can detect the discovery signal based on the capability information notified from the user terminals 1 and 2 (step S103). For example, the macro base station 1 may determine that the discovery signal can be detected when the user terminal supports the LTE-A (Long Term Evolution-Advance) Release 12 method. Here, the macro base station 1 determines that the user terminal 2 can detect the discovery signal, and determines that the user terminal 1 cannot be detected.
  • LTE-A Long Term Evolution-Advance
  • Measurement gap pattern information is transmitted (step S104).
  • This measurement gap pattern information may be, for example, a gap pattern identifier (FIG. 6A) or a gap offset.
  • the macro base station 1 notifies the DS configuration information 1 to the user terminal 2 capable of detecting the discovery signal (step S105).
  • the DS configuration information 1 includes at least one of a DS transmission period, a DS cycle, and a DS start offset in a small cell in the macro cell 1.
  • the DS configuration information 1 is notified by higher layer signaling such as RRC signaling.
  • the macro base station 1 provides measurement gap pattern information indicating a measurement gap pattern 2 (that is, the same MGL as the DS transmission period and the same MGRP as the DS cycle) to the user terminal 2 that can detect the discovery signal. Notification is made (step S106).
  • the measurement gap pattern information may be a gap pattern identifier (FIG. 6A) or a gap offset that can specify the measurement gap pattern 2.
  • the user terminal 2 sets the MGL and MGRP measurement gaps indicated by the measurement gap pattern information in step S106 using the same gap offset as the DS start offset in step S105. As a result, the DS transmission period matches the measurement gap.
  • the user terminal 2 switches the frequency F1 to the frequency F2 in the measurement gap and measures the reception quality (for example, RSRP, RSRQ, SINR, etc.) of the discovery signal transmitted using the frequency F2.
  • the user terminal 2 notifies the macro base station of the measurement result as a measurement report.
  • FIG. 7B it is assumed that the user terminal 1 performs the processing shown in steps S101 and S104 in FIG. 7A. Further, it is assumed that the user terminal 2 performs the processes shown in steps S102, S105, and S106 in FIG. 7A.
  • FIG. 7B it is assumed that the user terminals 1 and 2 are handed over from the macro base station 1 (macro cell 1) to the macro base station 2 (macro cell 2).
  • the macro base station 1 (macro cell 1) and the macro base station 2 (macro cell 2) are asynchronous.
  • the DS start offset, the DS cycle, and the DS transmission period in the small cell in the macro cell 1 are different from the DS start offset, the DS cycle, and the DS transmission period in the small cell in the macro cell 2, respectively. Since the small cells in the macro cell 1 are synchronized, the same DS start offset, DS cycle, and DS transmission period are used between the small cells. The same applies to the small cells in the macro cell 2.
  • handover preparation processing is performed between the macro base stations 1 and 2 (step S201).
  • the macro base station 1 transmits a handover command (Handover command) to the macro base station 2 to the user terminal 1 (step S202).
  • the macro base station 1 transmits a handover command (Handover command) to the macro base station 2 to the user terminal 2 (step S203).
  • the user terminal 1 In response to the handover instruction from the macro base station 1, the user terminal 1 performs a random access process (RACH procedure) on the macro base station 2 (step S204). Similarly, the user terminal 2 performs a random access process (RACH procedure) on the macro base station 2 in response to a handover instruction from the macro base station 1 (step S205). In this random access process, the capability information of the user terminals 1 and 2 may be notified to the macro base station 2.
  • RACH procedure random access process
  • RACH procedure random access process
  • the macro base station 2 determines whether or not the user terminals 1 and 2 can detect the discovery signal based on the capability information of the user terminals 1 and 2 (step S206).
  • the macro base station 1 notifies measurement gap pattern information indicating the measurement gap pattern 0 or 1 to the user terminal 1 that cannot detect the discovery signal (step S207).
  • the macro base station 2 notifies the DS configuration information 2 to the user terminal 2 capable of detecting the discovery signal (step S208).
  • the DS configuration information 2 includes at least one of a DS transmission period, a DS cycle, and a DS start offset in a small cell in the macro cell 2.
  • the DS configuration information 2 may be notified by higher layer signaling such as RRC signaling.
  • the macro base station 2 sends a measurement gap pattern 2 (that is, the same MGL as the DS transmission period and the same MGRP as the DS period in the small cell under the macro cell 2) to the user terminal 2 that can detect the discovery signal. Is displayed (step S209).
  • the user terminal 2 resets the MGL and MGRP measurement gaps indicated by the measurement gap pattern information in step S209 using the same gap offset as the DS start offset in step S208. Thereby, the timings of the DS transmission period and the measurement gap coincide.
  • the macro base station transmits the measurement gap pattern information indicating the measurement gap pattern 2 and the DS configuration information to the user terminal regardless of whether or not the user terminal can detect the discovery signal. Notice.
  • the user terminal determines whether or not the user terminal can detect the discovery signal. Based on the determination result, the measurement gap of MGL and MGRP indicated by the measurement gap pattern information is set to the same gap offset as the DS start offset. Use to set. Below, it demonstrates centering around difference with the communication control method which concerns on a 1st aspect.
  • FIG. 9 is an explanatory diagram of the communication control method according to the second aspect.
  • the macro base station 1 notifies the DS configuration information 1 to the user terminal 1 (step S301).
  • the DS configuration information 1 is as described in step 105 in FIG. 7A.
  • the macro base station 1 notifies the user terminal 1 of measurement gap pattern information indicating the measurement gap pattern 2 in addition to the measurement gap pattern 0 or 1 (step S302).
  • the user terminal 1 determines whether or not the discovery signal can be detected (step S303).
  • the macro base station 1 notifies the DS configuration information 1 to the user terminal 2 (step S304). Further, the macro base station 1 notifies the user terminal 2 of measurement gap pattern information indicating the measurement gap pattern 2 in addition to the measurement gap pattern 0 or 1 (step S305).
  • the user terminal 2 determines whether or not the discovery signal can be detected (step S306).
  • the user terminal 2 sets a measurement gap of the measurement gap pattern 2 (that is, the same MGL as the DS transmission period and the same MGRP as the DS period).
  • FIG. 9B it is assumed that the user terminal 1 performs the processing shown in steps S301 to S303 in FIG. 9A. Further, it is assumed that the user terminal 2 performs the processing shown in steps S304 to S306 in FIG. 9A. Note that steps S401 to S405 in FIG. 9B are the same as steps S201 to S205 in FIG.
  • the macro base station 2 notifies the user terminal 1 of the DS configuration information 2 in the small cell in the macro cell 2 (step S406).
  • the DS configuration information 2 is as described in step S208 of FIG. 7B.
  • the macro base station 2 also provides the user terminal 1 with measurement gap pattern information 2 indicating a measurement gap pattern 2 (that is, the same MGL as the DS transmission period and the same MGRP as the DS period in the small cell in the macro cell 2). Is notified (step S407).
  • measurement gap pattern information indicating the measurement gap patterns 0 and 1 may not be notified in step S407.
  • the user terminal 1 determines whether or not the discovery signal can be detected (step S408).
  • the macro base station 2 notifies the DS configuration information 2 to the user terminal 2 (step S409). Further, the macro base station 2 notifies the user terminal 2 of measurement gap pattern information indicating the measurement gap pattern 2 (step S410).
  • the user terminal 2 determines whether or not the discovery signal can be detected (step S411).
  • the measurement gap of the same MGL and DS period as the DS transmission period is reset using the same gap offset as the DS start offset. To do.
  • the same MGL and DS period measurement gap as the DS transmission period are set using the same start offset as the DS start offset. Therefore, the timings of the DS transmission period and the measurement gap can be matched. As a result, when the discovery signal is used as the small cell detection / measurement signal, the user terminal can more reliably detect the small cell while preventing an increase in power consumption of the user terminal.
  • FIG. 10A shows the active time of the user terminal (that is, the total time of the measurement gap) in the measurement gap pattern 0-2 (see FIG. 6A).
  • the measurement gap pattern 2 can shorten the active time of the user terminal as compared with the measurement gap patterns 0 and 1. For this reason, in the measurement gap pattern 2, the power consumption of the user terminal can be reduced as compared with the measurement gap patterns 0 and 1.
  • FIG. 10B shows the discovery signal detection ratio in the measurement gap pattern 0-2 (FIG. 6B). As shown in FIG. 10B, in the measurement gap pattern 2, since the DS transmission period and the measurement gap coincide with each other, the discovery signal detection rate is approximately 100%.
  • the measurement gap pattern 2 can detect the discovery signal more reliably than the measurement gap patterns 0 and 1.
  • FIG. 11 is a schematic configuration diagram of the radio communication system according to the present embodiment.
  • the radio communication system 1 includes a macro base station 11 that forms a macro cell C1, and small base stations 12a and 12b that are arranged in the macro cell C1 and form a small cell C2 that is narrower than the macro cell C1. I have.
  • the user terminal 20 is arrange
  • the user terminal 20 is arranged in the macro cell C1 and each small cell C2.
  • the user terminal 20 is configured to be able to wirelessly communicate with the macro base station 11 and / or the small base station 12.
  • a frequency (carrier) F1 in a relatively low frequency band for example, 2 GHz
  • a frequency (carrier) F2 in a relatively high frequency band for example, 3.5 GHz
  • the frequency band used in the macro base station 11 and the small base station 12 is not limited to this.
  • the macro base station 11 and each small base station 12 may be connected by a relatively low speed line (Non-Ideal backhaul) such as an X2 interface, or may be relatively high speed (low delay) such as an optical fiber. ) Line (Ideal backhaul) or wireless connection.
  • the small base stations 12 may be connected by a relatively low speed line (Non-Ideal backhaul) such as an X2 interface, or may be connected by a relatively high speed line (Ideal backhaul) such as an optical fiber. Or may be wirelessly connected.
  • the macro base station 11 and each small base station 12 are each connected to the core network 30.
  • the core network 30 is provided with core network devices such as MME (Mobility Management Entity), S-GW (Serving-Gateway), and P-GW (Packet-Gateway).
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • P-GW Packet-Gateway
  • the macro base station 11 is a radio base station having a relatively wide coverage, and may be called an eNodeB, a macro base station, an aggregation node, a transmission point, a transmission / reception point, or the like.
  • the small base station 12 is a radio base station having local coverage, such as a small base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), a micro base station, a transmission point, It may be called a transmission / reception point.
  • the user terminal 20 is a terminal that supports various communication schemes such as LTE and LTE-A, and may include not only a mobile communication terminal but also a fixed communication terminal.
  • a downlink physical channel a physical downlink shared channel (PDSCH) shared by each user terminal 20, a physical downlink control channel (PDCCH), and an EPDCCH : Enhanced Physical Downlink Control Channel), physical broadcast channel (PBCH), etc. are used.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PBCH physical broadcast channel
  • DCI Downlink control information
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • User data and higher layer control information are transmitted by PUSCH.
  • downlink radio quality information CQI: Channel Quality Indicator
  • ACK / NACK delivery confirmation information
  • FIG. 12 is an overall configuration diagram of the radio base station 10.
  • the radio base station 10 includes a plurality of transmission / reception antennas 101 for MIMO transmission, an amplifier unit 102, a transmission / reception unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission. And a road interface 106.
  • user data transmitted from the radio base station 10 to the user terminal 20 is input from the S-GW provided in the core network 30 to the baseband signal processing unit 104 via the transmission path interface 106.
  • the baseband signal processing unit 104 performs PDCP layer processing, user data division / combination, RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103. Also, downlink control signals (including reference signals, synchronization signals, broadcast signals, etc.) are subjected to transmission processing such as channel coding and inverse fast Fourier transform, and transferred to each transmitting / receiving unit 103.
  • RLC layer transmission processing such as RLC (Radio Link Control) retransmission control transmission processing, MAC (Medium Access Control) retransmission control, for example, HARQ transmission processing, scheduling, transmission format selection, channel coding, Inverse Fast Fourier Transform (IFFT) processing, and precoding processing are performed and transferred to each transceiver 103.
  • Each transmitting / receiving unit 103 converts the downlink signal output by precoding from the baseband signal processing unit 104 for each antenna to a radio frequency band.
  • the amplifier unit 102 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmission / reception antenna 101.
  • each transmission / reception part 103 of the small base station 12 may transmit the signal for detection / measurement (for example, discovery signal etc.) used for the detection and / or measurement of a small cell.
  • each transmitting / receiving unit 103 of the macro base station 11 may transmit higher layer control information (for example, the above-described DS configuration information and measurement gap pattern information).
  • each transmission / reception part 103 comprises the transmission part of this invention.
  • the radio frequency signal received by each transmitting / receiving antenna 101 is amplified by the amplifier unit 102, frequency-converted by each transmitting / receiving unit 103, converted into a baseband signal, and sent to the baseband signal processing unit 104. Entered.
  • the baseband signal processing unit 104 performs FFT processing, IDFT processing, error correction decoding, MAC retransmission control reception processing, RLC layer, and PDCP layer reception processing on user data included in the input uplink signal.
  • the data is transferred to the core network 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing such as communication channel setting and release, status management of the radio base station 10, and radio resource management.
  • FIG. 13 is an overall configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a plurality of transmission / reception antennas 201 for MIMO transmission, an amplifier unit 202, a transmission / reception unit 203, a baseband signal processing unit 204, and an application unit 205. Note that the user terminal 20 performs reception by switching the frequencies F1 and F2 with one receiving circuit (RF circuit).
  • RF circuit receiving circuit
  • radio frequency signals received by a plurality of transmission / reception antennas 201 are respectively amplified by an amplifier unit 202, frequency-converted by a transmission / reception unit 203, and input to a baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like.
  • User data included in the downlink signal is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, broadcast information in the downlink data is also transferred to the application unit 205.
  • the transmission / reception unit 203 may receive a detection / measurement signal (for example, a discovery signal) from the small base station 12. Further, the transmission / reception unit 203 may receive upper layer control information (for example, the above-described DS configuration information and measurement gap pattern information) from the macro base station 11. Thus, the transmission / reception unit 203 constitutes a reception unit of the present invention.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processing unit 204 performs transmission processing for retransmission control (H-ARQ (Hybrid ARQ)), channel coding, precoding, DFT processing, IFFT processing, and the like, and transfers them to each transmission / reception unit 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band. Thereafter, the amplifier unit 202 amplifies the frequency-converted radio frequency signal and transmits the amplified signal using the transmitting / receiving antenna 201.
  • the functional configuration of the macro base station 11 illustrated in FIG. 14 is mainly configured by the baseband signal processing unit 104. Further, the functional configuration of the user terminal 20 illustrated in FIG. 15 is mainly configured by the baseband signal processing unit 204.
  • FIG. 14 is a functional configuration diagram of the macro base station 11 according to the present embodiment.
  • the macro base station 11 includes a DS configuration determination unit 301, a measurement gap pattern determination unit 302, and a determination unit 303.
  • the determination unit 303 may be omitted.
  • the determination unit of the present invention includes a DS configuration determination unit 301 and a measurement gap pattern determination unit 302.
  • the DS configuration determination unit 301 determines a discovery signal (DS) configuration. Specifically, the DS configuration determination unit 301 determines at least one of a DS cycle, a DS transmission period, and a DS start offset. As described above, the DS period is the discovery signal transmission period, the DS transmission period is the discovery signal transmission period (transmission time length), and the DS start offset starts the DS transmission period from the beginning of the radio frame. This is the starting offset until
  • the DS configuration determination unit 301 outputs DS configuration information including at least one of the determined DS cycle, DS transmission period, and DS start offset to the transmission / reception unit 103.
  • the DS configuration information is notified to the user terminal 20 by higher layer signaling such as RRC signaling. Further, the DS configuration information may be notified to the small base stations 12 under the macro base station 11 via the transmission path interface 106.
  • the measurement gap pattern determination unit 302 refers to a table (FIG. 6A) stored in a storage unit (not shown) and determines a measurement gap pattern defined by MGL and MGRP.
  • MGL is a measurement gap time length
  • MGRP is a measurement gap repetition period.
  • the measurement gap pattern determination unit 302 outputs measurement gap pattern information indicating the determined measurement gap pattern to the transmission / reception unit 103.
  • the measurement gap pattern information may be the gap pattern identifier of FIG. 6A. Further, the measurement gap pattern information is notified to the user terminal by higher layer signaling such as RRC signaling, broadcast information, and the like.
  • the measurement gap pattern determination unit 302 when the determination unit 303 (described later) determines that the user terminal 20 can detect the discovery signal, the measurement gap pattern determination unit 302 (that is, the same MGL and DS period as the DS transmission period) The same MGRP) may be determined.
  • the determination unit 303 determines whether the user terminal 20 can detect the discovery signal based on the capability information of the user terminal 20. As described above, the determination unit 303 may determine that the discovery signal can be detected when the user terminal 20 is the LTE-A system.
  • FIG. 15 is a functional configuration diagram of the user terminal 20 according to the present embodiment.
  • the user terminal 20 includes a measurement gap setting unit 401, a measurement unit 402, and a determination unit 403.
  • the determination unit 403 may be omitted.
  • the setting unit of the present invention is configured by a measurement gap setting unit 401.
  • the measurement gap setting unit 401 sets (resets) the MGL and MGRP measurement gaps indicated by the measurement gap pattern information using the gap offset.
  • the measurement gap pattern information and the gap offset are received from the macro base station 11 by the transmission / reception unit 203 and input to the measurement gap setting unit 401.
  • the measurement gap setting unit 401 is the same as the DS transmission period when measurement gap pattern information indicating the measurement gap pattern 2 (that is, the same MGL as the DS transmission period and the same MGRP as the DS period) is input from the transmission / reception unit 203.
  • the measurement gap of MGRP that is the same as the MGL and DS period of the same may be set using the same start offset as the DS start offset.
  • the measurement gap setting unit 401 sets the MGL measurement gap that is the same as the DS transmission period and the MGRP that is the same as the DS period, It may be set using the same start offset as the DS start offset.
  • the DS configuration information including the DS start offset is received from the macro base station 11 by the transmission / reception unit 203 and input to the measurement gap setting unit 401.
  • the measurement gap setting unit 401 may reset the measurement gap when the user terminal 20 is handed over to another macro cell C1. Specifically, the measurement gap setting unit 401 may reset the measurement gap of the same MGL as the DS transmission period and the same MGRP as the DS period using the same start offset as the DS start offset.
  • the measurement unit 402 detects the small cell C2 by the different frequency measurement in the measurement gap set by the measurement gap setting unit 401. Specifically, the measurement unit 402 switches the frequency F1 to the frequency F2 in the measurement gap, and measures the reception quality of the discovery signal transmitted from the small base station 11. As described above, the reception quality includes RSRP, RSRQ, SINR, SNR, and the like.
  • the measurement unit 402 outputs the measurement result to the transmission / reception unit 203 as a measurement report.
  • This measurement report is notified to the macro base station 11 by higher layer signaling such as RRC signaling, for example.
  • the determination unit 403 determines whether the user terminal 20 can detect the discovery signal based on the capability information of the user terminal 20. As described above, the determination unit 403 may determine that the discovery signal can be detected when the user terminal 20 is the LTE-A system.
  • the measurement gap of the same MGL as the DS transmission period and the same MGRP as the DS cycle is set using the same start offset as the DS start offset.
  • the timing of the transmission period and the measurement gap can be matched.
  • the measurement gap pattern information and the DS configuration information are notified from the macro base station 11 to the user terminal 20, but any device (for example, the small base station 12 or the like) as long as it is a device on the network side. ) May be notified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 ユーザ端末の消費電力の増大を防止しながら、スモールセルをより確実に検出可能とする。本発明の通信制御方法は、マクロ基地局において、前記スモールセルにおける検出/測定用信号の送信周期と同一の繰り返し期間及び前記検出/測定用信号の送信期間と同一の時間長を示すメジャメントギャップパターン情報と、前記送信期間の開始オフセットとを、ユーザ端末に通知する工程と、前記ユーザ端末において、前記開始オフセットと同一の開始オフセットを用いて、前記繰り返し期間及び前記時間長のメジャメントギャップを設定する工程と、を有する。

Description

ユーザ端末、無線基地局及び通信制御方法
 本発明は、マクロセル内にスモールセルが配置される次世代移動通信システムにおけるユーザ端末、無線基地局及び通信制御方法に関する。
 LTE(Long Term Evolution)やLTEの後継システム(例えば、LTEアドバンスト、FRA(Future Radio Access)、4Gなどともいう)では、半径数百メートルから数キロメートル程度の相対的に大きいカバレッジを有するマクロセルと重複して、半径数メートルから数十メートル程度の相対的に小さいカバレッジ有するスモールセル(ピコセル、フェムトセルなどを含む)が配置される無線通信システム(例えば、HetNet(Heterogeneous Network)ともいう)が検討されている(例えば、非特許文献1)。
 かかる無線通信システムでは、図1に示すように、マクロセルとスモールセルとの双方で同一の周波数帯F1を用いるシナリオ(Co-channel deployment)や、マクロセルとスモールセルとでそれぞれ異なる周波数帯F1、F2を用いるシナリオ(Non-co-channel deployment、separate frequency deployment)が検討されている。また、マクロセルを配置せずに、複数のスモールセルでスモールセルクラスタを形成するシナリオ(without macro coverage)も検討されている。
 図1に示すような無線通信システムでは、PSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal)、CRS(Cell-specific Reference Signal)などがマクロセルの検出及び/又は測定用の信号(以下、検出/測定用参照信号という)として用いられる。
 一方、スモールセルの検出/測定用信号としては、PSS、SSS、CRSとは異なる信号を用いることが検討されている。具体的には、スモールセルでは、PSS、SSS、CRSよりも検出に要する時間が短く、送信周期も長い検出/測定用信号(例えば、ディスカバリー信号)を用いることが検討されている。このような検出/測定用信号によれば、スモールセルの検出及び/又は測定に伴うユーザ端末の消費電力の増大を防止できる。
 しかしながら、ユーザ端末の消費電力の増大を防止するために、スモールセルにおいて、PSS、SSS、CRSとは異なる検出/測定用信号を用いる場合、ユーザ端末がスモールセルを検出できない場合が生じる恐れがある。
 本発明は、かかる点に鑑みてなされたものであり、ユーザ端末の消費電力の増大を防止しながら、スモールセルをより確実に検出可能なユーザ端末、無線基地局及び通信制御方法を提供することを目的とする。
 本発明に係る通信制御方法は、第1周波数が用いられるマクロセル内に第2周波数が用いられるスモールセルが配置される無線通信システムにおける通信制御方法であって、前記マクロセルを形成するマクロ基地局において、前記スモールセルにおける検出/測定用信号の送信周期と同一の繰り返し期間及び前記検出/測定用信号の送信期間と同一の時間長を示すメジャメントギャップパターン情報と、前記送信期間の開始オフセットとを、ユーザ端末に通知する工程と、前記ユーザ端末において、前記開始オフセットと同一の開始オフセットを用いて、前記繰り返し期間及び前記時間長のメジャメントギャップを設定する工程と、を有することを特徴とする。
 本発明によれば、ユーザ端末の消費電力の増大を防止しながら、スモールセルをより確実に検出できる。
マクロセル内にスモールセルが配置される無線通信システムの説明図である。 ディスカバリー信号の導入が検討される無線通信システムの説明図である。 CRS、PSS、SSSの送信周期の説明図である。 CRS、PSS、SSSを用いた異周波メジャメントの説明図である。 ディスカバリー信号を用いた異周波メジャメントの説明図である。 本発明に係る異周波メジャメントの概念図である。 本実施の形態の第1態様に係る通信制御方法の説明図である。 本実施の形態のハンドオーバの説明図である。 本実施の形態の第2態様に係る通信制御方法の説明図である。 本実施の形態の第1、第2態様に係る通信制御方法の効果の説明図である。 本実施の形態に係る無線通信システムの一例を示す概略図である。 本実施の形態に係る無線基地局の全体構成図である。 本実施の形態に係るユーザ端末の全体構成図である。 本実施の形態に係るマクロ基地局の機能構成図である。 本実施の形態に係るユーザ端末の機能構成図である。
 図2は、ディスカバリー信号の導入が検討される無線通信システムの一例の説明図である。図2Aに示すように、無線通信システムは、マクロセルを形成する無線基地局(以下、マクロ基地局(MeNB:Macro eNodeB)という)と、スモールセル1-3を形成する無線基地局(以下、スモール基地局(SeNB:Small eNodeB)という)1-3と、ユーザ端末(UE:User Equipment)とを含んで構成される。
 図2Aに示す無線通信システムでは、マクロセルでは、例えば、2GHz、800MHzなどの相対的に低い周波数(キャリア)F1が用いられ、スモールセル1-3では、例えば、3.5GHz、10GHzなどの相対的に高い周波数(キャリア)F2が用いられる。なお、図2Aは、一例にすぎず、マクロセルとスモールセル1-3とで同一の周波数(キャリア)が用いられてもよい。
 図2Aに示す無線通信システムにおいて、ユーザ端末は、マクロ基地局と通信を行う。また、ユーザ端末は、スモール基地局1-3からのディスカバリー信号(DS)に基づいて、スモールセル1-3を検出する。ここで、ディスカバリー信号は、スモールセルの検出/測定用信号であり、CSI-RS(Channel State Information-Reference Signal)、PRS(Positioning Reference Signal)などの参照信号を更新して構成されてもよいし、新たに構成されてもよい。
 また、図2Aに示す無線通信システムにおいて、ディスカバリー信号は、マクロセルの検出/測定用信号(例えば、PSSやSSS)よりも高いリソース密度とセル間直交性を持ってサブフレーム内に配置される。このため、図2Bに示すように、ユーザ端末がディスカバリー信号の検出に要する時間は、PSSやSSSの検出に要する時間と比較して短くなる。この結果、スモールセルの検出/測定用信号としてディスカバリー信号を用いる場合、PSSやSSSを用いる場合と比較して、メジャメントに要するユーザ端末の消費電力の増大を防止できる。
 また、ディスカバリー信号は、PSS、SSS、CRSなどよりも長い周期で送信されることが検討されている。図3に示すように、CRSは各サブフレームで送信され、PSSやSSSは5サブフレーム毎に送信される。より具体的には、無線フレーム内には、PSS、SSS、CRSとが配置されるサブフレーム1、6と、CRSが配置されるサブフレーム2-5、7-10と、が設けられる。サブフレーム1、6では、4つのOFDMシンボルにCRSが配置され、6番目のOFDMシンボルにSSSが配置され、7番目のOFDMシンボルにPSSが配置される。また、サブフレーム2-5、7-10では、4つのOFDMシンボルにCRSが配置される。これに対して、ディスカバリー信号は、例えば100サブフレーム毎(100ms周期)に送信することが検討されている。かかる場合、ディスカバリー信号送信によるオーバーヘッドの増加やディスカバリー信号が周辺セルのユーザ端末に与えてしまう干渉の増大を防止できる。
 ここで、メジャメント(measurement)とは、ユーザ端末が、検出/測定用信号(例えば、PSS、SSS、CRS、ディスカバリー信号など)を受信して、当該検出/測定用信号を発見しその受信品質を測定することである。ユーザ端末における検出/測定用信号の受信品質が所定品質を満たす場合、セルが検出される。なお、ユーザ端末において測定される受信品質は、例えば、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)などである。
 また、メジャメントには、異周波メジャメント(Inter-frequency measurement)と同周波メジャメント(Intra-frequency measurement)とが含まれる。異周波メジャメントは、接続中のセルと異なる周波数で送信される検出/測定用信号を受信して、当該検出/測定用信号の受信品質を測定することである。一方、同周波メジャメントは、接続中のセルと同一の周波数で送信される検出/測定用信号を受信して、当該検出/測定用信号の受信品質を測定することである。
 図2Aに示す無線通信システムでは、マクロ基地局と接続するユーザ端末(すなわち、RRC-connectedモードであるユーザ端末)は、メジャメントギャップ(Measurement Gap)において、受信周波数を周波数F1から周波数F2に切り替え、周波数F2で送信される検出/測定用信号(例えば、ディスカバリー信号など)の受信品質を測定して、スモールセルを検出する。
 ここで、メジャメントギャップ(Measurement Gap)とは、異なる周波数F2を用いて送信される検出/測定用信号を測定(検出)するための期間であり、通信中の周波数F1での受信を停止して別の周波数F2を受信する。メジャメントギャップは、所定の時間長(以下、Measurement Gap Length(MGL)という)を、所定の繰り返し期間(以下、Measurement Gap Repetition Period(MGRP)という)で繰り返す。また、間欠受信(以下、Discontinuous Reception(DRX)という)を行う場合、メジャメントギャップでは、オン期間でなくとも、ユーザ端末は、オン状態(すなわち、受信回路のスイッチをオンにする状態)となる。
 図4を参照し、PSS、SSS、CRSを用いた異周波メジャメントについて説明する。図4Aに示すように、異周波メジャメントでは、上記MGL及びMGRPの組み合わせであるメジャメントギャップパターンが規定される。例えば、図4Aでは、MGLが6msでありMGRPが40msであるメジャメントギャップパターン0と、MGLが6msでありMGRPが80msであるメジャメントギャップパターン1と、が規定される。
 また、異周波メジャメントでは、ギャップオフセット(Gap offset)が、RRCシグナリングにより通知される。ここで、ギャップオフセットは、図4Bに示すように、無線フレームの先頭からメジャメントギャップが開始されるまでの開始オフセットであり、メジャメントギャップのタイミングを示す。ユーザ端末は、通知されたギャップオフセットによりメジャメントギャップパターン(図4A参照)を特定してもよい。この場合、図4Aのメジャメントギャップパターンが黙示的(implicitly)に通知されることとなる。
 例えば、図4Bでは、MGLが6msでありMGRPが40ms又は80msであるメジャメントギャップパターンが示される。また、CRSは、各サブフレームで送信され、PSS及びSSSが5サブフレーム毎に送信される。この場合、ユーザ端末は、6msのMGLのメジャメントギャップにおいて、CRS、PSS及びSSSを受信でき、スモールセルを検出できる。
 一方、スモールセルの検出/測定用信号としてディスカバリー信号を用いる場合、図4Aで規定されるメジャメントギャップパターンを用いると、スモールセルを検出できない恐れがある。図5を参照し、ディスカバリー信号を用いた異周波メジャメントについて説明する。図5では、図4Bと同様に、MGLが6ms(6サブフレーム)でありMGRPが40ms又は80msであるものとする。
 また、図5では、DS送信期間(DS transmission duration)が1msであり、DS周期(DS cycle)が100msであるものとする。ここで、DS送信期間は、ディスカバリー信号の送信期間であり、所定の時間長を有する。また、DS周期は、ディスカバリー信号の送信周期である。
 図5に示すように、ディスカバリー信号は、図4BのCRS、PSS及びSSSのように、頻繁に送信されない。このため、図4Aで規定されるメジャメントパターンを用いると、図5に示すように、DS送信期間とメジャメントギャップとが重複せずに、スモールセルを検出できない恐れがある。或いは、DS送信期間とメジャメントギャップとが重複するまでに長い時間を要してしまい、スモールセルを適時に(timely)検出できない恐れがある。
 以上のように、ユーザ端末の消費電力の増大を防止しようとして、スモールセルの検出/測定用信号としてディスカバリー信号を用いる場合、ユーザ端末がスモールセルを検出できない場合が生じる恐れがある。そこで、本発明者らは、DS送信期間とメジャメントギャップとのタイミングを一致させることで、ユーザ端末の消費電力の増大を防止しながら、スモールセルを確実に検出可能とするという着想を得た。
 図6は、本発明に係る異周波メジャメントの概念図である。図6Aに示すように、本発明に係る異周波メジャメントでは、ディスカバリー信号を検出するためのメジャメントギャップパターン2が規定される。このメジャメントギャップパターン2では、MGLが、DS送信期間(例えば、1ms)と等しい時間長である。また、MGRPが、DS送信周期(例えば、100ms)と等しい時間長である。
 また、本発明に係る異周波メジャメントでは、マクロ基地局は、メジャメントギャップパターン情報をユーザ端末に通知する。メジャメントギャップパターン情報は、例えば、MGLとMGRPとを示すギャップパターン識別子(Gap Pattern Id)(図6A参照)であるが、これに限られない。メジャメントギャップパターン情報は、MGL及びMGRP、すなわち、メジャメントギャップパターンを示す情報であればどのような情報(例えば、上記ギャップオフセット)であってもよい。また、メジャメントギャップパターン情報は、例えば、RRC(Radio Resource Control)シグナリングなどの上位レイヤシグナリングによりユーザ端末に通知される。
 また、本発明に係る異周波メジャメントでは、マクロ基地局は、ディスカバリー信号(DS)構成情報を、ユーザ端末に送信する。DS構成情報は、ディスカバリー信号の構成に関する情報であり、上記DS送信期間、上記DS周期、DS開始オフセット(DS start offset)の少なくとも一つを含む。なお、DS開始オフセットは、無線フレーム内の先頭からDS送信期間が開始されるまでの開始オフセット(例えば、DS送信期間が開始されるサブフレーム番号)であり、ディスカバリー信号の送信タイミングを示す。
 図6Bに示すように、DS送信期間は、DS開始オフセットに基づいて開始され、DS周期で設定される。また、図6Bにおいて、ユーザ端末は、DS周期と同一のMGRP(繰り返し期間)及びDS送信期間と同一のMGL(時間長)を示すメジャメントギャップパターン情報と、DS開始オフセットと、をマクロ基地局から受信する。ユーザ端末は、当該DS開始オフセットと同一の開始オフセットを用いて、上記MGRP及び上記MGLのメジャメントギャップを設定する。これにより、DS送信期間とメジャメントギャップとのタイミングが一致する。
 ユーザ端末は、以上のように設定されるメジャメントギャップにおいて、周波数F2を用いて送信されるディスカバリー信号を受信し、当該ディスカバリー信号の受信品質を測定する。ユーザ端末は、測定結果をメジャメントレポートとして、マクロ基地局に通知する。
 本発明に係る異周波メジャメントによれば、DS周期と同一のMGRP及びDS送信期間と同一のMGLのメジャメントギャップが、DS開始オフセットと同一の開始オフセットを用いて設定されるので、DS送信期間とメジャメントギャップとのタイミングが一致する。このため、ユーザ端末の消費電力の増大を防止するためにディスカバリー信号を用いる場合、ユーザ端末がスモールセルをより確実に検出できる。
 以下、本実施の形態に係る通信制御方法を詳細に説明する。なお、本実施の形態に係る通信制御方法は、第1周波数が用いられるマクロセル内に第2周波数が用いられるスモールセルが配置される無線通信システムで用いられる。
(第1態様)
 図7、8を参照し、第1態様に係る通信制御方法を説明する。第1態様に係る通信制御方法では、マクロ基地局が、ユーザ端末の能力情報に基づいて、当該ユーザ端末がディスカバリー信号を検出できるか否かを判定する。マクロ基地局は、ユーザ端末がディスカバリー信号を検出できると判定する場合に、メジャメントギャップパターン2(すなわち、DS送信期間と同一のMGL、DS周期と同一のMGRP)を示すメジャメントギャップパターン情報と、DS構成情報とをユーザ端末に通知する。
 図7は、第1態様に係る通信制御方法の説明図である。図7Aにおいて、ユーザ端末1及び2は、マクロセル1内に位置するものとする。また、図7Aにおいて、マクロセル1内には、スモールセルが配置されるものとする(図8参照)。
 図7Aに示すように、ユーザ端末1は、ユーザ端末1の能力情報(UE capability)をマクロ基地局1に通知する(ステップS101)。また、ユーザ端末2は、ユーザ端末2の能力情報をマクロ基地局1に通知する(ステップS102)。なお、能力情報は、例えば、RRCシグナリングなどの上位レイヤシグナリングを用いて、通知される。
 マクロ基地局1は、ユーザ端末1及び2から通知される能力情報に基づいて、ユーザ端末1及び2が、ディスカバリー信号を検出できるか否かを判定する(ステップS103)。例えば、マクロ基地局1は、ユーザ端末が、LTE-A(Long Term Evolution-Advance)リリース12方式をサポートする場合、ディスカバリー信号を検出できると判定してもよい。ここでは、マクロ基地局1は、ユーザ端末2がディスカバリー信号を検出できると判定し、ユーザ端末1が検出できないと判定するものとする。
 マクロ基地局1は、ディスカバリー信号を検出できないユーザ端末1に対して、メジャメントギャップパターン0(すなわち、MGL=6ms、MGRP=40ms)又はメジャメントギャップ1(すなわち、MGL=6ms、MGRP=80ms)を示すメジャメントギャップパターン情報を送信する(ステップS104)。このメジャメントギャップパターン情報は、例えば、ギャップパターン識別子(図6A)であってもよいし、ギャップオフセットであってもよい。
 一方、マクロ基地局1は、ディスカバリー信号を検出可能なユーザ端末2に対して、DS構成情報1を通知する(ステップS105)。DS構成情報1は、マクロセル1内のスモールセルにおけるDS送信期間、DS周期、DS開始オフセットの少なくとも一つを含む。DS構成情報1は、RRCシグナリングなどの上位レイヤシグナリングにより、通知される。
 また、マクロ基地局1は、ディスカバリー信号を検出可能なユーザ端末2に対して、メジャメントギャップパターン2(すなわち、DS送信期間と同一のMGL、DS周期と同一のMGRP)を示すメジャメントギャップパターン情報を通知する(ステップS106)。このメジャメントギャップパターン情報は、ギャップパターン識別子(図6A)であってもよいし、メジャメントギャップパターン2を特定可能なギャップオフセットであってもよい。
 ユーザ端末2は、図6Bに示すように、ステップS106のメジャメントギャップパターン情報が示すMGL及びMGRPのメジャメントギャップを、ステップS105のDS開始オフセットと同一のギャップオフセットを用いて設定する。これにより、DS送信期間とメジャメントギャップとが一致する。
 ユーザ端末2は、メジャメントギャップにおいて、周波数F1を周波数F2に切り替え、周波数F2を用いて送信されるディスカバリー信号の受信品質(例えば、RSRP、RSRQ、SINRなど)を測定する。ユーザ端末2は、測定結果をメジャメントレポートとしてマクロ基地局に通知する。
 次に、図7B及び8を参照し、第1態様に係る通信制御方法の他の例を説明する。図7Bでは、ユーザ端末1は、図7AのステップS101、S104に示す処理を行っているものとする。また、ユーザ端末2は、図7AのステップS102、S105、S106に示す処理を行っているものとする。
 また、図7Bでは、ユーザ端末1及び2がマクロ基地局1(マクロセル1)からマクロ基地局2(マクロセル2)にハンドオーバする場合を想定する。ここで、図8に示すように、マクロ基地局1(マクロセル1)とマクロ基地局2(マクロセル2)とは、非同期である。
 このため、マクロセル1内のスモールセルにおけるDS開始オフセット、DS周期、DS送信期間は、それぞれ、マクロセル2内のスモールセルにおけるDS開始オフセット、DS周期、DS送信期間とは異なる。なお、マクロセル1内のスモールセルは同期するので、当該スモールセル間では、同一のDS開始オフセット、DS周期、DS送信期間が用いられる。マクロセル2内のスモールセルも同様である。
 図7Bに示すように、マクロ基地局1及び2間では、ハンドオーバの準備処理(Handover preparation)が行われる(ステップS201)。準備処理が完了すると、マクロ基地局1は、ユーザ端末1に対して、マクロ基地局2へのハンドオーバ指示(Handover command)を送信する(ステップS202)。同様に、マクロ基地局1は、ユーザ端末2に対して、マクロ基地局2へのハンドオーバ指示(Handover command)を送信する(ステップS203)。
 ユーザ端末1は、マクロ基地局1からのハンドオーバ指示に応じて、マクロ基地局2に対して、ランダムアクセス処理(RACH procedure)を行う(ステップS204)。同様に、ユーザ端末2は、マクロ基地局1からのハンドオーバ指示に応じて、マクロ基地局2に対して、ランダムアクセス処理(RACH procedure)を行う(ステップS205)。このランダムアクセス処理では、ユーザ端末1及び2の能力情報が、マクロ基地局2に通知されてもよい。
 マクロ基地局2は、ユーザ端末1及び2の能力情報に基づいて、ユーザ端末1及び2が、ディスカバリー信号を検出できるか否かを判定する(ステップS206)。マクロ基地局1は、ディスカバリー信号を検出できないユーザ端末1に対して、メジャメントギャップパターン0又は1を示すメジャメントギャップパターン情報を通知する(ステップS207)。
 一方、マクロ基地局2は、ディスカバリー信号を検出可能なユーザ端末2に対して、DS構成情報2を通知する(ステップS208)。DS構成情報2は、マクロセル2内のスモールセルにおけるDS送信期間、DS周期、DS開始オフセットの少なくとも一つを含む。DS構成情報2は、RRCシグナリングなどの上位レイヤシグナリングにより、通知されてもよい。
 また、マクロ基地局2は、ディスカバリー信号を検出可能なユーザ端末2に対して、メジャメントギャップパターン2(すなわち、マクロセル2配下のスモールセルにおけるDS送信期間と同一のMGL、DS周期と同一のMGRP)を示すメジャメントギャップパターン情報を通知する(ステップS209)。
 ユーザ端末2は、図6Bに示すように、ステップS209のメジャメントギャップパターン情報が示すMGL及びMGRPのメジャメントギャップを、ステップS208のDS開始オフセットと同一のギャップオフセットを用いて再設定する。これにより、DS送信期間とメジャメントギャップとのタイミングが一致する。
(第2態様)
 図9を参照し、第2態様に係る通信制御方法を説明する。第2態様に係る通信制御方法では、マクロ基地局は、ユーザ端末がディスカバリー信号を検出できるか否かに関係なく、メジャメントギャップパターン2を示すメジャメントギャップパターン情報と、DS構成情報とをユーザ端末に通知する。
 ユーザ端末は、当該ユーザ端末がディスカバリー信号を検出できるか否かを判定し、判定結果に基づいて、上記メジャメントギャップパターン情報が示すMGL及びMGRPのメジャメントギャップを、DS開始オフセットと同一のギャップオフセットを用いて設定する。以下では、第1態様に係る通信制御方法との相違点を中心に説明する。
 図9は、第2態様に係る通信制御方法の説明図である。図9Aに示すように、マクロ基地局1は、ユーザ端末1に対して、DS構成情報1を通知する(ステップS301)。DS構成情報1は、図7Aのステップ105で説明した通りである。
 また、マクロ基地局1は、ユーザ端末1に対して、メジャメントギャップパターン0又は1に加えて、メジャメントギャップパターン2を示すメジャメントギャップパターン情報を通知する(ステップS302)。
 ユーザ端末1は、ディスカバリー信号を検出できるか否かを判定する(ステップS303)。ここでは、ユーザ端末1は、ディスカバリー信号を検出できないと判定するので、メジャメントギャップパターン0(すなわち、MGL=6ms、MGRP=40ms)又はメジャメントギャップ1(すなわち、MGL=6ms、MGRP=80ms)のメジャメントギャップを設定する。
 同様に、マクロ基地局1は、ユーザ端末2に対して、DS構成情報1を通知する(ステップS304)。また、マクロ基地局1は、ユーザ端末2に対して、メジャメントギャップパターン0又は1に加えて、メジャメントギャップパターン2を示すメジャメントギャップパターン情報を通知する(ステップS305)。
 ユーザ端末2は、ディスカバリー信号を検出できるか否かを判定する(ステップS306)。ここでは、ユーザ端末2は、ディスカバリー信号を検出できないと判定するので、メジャメントギャップパターン2(すなわち、DS送信期間と同一のMGL、DS周期と同一のMGRP)のメジャメントギャップを設定する。
 次に、図9Bを参照し、第2態様に係る通信制御方法の他の例を説明する。図9Bでは、ユーザ端末1は、図9AのステップS301-S303に示す処理を行っているものとする。また、ユーザ端末2は、図9AのステップS304-S306に示す処理を行っているものとする。なお、図9BのステップS401-S405は、図7BのステップS201-S205と同様であるため、説明を省略する。
 図9Bに示すように、マクロ基地局2は、ユーザ端末1に対して、マクロセル2内のスモールセルにおけるDS構成情報2を通知する(ステップS406)。DS構成情報2は、図7BのステップS208で説明した通りである。
 また、マクロ基地局2は、ユーザ端末1に対して、メジャメントギャップパターン2(すなわち、マクロセル2内のスモールセルにおけるDS送信期間と同一のMGL、DS周期と同一のMGRP)を示すメジャメントギャップパターン情報を通知する(ステップS407)。なお、マクロセル1、2間において、メジャメントギャップパターン0、1のMGL、MGRPは同一であるため、ステップS407では、メジャメントギャップパターン0、1を示すメジャメントギャップパターン情報は通知されなくともよい。
 ユーザ端末1は、ディスカバリー信号を検出できるか否かを判定する(ステップS408)。ここでは、ユーザ端末1は、ディスカバリー信号を検出できないと判定するものとするので、メジャメントギャップパターン0(すなわち、MGL=6ms、MGRP=40ms)又はメジャメントギャップ1(すなわち、MGL=6ms、MGRP=80ms)のメジャメントギャップを設定する。
 同様に、マクロ基地局2は、ユーザ端末2に対して、DS構成情報2を通知する(ステップS409)。また、マクロ基地局2は、ユーザ端末2に対して、メジャメントギャップパターン2を示すメジャメントギャップパターン情報を通知する(ステップS410)。
 ユーザ端末2は、ディスカバリー信号を検出できるか否かを判定する(ステップS411)。ここでは、ユーザ端末2は、ディスカバリー信号を検出できると判定するので、DS送信期間と同一のMGL及びDS周期と同一のMGRPのメジャメントギャップを、DS開始オフセットと同一のギャップオフセットを用いて再設定する。
(効果)
 以上の第1、第2態様に係る通信制御方法によれば、DS送信期間と同一のMGL、DS周期と同一のMGRPのメジャメントギャップが、DS開始オフセットと同一の開始オフセットを用いて設定されるので、DS送信期間とメジャメントギャップとのタイミングを一致させることができる。この結果、スモールセルの検出/測定用信号としてディスカバリー信号を用いる場合、ユーザ端末の消費電力の増大を防止しながら、ユーザ端末がより確実にスモールセルを検出できる。
 図10を参照し、第1、第2態様に係る通信制御方法による効果を説明する。図10Aでは、メジャメントギャップパターン0-2(図6A参照)におけるユーザ端末のアクティブ時間(すなわち、メジャメントギャップの総時間)が示される。図10Aに示すように、メジャメントギャップパターン2は、メジャメントギャップパターン0、1と比較して、ユーザ端末のアクティブ時間を短くすることができる。このため、メジャメントギャップパターン2では、メジャメントギャップパターン0、1と比較して、ユーザ端末の消費電力を低減できる。
 図10Bでは、メジャメントギャップパターン0-2(図6B)におけるディスカバリー信号の検出割合が示される。図10Bに示すように、メジャメントギャップパターン2では、DS送信期間とメジャメントギャップとのタイミングが一致するので、ディスカバリー信号の検出割合は、略100%である。
 一方、図10Bにおいて、メジャメントギャップパターン0、1では、DS送信期間とメジャメントギャップとが重複するとは限らないため、ディスカバリー信号の検出割合は低下する。このように、メジャメントギャップパターン2では、メジャメントギャップパターン0、1と比較して、ディスカバリー信号をより確実に検出できる。
(無線通信システムの構成)
 以下、本実施の形態に係る無線通信システムについて、詳細に説明する。この無線通信システムでは、上述の第1、第2態様に係る通信制御方法が適用される。
 図11は、本実施の形態に係る無線通信システムの概略構成図である。図11に示すように、無線通信システム1は、マクロセルC1を形成するマクロ基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成するスモール基地局12a及び12bとを備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。なお、マクロセルC1(マクロ基地局11)、スモールセルC2(スモール基地局12)、ユーザ端末20の数は図11に示すものに限られない。
 また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。ユーザ端末20は、マクロ基地局11及び/又はスモール基地局12と無線通信可能に構成されている。
 ユーザ端末20とマクロ基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)の周波数(キャリア)F1を用いて通信が行なわれる。一方、ユーザ端末20とスモール基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHzなど)の周波数(キャリア)F2が用いられる。なお、マクロ基地局11、スモール基地局12で用いられる周波数帯域は、これに限られない。
 また、マクロ基地局11と各スモール基地局12とは、X2インターフェースなどの相対的に低速の回線(Non-Ideal backhaul)で接続されてもよいし、光ファイバなどの相対的に高速(低遅延)の回線(Ideal backhaul)で接続されてもよいし、無線接続されてもよい。また、スモール基地局12間も、X2インターフェースなどの相対的に低速の回線(Non-Ideal backhaul)で接続されてもよいし、光ファイバなどの相対的に高速の回線(Ideal backhaul)で接続されてもよいし、無線接続されてもよい。
 マクロ基地局11及び各スモール基地局12は、それぞれコアネットワーク30に接続される。コアネットワーク30には、MME(Mobility Management Entity)や、S-GW(Serving-GateWay)、P-GW(Packet-GateWay)などのコアネットワーク装置が設けられる。
 また、マクロ基地局11は、相対的に広いカバレッジを有する無線基地局であり、eNodeB、マクロ基地局、集約ノード、送信ポイント、送受信ポイントなどと呼ばれてもよい。スモール基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、マイクロ基地局、送信ポイント、送受信ポイントなどと呼ばれてもよい。
 以下、マクロ基地局11及びスモール基地局12を区別しない場合は、無線基地局10と総称する。ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末だけでなく固定通信端末を含んでよい。
 また、無線通信システム1では、下りリンクの物理チャネルとして、各ユーザ端末20で共有される物理下り共有チャネル(PDSCH:Physical Downlink Shared Channel)と、物理下り制御チャネル(PDCCH:Physical Downlink Control Channel、EPDCCH:Enhanced Physical Downlink Control Channel)、物理報知チャネル(PBCH)などが用いられる。PDSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。PDCCH、EPDCCHにより、下り制御情報(DCI)が伝送される。
 また、無線通信システム1では、上りリンクの物理チャネルとして、各ユーザ端末20で共有される物理上り共有チャネル(PUSCH:Physical Uplink Shared Channel)と、物理上り制御チャネル(PUCCH:Physical Uplink Control Channel)などが用いられる。PUSCHにより、ユーザデータや上位レイヤ制御情報が伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)や、送達確認情報(ACK/NACK)等が伝送される。
 図12及び13を参照し、無線基地局10(マクロ基地局11、スモール基地局12を含む)、ユーザ端末20の全体構成を説明する。図12は、無線基地局10の全体構成図である。
 図12に示すように、無線基地局10は、MIMO伝送のための複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106とを備えている。
 下りリンクにおいて、無線基地局10からユーザ端末20に送信されるユーザデータは、コアネットワーク30に設けられるS-GWから伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、PDCPレイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御の送信処理などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御、例えば、HARQの送信処理、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理が行われて各送受信部103に転送される。また、下り制御信号(参照信号、同期信号、報知信号などを含む)に関しても、チャネル符号化や逆高速フーリエ変換等の送信処理が行われて、各送受信部103に転送される。
 各送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力された下り信号を無線周波数帯に変換する。アンプ部102は、周波数変換された無線周波数信号を増幅して送受信アンテナ101により送信する。
 なお、スモール基地局12の各送受信部103は、スモールセルの検出及び/又は測定に用いられる検出/測定用信号(例えば、ディスカバリー信号など)を送信してもよい。また、マクロ基地局11の各送受信部103は、上位レイヤ制御情報(例えば、上述のDS構成情報、メジャメントギャップパターン情報)を送信してもよい。このように、各送受信部103は、本発明の送信部を構成する。
 一方、上り信号については、各送受信アンテナ101で受信された無線周波数信号がそれぞれアンプ部102で増幅され、各送受信部103で周波数変換されてベースバンド信号に変換され、ベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、FFT処理、IDFT処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ、PDCPレイヤの受信処理がなされ、伝送路インターフェース106を介してコアネットワーク30に転送される。呼処理部105は、通信チャネルの設定や解放等の呼処理や、無線基地局10の状態管理や、無線リソースの管理を行う。
 図13は、本実施の形態に係るユーザ端末20の全体構成図である。ユーザ端末20は、MIMO伝送のための複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205とを備えている。なお、ユーザ端末20は、1つの受信回路(RF回路)により、周波数F1、F2を切り替えて受信を行う。
 下り信号については、複数の送受信アンテナ201で受信された無線周波数信号がそれぞれアンプ部202で増幅され、送受信部203で周波数変換され、ベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、FFT処理や、誤り訂正復号、再送制御の受信処理等がなされる。この下り信号に含まれるユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤやMACレイヤより上位のレイヤに関する処理等を行う。また、下りリンクのデータの内、報知情報もアプリケーション部205に転送される。
 なお、送受信部203は、スモール基地局12からの検出/測定用信号(例えば、ディスカバリー信号など)を受信してもよい。また、送受信部203は、上位レイヤ制御情報(例えば、上述のDS構成情報、メジャメントギャップパターン情報)を、マクロ基地局11から受信してもよい。このように、送受信部203は、本発明の受信部を構成する。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御(H-ARQ(Hybrid ARQ))の送信処理や、チャネル符号化、プリコーディング、DFT処理、IFFT処理等が行われて各送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換する。その後、アンプ部202は、周波数変換された無線周波数信号を増幅して送受信アンテナ201により送信する。
 次に、図14、15を参照し、マクロ基地局11及びユーザ端末20の機能構成について詳述する。図14に示すマクロ基地局11の機能構成は、主に、ベースバンド信号処理部104によって構成される。また、図15に示すユーザ端末20の機能構成は、主に、ベースバンド信号処理部204によって構成される。
 図14は、本実施の形態に係るマクロ基地局11の機能構成図である。図14に示すように、マクロ基地局11は、DS構成決定部301、メジャメントギャップパターン決定部302、判定部303を具備する。なお、第2態様に係る通信制御方法において、判定部303は、省略されてもよい。本発明の決定部は、DS構成決定部301、メジャメントギャップパターン決定部302によって構成される。
 DS構成決定部301は、ディスカバリー信号(DS)構成を決定する。具体的には、DS構成決定部301は、DS周期、DS送信期間、DS開始オフセットの少なくとも一つを決定する。上述のように、DS周期は、ディスカバリー信号の送信周期であり、DS送信期間は、ディスカバリー信号の送信期間(送信時間長)であり、DS開始オフセットは、無線フレームの先頭からDS送信期間を開始するまでの開始オフセットである。
 DS構成決定部301は、決定したDS周期、DS送信期間、DS開始オフセットの少なくとも一つを含むDS構成情報を送受信部103に出力する。DS構成情報は、RRCシグナリングなどの上位レイヤシグナリングにより、ユーザ端末20に通知される。また、DS構成情報は、伝送路インターフェース106を介して、マクロ基地局11配下のスモール基地局12に通知されてもよい。
 メジャメントギャップパターン決定部302は、記憶部(不図示)に記憶されるテーブル(図6A)を参照し、MGL及びMGRPで規定されるメジャメントギャップパターンを決定する。上述のように、MGLは、メジャメントギャップの時間長であり、MGRPは、メジャメントギャップの繰り返し期間である。
 また、メジャメントギャップパターン決定部302は、決定されたメジャメントギャップパターンを示すメジャメントギャップパターン情報を送受信部103に出力する。上述のように、メジャメントギャップパターン情報は、図6Aのギャップパターン識別子であってもよい。また、メジャメントギャップパターン情報は、RRCシグナリングなどの上位レイヤシグナリング、報知情報などにより、ユーザ端末に通知される。
 また、メジャメントギャップパターン決定部302は、判定部303(後述)によりユーザ端末20がディスカバリー信号を検出できると判定される場合、メジャメントギャップパターン2(すなわち、DS送信期間と同一のMGL、DS周期と同一のMGRP)を決定してもよい。
 判定部303は、ユーザ端末20の能力情報に基づいて、ユーザ端末20がディスカバリー信号を検出できるか否かを判定する。上述のように、判定部303は、ユーザ端末20が、LTE-A方式である場合に、ディスカバリー信号を検出できると判定してもよい。
 図15は、本実施の形態に係るユーザ端末20の機能構成図である。図15に示すように、ユーザ端末20は、メジャメントギャップ設定部401、測定部402、判定部403を具備する。なお、第1態様に係る通信制御方法において、判定部403は、省略されてもよい。本発明の設定部は、メジャメントギャップ設定部401によって構成される。
 メジャメントギャップ設定部401は、メジャメントギャップパターン情報が示すMGL及びMGRPのメジャメントギャップを、ギャップオフセットを用いて設定(再設定)する。このメジャメントギャップパターン情報及びギャップオフセットは、送受信部203でマクロ基地局11から受信され、メジャメントギャップ設定部401に入力される。
 メジャメントギャップ設定部401は、メジャメントギャップパターン2(すなわち、DS送信期間と同一のMGL、DS周期と同一のMGRP)を示すメジャメントギャップパターン情報が送受信部203から入力される場合、DS送信期間と同一のMGL、DS周期と同一のMGRPのメジャメントギャップを、DS開始オフセットと同一の開始オフセットを用いて、設定してもよい。
 また、メジャメントギャップ設定部401は、判定部403(後述)でユーザ端末20がディスカバリー信号を検出できると判定された場合、DS送信期間と同一のMGL、DS周期と同一のMGRPのメジャメントギャップを、DS開始オフセットと同一の開始オフセットを用いて、設定してもよい。当該DS開始オフセットを含むDS構成情報は、送受信部203でマクロ基地局11から受信され、メジャメントギャップ設定部401に入力される。
 また、メジャメントギャップ設定部401は、ユーザ端末20が他のマクロセルC1にハンドオーバする場合、メジャメントギャップを再設定してもよい。具体的には、メジャメントギャップ設定部401は、DS送信期間と同一のMGL、DS周期と同一のMGRPのメジャメントギャップを、DS開始オフセットと同一の開始オフセットを用いて、再設定してもよい。
 測定部402は、メジャメントギャップ設定部401で設定されたメジャメントギャップにおいて、異周波メジャメントにより、スモールセルC2を検出する。具体的には、測定部402は、メジャメントギャップにおいて、周波数F1を周波数F2に切り替えて、スモール基地局11から送信されるディスカバリー信号の受信品質を測定する。上述のように、受信品質は、RSRP、RSRQ、SINR、SNRなどを含む。
 また、測定部402は、測定結果をメジャメントレポートとして送受信部203に出力する。このメジャメントレポートは、例えば、RRCシグナリングなどの上位レイヤシグナリングにより、マクロ基地局11に通知される。
 判定部403は、ユーザ端末20の能力情報に基づいて、ユーザ端末20がディスカバリー信号を検出できるか否かを判定する。上述のように、判定部403は、ユーザ端末20が、LTE-A方式である場合に、ディスカバリー信号を検出できると判定してもよい。
 本実施の形態に係る無線通信システム1によれば、DS送信期間と同一のMGL、DS周期と同一のMGRPのメジャメントギャップが、DS開始オフセットと同一の開始オフセットを用いて設定されるので、DS送信期間とメジャメントギャップとのタイミングを一致させることができる。この結果、スモールセルの検出/測定用信号としてディスカバリー信号を用いる場合、ユーザ端末の消費電力の増大を防止しながら、ユーザ端末がより確実にスモールセルを検出できる。
 なお、無線通信システム1では、メジャメントギャップパターン情報及びDS構成情報は、マクロ基地局11からユーザ端末20に通知されるが、ネットワーク側の装置であれば、どの装置(例えば、スモール基地局12など)から通知されてもよい。
 以上、上述の実施形態を用いて本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。従って、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
 本出願は、2013年8月1日出願の特願2013-160728に基づく。この内容は、全てここに含めておく。
 
 

Claims (9)

  1.  第1周波数が用いられるマクロセル内に第2周波数が用いられるスモールセルが配置される無線通信システムにおいて用いられるユーザ端末であって、
     前記スモールセルにおける検出/測定用信号の送信周期と同一の繰り返し期間及び前記検出/測定用信号の送信期間と同一の時間長を示すメジャメントギャップパターン情報と、前記送信期間の開始オフセットとを、前記マクロセルを形成するマクロ基地局から受信する受信部と、
     前記開始オフセットと同一の開始オフセットを用いて、前記繰り返し期間及び前記時間長のメジャメントギャップを設定する設定部と、を具備することを特徴とするユーザ端末。
  2.  前記ユーザ端末の能力情報を前記マクロ基地局に送信する送信部を更に具備し、
     前記能力情報に基づいて前記マクロ基地局によって前記ユーザ端末が前記検出/測定用信号を検出できると判定される場合、前記受信部は、前記マクロ基地局から、前記メジャメントギャップパターン情報及び前記開始オフセットを受信することを特徴とする請求項1に記載のユーザ端末。
  3.  前記ユーザ端末が前記検出/測定用信号を検出できるか否かを判定する判定部を更に具備し、
     前記判定部によって前記ユーザ端末が前記検出/測定用信号を検出できると判定された場合、前記設定部は、前記開始オフセットと同一の開始オフセットを用いて、前記メジャメントギャップを設定することを特徴とする請求項1に記載のユーザ端末。
  4.  前記ユーザ端末が前記マクロ基地局から他のマクロ基地局にハンドオーバする場合、前記受信部は、前記メジャメントギャップパターン情報と前記開始オフセットとを、前記他のマクロ基地局から受信し、
     前記設定部は、前記開始オフセットと同一の開始オフセットを用いて、前記メジャメントギャップを再設定することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記メジャメントギャップにおいて、前記第2周波数で送信される前記検出/測定用信号の受信品質を測定する測定部を更に具備することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  6.  前記メジャメントギャップパターン情報と前記開始オフセットとは、上位レイヤシグナリングを用いて前記マクロ基地局から通知されることを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  7.  第1周波数が用いられるマクロセル内に第2周波数が用いられるスモールセルが配置される無線通信システムにおいて、前記マクロセルを形成する無線基地局であって、
     前記スモールセルにおける検出/測定用信号の送信周期と、前記検出/測定用信号の送信期間と、前記送信期間の開始オフセットと、を決定する決定部と、
     前記送信周期と同一の繰り返し期間及び前記送信期間と同一の時間長を示すメジャメントギャップパターン情報と、前記送信期間の開始オフセットとを、ユーザ端末に送信する送信部と、を具備することを特徴とする無線基地局。
  8.  前記ユーザ端末の能力情報を、前記ユーザ端末から受信する受信部と、
     前記ユーザ端末が前記検出/測定用信号を検出できるか否かを判定する判定部と、を更に具備し、
     前記判定部によって前記ユーザ端末が前記検出/測定用信号を検出できると判定された場合、前記送信部は、前記メジャメントギャップパターン情報及び前記開始オフセットを前記ユーザ端末に送信することを特徴とする請求項7に記載の無線基地局。
  9.  第1周波数が用いられるマクロセル内に第2周波数が用いられるスモールセルが配置される無線通信システムにおける通信制御方法であって、
     前記マクロセルを形成するマクロ基地局において、前記スモールセルにおける検出/測定用信号の送信周期と同一の繰り返し期間及び前記検出/測定用信号の送信期間と同一の時間長を示すメジャメントギャップパターン情報と、前記送信期間の開始オフセットとを、ユーザ端末に通知する工程と、
     前記ユーザ端末において、前記開始オフセットと同一の開始オフセットを用いて、前記繰り返し期間及び前記時間長のメジャメントギャップを設定する工程と、を有することを特徴とする通信制御方法。
     
     
PCT/JP2014/068220 2013-08-01 2014-07-08 ユーザ端末、無線基地局及び通信制御方法 WO2015016020A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/908,916 US9693291B2 (en) 2013-08-01 2014-07-08 User terminal, radio base station and communication control method
CN201480043498.8A CN105432124A (zh) 2013-08-01 2014-07-08 用户终端、无线基站以及通信控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-160728 2013-08-01
JP2013160728A JP6178153B2 (ja) 2013-08-01 2013-08-01 ユーザ端末、無線基地局及び通信制御方法

Publications (1)

Publication Number Publication Date
WO2015016020A1 true WO2015016020A1 (ja) 2015-02-05

Family

ID=52431560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068220 WO2015016020A1 (ja) 2013-08-01 2014-07-08 ユーザ端末、無線基地局及び通信制御方法

Country Status (4)

Country Link
US (1) US9693291B2 (ja)
JP (1) JP6178153B2 (ja)
CN (1) CN105432124A (ja)
WO (1) WO2015016020A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110870340A (zh) * 2017-05-16 2020-03-06 株式会社Ntt都科摩 用户终端以及无线通信方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219507A (ja) * 2012-04-06 2013-10-24 Ntt Docomo Inc 無線通信方法、ローカルエリア基地局装置、移動端末装置及び無線通信システム
JP2016541131A (ja) * 2013-09-24 2016-12-28 ゼットティーイー ウィストロン テレコム エービー 受信ギャップを伴うシステムにおける不規則信号伝送のための方法および装置
WO2015062011A1 (zh) * 2013-10-31 2015-05-07 华为技术有限公司 一种测量配置方法、识别和测量方法、宏基站及ue
KR20150088716A (ko) * 2014-01-24 2015-08-03 한국전자통신연구원 Rrm 측정 방법 및 장치, 그리고 rrm 측정을 위한 신호를 시그널링하는 방법 및 장치
US9729175B2 (en) * 2014-05-08 2017-08-08 Intel IP Corporation Techniques to manage radio frequency chains
WO2016072765A2 (ko) * 2014-11-06 2016-05-12 엘지전자 주식회사 소규모 셀 측정 방법 및 사용자 장치
US10103867B2 (en) * 2015-04-13 2018-10-16 Alcatel Lucent Methods, apparatuses and systems for enhancing measurement gap in synchronized networks
CN110089153B (zh) * 2016-12-26 2021-11-19 三星电子株式会社 执行基于波束形成的连接模式切换的随机接入的用户设备(ue)和方法
US11109255B2 (en) 2017-04-28 2021-08-31 Lg Electronics Inc. Method and wireless device for performing measurement in NR for 5G
CN112564782B (zh) * 2019-09-26 2022-03-11 中国电信股份有限公司 直放站检测方法、装置、网管系统以及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070099561A1 (en) * 2005-11-02 2007-05-03 Juergen Voss System and method for tracking UMTS cell traffic
JP5282491B2 (ja) * 2008-09-02 2013-09-04 富士通株式会社 移動通信システム、および位置検出方法
KR101580151B1 (ko) * 2009-03-16 2015-12-24 삼성전자주식회사 이동통신시스템에서 무선링크 실패로 인한 호 절단을 개선하기 위한 방법 및 시스템
WO2013025154A1 (en) * 2011-08-12 2013-02-21 Telefonaktiebolaget L M Ericsson (Publ) User equipment, network node, second network node and methods therein
US9560560B2 (en) * 2014-04-28 2017-01-31 Intel IP Corporation User equipment and methods for handover using measurement reporting based on multiple events

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA SIEMENS NETWORKS ET AL.: "Background inter-frequency measurement for small cell discovery", 3GPP TSG-RAN WG2#81B, R2-131249, 15 April 2013 (2013-04-15) *
NTT DOCOMO: "Views on efficient inter-frequency small cell discovery", 3GPP TSG-RAN WG1#74B, R1-134497, 7 October 2013 (2013-10-07) *
PANASONIC: "Discussion on small cell discovery issues", 3GPP TSG-RAN WG1#73, R1-132142, 20 May 2013 (2013-05-20) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110870340A (zh) * 2017-05-16 2020-03-06 株式会社Ntt都科摩 用户终端以及无线通信方法

Also Published As

Publication number Publication date
US20160183173A1 (en) 2016-06-23
JP6178153B2 (ja) 2017-08-09
JP2015032963A (ja) 2015-02-16
CN105432124A (zh) 2016-03-23
US9693291B2 (en) 2017-06-27

Similar Documents

Publication Publication Date Title
JP6359815B2 (ja) ユーザ端末、無線基地局及び異周波測定方法
JP6178153B2 (ja) ユーザ端末、無線基地局及び通信制御方法
JP6472440B2 (ja) 無線基地局、ユーザ端末および無線通信システム
JP6174265B2 (ja) ユーザ端末及び無線通信方法
US8260206B2 (en) Methods and apparatus for uplink and downlink inter-cell interference coordination
CN106416376B (zh) 用户终端、基站以及无线通信方法
JP6053632B2 (ja) ユーザ端末、無線基地局及び通信制御方法
WO2016072221A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP6219110B2 (ja) 無線基地局、ユーザ端末及び通信制御方法
WO2016182046A1 (ja) ユーザ端末および無線通信方法
CN111683392B (zh) 基站、用户终端以及无线通信方法
JP6282830B2 (ja) 基地局、ユーザ端末及び無線通信制御方法
JP6290554B2 (ja) 無線基地局および無線通信方法
US20220030456A1 (en) First Network Node, First UE and Methods Performed Therein for Handling Communication
JP6180844B2 (ja) 基地局及び無線通信制御方法
JP2017204876A (ja) ユーザ端末、無線基地局及び通信制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480043498.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14908916

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832686

Country of ref document: EP

Kind code of ref document: A1