WO2015014238A1 - 可见光信号的编码和解码方法、装置及系统 - Google Patents

可见光信号的编码和解码方法、装置及系统 Download PDF

Info

Publication number
WO2015014238A1
WO2015014238A1 PCT/CN2014/082955 CN2014082955W WO2015014238A1 WO 2015014238 A1 WO2015014238 A1 WO 2015014238A1 CN 2014082955 W CN2014082955 W CN 2014082955W WO 2015014238 A1 WO2015014238 A1 WO 2015014238A1
Authority
WO
WIPO (PCT)
Prior art keywords
level
electrical signal
data
threshold
units
Prior art date
Application number
PCT/CN2014/082955
Other languages
English (en)
French (fr)
Inventor
刘若鹏
范林勇
Original Assignee
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启创新技术有限公司 filed Critical 深圳光启创新技术有限公司
Priority to JP2016530334A priority Critical patent/JP6167237B2/ja
Priority to EP14832751.3A priority patent/EP3029858B1/en
Priority to KR1020167004224A priority patent/KR101854288B1/ko
Publication of WO2015014238A1 publication Critical patent/WO2015014238A1/zh
Priority to US15/011,567 priority patent/US9667345B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication

Definitions

  • the present invention relates to visible light communication, and more particularly to a method, apparatus and system for encoding and decoding visible light signals. Background technique
  • Visible light communication is an emerging, short-range, high-speed wireless optical communication technology developed in LED technology.
  • the basic principle of visible light communication is to use light-emitting diodes (LEDs) to switch faster than fluorescent and incandescent lamps, and to communicate by high-frequency flickering of LED light sources.
  • Light has a binary value of 1, and no light represents a binary 0.
  • High-speed optical signals containing digital information can be obtained by photoelectric conversion.
  • Wireless optical communication technology Because its data is not easily interfered and captured, optical communication equipment can be used to make wireless optical encryption keys because it is simple to manufacture and should not be damaged or demagnetized. Compared with microwave technology, wireless optical communication has a very rich spectrum of resources, which is unmatched by general microwave communication and wireless communication.
  • visible light communication can be applied to any communication protocol and is applicable to any environment.
  • wireless optical communication Compared with the traditional magnetic materials, there is no need to worry about the degaussing problem, and there is no need to worry about the communication content being stolen.
  • the wireless optical communication equipment is flexible and convenient to set up, and the cost is low, which is suitable for large-scale popular application.
  • the technical problem to be solved by the present invention is to provide a method and apparatus and system for encoding and decoding visible light signals to improve the information transmission rate of visible light communication based on LED lamps.
  • the technical solution adopted by the present invention to solve the above technical problem is to provide a method for encoding a visible light signal, comprising the steps of: dividing data to be transmitted into a plurality of data units, each data unit comprising one or more bits; Converting a plurality of data units into a plurality of electrical signal units, each of the electrical signal units representing the one or more bits of the corresponding data unit in a number of levels of transitions, the adjacent electrical signal units having a fixed level Interval, where the transition of the level changes from a low level to a high level transition and a high level to a low level transition, the level within each electrical signal unit having a first level duration, and The fixed level between adjacent electrical signal units has a second level duration; combining the electrical signal units to obtain an encoded electrical signal; and transmitting the encoded electrical signal in the form of a visible light signal.
  • the first level duration is a flicker delay value adjustment of a light emitting diode as a source that is obtained in advance.
  • the second level duration is significantly greater than the first level duration.
  • the second level duration is a flicker delay value adjustment of the light emitting diode as a source that is obtained in advance.
  • each data unit contains N bits, N being a natural number.
  • the present invention further provides a decoding method for a visible light signal, comprising the steps of: receiving a visible light signal and converting it into an electrical signal; when detecting a level jump, determining that the start of an electrical signal unit starts timing, the level of Jumping into a low-to-high transition and a high-to-low transition; when the detected level duration is greater than the first threshold and less than or equal to the second threshold, the recording level jumps And the number of times of change; and determining that the electrical signal unit ends when the detected level duration is greater than the second threshold and less than or equal to the third threshold; and determining when the detected level duration is greater than the third threshold
  • Receiving the signal is completed; converting each received electrical signal unit into a data unit; and combining the plurality of data units into data; wherein the third threshold is greater than the second threshold, and the second threshold is greater than the first threshold, at least The first threshold is a flicker delay value adjustment of a light-emitting diode as a transmission source obtained in advance.
  • the first threshold is a flicker delay value adjustment of a light emitting diode as a source that is obtained in advance.
  • the second threshold and/or the third threshold is a flicker delay value adjustment of a light emitting diode as a transmission source obtained in advance.
  • the method further includes comparing the data with a preset condition, and if the data matches the preset condition, using the data to control a controlled device.
  • the matching of the data with the preset condition comprises: the data being the same as or corresponding to the preset condition.
  • the present invention also provides an apparatus for encoding a visible light signal, comprising: a module for dividing data to be transmitted into a plurality of data units, each data unit comprising one or more bits; for converting the plurality of data units into a module of a plurality of electrical signal units, each of the electrical signal units representing the one or more bits of the corresponding data unit in a number of levels of transitions, the adjacent electrical signal units having an interval represented by a fixed level, wherein The jump of this level changes from a low level to a high level transition and a high level to a low level transition, and the level in each electrical signal unit has a first level duration, and adjacent electrical signals The fixed level between the units has a second level duration; a module for combining the electrical signal units to obtain the encoded electrical signal; and means for transmitting the encoded electrical signal in the form of a visible light signal.
  • the module for converting the plurality of data units into a plurality of electrical signal units is determined according to a correspondence table set in advance, in the electrical signal unit corresponding to the data unit to be transmitted. The number of level jumps.
  • the first level duration is a flicker delay value adjustment of a light emitting diode as a source that is obtained in advance.
  • the second level duration is significantly greater than the first level duration.
  • the second level duration is a flicker delay value adjustment of the light emitting diode as a source that is obtained in advance.
  • each data unit contains N bits, N being a natural number.
  • the present invention also provides a decoding device for a visible light signal, comprising: a module for receiving a visible light signal and converting it into an electrical signal; and for determining a start of an electrical signal unit when starting a level jump, starting timing a module for recording the number of times the level jumps when the detected level duration is greater than the first threshold and less than or equal to the second threshold, the level transitions to a low level to a high level a transition and a high-to-low transition; a module for determining that the electrical signal unit ends when the detected level duration is greater than the second threshold and less than or equal to the third threshold; a module for determining that a signal has been received when the detected level duration is greater than the third threshold; a module for converting each received electrical signal unit into a data unit; and for combining the plurality of data units into data Module.
  • the module for converting each received electrical signal unit into a data unit is configured to determine a number of times of level jump in the recorded electrical signal unit according to a preset correspondence table. Data unit.
  • the first threshold is a flicker delay value adjustment of a light emitting diode as a source that is obtained in advance.
  • the second threshold and/or the third threshold is a flicker delay value adjustment of a light-emitting diode as a transmission source obtained in advance
  • the third threshold is greater than the second threshold
  • the third threshold is greater than the first threshold
  • the apparatus further includes: a module for comparing the data with a preset condition, and if the data matches the preset condition, using the data to control a controlled device, where The matching of the data with the preset condition includes: the data is the same as or corresponding to the preset condition.
  • the invention further provides a photonic key comprising an encoding device for a visible light signal as described above.
  • the present invention further provides a photon controlled end comprising a decoding device for a visible light signal as described above.
  • the invention further provides an authentication system comprising a photon key as described above and a photon controlled end as described above.
  • the present invention further proposes an authentication system comprising the encoding device of the visible light signal as described above and the decoding device of the visible light signal as described above.
  • the encoding and decoding method, device and system of the present invention divide the identification data obtained by the mobile phone into a plurality of electrical signal units, and the electrical signal units are distinguished by the duration of the level to represent the identification data from the number of times of level conversion. .
  • This encoding makes it possible for the receiving end to correctly decode the data even if there is a synchronization problem caused by the flicker delay of the LED lamp.
  • the flicker delay value is used to adjust the level duration so that the level duration is effectively shortened, thereby increasing the amount of information transmission per unit time.
  • FIG. 1 is a flow chart showing a coding method of visible light communication according to a first embodiment of the present invention.
  • FIG. 2 is a flow chart showing a decoding method of visible light communication according to the first embodiment of the present invention.
  • FIG. 3 shows an exemplary encoded electrical signal of visible light communication in accordance with a first embodiment of the present invention.
  • FIG. 4 is a flow chart showing a coding method of visible light communication according to a second embodiment of the present invention.
  • FIG. 5 is a flow chart showing a decoding method of visible light communication according to a second embodiment of the present invention.
  • Fig. 6 is a flow chart showing a coding method of visible light communication according to a third embodiment of the present invention.
  • Fig. 7 is a flow chart showing a decoding method of visible light communication according to a third embodiment of the present invention.
  • Figure 8 shows an exemplary encoded electrical signal of visible light communication in accordance with a third embodiment of the present invention. detailed description
  • Embodiments of the present invention provide a coding and decoding method for improving an information transmission rate of visible light communication based on an LED lamp.
  • the information is represented by a change from a state of light to no light, rather than a light or a state of no light itself.
  • the information is represented by the level transition rather than the level duration itself.
  • the data to be transmitted can be divided into a plurality of data units, each of which contains one or more bits. These data units are then converted into a plurality of electrical signal units, each of which represents the bits of the corresponding data unit in a number of levels of transitions.
  • the interval between adjacent electrical signal units is represented by a fixed level.
  • Level transitions can only contain low-to-high transitions, or low-to-high transitions, and low-to-high transitions and low-power A flat to high transition.
  • the level duration (herein referred to as the first level duration) within each electrical signal unit and the level duration between adjacent electrical signal units (referred to herein as the second level duration) may be preset.
  • the second level duration may be greater than the first level duration. This size relationship will be significant so that the receiving end can recognize it without errors.
  • the adjustment can be made with the flicker delay value of the light emitting diode as the transmission source.
  • the flicker delay value is subtracted based on the desired level duration. For example, if the desired level duration is 3ms and the flicker delay value is 2ms, the set level duration is lms.
  • the flashing delay value of the LED can be determined experimentally in advance.
  • the flicker delay value has less effect on the duration of the second level.
  • the adjustment may be made with the flicker delay value of the light emitting diode as the emission source when the second level duration is set.
  • the light-emitting diode is controlled by an electrical signal, which is transmitted by the light-emitting diode in the form of a visible light signal.
  • the decoding process is reversed.
  • the receiving end receives the visible light signal and converts it into an electrical signal.
  • a level jump is detected, it is determined as the start of an electrical signal unit; when the detected level duration is greater than the first threshold and less than or equal to the second threshold, the number of times the level jumps is recorded; when detected When the level duration is greater than the second threshold and less than or equal to the third threshold, it is determined that an electrical signal unit ends.
  • the detected level duration is greater than the third threshold, the determination signal is received.
  • the third threshold is greater than the second threshold and greater than the first threshold. It will be appreciated that the settings of the first threshold, the second threshold and the third threshold will refer to the aforementioned first level duration and second level duration.
  • the received electrical signal units are converted into data units, and then the plurality of data units are combined into data.
  • the information characterized by the visible light signal is thus obtained.
  • level jump will occur at least once. Therefore, even if all the bit values of an electrical signal unit are 0, it will be represented by a level transition instead of a level continuous state.
  • the encoding and corresponding decoding method of this embodiment is implemented in a mobile phone or similar portable mobile terminal.
  • the following will only use the mobile phone as an example.
  • the encoding method includes:
  • step 101 the data to be transmitted is divided into a plurality of data units, and each data unit includes one or more bits. These data to be sent can be text, pictures, audio and/or video.
  • Step 102 Convert the plurality of data units into a plurality of electrical signal units, each of the electrical signal units representing the one or more bits of the corresponding data unit by a number of hops of the level, and between the adjacent electrical signal units The interval expressed in fixed levels. In this embodiment, the rising or falling edge of the level can be used as the start of the transition.
  • the high (or low) level of an electrical signal unit has a duration of 2 ms.
  • Each electrical signal unit has four slave level transitions, including low to high transitions and high to low transitions, each electrical signal unit representing 2 bits of information, and four electrical signal units. Make up a byte.
  • the number of transitions from low level to high level and high level to low level in an electrical signal unit is 1, it represents information 00; when from low level to high level and high level to low level When the number of transformations is 2, it represents information 01; when the number of transitions from low level to high level and high level to low level is 3, it represents information 10; when from low level to high level and high level When the number of low-level conversions is 4, it represents information 11.
  • Table 1 The correspondence between the number of transitions from low level to high level and high level to low level and the information it represents is shown in Table 1.
  • the level combination of the electrical signal units corresponding to the information unit can be determined according to the above-mentioned correspondence table set in advance.
  • each electrical signal unit can represent 1 bit of information, which requires up to 2 hops.
  • each electrical signal unit can represent 3-bit information, which requires up to 8 hops.
  • this step is implemented in a data processor configured for optical communication in a handset.
  • the first level duration can be adjusted by a previously obtained flicker delay value of the light emitting diode as the emission source.
  • the adjustment is made by subtracting the desired first level duration from the flicker delay value to obtain the set first level duration. For example, it is desirable to have a high (or low) level of duration within an electrical signal unit of 2 ms. However, after the flicker delay value is adjusted, the set optical signal duration will be less than 2ms, or even 0.
  • the second level duration of the high (or low) level between two adjacent electrical signal units is greater than the first level duration, which can be set to 25 ms, which can be subjected to a flicker delay. Value adjustments can also be made without adjustment.
  • each electrical signal unit is combined to obtain an encoded electrical signal.
  • Figure 3 is an exemplary encoded electrical signal showing a relationship between bit values and levels. The four electrical signal units in the figure have jumps of 2, 4, 1 and 3 levels, respectively. Variable, representing 01, 11, 00, and 10, where the level transition refers to a low to high level and a high to low transition, the height between two adjacent electrical signal units ( Or low) The duration of the level is 27 ms, the combined signal is one byte, its binary representation is 01110010, and the corresponding hexadecimal signal is 0x72.
  • Step 104 Send the encoded electrical signal in the form of a visible light signal.
  • the encoded LED is used to control the LED to transmit the encoded electrical signal in the form of a visible light signal.
  • FIG. 2 is a flowchart of a method for decoding a visible light signal according to a first embodiment of the present invention, the decoding method includes:
  • Step 201 The mobile phone receives the visible light signal and converts it into an electrical signal. When receiving, it is necessary to align the optical receiver of the receiving mobile phone with the LED transmitting source of the transmitting end.
  • Step 202 When a level jump is detected, it is determined that the start of an electrical signal unit starts timing.
  • the level transition can be from low to high, or vice versa from high to low.
  • Step 203 when the detected level duration is greater than the first threshold and less than or equal to the second threshold, indicating that the electrical signal unit is still continuing, during which the number of level jumps is recorded.
  • the sustained level can be either high or low.
  • the rising edge or the falling edge of the level can be used as the start of the jump recording.
  • Step 204 When the detected level duration is greater than the second threshold and less than or equal to the third threshold, determining that the electrical signal unit ends.
  • Step 205 When the detected level duration is greater than the third threshold, the determination signal is received.
  • the first threshold value is also adjusted by the same flicker delay value so that the representative level can be correctly discriminated.
  • the second threshold and the third threshold may be adjusted by the flicker delay value or may be adjusted without the flicker delay value.
  • set the first, second, and third thresholds to 0, 25, and 60 ms, respectively, when a rising edge (or falling edge) is detected, start timing, when the detected high (or low) level duration When greater than 0, and less than or equal to 25 ms, record the number of transitions from low to high and high to low; when the detected high (or low) level is greater than 25 ms, and less than When it is equal to 60 ms, it is considered to be the end mark of an electric signal unit; when the detected high (or low) level duration is longer than 60 ms, the signal reception is considered complete.
  • the duration of the high (or low) level being greater than the third threshold may also represent a signal reception interruption, restarting the detection signal.
  • Step 206 Convert each received electrical signal unit into a data unit.
  • Step 207 Combine the plurality of data units into data, thereby obtaining information characterized by the visible light signal.
  • the data is divided into a plurality of electrical signal units, and the electrical signal units are distinguished by the duration of the level.
  • the information is represented by the number of times of level conversion.
  • the mobile phone is used as the signal transmitting end, and the signal is transmitted in the form of visible light through the LED light of the mobile phone.
  • the receiving end judges the end of the signal reception, receives the interruption, or receives the completion, and records a The number of times the information signal is transformed from low level to high level and high level to low level. Therefore, the communication between the mobile phone and the visible light signal receiving end can be realized by using the embodiment, thereby improving the user experience.
  • This embodiment is implemented in a photonic access control system in which a mobile phone can be used as a transmitting end and a access control end as a receiving end.
  • the handset can be replaced with a photonic key.
  • the access control can further use the signal to match to determine whether to open the door.
  • FIG. 4 is a flow chart showing a coding method of visible light communication according to a second embodiment of the present invention.
  • the coding method is as follows:
  • Step 401 Divide the identity data to be sent into a plurality of data units in the mobile phone, where each data unit includes one or more bits.
  • Step 402 Convert the plurality of data units into a plurality of electrical signal units, each of the electrical signal units representing the one or more bits of the corresponding data unit by a number of levels of transitions, and between the adjacent electrical signal units The interval expressed in fixed levels. In this embodiment, the rising or falling edge of the level can be used as the start of the transition.
  • the high (or low) level of an electrical signal unit has a duration of 2 ms.
  • Each electrical signal unit has four levels of transformation, including low-to-high transitions and high-to-low transitions.
  • Each electrical signal unit represents 2 bits of information, and four electrical signals.
  • the units make up one byte.
  • When the number of transitions from low level to high level and high level to low level in an electrical signal unit is 1, it represents information 00; when from low level to high level and high level to low level When the number of transformations is 2, it represents information 01; when the number of transitions from low level to high level and high level to low level is 3, it represents information 10; when from low level to high level and high level When the number of low-level conversions is 4, it represents information 11.
  • Table 1 The correspondence between the number of transitions from low level to high level and high level to low level and the information it represents is shown in Table 1.
  • each electrical signal unit can represent 1 bit of information, which requires up to 2 hops.
  • each electrical signal unit can represent 3-bit information, which requires up to 8 hops.
  • this step is implemented in a data processor configured for optical communication in a handset.
  • the first level duration can be adjusted by a previously obtained flicker delay value of the light emitting diode as the emission source.
  • the adjustment is made by subtracting the desired first level duration from the flicker delay value to obtain the set first level duration. For example, it is desirable that the first level of the high (or low) level within an electrical signal unit lasts for 2 ms. However, after the flicker delay value is adjusted, the set optical signal duration will be less than 2ms, or even 0.
  • the second level duration of the high (or low) level between two adjacent electrical signal units can be set to 25 ms, which can be adjusted either by the flicker delay value or without adjustment.
  • Step 403 Combine the respective electrical signal units to obtain the encoded electrical signal.
  • Figure 3 is an exemplary encoded electrical signal showing a relationship between bit values and levels.
  • the four electrical signal units in the figure have jumps of 2, 4, 1 and 3 levels, respectively.
  • the duration of the (or low) level is 27 ms
  • the combined signal is one byte
  • its binary representation is 01110010
  • the corresponding hexadecimal signal is 0x72.
  • Step 404 Send the encoded electrical signal in the form of a visible light signal.
  • the LED source of the mobile phone When transmitting, it is necessary to align the LED source of the mobile phone with the optical receiver that receives the controlled end of the photon access control.
  • the decoding method includes:
  • Step 501 The photon access control controlled end receives the visible light signal and converts it into an electrical signal.
  • Step 502 When a level jump is detected, it is determined that the start of an electrical signal unit starts timing.
  • the level transition can be from low to high, or vice versa from high to low.
  • Step 503 when the detected level duration is greater than the first threshold and less than or equal to the second threshold, indicating that the electrical signal unit is still continuing, during which the number of level jumps is recorded.
  • the sustained level can be either high or low.
  • the rising edge or the falling edge of the level can be used as the start of the jump recording.
  • Step 504 When the detected level duration is greater than the second threshold and less than or equal to the third threshold, determining that the electrical signal unit ends.
  • Step 505 When the detected level duration is greater than the third threshold, the determination signal is received.
  • the third threshold is greater than the second threshold by more than the first threshold.
  • set the first, second, and third thresholds to 0, 25, and 60 ms, respectively, when a rising edge (or falling edge) is detected, start timing, when the detected high (or low) level duration When greater than 0, and less than or equal to 25 ms, record the number of transitions from low to high and high to low; when the detected high (or low) level is greater than 25 ms, and less than When it is equal to 60 ms, it is considered to be the end mark of an electric signal unit; when the detected high (or low) level duration is longer than 60 ms, the signal reception is considered complete.
  • the duration of the high (or low) level being greater than the third threshold may also represent a signal reception interruption, restarting the detection signal.
  • Step 506 Convert each received electrical signal unit into a data unit.
  • Step 507 The photon access control controlled end combines the plurality of data units into the identification data, thereby obtaining information characterized by the visible light signal.
  • Step 508 The photon access control controlled end compares the identification data with a preset condition, and if the identification data matches the preset condition, controls the electric lock connected thereto to unlock.
  • the identification data matches the preset condition, including the identification data being the same as the preset condition; or there is a correspondence between the identification data and the preset condition.
  • the encoding method provided in this embodiment divides the identification data obtained by the mobile phone into a plurality of electrical signal units, and the electrical signal units are distinguished by the duration of the level to represent the identification data from the number of times of level conversion.
  • This encoding method allows the receiver to decode correctly even if there is a synchronization problem caused by the blinking delay of the LED lamp. Data.
  • the flicker delay value is used to adjust the level duration so that the level duration is effectively shortened, thereby increasing the amount of information transmission per unit time.
  • the mobile phone is used as the transmitting end of the photon access control system, and the encoded identification data is transmitted as a visible light signal through the LED light of the mobile phone.
  • the photon access control terminal decodes the visible light signal received from the mobile phone, and then performs authentication according to the identification data obtained by decoding. If the authentication is performed, the electric lock connected to the control is unlocked, thereby unlocking the mobile phone and improving the user experience.
  • This embodiment is implemented in a photonic lock system in which a dedicated photon key can be used as the transmitting end and the photon lock controlled end as the receiving end.
  • the photonic key can be replaced with a cell phone.
  • the photon lock controlled end can further use the signal to match to determine whether to unlock.
  • Fig. 6 is a flow chart showing a coding method of visible light communication according to a third embodiment of the present invention. Referring to Figure 6, the coding method is as follows:
  • Step 601 Divide the identification data to be sent into a plurality of data units in the photonic key, each data unit comprising one or more bits.
  • Step 603 converting the plurality of data units into a plurality of electrical signal units, each of the electrical signal units representing the one or more bits of the corresponding data unit by a number of hops of the level, and the adjacent electrical signal units have The interval expressed in fixed levels.
  • the rising or falling edge of the level can be used as the start of the transition.
  • the high (or low) level of an electrical signal unit has a duration of 2 ms.
  • Each electrical signal unit has four levels of conversion, including low to high transitions, each electrical signal unit representing 2 bits of information, and four electrical signal units forming one byte.
  • the number of transitions from low level to high level in an electrical signal unit is 1, it represents information 00; when the number of transitions from low level to high level is 2, it represents information 01; when from low power
  • the number of transitions from flat to high level is 3, it represents information 10; when the number of transitions from low level to high level is 4, it represents information 11.
  • Table 1 The correspondence between the number of transitions from low level to high level and the information it represents is shown in Table 1.
  • each electrical signal unit can represent N-bit information, and N is a natural number, such as 1-bit information, which requires a maximum of 2 hops.
  • each electrical signal unit can represent 3 bits of information, which requires up to 8 transitions, such as low to high or / and high to low in an electrical signal unit.
  • the number of transformations When the number of transformations is 1, it represents information 000; when the number of transitions from low level to high level or / and high level to low level is 2, it represents information 001; when from low level to high level or / When the number of transitions from high level to low level is 3, it represents information 010; when the number of transitions from low level to high level or / and high level to low level is 4, it represents information 011, When the number of transitions from low level to high level or / and high level to low level in an electrical signal unit is 5, it represents information 100; when from low level to high level or / and high power When the number of transitions from the low level to the low level is 6, it represents the information 101; when the number of transitions from low level to high level or / and high level to low level is 7, the representative information 110; When the number of transitions from low level to high level or / and high level to low level is 8, it represents information 111.
  • the information corresponding to the number of times of the above hopping can be flexibly set according to
  • this step is implemented in a data processor configured for optical communication in an electronic light key.
  • the first level duration can be adjusted by a previously obtained flicker delay value of the light emitting diode as the emission source.
  • the adjustment is made by subtracting the desired first level duration from the flicker delay value to obtain the set first level duration. For example, it is desirable that the first level of the high (or low) level within an electrical signal unit lasts for 2 ms. However, after the flicker delay value is adjusted, the set optical signal duration will be less than 2ms, or even 0.
  • the second level duration of the high (or low) level between two adjacent electrical signal units can be set to 25 ms, which can be adjusted either by the flicker delay value or without adjustment.
  • Step 603 Combine the respective electrical signal units to obtain the encoded electrical signal.
  • Figure 8 is an exemplary encoded electrical signal showing a relationship between bit values and levels.
  • the four electrical signal units in the figure have 2, 4, 1 and 3 low levels, respectively.
  • the high level transitions represent 01, 11, 00, and 10, respectively.
  • the duration of the high or low level between two adjacent electrical signal units is 27 ms, and the combined signal is one byte, and its binary Expressed as 01110010, the corresponding hexadecimal signal is 0x72.
  • Step 604 transmitting the encoded electrical signal in the form of a visible light signal.
  • the encoded electrical signal is controlled by the encoded electrical signal to transmit the encoded electrical signal in the form of a visible light signal.
  • the LED source of the photonic key needs to be aligned with the optical receiver that receives the controlled end of the photon lock.
  • the decoding method includes:
  • Step 701 The photon lock controlled end receives the visible light signal and converts it into an electrical signal.
  • Step 702 When a level jump is detected, it is determined that the start of an electrical signal unit starts timing.
  • the level transition can be from low to high, or vice versa from high to low.
  • Step 703 when the detected level duration is greater than the first threshold and less than or equal to the second threshold, indicating that the electrical signal unit is still continuing, during which the number of level jumps is recorded.
  • the sustained level can be either high or low.
  • the rising edge or the falling edge of the level can be used as the start of the jump recording.
  • Step 704 When the detected level duration is greater than the second threshold and less than or equal to the third threshold, determining that the electrical signal unit ends.
  • Step 705 When the detected level duration is greater than the third threshold, the determination signal is received.
  • the third threshold is greater than the second threshold by more than the first threshold.
  • the first, second, and third thresholds are set to 0, 25, and 60 ms, respectively, and start timing when a rising edge is detected, when the detected high level has a duration greater than 0 and less than or equal to 25 ms. , recording the number of transitions from low to high; when the detected low level is greater than 25 ms and less than or equal to 60 ms When it is considered to be the end mark of an electric signal unit; when the detected low level duration is greater than 60 ms, the signal reception is considered complete.
  • the duration of the low level being greater than the third threshold may also represent a signal reception interruption, restarting the detection signal.
  • Step 706 Convert each received electrical signal unit into a data unit.
  • Step 707 The photon lock controlled end combines the plurality of data units into the identification data, thereby obtaining information characterized by the visible light signal.
  • Step 708 The photon lock controlled end compares the identification data with a preset condition, and if the identification data matches the preset condition, controls the electric lock connected thereto to unlock.
  • the identification data matches the preset condition, including the identification data being the same as the preset condition; or there is a correspondence between the identification data and the preset condition.
  • the encoding method provided in this embodiment divides the identification data obtained by the photon key into a plurality of electrical signal units, and the electrical signal units are distinguished by the duration of the level, and the identification data is represented by the number of levels of conversion.
  • This encoding makes it possible for the receiving end to correctly decode the data even if there is a synchronization problem caused by the flicker delay of the LED lamp.
  • the flicker delay value is used to adjust the level duration so that the level duration is effectively shortened, thereby increasing the amount of information transmission per unit time.
  • the present invention also provides an apparatus for encoding a visible light signal, comprising: a module for dividing data to be transmitted into a plurality of data units, each data unit comprising one or more bits; for converting the plurality of data units into a module of a plurality of electrical signal units, each of the electrical signal units representing the one or more bits of the corresponding data unit in a number of levels of transitions, the adjacent electrical signal units having an interval represented by a fixed level, wherein The level in each electrical signal unit has a first level duration, and the fixed level between adjacent electrical signal units has a second level duration; for combining the electrical signal units to obtain the encoded power a module of signals; and means for transmitting the encoded electrical signal in the form of a visible light signal.
  • This level transitions to a low to high transition or a / high to low transition.
  • the module for converting the plurality of data units into a plurality of electrical signal units is determining a number of times of level jumps in the electrical signal unit corresponding to the data unit to be transmitted according to a preset correspondence table.
  • the first level duration is an adjustment of the flicker delay value of the light emitting diode as a transmission source obtained in advance.
  • the second level duration is significantly greater than the first level duration.
  • the second level duration is an adjustment of the flicker delay value of the light-emitting diode as a transmission source obtained in advance.
  • Each data unit contains N bits and N is a natural number.
  • the present invention also provides a decoding device for a visible light signal, comprising: a module for receiving a visible light signal and converting it into an electrical signal; and for determining a start of an electrical signal unit when starting a level jump, starting timing a module for recording a number of times of level jump when the detected level duration is greater than a first threshold and less than or equal to a second threshold; for when the detected level duration is greater than the second threshold And a module that determines that the electrical signal unit ends when the third threshold is less than or equal to the third threshold; and a module for determining that the signal is received when the detected level duration is greater than the third threshold; A module that converts a signal unit into a data unit; and a module for combining a plurality of data units into data.
  • This level transitions to a low to high transition or a sum to a high to low transition.
  • the module for converting the received electrical signal units into data units is a data unit corresponding to the number of times of level jumps in the recorded electrical signal unit according to a correspondence table set in advance.
  • the first threshold is a flicker delay value adjustment of a light-emitting diode as a transmission source obtained in advance.
  • the second threshold and/or the third threshold is a flicker delay value adjustment of a light-emitting diode as a source that is obtained in advance, the third threshold being greater than the second threshold, and the second threshold being greater than the first threshold.
  • the device further includes a module for comparing the data with a preset condition, and if the data matches the preset condition, using the data to control a controlled device, wherein the matching of the data with the preset condition includes :
  • the data is the same as or has a corresponding relationship with the preset condition.
  • the present invention also provides an authentication system, which can be an access control system, a subway system, a payment system, or a consumption management system.
  • the authentication system comprises a photon key and a photon controlled end, and the photon key comprises the aforementioned encoding device for the visible optical signal, and the photon controlled end comprises the aforementioned decoding device for the visible light signal.
  • the photon key is used as the transmitting end, and the encoded identification data is transmitted as a visible light signal through the LED light of the electronic key.
  • the photon controlled end decodes the visible light signal received from the photon key, and then performs authentication according to the identification data obtained by decoding. If the authentication is performed, the controllable lock connected to the control is unlocked, thereby unlocking and improving the user experience.
  • the lock can also be replaced with other access control switch devices, such as gates, that are switched between open and closed states.
  • the present invention also provides an authentication system comprising the aforementioned encoding device for visible light signals and a decoding device for visible optical signals.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明提出一种可见光信号的编码方法和解码方法、装置及系统。该编码方法包括以下步骤:将待发送的数据分成多个数据单元,每一数据单元包含一个或多个比特;将该多个数据单元转换为多个电信号单元,每一电信号单元以电平的跳变次数来代表对应数据单元的该一个或多个比特,相邻电信号单元之间具有以固定电平表示的间隔,其中各电信号单元内的电平具有第一电平持续时间,且相邻电信号单元间的固定电平具有第二电平持续时间;对各电信号单元进行组合,获得编码后的电信号;以及以可见光信号形式发送编码后的电信号。

Description

可见光信号的编码和解码方法、 装置及系统 技术领域
本发明涉及可见光通信, 尤其是涉及一种可见光信号的编码和解码方法、 装置及 系统。 背景技术
可见光通信是一种在 LED 技术上发展起来的新兴的、 短距离高速无线光通信技 术。 可见光通信的基本原理就是利用发光二极管 (LED) 比荧光灯和白炽灯切换速度 快的特点, 通过 LED光源的高频率闪烁来进行通信。 有光代表二进制 1, 无光代表二 进制 0。 包含了数字信息的高速光信号经过光电转换即可获得信息。 无线光通信技术 因为其数据不易被干扰和捕获, 光通信设备制作简单且不宜损坏或消磁, 可以用来制 作无线光加密钥匙。 与微波技术相比, 无线光通信有相当丰富的频谱资源, 这是一般 微波通信和无线通信无法比拟的; 同时可见光通信可以适用任何通信协议、 适用于任 何环境; 在安全性方面, 无线光通信相比传统的磁性材料, 无需担心消磁问题, 更不 必担心通信内容被人窃取; 无线光通信的设备架设灵活便捷, 且成本低廉, 适合大规 模普及应用。
随着可见光通信的快速推广, 已经提出了利用电子设备的 LED (发光二极管)灯 发送可见光信号的技术。电子设备中的 LED灯的开关时信号占空比不确定,但是其亮、 暗持续时间可控, 可分别作为高、 低电平。 因此可以通过特别设置的编码方式, 实现 LED灯发送表征数据信息的可见光信号的目的。然而本申请的发明人在实践中发现目 前的方法中传输速率 (即单位时间传输的信息量) 仍较小, 有进一步提高的空间。 发明内容
本发明所要解决的技术问题是提供一种可见光信号的编码和解码方法、 装置及系 统, 以提高基于 LED灯的可见光通信的信息传输速率。
本发明为解决上述技术问题而采用的技术方案是提出一种可见光信号的编码方 法, 包括以下步骤: 将待发送的数据分成多个数据单元, 每一数据单元包含一个或多 个比特; 将该多个数据单元转换为多个电信号单元, 每一电信号单元以电平的跳变次 数来代表对应数据单元的该一个或多个比特, 相邻电信号单元之间具有以固定电平表 示的间隔, 其中该电平的跳变为低电平到高电平的跳变和高电平到低电平的跳变, 各 电信号单元内的电平具有第一电平持续时间, 且相邻电信号单元间的固定电平具有第 二电平持续时间; 对各电信号单元进行组合, 获得编码后的电信号; 以及以可见光信 号形式发送该编码后的电信号。
在本发明的一实施例中, 该第一电平持续时间是经过预先获得的作为发射源的发 光二极管的闪烁延迟值调整。 在本发明的一实施例中, 该第二电平持续时间显著大于该第一电平持续时间。 在本发明的一实施例中, 该第二电平持续时间是经过预先获得的作为发射源的发 光二极管的闪烁延迟值调整。
在本发明的一实施例中, 每一数据单元包含 N个比特, N为自然数。
本发明另提出一种可见光信号的解码方法, 包括以下步骤: 接收可见光信号并转 换为电信号; 当检测到电平跳变时, 判断为一电信号单元的开始, 开始计时, 该电平 的跳变为低电平到高电平的跳变和高电平到低电平的跳变; 当检测到的电平持续时间 大于第一阈值且小于或等于第二阈值时, 记录电平跳变的次数; 以及当检测到的电平 持续时间大于该第二阈值且小于或等于第三阈值时, 判断该电信号单元结束; 当检测 到的电平持续时间大于该第三阈值时, 判断信号接收完毕; 将接收到的各电信号单元 转换为数据单元; 以及将多个数据单元组合成数据;其中该第三阈值大于该第二阈值, 且该第二阈值大于该第一阈值, 至少该第一阈值是经过预先获得的作为发射源的发光 二极管的闪烁延迟值调整。
在本发明的一实施例中, 该第一阈值是经过预先获得的作为发射源的发光二极管 的闪烁延迟值调整。
在本发明的一实施例中, 该第二阈值和 /或该第三阈值是经过预先获得的作为发射 源的发光二极管的闪烁延迟值调整。
在本发明的一实施例中, 上述方法还包括将该数据与预设条件进行对比, 若该数 据与预设条件匹配, 则使用该数据对一被控设备进行控制。
在本发明的一实施例中, 该数据与预设条件的匹配包括: 该数据与该预设条件相 同或存在对应关系。
本发明还提出一种可见光信号的编码装置, 包括: 用于将待发送的数据分成多个 数据单元的模块, 每一数据单元包含一个或多个比特; 用于将该多个数据单元转换为 多个电信号单元的模块, 每一电信号单元以电平的跳变次数来代表对应数据单元的该 一个或多个比特, 相邻电信号单元之间具有以固定电平表示的间隔, 其中该电平的跳 变为低电平到高电平的跳变和高电平到低电平的跳变, 各电信号单元内的电平具有第 一电平持续时间, 且相邻电信号单元间的固定电平具有第二电平持续时间; 用于对各 电信号单元进行组合, 获得编码后的电信号的模块; 以及用于以可见光信号形式发送 该编码后的电信号的模块。
在本发明的一实施例中, 所述用于将该多个数据单元转换为多个电信号单元的模 块是根据预先设置的对应表确定所述待发送的数据单元对应的电信号单元中的电平跳 变的次数。
在本发明的一实施例中, 该第一电平持续时间是经过预先获得的作为发射源的发 光二极管的闪烁延迟值调整。 在本发明的一实施例中, 该第二电平持续时间显著大于该第一电平持续时间。 在本发明的一实施例中, 该第二电平持续时间是经过预先获得的作为发射源的发 光二极管的闪烁延迟值调整。
在本发明的一实施例中, 每一数据单元包含 N个比特, N为自然数。
本发明还提出一种可见光信号的解码装置, 包括: 用于接收可见光信号并转换为 电信号的模块; 用于当检测到电平跳变时, 判断为一电信号单元的开始, 开始计时的 模块; 用于当检测到的电平持续时间大于第一阈值且小于或等于第二阈值时, 记录电 平跳变的次数的模块, 该电平的跳变为低电平到高电平的跳变和高电平到低电平的跳 变; 用于当检测到的电平持续时间大于该第二阈值且小于或等于第三阈值时, 判断该 电信号单元结束的模块; 用于当检测到的电平持续时间大于该第三阈值时, 判断信号 接收完毕的模块; 用于将接收到的各电信号单元转换为数据单元的模块; 以及用于将 多个数据单元组合成数据的模块。
在本发明的一实施例中, 所述用于将接收到的各电信号单元转换为数据单元的模 块是根据预先设置的对应表确定所述记录电信号单元中的电平跳变的次数对应的数据 单元。
在本发明的一实施例中, 该第一阈值是经过预先获得的作为发射源的发光二极管 的闪烁延迟值调整。
在本发明的一实施例中, 该第二阈值和 /或该第三阈值是经过预先获得的作为发射 源的发光二极管的闪烁延迟值调整, 该第三阈值大于该第二阈值, 且该第二阈值大于 该第一阈值。
在本发明的一实施例中, 上述的装置还包括用于将该数据与预设条件进行对比, 若该数据与预设条件匹配, 则使用该数据对一被控设备进行控制的模块, 其中该数据 与预设条件的匹配包括: 该数据与该预设条件相同或存在对应关系。
本发明另提出一种光子钥匙, 包括如上所述的可见光信号的编码装置。
本发明另提出一种光子受控端, 包括如上所述的可见光信号的解码装置。
本发明另提出一种鉴权系统,包括如上所述的光子钥匙和如上所述的光子受控端。 本发明另提出一种鉴权系统, 包括如上所述的可见光信号的编码装置和如上所述 的可见光信号的解码装置。
本发明的编码和解码方法、 装置及系统将手机获得的身份识别数据分成若干个电 信号单元, 各电信号单元之间以电平的持续时间来区分, 以从电平的变换次数表示识 别数据。这一编码方式使得即使存在由 LED灯的闪烁延迟导致的同步问题, 接收端仍 能正确地解码数据。 而且, 利用闪烁延迟值来调整电平持续时间, 使得电平持续时间 被有效缩短, 从而提高了单位时间的信息传输量。 附图说明
构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示意性 实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图中:
图 1示出本发明第一实施例的可见光通信的编码方法流程图。
图 2示出本发明第一实施例的可见光通信的解码方法流程图。
图 3示出本发明第一实施例的可见光通信的示例性编码电信号。
图 4示出本发明第二实施例的可见光通信的编码方法流程图。
图 5示出本发明第二实施例的可见光通信的解码方法流程图。
图 6示出本发明第三实施例的可见光通信的编码方法流程图。
图 7示出本发明第三实施例的可见光通信的解码方法流程图。
图 8示出本发明第三实施例的可见光通信的示例性编码电信号。 具体实施方式
需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以 相互组合。 下面将参考附图并结合实施例来详细说明本发明。
本发明实施例提供了一种提高基于 LED 灯的可见光通信的信息传输速率的编码 和解码方法。
经过进一步的研究发现, 基于 LED 灯的可见光通信的传输速率较小的原因之一 是, LED灯的闪烁控制存在延迟, 即亮、暗状态的持续时间总是比所期望的设定值长。 这一现象的直接结果是, 为了传播同样长度的数据, LED灯所需要的时间总比预计的 时间长。 更严重的是, 闪烁控制的延迟使得发送端和信号端之间的同步存在困难。 按 照常规的技术, 以 LED灯的高频率闪烁来进行通信, 有光代表二进制 1, 无光代表二 进制 0。然而由于缺乏准确的同步, 导致如果分别以有光、无光分别来代表二进制的 1 和 0, 会存在错误位接收。 举例来说, 当代表 1位二进制 0的无光状态的持续时间超 出设定值后, 额外的持续时间会被识别为另外 1位二进制 0。
由于 LED灯所存在的上述缺陷, 有必要提出一种新的编码和解码方法。根据本发 明的实施例, 从光信号角度看, 以有光到无光之间状态的变化而不是以有光或无光状 态本身来代表信息。 从电信号角度看, 以电平跳变而不是电平持续状态本身来代表信 息。
为此, 在编码时, 可以将待发送的数据分成多个数据单元, 每一数据单元包含一 个或多个比特。 然后将这些数据单元转换为多个电信号单元, 每一电信号单元以电平 的跳变次数来代表对应数据单元的比特。相邻电信号单元之间则以固定电平表示间隔。 电平的跳变可以仅包含低电平到高电平的跳变, 或者仅包含低电平到高电平的跳变, 还可以同时包含低电平到高电平的跳变和低电平到高电平的跳变。 可预先设置各电信号单元内的电平持续时间 (在此称为第一电平持续时间) 及相 邻电信号单元间的电平持续时间(在此称为第二电平持续时间)。第二电平持续时间会 大于第一电平持续时间。 这种大小关系会显著到让接收端能够无误地识别。
在本发明的实施例中, 考虑到 LED灯的闪烁延迟, 在设置第一电平持续时间时, 可以用作为发射源的发光二极管的闪烁延迟值来进行调整。 通常, 是在所期望的电平 持续时间的基础上, 减去闪烁延迟值。 举例来说, 如果希望电平持续时间是 3ms, 而 闪烁延迟值是 2ms, 则设定的电平持续时间为 lms。 发光二极管的闪烁延迟值可以预 先通过试验来确定。
可以理解, 闪烁延迟值对第二电平持续时间的影响较小。 可选地, 在设置第二电 平持续时间时, 也可以用作为发射源的发光二极管的闪烁延迟值来进行调整。
在得到了所期望的电信号后, 以电信号控制发光二极管, 由发光二极管以可见光 信号形式发送。
在接收端, 解码过程是相反的。 接收端会接收可见光信号并转换为电信号。 当检 测到电平跳变时, 判断为一个电信号单元的开始; 当检测到的电平持续时间大于第一 阈值且小于或等于第二阈值时, 记录电平跳变的次数; 当检测到的电平持续时间大于 第二阈值且小于或等于第三阈值时, 判断一个电信号单元结束。 当检测到的电平持续 时间大于第三阈值时, 判断信号接收完毕。 其中, 第三阈值大于第二阈值大于第一阈 值。 可以理解, 第一阈值、 第二阈值和第三阈值的设置会参考前述的第一电平持续时 间和第二电平持续时间。
在接收完毕后, 将接收到的各电信号单元转换为数据单元, 然后将多个数据单元 组合成数据。 由此获得可见光信号所表征的信息。
可以理解, 电平跳变至少会有一次。 因此即使是一个电信号单元的所有比特值均 为 0, 也会以电平跳变而不是以电平持续状态来表示。
现在参考附图描述所要求保护的发明, 在全部附图中使用相同的参考标号来指相 同的部件或步骤。 在以下描述中, 为解释起见, 披露了众多具体细节以提供对所要求 保护的主题的全面理解。 然而, 显而易见的是, 这些发明也可以不采用这些具体细节 来实施。
第一实施例
本实施例的编码和相应的解码方法是在手机或类似的便携式移动终端卜.实施。 下 面将仅以手机为例进行说明。
参见图 1, 是本发明第一实施例的可见光信号的编码方法流程图, 该编码方法包 括:
步骤 101, 将待发送的数据分成多个数据单元, 每一数据单元包含一个或多个比 特 (bit)。 这些待发送的数据可以是文本、 图片、 音频和 /或视频。 步骤 102, 将该多个数据单元转换为多个电信号单元, 每一电信号单元以电平的 跳变次数来代表对应数据单元的该一个或多个比特, 相邻电信号单元之间具有以固定 电平表示的间隔。 在本实施例中, 可以用电平的上升沿或者下降沿作为跳变的开始。
例如, 一个电信号单元内高 (或低)电平的持续时间为 2 ms。 每个电信号单元有四 个从电平的变换,包括低电平到高电平的变换和 高电平到低电平的变换,每个电信号 单元表示 2 比特信息, 四个电信号单元组成一个字节。 当一个电信号单元中的从低电 平到高电平和高电平到低电平的变换次数为 1时, 代表信息 00; 当从低电平到高电平 和高电平到低电平的变换次数为 2时, 代表信息 01 ; 当从低电平到高电平和高电平到 低电平的变换次数为 3时, 代表信息 10; 当从低电平到高电平和高电平到低电平的变 换次数为 4时, 代表信息 11。 从低电平到高电平和高电平到低电平的变换次数与其代 表的信息之间的对应关系如表 1所示。
表 1
Figure imgf000008_0001
因此可以根据预先设置的上述对应关系表, 确定信息单元所对应的电信号单元的 电平组合。
当然, 每个电信号单元可以表示 1比特信息, 这需要最多 2次跳变。 以此类推, 每个电信号单元可以表示 3比特信息, 这需要最多 8次跳变。
从上表也可以看出, 即使是比特值 00, 也会有一次电平跳变。作为举例而非限制, 这一步骤是在手机中为光通信为配置的数据处理器中实施。
在此, 该第一电平持续时间可经过预先获得的作为发射源的发光二极管的闪烁延 迟值调整。 调整的方式是将期望的第一电平持续时间减去闪烁延迟值, 得到设定的第 一电平持续时间。 举例来说, 期望一个电信号单元内高 (或低)电平的持续时间为 2ms。 然而经闪烁延迟值调整后, 设定的光信号持续时间会低于 2ms, 甚至为 0。
另外, 相邻两个电信号单元之间的高 (或低)电平的第二电平持续时间大于第一电 平持续时间, 可设定为 25 ms, 这一持续时间既可以经过闪烁延迟值调整, 也可以不 经调整。
步骤 103, 对各个电信号单元进行组合, 获得编码后的电信号。 图 3为一个示例 性的编码电信号, 其中示出比特值与电平之间的关系示意图, 图中的四个电信号单元 分别有 2次、 4次、 1次和 3次电平的跳变, 代表 01、 11、 00和 10, 其中电平的跳变 是指低电平到高电平和从高电平到低电平的跳变,相邻两个电信号单元之间的高 (或低) 电平的持续时间是 27 ms, 组合后的信号为一个字节, 其二进制表示为 01110010, 对 应的十六进制信号为 0x72。 步骤 104, 以可见光信号形式发送该编码后的电信号。
在此,以编码后的电信号控制发光二极管以可见光信号形式发送编码后的电信号。 参见图 2, 是本发明第一实施例的可见光信号的解码方法流程图, 该解码方法包 括:
步骤 201, 手机接收可见光信号并转换为电信号。 接收时需要将接收手机的光接 收器对准发送端的 LED发射源。
步骤 202, 当检测到电平跳变时, 判断为一电信号单元的开始, 开始计时。 电平 跳变可以是从低电平到高电平, 也可以是相反地从高电平到低电平。
步骤 203, 当检测到的电平持续时间大于第一阈值且小于或等于第二阈值时, 表 明电信号单元仍在持续, 在此期间记录电平跳变的次数。 持续的电平可以是高电平或 低电平。 在本实施例中, 可以用电平的上升沿或者下降沿作为跳变的开始记录。
步骤 204, 当检测到的电平持续时间大于该第二阈值且小于或等于第三阈值时, 判断该电信号单元结束。
步骤 205, 当检测到的电平持续时间大于该第三阈值时, 判断信号接收完毕。 其中, 第三阈值〉第二阈值〉第一阈值。 而且, 相应于发送端的第一电平持续时间 的调整, 第一阈值也经过相同的闪烁延迟值调整以便能够正确判别代表性的电平。 另 外, 第二阈值和第三阈值既可以经闪烁延迟值调整, 也可以不经闪烁延迟值调整。
例如, 设置第一、 第二和第三阈值分别为 0、 25和 60 ms, 当检测到上升沿 (或下 降沿)时, 开始计时, 当检测到的高 (或低)电平的持续时间大于 0, 且小于等于 25 ms 时, 记录从低电平到高电平和高电平到低电平的变换次数; 当检测到的高 (或低)电平 的持续时间大于 25 ms, 且小于等于 60 ms时, 认为是一个电信号单元的结束标志; 当 检测到的高 (或低)电平的持续时间大于 60 ms时, 认为信号接收完毕。
在另一情形下, 高 (或低)电平的持续时间大于第三阈值也可能代表信号接收中断, 重新开始检测信号。
步骤 206, 将接收到的各电信号单元转换为数据单元。
步骤 207, 将多个数据单元组合成数据, 从而获得可见光信号表征的信息。
本实施例提供的编码方式, 将数据分成若干个电信号单元, 各电信号单元之间以 电平的持续时间来区分, 在一个电信号单元内, 以电平的变换次数表示信息。 这一编 码方式使得即使存在由 LED灯的闪烁延迟导致的同步问题,接收端仍能正确地解码数 据。 而且, 利用闪烁延迟值来调整电平持续时间, 使得电平持续时间被有效缩短, 从 而提高了单位时间的信息传输量。
本实施例采用手机作为信号发送端,通过手机的 LED灯将信号以可见光的形式发 送出去。 接收端通过计时, 判断信号接收结束, 接收中断, 或者接收完毕, 记录一个 电信号单元内表征信息的从低电平到高电平和高电平到低电平的变换次数。 因此, 利 用本实施例可以实现手机与可见光信号接收端之间地通信, 从而提高用户体验。
第二实施例
本实施例是在光子门禁系统中实施, 其中可用手机作为发送端, 而门禁端作为接 收端。 在替代实施例中, 手机可用光子钥匙代替。 门禁端除了解码信号外, 还可进一 步利用信号进行匹配, 从而决定是否开门。
图 4示出本发明第二实施例的可见光通信的编码方法流程图。 参照图 4所示, 编 码方法如下:
步骤 401, 在手机内将待发送的身份识别数据分成多个数据单元, 每一数据单元 包含一个或多个比特 (bit)。
步骤 402, 将该多个数据单元转换为多个电信号单元, 每一电信号单元以电平的 跳变次数来代表对应数据单元的该一个或多个比特, 相邻电信号单元之间具有以固定 电平表示的间隔。 在本实施例中, 可以用电平的上升沿或者下降沿作为跳变的开始。
例如, 一个电信号单元内高 (或低)电平的持续时间为 2 ms。 每个电信号单元有四 个电平的变换, 包括从低电平到高电平的变换和高电平到低电平)的变换, 每个电信号 单元表示 2 比特信息, 四个电信号单元组成一个字节。 当一个电信号单元中的从低电 平到高电平和高电平到低电平的变换次数为 1时, 代表信息 00; 当从低电平到高电平 和高电平到低电平的变换次数为 2时, 代表信息 01 ; 当从低电平到高电平和高电平到 低电平的变换次数为 3时, 代表信息 10; 当从低电平到高电平和高电平到低电平的变 换次数为 4时, 代表信息 11。 从低电平到高电平和高电平到低电平的变换次数与其代 表的信息之间的对应关系如表 1所示。
当然, 每个电信号单元可以表示 1比特信息, 这需要最多 2次跳变。 以此类推, 每个电信号单元可以表示 3比特信息, 这需要最多 8次跳变。
作为举例而非限制, 这一步骤是在手机中为光通信为配置的数据处理器中实施。 在此, 该第一电平持续时间可经过预先获得的作为发射源的发光二极管的闪烁延 迟值调整。 调整的方式是将期望的第一电平持续时间减去闪烁延迟值, 得到设定的第 一电平持续时间。 举例来说, 期望一个电信号单元内高 (或低)电平的第一电平持续时 间为 2ms。 然而经闪烁延迟值调整后, 设定的光信号持续时间会低于 2ms, 甚至为 0。
另外, 相邻两个电信号单元之间高 (或低)电平的第二电平持续时间可设定为 25 ms, 这一持续时间既可以经过闪烁延迟值调整, 也可以不经调整。
步骤 403, 对各个电信号单元进行组合, 获得编码后的电信号。 图 3为一个示例 性的编码电信号, 其中示出比特值与电平之间的关系示意图, 图中的四个电信号单元 分别有 2次、 4次、 1次和 3次电平的跳变, 分别代表 01、 11、 00和 10, 其中电平的 跳变是指低电平到高电平和从高电平到低电平的跳变,,相邻两个电信号单元之间的高 (或低)电平的持续时间是 27 ms,组合后的信号为一个字节,其二进制表示为 01110010, 对应的十六进制信号为 0x72。
步骤 404, 以可见光信号形式发送编码后的电信号。 发送时需要将手机的 LED发 射源对准接收光子门禁受控端的光接收器。
参见图 5, 是本发明第二实施例的可见光信号的解码方法流程图, 该解码方法包 括:
步骤 501, 光子门禁受控端接收可见光信号并转换为电信号。
步骤 502, 当检测到电平跳变时, 判断为一电信号单元的开始, 开始计时。 电平 跳变可以是从低电平到高电平, 也可以是相反地从高电平到低电平。
步骤 503, 当检测到的电平持续时间大于第一阈值且小于或等于第二阈值时, 表 明电信号单元仍在持续, 在此期间记录电平跳变的次数。 持续的电平可以是高电平或 低电平。 在本实施例中, 可以用电平的上升沿或者下降沿作为跳变的开始记录。
步骤 504, 当检测到的电平持续时间大于该第二阈值且小于或等于第三阈值时, 判断该电信号单元结束。
步骤 505, 当检测到的电平持续时间大于该第三阈值时, 判断信号接收完毕。 其中, 第三阈值大于第二阈值大于第一阈值。
例如, 设置第一、 第二和第三阈值分别为 0、 25和 60 ms, 当检测到上升沿 (或下 降沿)时, 开始计时, 当检测到的高 (或低)电平的持续时间大于 0, 且小于等于 25 ms 时, 记录从低电平到高电平和高电平到低电平的变换次数; 当检测到的高 (或低)电平 的持续时间大于 25 ms, 且小于等于 60 ms时, 认为是一个电信号单元的结束标志; 当 检测到的高 (或低)电平的持续时间大于 60 ms时, 认为信号接收完毕。
在另一情形下, 高 (或低)电平的持续时间大于第三阈值也可能代表信号接收中断, 重新开始检测信号。
步骤 506, 将接收到的各电信号单元转换为数据单元。
步骤 507, 光子门禁受控端将多个数据单元组合成身份识别数据, 从而获得可见 光信号表征的信息。
步骤 508, 光子门禁受控端将身份识别数据与预设条件进行对比, 若身份识别数 据与预设条件匹配, 则控制与其连接的电动锁开锁。
在本实施例中, 身份识别数据与预设条件匹配, 包括识别数据与预设条件相同; 或者识别数据与预设条件之间存在对应关系。
本实施例提供的编码方式将手机获得的身份识别数据分成若干个电信号单元, 各 电信号单元之间以电平的持续时间来区分, 以从电平的变换次数表示识别数据。 这一 编码方式使得即使存在由 LED灯的闪烁延迟导致的同步问题,接收端仍能正确地解码 数据。 而且, 利用闪烁延迟值来调整电平持续时间, 使得电平持续时间被有效缩短, 从而提高了单位时间的信息传输量。
本实施例用手机作为光子门禁系统的发送端, 将编码后的身份识别数据通过手机 的 LED灯以可见光信号的形式发送出去。光子门禁受控端对从手机接收的可见光信号 进行解码, 然后根据解码获得的识别数据进行鉴权, 若通过鉴权, 则控制与其连接的 电动锁开锁, 从而实现手机开锁, 提高用户体验。
第三实施例
本实施例是在光子锁系统中实施, 其中可用专门的光子钥匙作为发送端, 而光子 锁受控端作为接收端。 在替代实施例中, 光子钥匙可用手机代替。 光子锁受控端除了 解码信号外, 还可进一步利用信号进行匹配, 从而决定是否开锁。
图 6示出本发明第三实施例的可见光通信的编码方法流程图。 参照图 6所示, 编 码方法如下:
步骤 601, 在光子钥匙内将待发送的身份识别数据分成多个数据单元, 每一数据 单元包含一个或多个比特 (bit)。
步骤 603, 将该多个数据单元转换为多个电信号单元, 每一电信号单元以电平的 跳变次数来代表对应数据单元的该一个或多个比特, 相邻电信号单元之间具有以固定 电平表示的间隔。 在本实施例中, 可以用电平的上升沿或者下降沿作为跳变的开始。
例如, 一个电信号单元内高 (或低)电平的持续时间为 2 ms。 每个电信号单元有四 个电平的变换, 包括从低电平到高电平的变换, 每个电信号单元表示 2 比特信息, 四 个电信号单元组成一个字节。 当一个电信号单元中的从低电平到高电平的变换次数为 1时, 代表信息 00; 当从低电平到高电平的变换次数为 2时, 代表信息 01 ; 当从低电 平到高电平的变换次数为 3时,代表信息 10;当从低电平到高电平的变换次数为 4时, 代表信息 11。从低电平到高电平的变换次数与其代表的信息之间的对应关系如表 1所 示。
当然, 每个电信号单元可以表示 N比特信息, N为自然数, 例如 1比特信息, 这 需要最多 2次跳变。 以此类推, 每个电信号单元可以表示 3 比特信息, 这需要最多 8 次跳变,例如当一个电信号单元中的从低电平到高电平或 /和高电平到低电平的变换次 数为 1时, 代表信息 000; 当从低电平到高电平或 /和高电平到低电平的变换次数为 2 时, 代表信息 001 ; 当从低电平到高电平或 /和高电平到低电平的变换次数为 3时, 代 表信息 010; 当从低电平到高电平或 /和高电平到低电平的变换次数为 4时, 代表信息 011, 当一个电信号单元中的从低电平到高电平或 /和高电平到低电平的变换次数为 5 时, 代表信息 100; 当从低电平到高电平或 /和高电平到低电平的变换次数为 6时, 代 表信息 101 ; 当从低电平到高电平或 /和高电平到低电平的变换次数为 7时, 代表信息 110; 当从低电平到高电平或 /和高电平到低电平的变换次数为 8时, 代表信息 111。 上 述跳变次数对应代表的信息可以根据用户需要和习惯灵活设置。
作为举例而非限制, 这一步骤是在电子光匙中为光通信为配置的数据处理器中实 施。
在此, 该第一电平持续时间可经过预先获得的作为发射源的发光二极管的闪烁延 迟值调整。 调整的方式是将期望的第一电平持续时间减去闪烁延迟值, 得到设定的第 一电平持续时间。 举例来说, 期望一个电信号单元内高 (或低)电平的第一电平持续时 间为 2ms。 然而经闪烁延迟值调整后, 设定的光信号持续时间会低于 2ms, 甚至为 0。
另外, 相邻两个电信号单元之间高 (或低)电平的第二电平持续时间可设定为 25 ms, 这一持续时间既可以经过闪烁延迟值调整, 也可以不经调整。
步骤 603, 对各个电信号单元进行组合, 获得编码后的电信号。 图 8为一个示例 性的编码电信号, 其中示出比特值与电平之间的关系示意图, 图中的四个电信号单元 分别有 2次、 4次、 1次和 3次低电平到高电平的跳变, 分别代表 01、 11、 00和 10, 相邻两个电信号单元之间的高或低电平的持续时间是 27 ms, 组合后的信号为一个字 节, 其二进制表示为 01110010, 对应的十六进制信号为 0x72。
步骤 604, 以可见光信号形式发送编码后的电信号。 在此, 以编码后的电信号控 制发光二极管以可见光信号形式发送编码后的电信号。 发送时需要将光子钥匙的 LED 发射源对准接收光子锁受控端的光接收器。
参见图 7, 是本发明第三实施例的可见光信号的解码方法流程图, 该解码方法包 括:
步骤 701, 光子锁受控端接收可见光信号并转换为电信号。
步骤 702, 当检测到电平跳变时, 判断为一电信号单元的开始, 开始计时。 电平 跳变可以是从低电平到高电平, 也可以是相反地从高电平到低电平。
步骤 703, 当检测到的电平持续时间大于第一阈值且小于或等于第二阈值时, 表 明电信号单元仍在持续, 在此期间记录电平跳变的次数。 持续的电平可以是高电平或 低电平。 在本实施例中, 可以用电平的上升沿或者下降沿作为跳变的开始记录。
步骤 704, 当检测到的电平持续时间大于该第二阈值且小于或等于第三阈值时, 判断该电信号单元结束。
步骤 705, 当检测到的电平持续时间大于该第三阈值时, 判断信号接收完毕。 其中, 第三阈值大于第二阈值大于第一阈值。
例如, 设置第一、 第二和第三阈值分别为 0、 25和 60 ms, 当检测到上升沿时, 开始计时, 当检测到的高电平的持续时间大于 0, 且小于等于 25 ms时, 记录从低电 平到高电平的变换次数; 当检测到的低电平的持续时间大于 25 ms, 且小于等于 60 ms 时, 认为是一个电信号单元的结束标志; 当检测到的低电平的持续时间大于 60 ms时, 认为信号接收完毕。
在另一情形下, 低电平的持续时间大于第三阈值也可能代表信号接收中断, 重新 开始检测信号。
步骤 706, 将接收到的各电信号单元转换为数据单元。
步骤 707, 光子锁受控端将多个数据单元组合成身份识别数据, 从而获得可见光 信号表征的信息。
步骤 708, 光子锁受控端将身份识别数据与预设条件进行对比, 若身份识别数据 与预设条件匹配, 则控制与其连接的电动锁开锁。
在本实施例中, 身份识别数据与预设条件匹配, 包括识别数据与预设条件相同; 或者识别数据与预设条件之间存在对应关系。
本实施例提供的编码方式将光子钥匙获得的身份识别数据分成若干个电信号单 元, 各个电信号单元之间以电平的持续时间来区分, 以电平的变换次数表示身份识别 数据。这一编码方式使得即使存在由 LED灯的闪烁延迟导致的同步问题, 接收端仍能 正确地解码数据。 而且, 利用闪烁延迟值来调整电平持续时间, 使得电平持续时间被 有效缩短, 从而提高了单位时间的信息传输量。
本发明还提出一种可见光信号的编码装置, 包括: 用于将待发送的数据分成多个 数据单元的模块, 每一数据单元包含一个或多个比特; 用于将该多个数据单元转换为 多个电信号单元的模块, 每一电信号单元以电平的跳变次数来代表对应数据单元的该 一个或多个比特, 相邻电信号单元之间具有以固定电平表示的间隔, 其中各电信号单 元内的电平具有第一电平持续时间, 且相邻电信号单元间的固定电平具有第二电平持 续时间; 用于对各电信号单元进行组合, 获得编码后的电信号的模块; 以及用于以可 见光信号形式发送该编码后的电信号的模块。
该电平的跳变为低电平到高电平的跳变或 /和高电平到低电平的跳变。
所述用于将该多个数据单元转换为多个电信号单元的模块是根据预先设置的对应 表确定所述待发送的数据单元对应的电信号单元中的电平跳变的次数。
该第一电平持续时间是经过预先获得的作为发射源的发光二极管的闪烁延迟值调 整。
该第二电平持续时间显著大于该第一电平持续时间。
该第二电平持续时间是经过预先获得的作为发射源的发光二极管的闪烁延迟值调 整。
每一数据单元包含 N个比特, N为自然数。
本发明还提出一种可见光信号的解码装置, 包括: 用于接收可见光信号并转换为 电信号的模块; 用于当检测到电平跳变时, 判断为一电信号单元的开始, 开始计时的 模块; 用于当检测到的电平持续时间大于第一阈值且小于或等于第二阈值时, 记录电 平跳变的次数的模块; 用于当检测到的电平持续时间大于该第二阈值且小于或等于第 三阈值时, 判断该电信号单元结束的模块; 用于当检测到的电平持续时间大于该第三 阈值时, 判断信号接收完毕的模块; 用于将接收到的各电信号单元转换为数据单元的 模块; 以及用于将多个数据单元组合成数据的模块。
该电平的跳变为低电平到高电平的跳变或 /和为高电平到低电平的跳变。
所述用于将接收到的各电信号单元转换为数据单元的模块是根据预先设置的对应 表确定所述记录电信号单元中的电平跳变的次数对应的数据单元。
该第一阈值是经过预先获得的作为发射源的发光二极管的闪烁延迟值调整。
该第二阈值和 /或该第三阈值是经过预先获得的作为发射源的发光二极管的闪烁 延迟值调整, 该第三阈值大于该第二阈值, 且该第二阈值大于该第一阈值。
上述的装置还包括用于将该数据与预设条件进行对比,若该数据与预设条件匹配, 则使用该数据对一被控设备进行控制的模块, 其中该数据与预设条件的匹配包括: 该 数据与该预设条件相同或存在对应关系。
本发明还提供了一种鉴权系统, 该鉴权系统可为门禁系统、 地铁系统、 支付系统 或消费管理系统。 鉴权系统包括光子钥匙和光子受控端, 光子钥匙包含前述的一种可 见光信号的编码装置, 光子受控端包含前述的一种可见光信号的解码装置。 以门禁系 统为例, 本实施例用光子钥匙作为发送端, 将编码后的识别数据通过电子钥匙的 LED 灯以可见光信号的形式发送出去。 光子受控端对从光子钥匙接收的可见光信号进行解 码, 然后根据解码获得的识别数据进行鉴权, 若通过鉴权, 则控制与其连接的可控锁 开锁, 从而实现开锁, 提高用户体验。 其中锁也可以替换为其他具备在打开和关闭状 态之间切换的门禁开关装置, 例如闸口等。
本发明还提供了一种鉴权系统, 包括前述的一种可见光信号的编码装置和一种可 见光信号的解码装置。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的 技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所 作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种可见光信号的编码方法, 其特征在于, 包括:
将待发送的数据分成多个数据单元, 每一数据单元包含一个或多个比特; 将该多个数据单元转换为多个电信号单元, 每一电信号单元以电平的跳变 次数来代表对应数据单元的该一个或多个比特, 相邻电信号单元之间具有以固 定电平表示的间隔, 其中该电平的跳变为低电平到高电平的跳变和高电平到低 电平的跳变, 各电信号单元内的电平具有第一电平持续时间, 且相邻电信号单 元间的固定电平具有第二电平持续时间;
对各电信号单元进行组合, 获得编码后的电信号; 以及
以可见光信号形式发送该编码后的电信号。
2. 根据权利要求 1所述的方法, 其特征在于, 所述将该多个数据单元转换为多个 电信号单元的步骤为: 根据预先设置的对应表确定所述待发送的数据单元对应 的电信号单元中的电平跳变的次数。
3. 根据权利要求 1所述的方法, 其特征在于, 所述第一电平持续时间是经过预先 获得的作为发射源的发光二极管的闪烁延迟值调整。
4. 根据权利要求 1所述的方法, 其特征在于, 所述第二电平持续时间显著大于该 第一电平持续时间。
5. 根据权利要求 1所述的方法, 其特征在于, 所述第二电平持续时间是经过预先 获得的作为发射源的发光二极管的闪烁延迟值调整。
6. 根据权利要求 1所述的方法, 其特征在于, 每一数据单元包含 N个比特, N为 自然数。
7. 一种可见光信号的解码方法, 其特征在于, 包括:
接收可见光信号并转换为电信号;
当检测到电平跳变时, 判断为一电信号单元的开始, 开始计时; 当检测到的电平持续时间大于第一阈值且小于或等于第二阈值时, 记录电 平跳变的次数, 该电平的跳变为低电平到高电平的跳变和高电平到低电平的跳 变;
当检测到的电平持续时间大于该第二阈值且小于或等于第三阈值时, 判断 该电信弓单元结束;
当检测到的电平持续时间大于该第三阈值时, 判断信号接收完毕; 将接收到的各电信号单元转换为数据单元; 以及
将多个数据单元组合成数据。
8. 根据权利要求 7所述的方法, 其特征在于, 所述将接收到的各电信号单元转换 为数据单元的步骤为: 根据预先设置的对应表确定所述记录电信号单元中的电 平跳变的次数对应的数据单元。
9. 根据权利要求 7所述的方法, 其特征在于, 所述第一阈值是经过预先获得的作 为发射源的发光二极管的闪烁延迟值调整。
10. 根据权利要求 7所述的方法, 其特征在于, 所述第二阈值和 /或所述第三阈值是 经过预先获得的作为发射源的发光二极管的闪烁延迟值调整, 所述第三阈值大 于所述第二阈值, 且所述第二阈值大于所述第一阈值。
11. 根据权利要求 7所述的方法, 其特征在于, 还包括将该数据与预设条件进行对 比, 若该数据与预设条件匹配, 则使用该数据对一被控设备进行控制, 其中该 数据与预设条件的匹配包括: 该数据与该预设条件相同或存在对应关系。
12. 一种可见光信号的编码装置, 其特征在于, 包括:
用于将待发送的数据分成多个数据单元的模块, 每一数据单元包含一个或 多个比特;
用于将该多个数据单元转换为多个电信号单元的模块, 每一电信号单元以 电平的跳变次数来代表对应数据单元的该一个或多个比特, 相邻电信号单元之 间具有以固定电平表示的间隔, 其中该电平的跳变为低电平到高电平的跳变和 高电平到低电平的跳变, 各电信号单元内的电平具有第一电平持续时间, 且相 邻电信号单元间的固定电平具有第二电平持续时间;
用于对各电信号单元进行组合, 获得编码后的电信号的模块; 以及 用于以可见光信号形式发送该编码后的电信号的模块。
13. 根据权利要求 12所述的装置,其特征在于,所述用于将该多个数据单元转换为 多个电信号单元的模块是根据预先设置的对应表确定所述待发送的数据单元对 应的电信号单元中的电平跳变的次数。
14. 根据权利要求 12所述的装置,其特征在于,所述第一电平持续时间是经过预先 获得的作为发射源的发光二极管的闪烁延迟值调整。
15. 根据权利要求 12所述的装置,其特征在于,所述第二电平持续时间显著大于该 第一电平持续时间。
16. 根据权利要求 12所述的装置,其特征在于,所述第二电平持续时间是经过预先 获得的作为发射源的发光二极管的闪烁延迟值调整。
17. 根据权利要求 12所述的装置, 其特征在于, 每一数据单元包含 N个比特, N 为自然数。
18. 一种可见光信号的解码装置, 其特征在于, 包括: 用于接收可见光信号并转换为电信号的模块;
用于当检测到电平跳变时,判断为一电信号单元的开始,开始计时的模块; 用于当检测到的电平持续时间大于第一阈值且小于或等于第二阈值时, 记 录电平跳变的次数的模块, 该电平的跳变为低电平到高电平的跳变和高电平到 低电平的跳变;
用于当检测到的电平持续时间大于该第二阈值且小于或等于第三阈值时, 判断该电信号单元结束的模块;
用于当检测到的电平持续时间大于该第三阈值时, 判断信号接收完毕的模 块;
用于将接收到的各电信号单元转换为数据单元的模块; 以及
用于将多个数据单元组合成数据的模块。
19. 根据权利要求 18所述的装置,其特征在于,所述用于将接收到的各电信号单元 转换为数据单元的模块是根据预先设置的对应表确定所述记录电信号单元中的 电平跳变的次数对应的数据单元。
20. 根据权利要求 18所述的装置,其特征在于,所述第一阈值是经过预先获得的作 为发射源的发光二极管的闪烁延迟值调整。
21. 根据权利要求 18所述的装置, 其特征在于, 所述第二阈值和 /或所述第三阈值 是经过预先获得的作为发射源的发光二极管的闪烁延迟值调整, 所述第三阈值 大于所述第二阈值, 且所述第二阈值大于所述第一阈值。
22. 根据权利要求 18所述的装置,其特征在于,还包括用于将该数据与预设条件进 行对比, 若该数据与预设条件匹配, 则使用该数据对一被控设备进行控制的模 块, 其中该数据与预设条件的匹配包括: 该数据与该预设条件相同或存在对应 关系。
23. 一种光子钥匙, 其特征在于, 包括根据权利要求 12至 17中任一项所述的一种 可见光信号的编码装置。
24. 一种光子受控端, 其特征在于, 包括根据权利要求 18至 22中任一项所述的一 种可见光信号的解码装置。
25. 一种鉴权系统,其特征在于,所述鉴权系统包括根据权利要求 23所述的光子钥 匙和根据权利要求 24所述的光子受控端。
26. 一种鉴权系统, 其特征在于, 所述鉴权系统包括根据权利要求 12至 17中任一 项所述的可见光信号的编码装置和根据权利要求 18至 22中任一项所述的可见 光信号的解码装置。
PCT/CN2014/082955 2013-07-31 2014-07-24 可见光信号的编码和解码方法、装置及系统 WO2015014238A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016530334A JP6167237B2 (ja) 2013-07-31 2014-07-24 可視光信号のエンコードとデコード方法、装置及びシステム
EP14832751.3A EP3029858B1 (en) 2013-07-31 2014-07-24 Method, apparatus, and system for encoding and decoding visible light signal
KR1020167004224A KR101854288B1 (ko) 2013-07-31 2014-07-24 가시 광선 신호의 코딩과 디코딩방법, 장치 및 시스템
US15/011,567 US9667345B2 (en) 2013-07-31 2016-01-31 Method, apparatus, and system for encoding and decoding visible light signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310328832.1A CN103812557B (zh) 2013-07-31 2013-07-31 可见光信号的编码和解码方法、装置及系统
CN201310328832.1 2013-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/011,567 Continuation US9667345B2 (en) 2013-07-31 2016-01-31 Method, apparatus, and system for encoding and decoding visible light signal

Publications (1)

Publication Number Publication Date
WO2015014238A1 true WO2015014238A1 (zh) 2015-02-05

Family

ID=50708821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082955 WO2015014238A1 (zh) 2013-07-31 2014-07-24 可见光信号的编码和解码方法、装置及系统

Country Status (6)

Country Link
US (1) US9667345B2 (zh)
EP (1) EP3029858B1 (zh)
JP (1) JP6167237B2 (zh)
KR (1) KR101854288B1 (zh)
CN (1) CN103812557B (zh)
WO (1) WO2015014238A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812557B (zh) * 2013-07-31 2015-05-27 深圳光启创新技术有限公司 可见光信号的编码和解码方法、装置及系统
US9664011B2 (en) * 2014-05-27 2017-05-30 Baker Hughes Incorporated High-speed camera to monitor surface drilling dynamics and provide optical data link for receiving downhole data
WO2016034038A1 (zh) * 2014-09-05 2016-03-10 深圳光启智能光子技术有限公司 提高可见光信号传输速率的编解码方法及移动终端和系统
CN105471511B (zh) * 2014-09-05 2018-08-31 深圳光启智能光子技术有限公司 一种提高光信号传输可靠性的编解码方法、装置及系统
KR20170056587A (ko) 2014-09-05 2017-05-23 쿠앙치 인텔리전트 포토닉 테크놀로지 리미티드 가시 광선 신호의 코딩과 디코딩방법 및 장치
CN105471513B (zh) * 2014-09-05 2018-10-02 深圳光启智能光子技术有限公司 无线信号的自适应接收方法、装置及系统
CN105450299B (zh) * 2014-09-05 2019-08-30 深圳光启智能光子技术有限公司 信号的编解码方法及系统
CN105471499B (zh) * 2014-09-05 2018-05-25 深圳光启智能光子技术有限公司 提高可见光信号传输速率的编解码方法及移动终端和系统
CN105389865B (zh) * 2014-09-05 2018-05-25 深圳光启智能光子技术有限公司 缩短发送时间的数字信号发送和接收方法及移动终端
EP3429097B1 (en) 2016-03-08 2021-11-17 Kuang-Chi Intelligent Photonic Technology Ltd. Optical noise removal circuit, optical receiver, and optical chip
CN107171734B (zh) * 2016-03-08 2020-03-06 深圳光启智能光子技术有限公司 用于光通信的光芯片
CN107171737B (zh) * 2016-03-08 2020-03-06 深圳光启智能光子技术有限公司 用于光通信的光芯片及鉴权装置
US9818269B1 (en) * 2016-12-16 2017-11-14 Ninad H. Ghodke Status light data transmission
CN108667558B (zh) * 2017-03-31 2020-11-27 圣邦微电子(北京)股份有限公司 一种适合传送简短内容的编码方法
CN113924633B (zh) * 2019-05-29 2024-01-05 三菱电机株式会社 断路器、断路器系统、信息处理方法及记录介质
CN113568850A (zh) * 2020-04-29 2021-10-29 杭州海康威视数字技术股份有限公司 数据传输方法、装置、电子设备及存储介质
CN115226198B (zh) * 2022-08-31 2022-12-27 成都金诺信高科技有限公司 一种基于白光led的移动目标时间同步系统和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599522A1 (en) * 1992-11-23 1994-06-01 Hewlett-Packard Company Optical transceiver with improved range and data communication rate
CN101404559A (zh) * 2008-10-27 2009-04-08 江南大学 单片机短距无线通信抗干扰简易编码方法
US20110069965A1 (en) * 2009-09-21 2011-03-24 Electronics And Telecommunications Research Institute Transmitter, receiver for visible light communication and method using the same
CN102694597A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的解码方法和控制方法
CN102694598A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的编码方法和发送方法
CN103812557A (zh) * 2013-07-31 2014-05-21 深圳光启创新技术有限公司 可见光信号的编码和解码方法、装置及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7689130B2 (en) * 2005-01-25 2010-03-30 Koninklijke Philips Electronics N.V. Method and apparatus for illumination and communication
TW200642316A (en) * 2006-06-29 2006-12-01 Formolight Technologies Inc Light-illumination communication method
US8208818B2 (en) * 2006-10-23 2012-06-26 Panasonic Corporation Optical free space transmission system using visible light and infrared light
JP5179260B2 (ja) * 2008-05-27 2013-04-10 パナソニック株式会社 可視光通信システム
JP5161176B2 (ja) * 2008-09-26 2013-03-13 太陽誘電株式会社 可視光通信用送信機及び可視光通信システム
EP2405620A1 (en) * 2009-03-02 2012-01-11 Hitachi, Ltd. Optical multi-level transmission system
JP5356277B2 (ja) * 2010-02-17 2013-12-04 三星電子株式会社 送信装置、及び送信方法
NL2009458C2 (en) * 2012-09-13 2014-03-18 Eldolab Holding Bv Led fixture and led lighting arrangement comprising such led fixture.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0599522A1 (en) * 1992-11-23 1994-06-01 Hewlett-Packard Company Optical transceiver with improved range and data communication rate
CN101404559A (zh) * 2008-10-27 2009-04-08 江南大学 单片机短距无线通信抗干扰简易编码方法
US20110069965A1 (en) * 2009-09-21 2011-03-24 Electronics And Telecommunications Research Institute Transmitter, receiver for visible light communication and method using the same
CN102694597A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的解码方法和控制方法
CN102694598A (zh) * 2012-04-28 2012-09-26 深圳光启创新技术有限公司 可见光信号的编码方法和发送方法
CN103812557A (zh) * 2013-07-31 2014-05-21 深圳光启创新技术有限公司 可见光信号的编码和解码方法、装置及系统

Also Published As

Publication number Publication date
US9667345B2 (en) 2017-05-30
JP6167237B2 (ja) 2017-07-19
JP2016531491A (ja) 2016-10-06
EP3029858B1 (en) 2018-08-22
KR20160039632A (ko) 2016-04-11
US20160164605A1 (en) 2016-06-09
KR101854288B1 (ko) 2018-05-03
CN103812557A (zh) 2014-05-21
EP3029858A1 (en) 2016-06-08
EP3029858A4 (en) 2017-03-22
CN103812557B (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2015014238A1 (zh) 可见光信号的编码和解码方法、装置及系统
WO2015014160A1 (zh) 基于多阶幅度调制的可见光信号的编码和解码方法、装置及系统
WO2016034036A1 (zh) 信号的编解码方法、装置及系统
WO2013166958A1 (zh) 基于可见光通信的加密、解密及加解密方法和系统
WO2014019526A1 (zh) 可见光的加密方法、解密方法、通信装置及通信系统
WO2013181980A1 (zh) 基于可见光通信的握手同步方法和系统
US9859978B2 (en) Self-adaptive receiving method, device, and system for radio signal
WO2017152812A1 (zh) 用于光通信的光芯片及鉴权装置
US10116420B2 (en) Error retransmission mechanism-comprised methods, apparatuses and systems for transmitting and receiving visible light signal
CN103812574B (zh) 提高光子身份认证系统识别率的方法、装置及系统
CN103812556B (zh) 一种用于光子客户端的发光参数的调优方法
Ghassemlooy et al. Multilevel digital pulse interval modulation scheme for optical wireless communications
WO2021196785A1 (zh) 可见光通信方法、可见光通信设备和计算机可读介质
Jia et al. Design of an FPGA based visible light communication system
TWI633762B (zh) Decryption method for visible light communication system and communication device thereof
WO2017152811A1 (zh) 光噪去除电路、光接收器以及光芯片
WO2016034038A1 (zh) 提高可见光信号传输速率的编解码方法及移动终端和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832751

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014832751

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016530334

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167004224

Country of ref document: KR

Kind code of ref document: A