WO2015014160A1 - 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统 - Google Patents

基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统 Download PDF

Info

Publication number
WO2015014160A1
WO2015014160A1 PCT/CN2014/079405 CN2014079405W WO2015014160A1 WO 2015014160 A1 WO2015014160 A1 WO 2015014160A1 CN 2014079405 W CN2014079405 W CN 2014079405W WO 2015014160 A1 WO2015014160 A1 WO 2015014160A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
level
electrical signal
units
levels
Prior art date
Application number
PCT/CN2014/079405
Other languages
English (en)
French (fr)
Inventor
刘若鹏
范林勇
Original Assignee
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启创新技术有限公司 filed Critical 深圳光启创新技术有限公司
Priority to EP14831951.0A priority Critical patent/EP3029857B1/en
Priority to JP2016530316A priority patent/JP6209282B2/ja
Priority to KR1020167004938A priority patent/KR102082931B1/ko
Publication of WO2015014160A1 publication Critical patent/WO2015014160A1/zh
Priority to US15/011,558 priority patent/US9780877B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present invention relates to visible light communication, and more particularly to a method and apparatus and system for encoding and decoding visible light signals based on multi-order amplitude modulation.
  • BACKGROUND OF THE INVENTION Visible light communication is an emerging, short-range, high-speed wireless optical communication technology developed on LED technology.
  • the basic principle of visible light communication is to use the characteristics of light-emitting diodes (LEDs) to switch faster than fluorescent lamps and incandescent lamps, and to communicate by high-frequency flickering of LED light sources. There is light for binary 1, and no light for binary 0. High-speed optical signals containing digital information can be obtained by photoelectric conversion.
  • Wireless optical communication technology can be used to make wireless optical encryption keys because its data is not easily interfered and captured.
  • Optical communication equipment is simple to manufacture and should not be damaged or demagnetized.
  • wireless optical communication has a very rich spectrum of resources, which is unmatched by general microwave communication and wireless communication.
  • visible light communication can be applied to any communication protocol and is applicable to any environment.
  • wireless optical communication Compared with the traditional magnetic materials, there is no need to worry about the degaussing problem, and there is no need to worry about the communication content being stolen.
  • the wireless optical communication equipment is flexible and convenient to set up, and the cost is low, which is suitable for large-scale popular application.
  • the technical problem to be solved by the present invention is to provide a method, device and system for encoding and decoding visible light signals based on multi-level amplitude modulation to improve information transmission rate of visible light communication based on LED lamps.
  • the technical solution adopted by the present invention to solve the above technical problem is to provide a method for encoding a visible light signal based on multi-level amplitude modulation, which includes the following steps: dividing information to be transmitted into a plurality of information units, each information unit including multiple Translating the plurality of information units into a plurality of electrical signal units represented by at least three levels, wherein adjacent electrical signal units have an interval between the first of the at least three levels, Each electrical signal unit represents the plurality of bits of the corresponding information element in a combination of the remaining levels of the at least three levels; Combining the electrical signal units to obtain an encoded electrical signal; and transmitting the encoded electrical signal in the form of a visible light signal.
  • the step of converting the plurality of information units into a plurality of electrical signal units represented by at least three levels is: determining, according to a preset correspondence table, the corresponding information unit Level combination of electrical signal units.
  • the method further includes setting the duration of the first level to a first threshold as a signal end flag.
  • each information element comprises N bits, N being a natural number; wherein the information is represented in binary.
  • the step of transmitting the encoded electrical signal in the form of a visible light signal is: controlling, by the encoded electrical signal, the LED to transmit the encoded electrical signal in the form of a visible light signal, wherein the LED is Lighting or integrated into an electronic device.
  • the first level is an average of the at least three levels. In an embodiment of the invention, the first level is not the average of the at least three levels, and the beginning of the encoded electrical signal is the first level.
  • the present invention also provides a method for decoding a visible light signal based on multi-order amplitude modulation, comprising the steps of: receiving a visible light signal and converting it into an electrical signal; when detecting a transition from the first level to another level, determining The electrical signal unit starts to record a combination of other levels; when a transition from the other level to the first level is detected, it is determined that the electrical signal unit ends and starts timing; when the duration of the first level is detected When the first threshold is reached, the determination signal ends; the received electrical signal units are decoded and converted into information units; and the plurality of information units are combined into information.
  • the step of decoding the received electrical signal units into information units is: determining, according to a preset correspondence table, a combination of other levels of the recorded electrical signal units Information unit.
  • the information is represented in binary.
  • the method before detecting the transition from the first level to the other level, the method further comprises: obtaining an electrical average value by low-pass filtering as the first level.
  • the method before detecting the transition from the first level to the other level, the method further comprises: using the level at the beginning of the electrical signal as the first level.
  • the method further comprises comparing the information with the preset information, and if the information matches the preset information, using the information to control a controlled device.
  • the matching of the information with the preset condition includes: the information is the same as the preset condition or has a corresponding relationship.
  • the present invention also provides an apparatus for encoding a visible light signal based on multi-level amplitude modulation, comprising: a module for dividing information to be transmitted into a plurality of information units, wherein each information unit includes a plurality of bits; The information unit is converted into a module of a plurality of electrical signal units represented by at least three levels, wherein adjacent electrical signal units have an interval between the first levels of the at least three levels, each of the electrical a signal unit representing the plurality of bits of a corresponding information unit in a combination of the remaining ones of the at least three levels; a module for combining the electrical signal units to obtain an encoded electrical signal; A module that transmits the encoded electrical signal in the form of a visible light signal.
  • the module for converting the plurality of information units into a plurality of electrical signal units represented by at least three levels is determined according to a correspondence table set in advance, and the information unit is determined to correspond to The level combination of the electrical signal units.
  • the apparatus further includes means for setting the duration of the first level to a first threshold as a signal end flag.
  • each information element comprises N bits, N being a natural number; wherein the information is represented in binary.
  • the module for transmitting the encoded electrical signal in the form of a visible light signal is that the encoded electrical signal is used to control the LED to transmit the encoded electrical signal in the form of a visible light signal, wherein Light-emitting diodes are illuminators or integrated into electronic devices.
  • the first level is an average of the at least three levels. In an embodiment of the invention, the first level is not the average of the at least three levels, and the beginning of the encoded electrical signal is the first level.
  • the present invention further provides a decoding apparatus for a visible light signal based on multi-order amplitude modulation, comprising: a module for receiving a visible light signal and converting it into an electrical signal; for detecting a transition from a first level to another level Time, a module that determines that the electrical signal unit starts, records a combination of other levels; a module for determining that the electrical signal unit ends and starts timing when a transition from the other level to the first level is detected; a module for determining a signal end when detecting that a duration of the first level reaches a first threshold; a module for decoding each received electrical signal unit to be converted into an information unit; and for using the plurality of information units A module that synthesizes information.
  • the module for decoding the received electrical signal units to be converted into information units is to determine other levels of the recorded electrical signal units according to a preset correspondence table.
  • the combination of information units In an embodiment of the invention, the information is represented in binary.
  • the apparatus further includes means for obtaining an electrical average by low pass filtering and as the first level before detecting a transition from the first level to the other level.
  • the apparatus further includes means for using the level at the beginning of the electrical signal as the first level before detecting a transition from the first level to the other level.
  • the apparatus further includes means for comparing the information with the preset information, and if the information matches the preset information, using the information to control a controlled device.
  • the matching of the information with the preset condition includes: the information is the same as the preset condition or has a corresponding relationship.
  • the device is incorporated in a controlled end of the access control system.
  • the present invention further provides a photonic key including the multi-level amplitude modulated visible light signal as described above.
  • the present invention further provides a photon controlled end comprising a decoding device for a visible light signal based on multi-order amplitude modulation as described above.
  • the invention further provides an authentication system comprising a photon key and a photon controlled end as described above.
  • the present invention further provides an authentication system comprising the above-described multi-level amplitude modulated visible light signal encoding apparatus and the above-described multi-level amplitude modulated visible light signal decoding apparatus.
  • the present invention adopts the above technical solution, so that compared with the prior art, the information is expressed by the level jump instead of the duration of the level, so there is no need to maintain the LED light between the transmitting end and the receiving end. Difficult to resolve synchronization.
  • FIG. 1 is a flow chart showing a coding method of visible light communication according to a first embodiment of the present invention.
  • 2 is a flow chart showing a decoding method of visible light communication according to the first embodiment of the present invention.
  • FIG. 3 shows an exemplary encoded electrical signal of visible light communication in accordance with a first embodiment of the present invention.
  • 4 is a flow chart showing a coding method of visible light communication according to a second embodiment of the present invention.
  • FIG. 5 is a flow chart showing a decoding method of visible light communication according to a second embodiment of the present invention.
  • Figure 6 shows an exemplary encoded electrical signal of visible light communication in accordance with a second embodiment of the present invention.
  • FIG. 7 is a flow chart showing a coding method of visible light communication according to a third embodiment of the present invention.
  • FIG. 8 is a flow chart showing a decoding method of visible light communication according to a third embodiment of the present invention.
  • embodiments of the present invention provide a method of encoding and decoding a visible light signal, which can improve an information transmission rate of visible light communication based on an LED lamp.
  • one of the reasons for the small transmission rate of visible light communication based on LED lamps is that there is a delay in the flicker control of the LED lamps, that is, the duration of the bright and dark states is always longer than the desired set value.
  • the direct result of this phenomenon is that in order to spread the same length of data, the LED lamp takes longer than expected.
  • the delay of the flicker control makes it difficult to synchronize between the transmitting end and the signal end.
  • communication is performed with the high frequency of the LED lamp flashing, with light representing binary 1 and no light representing binary 0.
  • information is represented by a combination of multiple levels of levels from the perspective of electrical signals. From the perspective of the optical signal, the information is represented by the brightness of the light. To this end, at the time of encoding, the information to be transmitted can be divided into a plurality of information units, each of which contains a plurality of bits.
  • These information units are then converted into a plurality of electrical signal units.
  • These electrical signal units are represented by at least three levels. Wherein, setting a first one of the at least three levels as a reference. The first level is used to indicate the spacing between adjacent electrical signal units. The other of the at least three levels are used in combination with each other in the electrical signal unit to represent the plurality of bits described above. Thereafter, each electrical signal unit is combined to obtain an encoded electrical signal. For the entire electrical signal, the duration of the first level is set to a first threshold as a signal end flag. After the desired electrical signal is obtained, the light-emitting diode is controlled by an electrical signal, which is transmitted by the light-emitting diode in the form of a visible light signal.
  • the decoding process is reversed.
  • the receiving end receives the visible light signal and converts it into an electrical signal.
  • the electrical signal unit starts, and a combination of other levels is recorded.
  • the electrical signal unit ends and timing is started.
  • the determination signal ends.
  • the received electrical signal units are then decoded and converted into information units, respectively, and the plurality of information units are combined into the original information.
  • the first level as the reference level needs to be accurately determined in advance so as to be a reference for other levels. Other levels are level values relative to the reference level.
  • the first level may be set to an average of a plurality of levels in the electrical signal unit, or may not be set to an average of the levels.
  • the transmitting end does not need to do special processing, the receiving end can use low-pass filtering to obtain the mean as the first level; for the non-average level as the first level, the transmitting end is encoding
  • the first level may be sent at the beginning, and after receiving the optical signal of the first level, the receiving end undergoes photoelectric conversion, and the level after the conversion is taken as the first level. Of course, it is necessary to determine in advance whether the average level is used as the first level in the transmitting end and the receiving end.
  • An advantage of the encoding method of the present invention is that it expresses information by level hopping rather than the duration of the level, so there is no need to maintain synchronization between the transmitting end and the receiving end that is difficult to resolve for the LED lamp. Also, the information density is increased by grouping the information and multi-step amplitude modulation, thereby compensating for the problem of a decrease in the transmission rate due to the flicker delay.
  • Step 101 Divide information to be sent into multiple information units.
  • the original information can be represented by binary.
  • Each information unit contains a plurality of bits.
  • each information unit contains 2 bits.
  • Step 102 Convert the plurality of information units into a plurality of electrical signal units.
  • these electrical signal units are represented by three levels, such as 0, IV, and 2V. Wherein, setting a first level, such as 0V as a reference level, is used to indicate an interval between adjacent electrical signal units.
  • the other two levels, such as IV and 2V are used in combination with each other in the electrical signal unit to represent 2 bits.
  • Each electrical signal represents 2 bit information, and the information composition of the four electrical signal units can thus determine the level combination of the electrical signal units corresponding to the information unit according to the corresponding correspondence table set in advance.
  • the rising edge of the level can be used as the start of the transition.
  • even for the bit value 00 it is represented by a level transition from 0V to IV and a transition from IV to 0V. This way of hopping is less likely to cause detection errors due to delays than the way the level is sustained.
  • the above three levels can freely specify one of them as the first level; the specific values of the three levels can also be flexibly set, for example, set to IV, 2V, and 3V.
  • each electrical signal unit is combined to obtain an encoded electrical signal.
  • the relationship between signal and level is shown.
  • the four groups of signals in the figure represent 01, 11, 00 and 10, respectively.
  • the adjacent two groups of signals are distinguished by 0V level.
  • the combined signal is One byte whose binary representation is 01110010.
  • the duration of the first level can be set to reach a first threshold, for example 60 ms, as the entire electrical signal end flag.
  • 0V is designated as the reference level, which is not the average of the three levels.
  • Step 104 Send the encoded electrical signal in the form of a visible light signal.
  • the encoded LED is used to control the LED to transmit the encoded electrical signal in the form of a visible light signal.
  • the light emitting diode can be integrated into an electronic device such as a mobile phone, a tablet computer, a notebook computer, a digital camera, an MP3 player, or an MP4 player.
  • the light emitting diode can also be a separate device, such as a light.
  • the visible light emitted by this illuminator can be modulated by a control device to carry the signal.
  • the decoding method includes: Step 201: Receive a visible light signal and convert it into an electrical signal. When receiving, it is necessary to align the optical receiver of the receiving end with the LED transmitting source of the transmitting end. Step 202: When a transition from the first level to the other two levels is detected, it is determined that the electrical signal unit starts, and a combination of other levels is recorded. For example, when a transition from 0V to IV or 2V is detected, it is determined that the electrical signal unit starts. Here, a rising edge of 0V to IV or 2V can be used as the start of the transition.
  • the first level needs to be determined before detecting a transition from the first level to the other two levels.
  • the receiving end undergoes photoelectric conversion once the reading of the optical signal is started, and the level after the conversion is taken as the first level ov.
  • a transition between other levels can be recorded, for example, when the level transitions from IV to 2V, it represents a combination of levels IV and 2V, which will be considered to represent the information unit 10;
  • the transition from 2V to IV represents the combination of levels 2V and IV, which will be considered to represent the information unit 11.
  • Table 1 the electrical signal units corresponding to the information unit 00 and the information unit 01 are represented by a single level.
  • Step 203 when a transition from the other two levels to the first level is detected, it is determined that the electrical signal unit ends, and timing is started. For example, when the level transitions from IV or 2V to 0V, this will be considered the end of the electrical signal unit.
  • the information represented by the electrical signal unit is determined jointly by the level value detected at the beginning of the electrical signal unit and the level transition detected within the electrical signal unit.
  • Step 204 When it is detected that the duration of the first level reaches the first threshold, the determination signal ends. For example, if the duration of the 0V level is greater than 60 ms, the entire electrical signal is considered to be over.
  • the duration of the first level reaching the first threshold may also represent a signal interruption, restarting the detection signal.
  • the conversion and decoding process from the optical signal to the electrical signal can be implemented in a pipelined manner during the reception of the optical signal. That is to say, each time a part of the optical signal is received, conversion and decoding are performed. When it is determined that the electrical signal ends, it means that the optical signal is received.
  • Step 205 Decode each received electrical signal unit into an information unit. This conversion process can be accomplished by referring to the correspondence table of the level and bit value combinations of Table 1.
  • Step 206 Combine the plurality of information units into information, thereby obtaining information characterized by the visible light signal.
  • the information is divided into a plurality of sets of signals, and three levels ⁇ , ⁇ and 2V are set, and each group of signals is distinguished by a 0V level.
  • information is represented by a combination of two other levels, IV and 2V.
  • the signal is sent out as visible light through the LED.
  • Embodiment 2 it is a flowchart of encoding a visible light signal according to a second embodiment of the present invention.
  • the encoding process includes: Step 301: Divide information to be sent into multiple information units.
  • the original information can be represented by binary.
  • Each information unit contains a plurality of bits.
  • each information element contains 4 bits.
  • Step 302 Convert the plurality of information units into a plurality of electrical signal units.
  • these electrical signal units are represented by four levels, such as 0V, IV, 2V, and 3V. Wherein, setting a first level, such as 0V as a reference level, is used to indicate an interval between adjacent electrical signal units.
  • the other three levels are used in combination with each other in the electrical signal unit to represent 3 bits.
  • the level transitions from 0V to IV and from IV to 0V it represents information 0000; when the level transitions from 0V to 2V, and from 2V to 0V , represents the information 0001; when the level jumps from 0V to IV, then from IV to 2V, then from 2V to 0, it represents the information 0011; when the level jumps from 0V to 2V, and then jumps from 2V
  • it changes to IV and then jumps from IV to 0V it represents information 1001.
  • Table 2 Table 2
  • the rising edge of the level can be used as the transition of the transition. It can also be seen from the above table that for any combination of bit values, at least one level jump is included. This way of hopping is less likely to cause detection errors due to delays than the way the level is sustained.
  • the above four levels can freely specify one of them to be the first level, for example, specify IV as the first level; the specific values of the four levels can also be flexibly set, for example, set to IV, 2V, 3V, and 4V. Wait.
  • the specific information represented by the above level combination can also be flexibly set. For example, level combination 1 represents information 0001, level combination 2 represents information 0010, level combination 3 represents information 0000, and the like.
  • Step 303 Combine the respective electrical signal units to obtain the encoded electrical signal.
  • Figure 6 shows the relationship between signal and level.
  • the four electrical signal units in the figure represent 0010, 0110, 1001 and 0100, respectively.
  • the adjacent two groups of signals are distinguished by 0 level.
  • the binary representation of the signal is 0010011010010100.
  • the duration of the first level can be set to reach a first threshold, for example 60 ms, as the entire electrical signal end flag.
  • 0V is designated as the reference level, which is not the average of the three levels. Therefore, as shown in Fig. 6, a reference level of 0 V is transmitted at the beginning of the entire electrical signal as a reference for other levels.
  • Step 304 Send the encoded electrical signal in the form of a visible light signal.
  • the encoded LED is used to control the LED to transmit the encoded electrical signal in the form of a visible light signal.
  • the light emitting diode can be integrated into a mobile phone, a tablet computer, a notebook computer, a digital camera,
  • the light emitting diode can also be a separate device, such as a light.
  • the visible light emitted by this illuminator can be modulated by a control device to carry the signal.
  • FIG. 5 it is a flowchart of a method for decoding a visible light signal according to a second embodiment of the present invention.
  • the decoding method includes: Step 501: Receive a visible light signal and convert it into an electrical signal. When receiving, it is necessary to align the optical receiver of the receiving end with the LED transmitting source of the transmitting end. Step 502, when a transition from the first level to the other three levels is detected, it is determined that the electrical signal unit starts, and the combination of the other three levels is recorded.
  • a transition from 0V to IV, 2V or 3V when a transition from 0V to IV, 2V or 3V is detected, it is determined that the electrical signal unit starts.
  • a rising edge of 0V to IV, 2V or 3V can be used as the start of the transition.
  • a transition between other levels can be recorded.
  • the level transitions from IV to 2V it represents a combination of level IV and 2V, which will be considered to represent information unit 0011; when the level transitions from 2V to IV, it represents a combination of levels 2V and IV, which It will be considered to represent the information unit 1001.
  • Step 503 when a transition from the other three levels to the first level is detected, it is determined that the electrical signal unit ends, and timing is started.
  • the determination signal ends. For example, if the duration of the 0V level is greater than 60 ms, the entire electrical signal is considered to be over.
  • the duration of the first level reaching the first threshold may also represent a signal interruption, restarting the detection signal.
  • the conversion and decoding process from the optical signal to the electrical signal can be implemented in a pipelined manner during the reception of the optical signal. That is to say, each time a part of the optical signal is received, conversion and decoding are performed. When it is determined that the electrical signal ends, it means that the optical signal is received.
  • Step 505 Decode each received electrical signal unit into an information unit. This conversion process can be completed by referring to the correspondence between the level of Table 2 and the bit value combination of the information unit.
  • Step 506 Combine the plurality of information units into information, thereby obtaining information characterized by the visible light signal. In the encoding and decoding manner provided by this embodiment, the information is divided into several groups of signals, and four levels ⁇ , ⁇ are set.
  • each group of signals is distinguished by a 0V level.
  • information is represented by a combination of two other levels, IV, 2V and 3V.
  • the signal is sent out as visible light through the LED.
  • Embodiment 3 is implemented in a photonic access control system in which a portable electronic device such as a mobile phone is used as a transmitting end, and a access control terminal is used as a receiving end. In addition to decoding the signal, the access control terminal can further use the signal to match to determine whether to open the door.
  • the encoding process includes: Step 701: Divide identity authentication information to be sent into a plurality of information units in a mobile phone.
  • the original identity authentication information can be represented in binary.
  • Each information unit contains a plurality of bits. For example, each information unit contains 2 bits.
  • Step 702 Convert the plurality of information units into a plurality of electrical signal units represented by three levels.
  • these electrical signal units are represented by three levels, such as 0, IV, and 2V.
  • setting a first level such as 0V as a reference level, is used to indicate an interval between adjacent electrical signal units.
  • the other two levels, such as IV and 2V, are used in combination with each other in the electrical signal unit to represent 2 bits.
  • an electrical signal unit when the level transitions from 0V to IV and from IV to 0V, it represents information 00; when the level jumps from 0V to 2V, it changes from 2V to At 0V, it represents information 01; when the level jumps from 0V to IV, then from IV to 2V, then from 2V to 0, it represents information 10; when the level jumps from 0V to 2V, When 2V jumps to IV and then transitions from IV to 0V, it represents information 11.
  • Table 1 Each electrical signal represents 2 bits of information, and the information of the four electrical signal units constitutes one byte. In this embodiment, the rising edge of the level can be used as the start of the transition.
  • Step 703 Combine the respective electrical signal units to obtain the encoded electrical signal.
  • the duration of the first level can be set to reach a first threshold, for example 60 ms, as the entire electrical signal end flag.
  • Step 704 transmitting the encoded electrical signal in the form of a visible light signal.
  • the encoded LED is used to control the LED to transmit the encoded electrical signal in the form of a visible light signal.
  • FIG. 8 is a flowchart of a method for decoding a visible light signal according to a third embodiment of the present invention.
  • the decoding method includes: Step 801: A photon access control controlled end receives a visible light signal and converts it into an electrical signal. Step 802, when detecting a transition from the first level to the other two levels, determining that the electrical signal unit begins, recording a combination of other levels. For example, when a transition from 0V to IV or 2V is detected, it is determined that the electrical signal unit starts. Here, a rising edge of 0V to IV or 2V can be used as the start of the transition.
  • a transition between other levels can be recorded, for example, when the level transitions from IV to 2V, it represents a combination of levels IV and 2V, which will be considered to represent the information unit 10;
  • the transition from 2V to IV represents the combination of levels 2V and IV, which will be considered to represent the information unit 11.
  • the electrical signal units corresponding to the information unit 00 and the information unit 01 are represented by a single level.
  • Step 803 when a transition from the other two levels to the first level is detected, it is determined that the electrical signal unit ends, and timing is started. For example, when the level transitions from IV or 2V to 0V, this will be considered the end of the electrical signal unit.
  • the information represented by the electrical signal unit is determined jointly by the level value detected at the beginning of the electrical signal unit and the level transition detected within the electrical signal unit.
  • Step 804 when it is detected that the duration of the first level reaches the first threshold, the determination signal ends. For example, if the duration of the 0V level reaches 60 ms, the entire electrical signal is considered to be over. In another case, the duration of the first level reaching the first threshold, such as 60 ms, may also represent a signal interruption, restarting the detection signal.
  • the conversion and decoding process from the optical signal to the electrical signal can be implemented in a pipelined manner during the reception of the optical signal. That is to say, each time a part of the optical signal is received, conversion and decoding are performed.
  • Step 805 Decode each received electrical signal unit into an information unit. This conversion process can be accomplished by referring to the correspondence between the level of Table 1 and the bit value combination of the information unit.
  • Step 806 combining a plurality of information units into information, thereby obtaining information characterized by visible light signals.
  • Step 807 The photon access control controlled end compares the identity authentication information with the preset information, and if the identity authentication information matches the preset information, controls the unlocking of the electric lock connected thereto.
  • the identity authentication information is matched with the preset information, including the identity authentication information and the preset information; or there is a correspondence between the identity authentication information and the preset information.
  • the information is divided into a plurality of sets of signals, and three levels ⁇ , ⁇ and 2V are set, and each group of signals is distinguished by a 0V level.
  • information is represented by a combination of two other levels, IV and 2V.
  • the signal is sent out as visible light through the LED.
  • the receiving end determines whether an electrical signal unit receives the end, receives the interrupt, or receives the reception by using the 0V level between the respective electrical signal units, and records a combination of the other two levels of the characterization information in the electrical signal unit.
  • the present invention also provides an apparatus for encoding a visible light signal based on multi-order amplitude modulation, comprising: a module for dividing information to be transmitted into a plurality of information units, wherein each information unit includes a plurality of bits; a plurality of information units converted into modules of a plurality of electrical signal units represented by at least three levels, wherein adjacent electrical signal units have intervals between the first ones of the at least three levels, each The electrical signal unit represents the plurality of bits of the corresponding information unit in a combination of the remaining levels of the at least three levels; a module for combining the electrical signal units to obtain the encoded electrical signal; A module for transmitting the encoded electrical signal in the form of a visible light signal.
  • the module for converting the plurality of information units into a plurality of electrical signal units represented by at least three levels determines a level of the electrical signal unit corresponding to the information unit according to a correspondence table set in advance combination.
  • the apparatus further includes means for setting the duration of the first level to a first threshold as a signal end flag.
  • Each information element contains N bits, N being a natural number; where the information is expressed in binary.
  • the module for transmitting the encoded electrical signal in the form of a visible light signal is to control the LED to transmit the encoded electrical signal in the form of a visible light signal, wherein the LED is an illumination lamp or integrated into an electronic device.
  • the first level can be an average of the at least three levels.
  • the first level may not be the average of the at least three levels, and the beginning of the encoded electrical signal is the first level.
  • Another apparatus for decoding a visible light signal based on multi-order amplitude modulation includes: a module for receiving a visible light signal and converting it into an electrical signal; for detecting a transition from a first level to another level a module that determines that the electrical signal unit starts, records a combination of other levels; a module that determines that the electrical signal unit ends and starts timing when a transition from another level to the first level is detected; a module for determining the end of the signal when the duration of the first level is detected to reach the first threshold; a module for decoding the received electrical signal unit for conversion to the information unit; and for using the plurality of information Units are combined into modules of information.
  • the module for decoding the received electrical signal units and converting them into information units is to determine information units corresponding to combinations of other levels of the recorded electrical signal units according to a correspondence table set in advance. This information is expressed in binary.
  • the above apparatus further includes means for obtaining an electrical average by low pass filtering and as the first level before detecting a transition from the first level to the other level.
  • the apparatus further includes means for using the level at the beginning of the electrical signal as the first level before detecting a transition from the first level to the other level.
  • the apparatus further includes means for comparing the information with the preset information, and if the information matches the preset information, using the information to control a controlled device.
  • the matching of the information with the preset condition includes: the information is the same as or has a corresponding relationship with the preset condition.
  • the above device is incorporated in the controlled end of the access control system.
  • the invention also provides an authentication system, which can be an access control system, a subway system, a payment system or a consumption management system.
  • the authentication system comprises a photon key and a photon controlled end, and the photon key comprises the foregoing encoding device of the visible light signal based on multi-level amplitude modulation, and the photon controlled end comprises the aforementioned decoding of the visible light signal based on multi-order amplitude modulation.
  • Device Taking the access control system as an example, in this embodiment, the photon key is used as the transmitting end, and the encoded identification data is transmitted as a visible light signal through the LED light of the electronic key.
  • the photon controlled end decodes the visible light signal received from the photon key, and then performs authentication according to the identification data obtained by decoding. If the information matches through the authentication, the controllable lock unlocking connected thereto is controlled, thereby unlocking and improving the user experience. .
  • the lock can also be replaced with other access control switch devices, such as gates, that are switched between open and closed states.
  • the present invention also provides an authentication system, comprising the foregoing encoding device for visible light signals based on multi-level amplitude modulation and a decoding device for visible light signals based on multi-level amplitude modulation.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

涉及一种基于多阶幅度调制的可见光信号的编码方法和解码方法、装置及系统。该编码方法包括以下步骤:将待发送的信息分成多个信息单元,每一信息单元包含多个比特;将该多个信息单元转换为以至少三个电平表示的多个电信号单元,其中相邻电信号单元之间具有以该至少三个电平中的第一电平表示的间隔,每一电信号单元以该至少三个电平中的其余电平的组合来代表对应的信息单元的该多个比特;对各电信号单元进行组合,获得编码后的电信号;以及以可见光信号形式发送该编码后的电信号。

Description

基于多阶幅度调制的可见光信号的编码和解码方法、 装置及系统 技术领域 本发明涉及可见光通信, 尤其是涉及一种基于多阶幅度调制的可见光信号的编码 和解码方法、 装置及系统。 背景技术 可见光通信是一种在 LED 技术上发展起来的新兴的、 短距离高速无线光通信技 术。 可见光通信的基本原理就是利用发光二极管 (LED) 比荧光灯和白炽灯切换速度 快的特点, 通过 LED光源的高频率闪烁来进行通信。 有光代表二进制 1, 无光代表二 进制 0。 包含了数字信息的高速光信号经过光电转换即可获得信息。 无线光通信技术 因为其数据不易被干扰和捕获, 光通信设备制作简单且不宜损坏或消磁, 可以用来制 作无线光加密钥匙。 与微波技术相比, 无线光通信有相当丰富的频谱资源, 这是一般 微波通信和无线通信无法比拟的; 同时可见光通信可以适用任何通信协议、 适用于任 何环境; 在安全性方面, 无线光通信相比传统的磁性材料, 无需担心消磁问题, 更不 必担心通信内容被人窃取; 无线光通信的设备架设灵活便捷, 且成本低廉, 适合大规 模普及应用。 随着可见光通信的快速推广, 已经提出了利用电子设备的 LED (发光二极管)灯 发送可见光信号的技术。电子设备中的 LED灯的开关时信号占空比不确定,但是其亮、 暗持续时间可控, 可分别作为高、 低电平。 因此可以通过特别设置的编码方式, 实现 LED灯发送表征数据信息的可见光信号的目的。然而本申请的发明人在实践中发现目 前的方法中传输速率 (即单位时间传输的信息量) 仍较小, 有进一步提高的空间。 发明内容 本发明所要解决的技术问题是提供一种基于多阶幅度调制的可见光信号的编码和 解码方法、 装置及系统, 以提高基于 LED灯的可见光通信的信息传输速率。 本发明为解决上述技术问题而采用的技术方案是提出一种基于多阶幅度调制的可 见光信号的编码方法, 包括以下步骤: 将待发送的信息分成多个信息单元, 每一信息 单元包含多个比特;将该多个信息单元转换为以至少三个电平表示的多个电信号单元, 其中相邻电信号单元之间具有以该至少三个电平中的第一电平表示的间隔, 每一电信 号单元以该至少三个电平中的其余电平的组合来代表对应的信息单元的该多个比特; 对各电信号单元进行组合, 获得编码后的电信号; 以及以可见光信号形式发送该编码 后的电信号。 在本发明的一实施例中, 将该多个信息单元转换为以至少三个电平表示的多个电 信号单元的步骤为: 根据预先设置的对应表, 确定所述信息单元对应的所述电信号单 元的电平组合。 在本发明的一实施例中, 该方法还包括设置该第一电平的持续时间达到第一阈值 作为信号结束标志。 在本发明的一实施例中, 每一信息单元包含 N个比特, N为自然数; 其中该信息 是以二进制表示。 在本发明的一实施例中, 以可见光信号形式发送该编码后的电信号的步骤为: 以 该编码后的电信号控制发光二极管以可见光信号形式发送该编码后的电信号, 其中发 光二极管为照明灯或集成到电子设备中。 在本发明的一实施例中, 该第一电平为该至少三个电平的均值。 在本发明的一实施例中, 该第一电平不为该至少三个电平的均值, 且该编码后的 电信号的开头为该第一电平。 本发明还提出一种基于多阶幅度调制的可见光信号的解码方法, 包括以下步骤: 接收可见光信号并转换为电信号; 当检测到从第一电平向其它电平的跳变时, 判断为 电信号单元开始, 记录其它电平的组合; 当检测到从其它电平到第一电平的跳变时, 判定该电信号单元结束, 并开始计时; 当检测到第一电平的持续时间达到第一阈值时, 判断信号结束; 将接收到的各电信号单元进行解码而转换为信息单元; 以及将多个信 息单元组合成信息。 在本发明的一实施例中, 将接收到的各电信号单元进行解码而转换为信息单元的 步骤为: 根据预先设置的对应表, 确定所述记录的电信号单元的其它电平的组合对应 的信息单元。 在本发明的一实施例中, 该信息是以二进制表示。 在本发明的一实施例中, 检测到从第一电平向其它电平的跳变之前还包括: 通过 低通滤波获得电平均值并作为该第一电平。 在本发明的一实施例中, 检测到从第一电平向其它电平的跳变之前还包括: 将该 电信号开头的电平作为该第一电平。 在本发明的一实施例中, 该方法还包括将该信息与预设信息进行对比, 若该信息 与预设信息匹配, 则使用该信息对一被控设备进行控制。 在本发明的一实施例中, 该信息与预设条件的匹配包括: 该信息与该预设条件相 同或存在对应关系。 本发明还提出一种基于多阶幅度调制的可见光信号的编码装置, 包括: 用于将待 发送的信息分成多个信息单元的模块, 其中每一信息单元包含多个比特; 用于将该多 个信息单元转换为以至少三个电平表示的多个电信号单元的模块, 其中相邻电信号单 元之间具有以该至少三个电平中的第一电平表示的间隔, 每一电信号单元以该至少三 个电平中的其余电平的组合来代表对应的信息单元的该多个比特; 用于对各电信号单 元进行组合, 获得编码后的电信号的模块; 以及用于以可见光信号形式发送该编码后 的电信号的模块。 在本发明的一实施例中, 所述用于将该多个信息单元转换为以至少三个电平表示 的多个电信号单元的模块是根据预先设置的对应表, 确定所述信息单元对应的所述电 信号单元的电平组合。 在本发明的一实施例中, 上述装置还包括用于设置该第一电平的持续时间达到第 一阈值作为信号结束标志的模块。 在本发明的一实施例中, 每一信息单元包含 N个比特, N为自然数; 其中该信息 是以二进制表示。 在本发明的一实施例中, 所述用于以可见光信号形式发送该编码后的电信号的模 块是以该编码后的电信号控制发光二极管以可见光信号形式发送该编码后的电信号, 其中发光二极管为照明灯或集成到电子设备中。 在本发明的一实施例中, 该第一电平为该至少三个电平的均值。 在本发明的一实施例中, 该第一电平不为该至少三个电平的均值, 且该编码后的 电信号的开头为该第一电平。 本发明另提出一种基于多阶幅度调制的可见光信号的解码装置, 包括: 用于接收 可见光信号并转换为电信号的模块; 用于当检测到从第一电平向其它电平的跳变时, 判断为电信号单元开始, 记录其它电平的组合的模块; 用于当检测到从其它电平到第 一电平的跳变时, 判定该电信号单元结束, 并开始计时的模块; 用于当检测到第一电 平的持续时间达到第一阈值时, 判断信号结束的模块; 用于将接收到的各电信号单元 进行解码以转换为信息单元的模块; 以及用于将多个信息单元组合成信息的模块。 在本发明的一实施例中, 所述用于将接收到的各电信号单元进行解码而转换为信 息单元的模块是根据预先设置的对应表, 确定所述记录的电信号单元的其它电平的组 合对应的信息单元。 在本发明的一实施例中, 该信息是以二进制表示。 在本发明的一实施例中, 上述装置还包括用于在检测到从第一电平向其它电平的 跳变之前通过低通滤波获得电平均值并作为该第一电平的模块。 在本发明的一实施例中, 上述装置还包括用于在检测到从第一电平向其它电平的 跳变之前将该电信号开头的电平作为该第一电平的模块。 在本发明的一实施例中, 上述装置还包括用于将该信息与预设信息进行对比, 若 该信息与预设信息匹配, 则使用该信息对一被控设备进行控制的模块。 在本发明的一实施例中, 该信息与预设条件的匹配包括: 该信息与该预设条件相 同或存在对应关系。 在本发明的一实施例中, 上述装置是结合在门禁系统受控端中。 本发明另提出一种光子钥匙, 包括如上所述的基于多阶幅度调制的可见光信号的
本发明另提出一种光子受控端, 包括如上所述的基于多阶幅度调制的可见光信号 的解码装置。 本发明另提出一种鉴权系统, 包括如上所述的光子钥匙和光子受控端。 本发明另提出一种鉴权系统, 包括如上所述的基于多阶幅度调制的可见光信号的 编码装置和如上所述的基于多阶幅度调制的可见光信号的解码装置。 本发明由于采用 以上技术方案, 使之与现有技术相比, 通过电平跳变而不是电平的持续时间来表达信 息, 因此不需要在发送端和接收端之间维持对 LED灯来说难以解决的同步。 并且, 通 过将信息分组并经过多阶幅度调制来提高信息的密度, 因而弥补了由于闪烁延迟造成 的传输速率降低的问题。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性 实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中: 图 1示出本发明第一实施例的可见光通信的编码方法流程图。 图 2示出本发明第一实施例的可见光通信的解码方法流程图。 图 3示出本发明第一实施例的可见光通信的示例性编码电信号。 图 4示出本发明第二实施例的可见光通信的编码方法流程图。 图 5示出本发明第二实施例的可见光通信的解码方法流程图。 图 6示出本发明第二实施例的可见光通信的示例性编码电信号。 图 7示出本发明第三实施例的可见光通信的编码方法流程图。 图 8示出本发明第三实施例的可见光通信的解码方法流程图。 具体实施方式 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以 相互组合。 下面将参考附图并结合实施例来详细说明本发明。 概要地说, 本发明的实施例提供了一种可见光信号的编码和解码方法, 可以提高 基于 LED灯的可见光通信的信息传输速率。 经过进一步的研究发现, 基于 LED 灯的可见光通信的传输速率较小的原因之一 是, LED灯的闪烁控制存在延迟, 即亮、暗状态的持续时间总是比所期望的设定值长。 这一现象的直接结果是, 为了传播同样长度的数据, LED灯所需要的时间总比预计的 时间长。 另外, 闪烁控制的延迟使得发送端和信号端之间的同步存在困难。 按照常规 的技术, 以 LED灯的高频率闪烁来进行通信, 有光代表二进制 1, 无光代表二进制 0。 然而由于缺乏准确的同步, 导致如果分别以有光、 无光分别来代表二进制的 1和 0, 会存在错误位接收。 举例来说, 当代表 1位二进制 0的无光状态的持续时间超出设定 值后, 额外的持续时间会被识别为另外 1位二进制 0。 由于 LED灯所存在的上述缺陷, 有必要提出一种新的编码和解码方法。根据本发 明的实施例, 从电信号角度看, 以多阶电平的组合来代表信息。 从光信号角度看, 以 光的亮度来代表信息。 为此, 在编码时, 可以将待发送的信息分成多个信息单元, 每一信息单元包含多 个比特。 然后将这些信息单元转换为多个电信号单元。 这些电信号单元以至少三个电 平表示。 其中, 设置至少三个电平中的第一电平为基准。 第一电平用来表示相邻电信 号单元之间的间隔。 至少三个电平中的其它电平用以在电信号单元中相互组合来代表 上述的多个比特。 之后, 对各电信号单元进行组合, 获得编码后的电信号。 对整个电信号来说,设置该第一电平的持续时间达到第一阈值作为信号结束标志。 在得到了所期望的电信号后, 以电信号控制发光二极管, 由发光二极管以可见光 信号形式发送。 在接收端, 解码过程是相反的。 接收端会接收可见光信号并转换为电信号。 当检 测到从第一电平向其它电平的跳变时,判断为电信号单元开始,记录其它电平的组合。 当检测到从其它电平到第一电平的跳变时, 判定该电信号单元结束, 并开始计时。 当 检测到第一电平的持续时间达到第一阈值时, 判断信号结束。 然后将接收到的各电信 号单元进行解码而分别转换为信息单元, 并将多个信息单元组合成原始的信息。 作为基准电平的第一电平需要预先被准确地确定, 以便作为其它电平的参考。 其 它电平是相对于该基准电平的电平值。 第一电平既可以设置成电信号单元中的多个电 平的平均值, 也可以不设置成这些电平的平均值。 对于采用均值作为第一电平的, 发 送端不需做特别处理, 接收端可以采用低通滤波得到均值作为第一电平; 对于不采用 均值电平作为第一电平的, 发送端在编码时可以在开头先发一段该第一电平, 接收端 在读取到该第一电平的光信号后, 经过光电转换,将该转换之后的电平作为第一电平。 当然, 需要预先在发送端和接收端中确定是否采用均值电平作为第一电平。 本发明的编码方式的优势在于, 它是通过电平跳变而不是电平的持续时间来表达 信息, 因此不需要在发送端和接收端之间维持对 LED灯来说难以解决的同步。 并且, 通过将信息分组并经过多阶幅度调制来提高信息的密度, 因而弥补了由于闪烁延迟造 成的传输速率降低的问题。 现在参考附图描述所要求保护的发明, 在全部附图中使用相同的参考标号来指相 同的部件或步骤。 在以下描述中, 为解释起见, 披露了众多具体细节以提供对所要求 保护的主题的全面理解。 然而, 显而易见的是, 这些发明也可以不采用这些具体细节 来实施。 实施例 1 参见图 1, 是本发明第一实施例的可见光信号的编码流程图, 该编码流程包括: 步骤 101, 将待发送的信息分成多个信息单元。 原始的信息可由二进制表示。每一信息单元包含多个比特(bit)。例如每一信息单 元包含 2个比特。 步骤 102, 将该多个信息单元转换为多个电信号单元。 在本实施例中, 这些电信号单元以三个电平, 例如 0、 IV和 2V表示。 其中, 设 置第一电平, 如 0V为基准电平, 用来表示相邻电信号单元之间的间隔。 其它两个电 平, 如 IV和 2V用以在电信号单元中相互组合来代表 2个比特。 具体地说, 在一个电 信号单元中, 当电平从 0V跳变到 IV, 又从 IV跳变到 0V时, 代表信息 00; 当电平 从 0V跳变到 2V, 又从 2V跳变到 0V时, 代表信息 01 ; 当电平从 0V跳变到 IV, 又 从 IV跳变到 2V, 再从 2V跳变到 0时, 代表信息 10; 当电平从 0V跳变到 2V, 又从 2V跳变到 IV, 再从 IV跳变到 0V时, 代表信息 11。 不同电平的组合与其代表的信 息之间的对应关系如表 1所示。 表 1
Figure imgf000009_0001
每个电信号表示 2 bit信息, 四个电信号单元的信息组成 因此可以根据预先设置的上述对应关系表, 确定信息单元所对应的电信号单元的 电平组合。 在本实施例中, 可以用电平的上升沿作为跳变的开始。 从上表也可以看出, 即使对于比特值 00, 是以电平从 0V跳变到 IV, 又从 IV跳 变到 0V来表示。 这种跳变的方式相比电平持续的方式, 更不容易因为延迟造成检测 的错误。 上述三个电平可以自由指定其中之一为第一电平; 三个电平的具体值也可以灵活 设定, 例如设定为 IV、 2V和 3V等。 上述电平组合代表的具体信息也可以灵活设定, 例如电平组合 1表示信息 01, 电平组合 2表示信息 00, 电平组合 12表示信息 10, 电 平组合 21表示信息 11等。 步骤 103, 对各个电信号单元进行组合, 获得编码后的电信号。 如图 3所示为信号与电平之间的关系示意图, 图中的四组信号分别代表 01、 11、 00和 10, 相邻两组信号之间以 0V电平区分, 组合后的信号为一个字节, 其二进制表 示为 01110010。 另外, 可以设置该第一电平的持续时间达到第一阈值, 例如 60 ms作为整个电信 号结束标志。 在此实施例中, 指定 0V为基准电平, 它不是三个电平的均值。 因此可以如图 3 所示, 在整个电信号的开头先发送 0V的基准电平, 作为其它电平的参考。 步骤 104, 以可见光信号形式发送编码后的电信号。 在此,以编码后的电信号控制发光二极管以可见光信号形式发送编码后的电信号。 在本实施例中, 发光二极管可以集成到手机、平板电脑、笔记本电脑、数码相机、 MP3 播放器或 MP4播放器这样的电子设备中。发光二极管也可以是单独的装置, 例如照明 灯。 这一照明灯所发出的可见光可以受一控制装置的调制, 从而携带信号。 参见图 2, 是本发明第一实施例的可见光信号的解码方法流程图, 该解码方法包 括: 步骤 201, 接收可见光信号并转换为电信号。 接收时需要将接收端的光接收器对 准发送端的 LED发射源。 步骤 202, 当检测到从第一电平向其它两个电平的跳变时, 判断为电信号单元开 始, 记录其它电平的组合。 例如, 当检测到从 0V跳变到 IV或 2V时, 判断为电信号单元开始。 在此, 可以 将 0V到 IV或 2V的上升沿作为跳变的开始。 在检测到从第一电平向其它两个电平的跳变之前, 需要先确定第一电平。 为此, 接收端在一旦开始读取到光信号, 经过光电转换, 将该转换之后的电平作为第一电平 ov。 在各个电信号单元内, 可以记录其它电平之间的跳变, 例如当电平从 IV跳变到 2V, 则表示电平 IV和 2V的组合, 这将被认为代表信息单元 10; 当电平从 2V跳变 到 IV则表示电平 2V和 IV的组合, 这将被认为代表信息单元 11。 如表 1所示, 信息 单元 00和信息单元 01所对应的电信号单元由单个电平表示。 步骤 203, 当检测到从其它两个电平到第一电平的跳变时, 判定该电信号单元结 束, 并开始计时。 例如, 当电平从 IV或 2V跳变到 0V, 这将被认为电信号单元结束。 该电信号单元所代表的信息将由电信号单元开始时检测到的电平值和电信号单元内检 测到的电平跳变来共同确定。 步骤 204, 当检测到第一电平的持续时间达到第一阈值时, 判断信号结束。 例如, 若 0V电平的持续时间大于 60 ms时, 认为整个电信号结束。 在另一情形下, 第一电平的持续时间达到第一阈值如 60ms也可能代表信号中断, 重新开始检测信号。 在本发明的实施例中, 从光信号到电信号的转换及解码过程可以在光信号接收过 程中, 以流水线方式实施。 也就是说, 每接收到一部分光信号, 即进行转换及解码。 当判定电信号结束时, 意味着光信号接收完毕。 步骤 205, 将接收到的各电信号单元进行解码而转换为信息单元。 这一转换过程可参照表 1的电平与比特值组合的对应关系表来完成。 步骤 206, 将多个信息单元组合成信息, 从而获得可见光信号表征的信息。 本实施例提供的编码和解码方式, 将信息分成若干组信号, 设置三个电平 ον,ιν 和 2V, 各组信号之间以 0V电平进行区分。 在一组信号内, 以另外两个电平 IV和 2V 的组合表示信息。通过 LED将信号以可见光的形式发送出去。接收到通过用以区分各 个电信号单元之间的 0V 电平, 判断一个电信号单元接收结束、 接收中断, 或者接收 完毕, 并记录一个电信号单元内表征信息的另外两个电平的组合。 因此, 利用本实施 例可以实现可见光信号的发送端与接收端之间的通信, 从而提高用户体验。 实施例 2 参见图 4, 是本发明第二实施例的可见光信号的编码流程图, 该编码流程包括: 步骤 301, 将待发送的信息分成多个信息单元。 原始的信息可由二进制表示。每一信息单元包含多个比特(bit)。例如每一信息单 元包含 4个比特。 步骤 302, 将该多个信息单元转换为多个电信号单元。 在本实施例中, 这些电信号单元以四个电平, 例如 0V、 IV、 2V和 3V表示。 其 中, 设置第一电平, 如 0V为基准电平, 用来表示相邻电信号单元之间的间隔。 其它 三个电平, 如 IV、 2V和 3V用以在电信号单元中相互组合来代表 3个比特。 例如, 在一个电信号单元中, 当电平从 0V跳变到 IV, 又从 IV跳变到 0V时, 代表信息 0000; 当电平从 0V跳变到 2V, 又从 2V跳变到 0V时, 代表信息 0001 ; 当 电平从 0V跳变到 IV, 又从 IV跳变到 2V, 再从 2V跳变到 0时, 代表信息 0011 ; 当 电平从 0V跳变到 2V, 又从 2V跳变到 IV, 再从 IV跳变到 0V时, 代表信息 1001。 不同电平的组合与其代表的信息之间的对应关系如表 2所示。 表 2
Figure imgf000012_0001
在本实施例中, 可以用电平的上升沿作为跳变的开 从上表也可以看出, 对于任一比特值组合, 都至少包含 1次电平跳变。 这种跳变 的方式相比电平持续的方式, 更不容易因为延迟造成检测的错误。 上述四个电平可以自由指定其中之一为第一电平, 例如指定 IV为第一电平; 四 个电平的具体值也可以灵活设定, 例如设定为 IV、 2V、 3V和 4V等。 上述电平组合 代表的具体信息也可以灵活设定, 例如电平组合 1表示信息 0001, 电平组合 2表示信 息 0010, 电平组合 3表示信息 0000等。 步骤 303, 对各个电信号单元进行组合, 获得编码后的电信号。 如图 6 所示为信号与电平之间的关系示意图, 图中的四个电信号单元分别代表 0010、 0110、 1001和 0100, 相邻两组信号之间以 0电平区分, 组合后的信号的二进制 表示为 0010011010010100。 另外, 可以设置该第一电平的持续时间达到第一阈值, 例如 60 ms作为整个电信 号结束标志。 在此实施例中, 指定 0V为基准电平, 它不是三个电平的均值。 因此可以如图 6 所示, 在整个电信号的开头先发送 0V的基准电平, 作为其它电平的参考。 步骤 304, 以可见光信号形式发送编码后的电信号。 在此,以编码后的电信号控制发光二极管以可见光信号形式发送编码后的电信号。 在本实施例中, 发光二极管可以集成到手机、平板电脑、 笔记本电脑、 数码相机、
MP3播放器或 MP4播放器这样的电子设备中。 发光二极管也可以是单独的装置, 例 如照明灯。 这一照明灯所发出的可见光可以受一控制装置的调制, 从而携带信号。 参见图 5, 是本发明第二实施例的可见光信号的解码方法流程图, 该解码方法包 括: 步骤 501, 接收可见光信号并转换为电信号。 接收时需要将接收端的光接收器对 准发送端的 LED发射源。 步骤 502, 当检测到从第一电平向其它三个电平的跳变时, 判断为电信号单元开 始, 记录其它三个电平的组合。 例如, 当检测到从 0V跳变到 IV、 2V或 3V时, 判断为电信号单元开始。 在此, 可以将 0V到 IV、 2V或 3V的上升沿作为跳变的开始。 在各个电信号单元内, 可以记录其它电平之间的跳变。 例如当电平从 IV跳变到 2V, 则表示电平 IV和 2V的组合, 这将被认为代表信息单元 0011 ; 当电平从 2V跳 变到 IV则表示电平 2V和 IV的组合, 这将被认为代表信息单元 1001。 步骤 503, 当检测到从其它三个电平到第一电平的跳变时, 判定该电信号单元结 束, 并开始计时。 例如, 当电平从 IV、 2V或 3V跳变到 0V, 这将被认为电信号单元结束。 该电信 号单元所代表的信息将由电信号单元开始时检测到的电平值和电信号单元内检测到的 电平跳变来共同确定。 在检测到从第一电平向其它三个电平的跳变之前,需要先确定第一电平 0V。为此, 接收端在一旦开始读取到光信号, 经过光电转换,将该转换之后的电平作为第一电平。 步骤 504, 当检测到第一电平的持续时间达到第一阈值时, 判断信号结束。 例如, 若 0V电平的持续时间大于 60 ms时, 认为整个电信号结束。 在另一情形下, 第一电平的持续时间达到第一阈值如 60ms也可能代表信号中断, 重新开始检测信号。 在本发明的实施例中, 从光信号到电信号的转换及解码过程可以在光信号接收过 程中, 以流水线方式实施。 也就是说, 每接收到一部分光信号, 即进行转换及解码。 当判定电信号结束时, 意味着光信号接收完毕。 步骤 505, 将接收到的各电信号单元进行解码而转换为信息单元。 这一转换过程可参照表 2的电平与信息单元的比特值组合的对应关系来完成。 步骤 506, 将多个信息单元组合成信息, 从而获得可见光信号表征的信息。 本实施例提供的编码和解码方式, 将信息分成若干组信号, 设置四个电平 ον,ιν,
2V和 3V,各组信号之间以 0V电平进行区分。在一组信号内, 以另外两个电平 IV, 2V 和 3V的组合表示信息。 通过 LED将信号以可见光的形式发送出去。 接收到通过用以 区分各个电信号单元之间的 0V 电平, 判断一个电信号单元接收结束、 接收中断, 或 者接收完毕, 并记录一个电信号单元内表征信息的另外两个电平的组合。 因此, 利用 本实施例可以实现可见光信号的发送端与接收端之间的通信, 从而提高用户体验。 实施例 3 本实施例是在光子门禁系统中实施, 其中可用手机这样的便携电子设备作为发送 端, 而门禁端作为接收端。 门禁端除了解码信号外, 还可进一步利用信号进行匹配, 从而决定是否开门。 参见图 7, 是本发明第三实施例的可见光信号的编码流程图, 该编码流程包括: 步骤 701, 在手机内将待发送的身份认证信息分成多个信息单元。 原始的身份认证信息可由二进制表示。每一信息单元包含多个比特(bit)。例如每 一信息单元包含 2个比特。 步骤 702, 将该多个信息单元转换为以三个电平表示的多个电信号单元。 在本实施例中, 这些电信号单元以三个电平, 例如 0、 IV和 2V表示。 其中, 设 置第一电平, 如 0V为基准电平, 用来表示相邻电信号单元之间的间隔。 其它两个电 平, 如 IV和 2V用以在电信号单元中相互组合来代表 2个比特。 具体地说, 在一个电信号单元中, 当电平从 0V跳变到 IV, 又从 IV跳变到 0V 时, 代表信息 00; 当电平从 0V跳变到 2V, 又从 2V跳变到 0V时, 代表信息 01 ; 当 电平从 0V跳变到 IV, 又从 IV跳变到 2V, 再从 2V跳变到 0时, 代表信息 10; 当电 平从 0V跳变到 2V, 又从 2V跳变到 IV, 再从 IV跳变到 0V时, 代表信息 11。 不同 电平的组合与其代表的信息之间的对应关系如表 1所示。 每个电信号表示 2 bit信息, 四个电信号单元的信息组成一个字节。 在本实施例中, 可以用电平的上升沿作为跳变的开始。 从表 1也可以看出, 即使对于比特值 00, 是以电平从 0V跳变到 IV, 又从 IV跳 变到 0V来表示。 这种跳变的方式相比电平持续的方式, 更不容易因为延迟造成检测 的错误。 步骤 703, 对各个电信号单元进行组合, 获得编码后的电信号。 另外, 可以设置该第一电平的持续时间达到第一阈值, 例如 60 ms作为整个电信 号结束标志。 步骤 704, 以可见光信号形式发送编码后的电信号。 在此, 以编码后的电信号控 制发光二极管以可见光信号形式发送编码后的电信号。发送时需要将手机的 LED发射 源对准接收光子门禁受控端的光接收器。 参见图 8, 是本发明第三实施例的可见光信号的解码方法流程图, 该解码方法包 括: 步骤 801, 光子门禁受控端接收可见光信号并转换为电信号。 步骤 802, 当检测到从第一电平向其它两个电平的跳变时, 判断为电信号单元开 始, 记录其它电平的组合。 例如, 当检测到从 0V跳变到 IV或 2V时, 判断为电信号单元开始。 在此, 可以 将 0V到 IV或 2V的上升沿作为跳变的开始。 在各个电信号单元内, 可以记录其它电平之间的跳变, 例如当电平从 IV跳变到 2V, 则表示电平 IV和 2V的组合, 这将被认为代表信息单元 10; 当电平从 2V跳变 到 IV则表示电平 2V和 IV的组合, 这将被认为代表信息单元 11。 如表 1所示, 信息 单元 00和信息单元 01所对应的电信号单元由单个电平表示。 步骤 803, 当检测到从其它两个电平到第一电平的跳变时, 判定该电信号单元结 束, 并开始计时。 例如, 当电平从 IV或 2V跳变到 0V, 这将被认为电信号单元结束。 该电信号单元所代表的信息将由电信号单元开始时检测到的电平值和电信号单元内检 测到的电平跳变来共同确定。 步骤 804, 当检测到第一电平的持续时间达到第一阈值时, 判断信号结束。 例如, 若 0V电平的持续时间达到 60 ms时, 认为整个电信号结束。 在另一情形下, 第一电平的持续时间达到第一阈值如 60ms也可能代表信号中断, 重新开始检测信号。 在本发明的实施例中, 从光信号到电信号的转换及解码过程可以在光信号接收过 程中, 以流水线方式实施。 也就是说, 每接收到一部分光信号, 即进行转换及解码。 当判定电信号结束时, 意味着光信号接收完毕。 步骤 805, 将接收到的各电信号单元进行解码而转换为信息单元。 这一转换过程可参照表 1的电平与信息单元的比特值组合的对应关系来完成。 步骤 806, 将多个信息单元组合成信息, 从而获得可见光信号表征的信息。 步骤 807, 光子门禁受控端将身份认证信息与预设信息进行对比, 若身份认证信 息与预设信息匹配, 则控制与其连接的电动锁开锁。 在本实施例中, 身份认证信息与预设信息匹配, 包括身份认证信息与预设信息相 同; 或者身份认证信息与预设信息之间存在对应关系。 本实施例提供的编码和解码方式, 将信息分成若干组信号, 设置三个电平 ον,ιν 和 2V, 各组信号之间以 0V电平进行区分。 在一组信号内, 以另外两个电平 IV和 2V 的组合表示信息。通过 LED将信号以可见光的形式发送出去。接收端通过用以区分各 个电信号单元之间的 0V 电平, 判断一个电信号单元接收结束、 接收中断, 或者接收 完毕, 并记录一个电信号单元内表征信息的另外两个电平的组合。 因此, 利用本实施 例可以实现手机作为光子门禁系统的光子锁与门禁受控端之间的通信, 从而提高用户 体验。 本发明还提供了一种基于多阶幅度调制的可见光信号的编码装置, 包括: 用于将 待发送的信息分成多个信息单元的模块, 其中每一信息单元包含多个比特; 用于将该 多个信息单元转换为以至少三个电平表示的多个电信号单元的模块, 其中相邻电信号 单元之间具有以该至少三个电平中的第一电平表示的间隔, 每一电信号单元以该至少 三个电平中的其余电平的组合来代表对应的信息单元的该多个比特; 用于对各电信号 单元进行组合, 获得编码后的电信号的模块; 以及用于以可见光信号形式发送该编码 后的电信号的模块。 所述用于将该多个信息单元转换为以至少三个电平表示的多个电信号单元的模块 是根据预先设置的对应表, 确定所述信息单元对应的所述电信号单元的电平组合。 上述装置还包括用于设置该第一电平的持续时间达到第一阈值作为信号结束标志 的模块。 每一信息单元包含 N个比特, N为自然数; 其中该信息是以二进制表示。 所述用于以可见光信号形式发送该编码后的电信号的模块是以该编码后的电信号 控制发光二极管以可见光信号形式发送该编码后的电信号, 其中发光二极管为照明灯 或集成到电子设备中。 该第一电平可为该至少三个电平的均值。 该第一电平还可以不为该至少三个电平的均值, 且该编码后的电信号的开头为该 第一电平。 本发明另一种基于多阶幅度调制的可见光信号的解码装置, 包括: 用于接收可见 光信号并转换为电信号的模块; 用于当检测到从第一电平向其它电平的跳变时, 判断 为电信号单元开始, 记录其它电平的组合的模块; 用于当检测到从其它电平到第一电 平的跳变时, 判定该电信号单元结束, 并开始计时的模块; 用于当检测到第一电平的 持续时间达到第一阈值时, 判断信号结束的模块; 用于将接收到的各电信号单元进行 解码以转换为信息单元的模块; 以及用于将多个信息单元组合成信息的模块。 所述用于将接收到的各电信号单元进行解码而转换为信息单元的模块是根据预先 设置的对应表, 确定所述记录的电信号单元的其它电平的组合对应的信息单元。 该信息是以二进制表示。 上述装置还包括用于在检测到从第 电平向其它电平的跳变之前通过低通滤波获 得电平均值并作为该第一电平的模块。 上述装置还包括用于在检测到从第 电平向其它电平的跳变之前将该电信号开头 的电平作为该第一电平的模块。 上述装置还包括用于将该信息与预设信息进行对比, 若该信息与预设信息匹配, 则使用该信息对一被控设备进行控制的模块。 该信息与预设条件的匹配包括: 该信息与该预设条件相同或存在对应关系。 上述装置是结合在门禁系统受控端中。 本发明还提供了一种鉴权系统, 该鉴权系统可为门禁系统、 地铁系统、 支付系统 或消费管理系统。 鉴权系统包括光子钥匙和光子受控端, 光子钥匙包含前述的一种基 于多阶幅度调制的可见光信号的编码装置, 光子受控端包含前述的一种基于多阶幅度 调制的可见光信号的解码装置。 以门禁系统为例, 本实施例用光子钥匙作为发送端, 将编码后的识别数据通过电子钥匙的 LED灯以可见光信号的形式发送出去。光子受控 端对从光子钥匙接收的可见光信号进行解码,然后根据解码获得的识别数据进行鉴权, 若信息匹配通过鉴权, 则控制与其连接的可控锁开锁, 从而实现开锁, 提高用户体验。 其中锁也可以替换为其他具备在打开和关闭状态之间切换的门禁开关装置, 例如闸口 等。 本发明还提供了一种鉴权系统, 包括前述的一种基于多阶幅度调制的可见光信号 的编码装置和一种基于多阶幅度调制的可见光信号的解码装置。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种基于多阶幅度调制的可见光信号的编码方法, 包括以下步骤:
将待发送的信息分成多个信息单元, 每一信息单元包含多个比特; 将该多个信息单元转换为以至少三个电平表示的多个电信号单元, 其中相 邻电信号单元之间具有以该至少三个电平中的第一电平表示的间隔, 每一电信 号单元以该至少三个电平中的其余电平的组合来代表对应的信息单元的该多个 比特;
对各电信号单元进行组合, 获得编码后的电信号; 以及
以可见光信号形式发送该编码后的电信号。
2. 根据权利要求 1所述的方法, 其特征在于, 所述将该多个信息单元转换为以至 少三个电平表示的多个电信号单元的步骤为: 根据预先设置的对应表, 确定所 述信息单元对应的所述电信号单元的电平组合。
3. 根据权利要求 1或 2所述的方法, 其特征在于, 还包括设置该第一电平的持续 时间达到第一阈值作为信号结束标志。
4. 根据权利要求 1或 2所述的方法, 其特征在于, 每一信息单元包含 N个比特, N为自然数; 其中该信息是以二进制表示。
5. 根据权利要求 1或 2所述的方法, 其特征在于, 所述以可见光信号形式发送该 编码后的电信号的步骤为: 以该编码后的电信号控制发光二极管以可见光信号 形式发送该编码后的电信号, 其中发光二极管为照明灯或集成到电子设备中。
6. 根据权利要求 1所述的方法, 其特征在于, 该第一电平为该至少三个电平的均 值。
7. 根据权利要求 1所述的方法, 其特征在于, 该第一电平不为该至少三个电平的 均值, 且该编码后的电信号的开头为该第一电平。
8. 一种基于多阶幅度调制的可见光信号的解码方法, 包括以下步骤:
接收可见光信号并转换为电信号; 当检测到从第一电平向其它电平的跳变时, 判断为电信号单元开始, 记录 其它电平的组合;
当检测到从其它电平到第一电平的跳变时, 判定该电信号单元结束, 并开 始计时;
当检测到第一电平的持续时间达到第一阈值时, 判断信号结束; 将接收到的各电信号单元进行解码以转换为信息单元; 以及 将多个信息单元组合成信息。
9. 根据权利要求 8所述的方法, 其特征在于, 所述将接收到的各电信号单元进行 解码而转换为信息单元的步骤为: 根据预先设置的对应表, 确定所述记录的电 信号单元的其它电平的组合对应的信息单元。
10. 根据权利要求 8所述的方法, 其特征在于, 该信息是以二进制表示。
11. 根据权利要求 8所述的方法, 其特征在于, 检测到从第一电平向其它电平的跳 变之前还包括: 通过低通滤波获得电平均值并作为该第一电平。
12. 根据权利要求 8所述的方法, 其特征在于, 检测到从第一电平向其它电平的跳 变之前还包括: 将该电信号开头的电平作为该第一电平。
13. 根据权利要求 8所述的方法, 其特征在于, 还包括将该信息与预设信息进行对 比, 若该信息与预设信息匹配, 则使用该信息对一被控设备进行控制。
14. 根据权利要求 13所述的方法, 其特征在于, 该信息与预设条件的匹配包括: 该 信息与该预设条件相同或存在对应关系。
15. 一种基于多阶幅度调制的可见光信号的编码装置, 包括: 用于将待发送的信息分成多个信息单元的模块, 其中每一信息单元包含多 个比特;
用于将该多个信息单元转换为以至少三个电平表示的多个电信号单元的模 块,其中相邻电信号单元之间具有以该至少三个电平中的第一电平表示的间隔, 每一电信号单元以该至少三个电平中的其余电平的组合来代表对应的信息单元 的该多个比特; 用于对各电信号单元进行组合, 获得编码后的电信号的模块; 以及 用于以可见光信号形式发送该编码后的电信号的模块。
16. 根据权利要求 15所述的装置,其特征在于,所述用于将该多个信息单元转换为 以至少三个电平表示的多个电信号单元的模块是根据预先设置的对应表, 确定 所述信息单元对应的所述电信号单元的电平组合。
17. 根据权利要求 15或 16所述的装置, 其特征在于, 还包括用于设置该第一电平 的持续时间达到第一阈值作为信号结束标志的模块。
18. 根据权利要求 15或 16所述的装置,其特征在于,每一信息单元包含 N个比特, N为自然数; 其中该信息是以二进制表示。
19. 根据权利要求 15或 16所述的装置, 其特征在于, 所述用于以可见光信号形式 发送该编码后的电信号的模块是以该编码后的电信号控制发光二极管以可见光 信号形式发送该编码后的电信号, 其中发光二极管为照明灯或集成到电子设备 中。
20. 根据权利要求 15所述的装置,其特征在于,该第一电平为该至少三个电平的均 值。
21. 根据权利要求 15所述的装置,其特征在于,该第一电平不为该至少三个电平的 均值, 且该编码后的电信号的开头为该第一电平。
22. 一种基于多阶幅度调制的可见光信号的解码装置, 包括: 用于接收可见光信号并转换为电信号的模块;
用于当检测到从第一电平向其它电平的跳变时, 判断为电信号单元开始, 记录其它电平的组合的模块;
用于当检测到从其它电平到第一电平的跳变时, 判定该电信号单元结束, 并开始计时的模块;
用于当检测到第一电平的持续时间达到第一阈值时,判断信号结束的模块; 用于将接收到的各电信号单元进行解码以转换为信息单元的模块; 以及 用于将多个信息单元组合成信息的模块。
23. 根据权利要求 22所述的装置,其特征在于,所述用于将接收到的各电信号单元 进行解码而转换为信息单元的模块是根据预先设置的对应表, 确定所述记录的 电信号单元的其它电平的组合对应的信息单元。
24. 根据权利要求 22所述的装置, 其特征在于, 该信息是以二进制表示。
25. 根据权利要求 22所述的装置,其特征在于,还包括用于在检测到从第一电平向 其它电平的跳变之前通过低通滤波获得电平均值并作为该第一电平的模块。
26. 根据权利要求 22所述的装置,其特征在于,还包括用于在检测到从第一电平向 其它电平的跳变之前将该电信号开头的电平作为该第一电平的模块。
27. 根据权利要求 22所述的装置,其特征在于,还包括用于将该信息与预设信息进 行对比, 若该信息与预设信息匹配, 则使用该信息对一被控设备进行控制的模 块。
28. 根据权利要求 27所述的装置, 其特征在于, 该信息与预设条件的匹配包括: 该 信息与该预设条件相同或存在对应关系。
29. 一种光子钥匙, 其特征在于, 包括根据权利要求 15或 16所述的一种基于多阶 幅度调制的可见光信号的编码装置。
30. 一种光子受控端, 其特征在于, 包括根据权利要求 22至 28任一项所述的一种 基于多阶幅度调制的可见光信号的解码装置。
31. 一种鉴权系统,其特征在于,所述鉴权系统包括根据权利要求 29所述的光子钥 匙和根据权利要求 30所述的一种光子受控端。
32. 一种鉴权系统, 其特征在于, 所述鉴权系统包括根据权利要求 15或 16所述的 一种基于多阶幅度调制的可见光信号的编码装置和根据权利要求 22至 28任一 项所述的一种基于多阶幅度调制的可见光信号的解码装置。
PCT/CN2014/079405 2013-07-31 2014-06-06 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统 WO2015014160A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14831951.0A EP3029857B1 (en) 2013-07-31 2014-06-06 Multi-stage amplitude modulation-based methods, apparatuses and systems for coding and decoding visible light signal
JP2016530316A JP6209282B2 (ja) 2013-07-31 2014-06-06 多段振幅変調に基づく可視光信号のエンコードとデコード方法、装置及びシステム
KR1020167004938A KR102082931B1 (ko) 2013-07-31 2014-06-06 다단식 진폭 변조를 기반으로 한 가시 광선 신호의 코딩과 디코딩 방법, 장치 및 시스템
US15/011,558 US9780877B2 (en) 2013-07-31 2016-01-30 Multi-stage amplitude modulation-based methods, apparatuses and systems for coding and decoding visible light signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310330123.7A CN103795465B (zh) 2013-07-31 2013-07-31 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统
CN201310330123.7 2013-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/011,558 Continuation US9780877B2 (en) 2013-07-31 2016-01-30 Multi-stage amplitude modulation-based methods, apparatuses and systems for coding and decoding visible light signal

Publications (1)

Publication Number Publication Date
WO2015014160A1 true WO2015014160A1 (zh) 2015-02-05

Family

ID=50670818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/079405 WO2015014160A1 (zh) 2013-07-31 2014-06-06 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统

Country Status (6)

Country Link
US (1) US9780877B2 (zh)
EP (1) EP3029857B1 (zh)
JP (1) JP6209282B2 (zh)
KR (1) KR102082931B1 (zh)
CN (1) CN103795465B (zh)
WO (1) WO2015014160A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180036741A (ko) * 2015-09-21 2018-04-09 텐디론 코포레이션 데이터 송신 방법과 장치, 데이터 수신 방법과 장치
CN113364977A (zh) * 2021-05-21 2021-09-07 电子科技大学 一种基于帧拼接的屏幕-相机通信系统采样方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014026601A1 (zh) * 2012-08-13 2014-02-20 深圳光启创新技术有限公司 光信号处理设备及光信号接收控制设备解码方法
CN103795465B (zh) 2013-07-31 2015-04-15 深圳光启创新技术有限公司 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统
CN105225297B (zh) * 2014-05-29 2018-05-25 深圳光启智能光子技术有限公司 移动终端光子数据传输方法、传输装置以及光子数据接收装置
CN105471511B (zh) * 2014-09-05 2018-08-31 深圳光启智能光子技术有限公司 一种提高光信号传输可靠性的编解码方法、装置及系统
CN104901779A (zh) * 2015-06-12 2015-09-09 吴东辉 幅度编码通信方法及装置
CN107171737B (zh) * 2016-03-08 2020-03-06 深圳光启智能光子技术有限公司 用于光通信的光芯片及鉴权装置
DE102016125183B4 (de) 2016-12-21 2022-01-27 Infineon Technologies Ag Vorrichtungen zum Codieren und Decodieren von Radgeschwindigkeitssensorsignalen und Verfahren zum Kommunizieren von codierten Radgeschwindigkeitssensorsignalen
CN108667558B (zh) * 2017-03-31 2020-11-27 圣邦微电子(北京)股份有限公司 一种适合传送简短内容的编码方法
FR3067532B1 (fr) 2017-06-12 2019-06-21 Commissariat A L'energie Atomique Et Aux Energies Alternatives Emetteur a modulation m-pam pour systeme de communication optique sans fil
US10484091B2 (en) * 2017-06-29 2019-11-19 Osram Sylvania Inc. Light-based fiducial communication
CN109831424B (zh) * 2019-01-23 2020-11-20 北京邮电大学 一种光网络二进制序列匹配方法及装置
CN112260753B (zh) * 2020-10-19 2022-02-01 中国核动力研究设计院 一种γ射线能量调制通信系统及方法
CN113965227B (zh) * 2021-09-26 2022-04-22 西安交通大学 基于可见光时空编码的rfid解码方法、介质、设备及系统
CN115118386B (zh) * 2022-06-21 2024-04-12 上海艾为电子技术股份有限公司 解码方法、装置、解码器、可读存储介质及电子设备
CN115529052B (zh) * 2022-09-28 2024-04-30 苏州浪潮智能科技有限公司 一种高频数字信号降频调制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110741A (zh) * 2007-08-27 2008-01-23 杭州华三通信技术有限公司 一种同轴以太网物理层数据处理方法及设备
CN102160045A (zh) * 2008-07-22 2011-08-17 意法半导体(胡希)公司 在单股总线上的多通道传输
CN102693567A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 基于门禁系统通信的编解码方法
CN102694598A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的编码方法和发送方法
CN102694597A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的解码方法和控制方法
CN103795465A (zh) * 2013-07-31 2014-05-14 深圳光启创新技术有限公司 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639326B2 (ja) * 1993-11-30 1997-08-13 日本電気株式会社 四値fsk受信機
US7689130B2 (en) * 2005-01-25 2010-03-30 Koninklijke Philips Electronics N.V. Method and apparatus for illumination and communication
JP4792349B2 (ja) * 2005-08-18 2011-10-12 パナソニック株式会社 光伝送システム、光送信装置及び光受信装置
CN101502013A (zh) * 2006-10-23 2009-08-05 松下电器产业株式会社 应用可见光及红外光的光空间传输系统
JP5161176B2 (ja) * 2008-09-26 2013-03-13 太陽誘電株式会社 可視光通信用送信機及び可視光通信システム
JP5458313B2 (ja) * 2009-03-02 2014-04-02 株式会社日立製作所 光多値伝送システム
KR101307346B1 (ko) * 2009-08-24 2013-09-11 한국전자통신연구원 가시광 통신을 이용한 조명 제어 장치 및 이를 이용한 조명 제어 방법
WO2011082860A2 (de) * 2009-12-15 2011-07-14 Siemens Aktiengesellschaft Verfahren und vorrichtung zur optischen übertragung von daten
JP5356277B2 (ja) * 2010-02-17 2013-12-04 三星電子株式会社 送信装置、及び送信方法
CN103098553B (zh) * 2010-09-14 2016-10-19 皇家飞利浦电子股份有限公司 编码的发光装置
GB2496379A (en) * 2011-11-04 2013-05-15 Univ Edinburgh A freespace optical communication system which exploits the rolling shutter mechanism of a CMOS camera
CN102790645B (zh) * 2012-06-29 2015-03-11 深圳光启创新技术有限公司 基于多路可见光通信的加解扰系统和方法
NL2009458C2 (en) * 2012-09-13 2014-03-18 Eldolab Holding Bv Led fixture and led lighting arrangement comprising such led fixture.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110741A (zh) * 2007-08-27 2008-01-23 杭州华三通信技术有限公司 一种同轴以太网物理层数据处理方法及设备
CN102160045A (zh) * 2008-07-22 2011-08-17 意法半导体(胡希)公司 在单股总线上的多通道传输
CN102693567A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 基于门禁系统通信的编解码方法
CN102694598A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的编码方法和发送方法
CN102694597A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的解码方法和控制方法
CN103795465A (zh) * 2013-07-31 2014-05-14 深圳光启创新技术有限公司 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180036741A (ko) * 2015-09-21 2018-04-09 텐디론 코포레이션 데이터 송신 방법과 장치, 데이터 수신 방법과 장치
KR102189511B1 (ko) * 2015-09-21 2020-12-14 텐디론 코포레이션 데이터 송신 방법과 장치, 데이터 수신 방법과 장치
CN113364977A (zh) * 2021-05-21 2021-09-07 电子科技大学 一种基于帧拼接的屏幕-相机通信系统采样方法

Also Published As

Publication number Publication date
KR20160037204A (ko) 2016-04-05
EP3029857A4 (en) 2017-03-08
EP3029857B1 (en) 2020-02-05
JP6209282B2 (ja) 2017-10-04
US20160164604A1 (en) 2016-06-09
CN103795465B (zh) 2015-04-15
CN103795465A (zh) 2014-05-14
EP3029857A1 (en) 2016-06-08
KR102082931B1 (ko) 2020-04-23
JP2016525844A (ja) 2016-08-25
US9780877B2 (en) 2017-10-03

Similar Documents

Publication Publication Date Title
WO2015014160A1 (zh) 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统
WO2015014238A1 (zh) 可见光信号的编码和解码方法、装置及系统
US10200120B2 (en) Signal encoding and decoding method, device and system
US9859978B2 (en) Self-adaptive receiving method, device, and system for radio signal
WO2017152812A1 (zh) 用于光通信的光芯片及鉴权装置
US10116420B2 (en) Error retransmission mechanism-comprised methods, apparatuses and systems for transmitting and receiving visible light signal
Jia et al. Design of an FPGA based visible light communication system
WO2017152811A1 (zh) 光噪去除电路、光接收器以及光芯片
WO2016034038A1 (zh) 提高可见光信号传输速率的编解码方法及移动终端和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831951

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014831951

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016530316

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167004938

Country of ref document: KR

Kind code of ref document: A