WO2021196785A1 - 可见光通信方法、可见光通信设备和计算机可读介质 - Google Patents

可见光通信方法、可见光通信设备和计算机可读介质 Download PDF

Info

Publication number
WO2021196785A1
WO2021196785A1 PCT/CN2020/141489 CN2020141489W WO2021196785A1 WO 2021196785 A1 WO2021196785 A1 WO 2021196785A1 CN 2020141489 W CN2020141489 W CN 2020141489W WO 2021196785 A1 WO2021196785 A1 WO 2021196785A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
encoding
light
visible light
binary
Prior art date
Application number
PCT/CN2020/141489
Other languages
English (en)
French (fr)
Inventor
林凯
曹玮
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2021196785A1 publication Critical patent/WO2021196785A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an optical communication method, an optical communication device, and a computer-readable medium.
  • VLC Visible Light Communication
  • EMI Electromagnetic Interference
  • RF radio frequency
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes a visible light communication method, a visible light communication device, and a computer-readable medium.
  • embodiments of the present disclosure provide a visible light communication method, including:
  • the light-emitting component is controlled to send the key light signal.
  • the step of generating a lighting control signal according to a preset conversion rule specifically includes:
  • the light emission control signal is generated according to the encoding key.
  • the step of encoding the binary key according to a preset encoding rule to generate an encoding key specifically includes:
  • each binary digit of the binary key corresponds to two code strings composed of 0 and 1 one-to-one; and in each code string, the one with the largest number of 0 is the first code string, and the number of 1 is the largest One is the second code string.
  • the coding bits of the first code string and the second code string are equal, and the code bits of the first code string and the second code string are greater than or equal to 3.
  • 1 in the first code string, 1 only occupies the first or last bit of the first code string
  • 0 only occupies the first or last bit of the second code string.
  • the method before the step of converting the key information into a corresponding binary key, the method further includes:
  • the step of generating the light emission control signal according to the encoding key specifically includes:
  • the light emission control signal is generated according to the key prefix and the encoding key.
  • the embodiments of the present disclosure also provide a visible light communication method, including:
  • the step of generating key information according to the key optical signal specifically includes:
  • one encoding string of the encoding key corresponds to one bit of the binary key, and each binary digit of the binary key corresponds to two encoding strings composed of 0 and 1 one-to-one; and each encoding string is The one with the largest number of 0s is the first encoding string, and the one with the largest number of 1s is the second encoding string;
  • the binary key is converted into corresponding key information.
  • the method before the step of generating an encoding key according to the key optical signal, the method further includes:
  • the step of decoding the encoding key to generate a binary key specifically includes:
  • the encoding key is decoded according to the number of encoding bits and the number of key bits to generate the binary key.
  • a visible light transmitting device including:
  • the encoding sub-circuit in response to the key information, generates a light-emitting control signal according to a preset conversion rule
  • the driving sub-circuit in response to the light-emitting control signal, drives the light-emitting component
  • the light-emitting component sends a key light signal in response to the driving of the driving sub-circuit.
  • the visible light transmitting device further includes:
  • the key entry sub-circuit is used to receive key information.
  • the embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, wherein the program is executed by a processor to realize the The light-emitting control signal controls the steps in the optical communication method in which the light-emitting component sends the key light signal.
  • the embodiments of the present disclosure also provide a visible light receiving device, which includes:
  • the decoding sub-circuit in response to the key light signal sent by the light-emitting component, generates key information according to the key light signal;
  • the verification sub-circuit is used to decrypt the key information to complete the verification of the key information.
  • the visible light receiving device further includes: a receiving sub-circuit for receiving the key light signal sent by the light-emitting component.
  • the embodiments of the present disclosure also provide a computer-readable medium on which a computer program is stored, wherein when the program is executed by a processor, the program includes the
  • the key optical signal is a step in the optical communication method for generating key information.
  • FIG. 1 is a flowchart of a visible light communication method provided by an embodiment of the disclosure
  • FIG. 2 is a flowchart of another visible light communication method provided by an embodiment of the disclosure.
  • FIG. 3 is a flowchart of a specific implementation method of step S102 in an embodiment of the disclosure.
  • FIG. 5 is a flowchart of still another visible light communication method provided by an embodiment of the disclosure.
  • FIG. 6 is a flowchart of still another visible light communication method provided by an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of still another visible light communication method provided by an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of a specific implementation method for encoding key information in an embodiment of the disclosure.
  • FIG. 9 is a schematic structural diagram of a visible light transmitting device in an embodiment of the disclosure.
  • FIG. 10 is a schematic structural diagram of a visible light receiving device in an embodiment of the disclosure.
  • the visible light communication method provided by the present disclosure can be used to transmit key information at the transmitting end through the light-emitting component through the visible light communication technology, and the receiving end receives the light signal, correspondingly performs decoding and comparison, and completes the key information transmission and verification.
  • the sending end mobile device such as a mobile phone
  • the receiving end can be a smart door lock that can receive visible light signals.
  • the sending end and the receiving end device are not limited to the above conditions, and can also be any device that can realize visible light communication.
  • the sending end is a mobile phone
  • the light-emitting component is an LED flashing light
  • the receiving end is a smart door lock
  • the receiving component in the receiving end is a photodiode. It does not constitute a limitation on the protection scope of the present disclosure.
  • FIG. 1 is a flowchart of a visible light communication method provided by an embodiment of the disclosure. As shown in Fig. 1, the method is applied to the sending end, and the method includes: step S1 and step S2.
  • Step S1 In response to the key information, a light-emitting control signal is generated according to a preset conversion rule.
  • the sending end is a mobile communication device, in particular, a mobile phone as an example.
  • the receiving sub-circuit in the mobile phone obtains the key information
  • the whole key information can be stored as a string in the form of string data through the encoding sub-circuit, and then each character in the string is stored in a character array , To convert each character according to the preset conversion rule to generate a light-emitting control signal.
  • Step S2 Control the light-emitting component to send the key light signal according to the light-emitting control signal.
  • step S2 the control control sub-circuit in the mobile phone transmits the light signal according to the corresponding relationship between the light-emitting control signal and the light-emitting signal through the light-emitting component, such as the LED flashlight, according to the light-emitting control signal generated by the encoding sub-circuit, that is, transmits the key light Signal.
  • the light-emitting control signal corresponds to the light-emitting component flashes and emits light three times, and the time interval is 0.1S.
  • FIG. 2 is a flowchart of another visible light communication method provided by an embodiment of the present disclosure.
  • the method is a specific optional implementation based on the method shown in FIG. 1, wherein, in step S1, the step of generating a light-emitting control signal according to a preset conversion rule specifically includes: step S101-step S103. Only steps S101 to S103 will be described in detail below.
  • Step S101 Convert the key information into a corresponding binary key.
  • step S101 as described in step S1, after each character of the key information is stored in a character array, each character can be converted to its corresponding binary number according to the number rule, and all characters are converted to binary After counting, a binary key is generated.
  • Step S102 Encode the binary key according to a preset encoding rule to generate an encoding key.
  • FIG. 3 is a flowchart of a specific implementation method of step S102 in an embodiment of the present disclosure.
  • step S102 the step of encoding the binary key according to the preset encoding rule to generate the encoding key specifically includes: step S1021.
  • Step S1021 encode each bit in the binary key, and generate an encoding key composed of 0 and 1.
  • each binary digit of the binary key corresponds to two coded strings composed of 0 and 1 one-to-one; and the one with the largest number of 0s in each coded string is the first code string, and the one with the largest number of 1s is the first coded string. Which is the second code string.
  • the binary digits are 0 and 1, that is, 0 and 1 in the binary key correspond to two coded strings composed of 0 and 1, and the one with the largest number of 0s in the two coded strings is the first.
  • the code string corresponds to one of the numbers 0 and 1, and the one with the largest number of 1 in the two code strings is the second code string, which corresponds to the other number, and is encoded accordingly.
  • the number when one of the numbers is encoded, the number can be reserved, and another number can be used to fill the encoded bits to form an encoded string. For example, when encoding 0, the number of encoding bits is 3, then 1 can be used. Fill it to form a code string such as "011" to represent the binary digit 0.
  • Step S103 Generate a lighting control signal according to the encoding key.
  • 0 and 1 are used to control the light-emitting condition of the light-emitting device.
  • the number of code bits of the first code string and the second code string are equal, and the number of code bits of the first code string and the second code string is greater than or equal to 3.
  • 1 only occupies the first or last bit of the first code string; in the second code string, 0 only occupies the first or last bit of the second code string Bit.
  • 0 and 1 are set at the first or last bit of the code string to form a level jump when the key light signal is sent.
  • the receiving end can collect information during the jump to ensure the independence of each character of the key. It is convenient to receive the key at the receiving end and reduce receiving errors.
  • the embodiments of the present disclosure provide a visible light communication method, which can be used to convert key information into a binary key and encode the binary key to increase the applicability of lighting control.
  • FIG. 4 is a flowchart of still another visible light communication method provided by an embodiment of the present disclosure.
  • the method is a specific alternative implementation based on the method shown in FIG. 2. Specifically, the method not only includes step S102, step S103, and step S2.
  • step S101 the key information is converted Before the step of being the corresponding binary key, it further includes: step S1a.
  • Step S1a Record the number of key bits.
  • step S1a as described in step S1, the entire key information is stored as a character string in the form of character string data, and the key length, that is, the number of key bits, is recorded.
  • Step S103 the step of generating a light-emitting control signal according to the encoding key, specifically includes: step S1b and step S1c.
  • Step S1b Generate a key prefix according to the number of code bits of the first code string and the second code string, and the number of key bits.
  • the key prefix may include: the number of code bits of the first code string and the second code string, the number of key bits, the key identifier, and the code identifier, etc.
  • Step S1c Generate a lighting control signal according to the key prefix and the encoding key.
  • the key prefix is the packet header
  • the encoding key is the data part.
  • the number of bits of the key can be used as an independent part
  • the light-emitting control signal further includes a packet tail part used to indicate the end of the transmission.
  • the embodiments of the present disclosure provide a visible light communication method, which can be used to combine corresponding indication information to generate a key prefix and send it together to ensure the continuity of key transmission and resource integrity.
  • FIG. 5 is a flowchart of still another visible light communication method provided by an embodiment of the disclosure. As shown in FIG. 5, the method is applied to the receiving end, and the method corresponds to the above-mentioned visible light communication method, that is, in the embodiment of the present disclosure, the signal received by the receiving end is the signal sent by the transmitting end in the above-mentioned method.
  • the communication method of the embodiment of the present disclosure includes: step S3-step S4.
  • Step S3 In response to the key light signal sent by the light-emitting component, key information is generated according to the key light signal.
  • the receiving device can be a smart door lock, and the receiving end on the smart door lock can be a photodiode.
  • the photodiode receives the key light signal sent by the LWD flashing light on the mobile phone
  • the key light signal can be
  • the filter sub-circuit in the smart door lock performs filtering and amplifying sub-circuits on the filtered key light signal, and then the amplified key light signal is converted into the corresponding digital signal by the analog-to-digital conversion sub-circuit for subsequent follow-up Decode and decrypt.
  • Step S4 Decrypt the key information to complete the verification of the key information.
  • step S4 the decoding sub-circuit in the smart door lock can decode the digital key light signal output in step S3.
  • the smart door lock will be opened, that is, the key information verification is successful; otherwise, The door lock cannot be opened, and at the same time, the alarm device can be controlled to give an alarm.
  • the decoding rule defines 5 states: ready state (Pre_Mode), synchronization state (Sync_Mode), data reception state (Data_Mode), reception completion state (Msg_Mode) and stop reception Status (Idle_Mode); and defines 6 thresholds Single 0 lower limit (MinShortCount), Single 0 upper limit (MaxShortCount), 30 lower limit (MinCount), 30 upper limit (MaxCount), 40 lower limit (MinLongCount), 40 upper limit ( MaxLongCount).
  • the sampling counter starts counting; if a jump occurs (that is, the sampling value is different from the previous sampling value), and the sampling value is 1, then it enters synchronization State, and the sampling counter is cleared; in the synchronization state, if a jump occurs and the sampling value is 1, then it is judged whether the range of the sampling counter value is between the lower limit of 40 and the upper limit of 40, if not , Then return to the ready state, if satisfied, then enter the data receiving state, and the sampling counter is cleared.
  • the range of the sampling counter value is judged; if it is between the lower limit of three 0 and the upper limit of three 0, it is judged that the received at this time is 1, and Store 1 in the key array; if it is between the lower limit of order 0 and the upper limit of order 0, it is judged that 0 is received at this time, and 0 is stored in the key array; if it is not satisfied between the lower limit of order 0 and the upper limit of 40 0 In the meantime, it returns to the ready state, and the sampling counter is cleared.
  • the stop receiving state corresponds to the state where the receiving component is not triggered or instructed to stop.
  • the packet header can optionally include 4 consecutive 0s to form a clear distinction boundary and improve the decoding accuracy; accordingly, when the key bit After the number and the binary key are encoded, there will be an even number of effective transitions, and when the packet header is an odd number of effective transitions, if the packet tail is an even number of effective transitions, it will appear once due to improper operation (distance, angle, etc.) ), the end of the packet will not be able to jump out of the data receiving state, and will not be decoded correctly during subsequent reception. In this case, the choice of the end of the packet should ensure an odd number of valid transitions, that is, 1 valid transition.
  • the key information is decoded and decrypted, it is matched and compared with the preset key to complete the verification of the key information.
  • the embodiment of the present disclosure provides a visible light communication method, which can be used to receive the key light signal through the visible light communication technology, decrypt the key information, complete the verification of the key information, and ensure the security of key transmission and reliable reception. High sex.
  • FIG. 6 is a flowchart of still another visible light communication method provided by an embodiment of the present disclosure.
  • the method is a specific optional implementation based on the method shown in FIG. 5.
  • the method not only includes step S4, but in step S3, the step of generating key information according to the key light signal , Specifically includes: step S301-step S303. Only steps S301 to S303 will be described in detail below.
  • Step S301 Generate an encoding key according to the key optical signal.
  • step S301 as described in step S3, the received key light signal is converted into an encoding key through analog-to-digital conversion after appropriate filtering and amplifying circuits.
  • Step S302 Decode the encoding key to generate a binary key.
  • one encoding string of the encoding key corresponds to one bit of the binary key, and each binary digit of the binary key and two encoding strings composed of 0 and 1 are one by one.
  • the one with the largest number of 0s is the first encoding string, and the one with the largest number of 1s is the second encoding string.
  • Step S303 Convert the binary key into corresponding key information.
  • the decoded binary key is converted into the original key information according to the number rule.
  • FIG. 7 is a flowchart of still another visible light communication method provided by an embodiment of the present disclosure. As shown in FIG. 7, the method is a specific optional implementation based on the method shown in FIG. 6. Specifically, in step S301, before the step of generating an encoding key according to the key light signal, the method further includes: step S3a .
  • Step S3a Generate a key prefix according to the key optical signal, and generate the number of code bits of the first code string and the second code string, and the number of key bits according to the key prefix.
  • Step S302 the step of decoding the encoding key and generating a binary key specifically includes: step S3b.
  • Step S3b Decode the encoding key according to the number of encoding bits and the number of key bits to generate a binary key.
  • the embodiment of the present disclosure provides a visible light communication method, which can be used to decode an encoding key according to the key prefix to improve the decoding accuracy.
  • the visible light communication method provided by the present disclosure will be described in detail below in combination with practical applications.
  • the transmitting end is a mobile communication device mobile phone, equipped with a light-emitting device flash, and is installed with a corresponding application to control the flash;
  • the receiving end is a smart door lock, through a photodiode Perform optical signal reception.
  • FIG. 8 is a flowchart of a specific implementation method for encoding key information in an embodiment of the disclosure.
  • the key entry component of the mobile phone device obtains the key "88"
  • it stores the key information as a character string in the form of character string data; afterwards, each digit in the character string is stored
  • the characters are stored in a character array, and the password length is recorded, that is, the number of password digits, and the password length is 2.
  • the password digits are defined as the password length plus 1, that is, the password digits are 3, corresponding to the binary number "0011” ; Convert each character to its corresponding binary number according to the number rules to generate a binary key "1000 1000”; encode each bit in the binary key to generate an encoding key composed of 0 and 1, where, Each binary digit of the binary key corresponds to two code strings composed of 0 and 1.
  • the first code string "0111” corresponds to the binary code "0”
  • the second code string "0001" corresponds to the binary code "1”.
  • the encoding key "0001 0111 0111 0111 0111 0111 0111” is generated, and the number of key bits is "0111 0111 0001 0001".
  • the packet header takes the value of "11000011” according to the indicator bits, and the packet tail is "101110"; for encapsulation Then, the light-emitting control signal of the light lamp is generated, and the application program interface of the mobile phone flash is called, and the light-emitting control signal is used to control the flashing light to send the key light signal.
  • the smart door lock device After receiving the key light signal through the photodiode, the smart door lock device converts the key light signal into an encoding key through analog-to-digital conversion after proper filtering and amplifying circuit; after parsing the indication information such as the number of key bits, pass and The decoding rule corresponding to the encoding rule decodes the encoding key, and compares the key "88" obtained after decoding with the key used for verification to verify the correctness of the key.
  • FIG. 9 is a schematic structural diagram of a visible light transmitting device according to an embodiment of the present disclosure.
  • a visible light transmitting device including: an encoding sub-circuit 11, a driving sub-circuit 12, and a light emitting device.
  • Component 13 wherein, the encoding sub-circuit 11 responds to the key information and generates a light-emitting control signal according to a preset conversion rule; the driving sub-circuit 12 drives the light-emitting component 13 in response to the light-emitting control signal; the light-emitting component 13 responds to the driving sub-circuit 12 is driven while sending the key light signal.
  • the encoding sub-circuit 11 may be one or more processors; the storage device is used to store one or more programs; when the one or more programs are executed by the one or more processors, the one or more Each processor implements the optical communication method including step S1 as in any of the foregoing embodiments.
  • the driver sub-circuit can execute the above-mentioned step S2.
  • the visible light transmitting device further includes: a key entry sub-circuit for receiving key information.
  • the visible light transmitting device in the embodiment of the present disclosure may be a mobile device, such as a mobile phone, an ipad, and so on.
  • an embodiment of the present disclosure provides a computer-readable medium on which a computer program is stored, where the program is executed by a processor to implement optical communication including steps S1-step S2 in any of the above-mentioned embodiments. Steps in the method.
  • FIG. 10 is a schematic structural diagram of a visible light receiving device according to an embodiment of the present disclosure; as shown in FIG. 10, an embodiment of the present disclosure also provides a visible light receiving device, including: a decoding sub-circuit 21 and a verification sub-circuit 22; Wherein, the decoding sub-circuit 21 generates key information according to the key light signal in response to the key light signal sent by the light-emitting assembly; the verification sub-circuit 22 is used to decrypt the key information to complete the verification of the key information .
  • the decoding sub-circuit 21 can be used to perform the above step S3
  • the verification sub-circuit 22 can be used to perform the above step S4.
  • the visible light receiving device may further include a receiving sub-circuit for receiving visible light signals, such as key light signals.
  • the receiving sub-circuit may specifically be a photodiode.
  • the visible light receiving device may be a smart door lock or the like.
  • the encoding sub-circuit may be one or more processors; a storage device for storing one or more programs; when the one or more programs are executed by the one or more processors, the One or more processors implement the optical communication method including step S3 as in any of the foregoing embodiments.
  • the embodiments of the present disclosure also provide a computer-readable medium on which a computer program is stored, wherein the program is executed by a processor as in any optical communication method including step S3 in the above embodiments A step of.
  • Such software may be distributed on a computer-readable medium, and the computer-readable medium may include a computer storage medium (or a non-transitory medium) and a communication medium (or a transitory medium).
  • the term computer storage medium includes volatile and non-volatile memory implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data). Sexual, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, tape, magnetic disk storage or other magnetic storage device, or Any other medium used to store desired information and that can be accessed by a computer.
  • a communication medium usually contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供了一种可见光通信方法,包括:响应于密钥信息,根据预设转换规则生成发光控制信号;根据发光控制信号控制发光组件发送密钥光信号。以及,响应于发光组件发送的密钥光信号,根据密钥光信号生成密钥信息;对密钥信息进行解密,以完成对密钥信息的验证。本公开还提供了一种可见光通信设备和计算机可读介质。

Description

可见光通信方法、可见光通信设备和计算机可读介质 技术领域
本公开涉及通信技术领域,特别涉及一种光通信方法、光通信设备和计算机可读介质。
背景技术
随着通信技术的发展,信号环境变得愈发复杂,针对特定场景,可见光通信技术(Visible Light Communication,简称VLC)的技术适配性强,使其得到广泛应用,例如需保证无电磁干扰(Electromagnetic Interference,简称EMI)的区域、电磁干扰复杂环境、射频(Radio Frequency,简称RF)难以传输的区域,以及无线局域网需要网络补充的场景,主要可应用于组网、音视频传输和远程控制相关领域。
现阶段针对电子门锁及相关密码锁领域,其多使用无线局域网或蓝牙技术进行密钥的传递,不仅需要额外成本,且在相应网络环境下,密钥传输的安全性和稳定性都不能得到保证。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种可见光通信方法、可见光通信设备和计算机可读介质。
为实现上述目的,第一方面,本公开实施例提供了一种可见光通信方法,包括:
响应于密钥信息,根据预设转换规则生成发光控制信号;
根据所述发光控制信号控制发光组件发送密钥光信号 。
在一些实施例中,所述根据预设转换规则生成发光控制信号的步骤,具体包括:
将所述密钥信息转换为对应的二进制密钥;
根据预设编码规则对所述二进制密钥进行编码,生成编码密 钥;
根据所述编码密钥生成所述发光控制信号。
在一些实施例中,所述根据预设编码规则对所述二进制密钥进行编码,生成编码密钥的步骤,具体包括:
对所述二进制密钥中的每一比特进行编码,生成由0和1组成的所述编码密钥;
其中,所述二进制密钥的各二进制数码与两个由0和1组成的编码串一一对应;且各编码串中0的个数最多的一者为第一编码串,1的个数最多的一者为第二编码串。
在一些实施例中,所述第一编码串和所述第二编码串的编码位数相等,所述第一编码串和所述第二编码串的编码位数大于等于3。
在一些实施例中,在所述第一编码串中,1只占用所述第一编码串的第一位或最后一位;
在所述第二编码串中,0只占用所述第二编码串的第一位或最后一位。
在一些实施例中,在所述将所述密钥信息转换为对应的二进制密钥的步骤之前,还包括:
记录密钥位数;
所述根据所述编码密钥生成所述发光控制信号的步骤,具体包括:
根据所述第一编码串和所述第二编码串的编码位数,以及所述密钥位数生成密钥前缀;
根据所述密钥前缀和所述编码密钥生成所述发光控制信号。
第二方面,本公开实施例还提供了一种可见光通信方法,包括:
响应于发光组件发送的密钥光信号,根据所述密钥光信号生成密钥信息;
对所述密钥信息进行解密,以完成对所述密钥信息的验证。
在一些实施例中,所述根据所述密钥光信号生成密钥信息的 步骤,具体包括:
根据所述密钥光信号生成编码密钥;
对所述编码密钥进行解码,生成二进制密钥;
其中,所述编码密钥的一个编码串对应所述二进制密钥的一个比特,所述二进制密钥的各二进制数码与两个由0和1组成的编码串一一对应;且各编码串中0的个数最多的一者为第一编码串,1的个数最多的一者为第二编码串;
将所述二进制密钥转换为对应的密钥信息。
在一些实施例中,在所述根据所述密钥光信号生成编码密钥的步骤之前,还包括:
根据所述密钥光信号生成密钥前缀,并根据所述密钥前缀生成所述第一编码串和所述第二编码串的编码位数,以及密钥位数;
所述对所述编码密钥进行解码,生成二进制密钥的步骤,具体包括:
根据所述编码位数和所述密钥位数对所述编码密钥进行解码,生成所述二进制密钥。
第三方面,本公开实施例提供一种可见光发送设备,包括:
编码子电路,响应于密钥信息,根据预设转换规则生成发光控制信号;
驱动子电路,响应于所述发光控制信号,而驱动发光组件;
发光组件,响应于所述驱动子电路的驱动,而发送密钥光信号。
在一些实施例中,所述可见光发送设备,还包括:
密钥录入子电路,用于接收密钥信息。
第四方面,本公开实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如上述实施例中任一所述的包括所述根据所述发光控制信号控制发光组件发送密钥光信号的光通信方法中的步骤。
第五方面,本公开实施例还提供了一种可见光接收设备,其包括:
解码子电路,响应于发光组件发送的密钥光信号,根据所述密钥光信号生成密钥信息;
验证子电路,用于对所述密钥信息进行解密,以完成对所述密钥信息的验证。
在一些实施例中,所述可见光接收设备,还包括:接收子电路,用于接收发光组件发送的密钥光信号。
第六方面,本公开实施例还提供了一种计算机可读介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如上述实施例中任一所述的包括所述根据所述密钥光信号生成密钥信息的光通信方法中的步骤。
附图说明
图1为本公开实施例提供的一种可见光通信方法的流程图;
图2为本公开实施例提供的另一种可见光通信方法的流程图;
图3为本公开实施例中步骤S102的一种具体实施方法流程图;
图4为本公开实施例提供的再一种可见光通信方法的流程图;
图5为本公开实施例提供的再一种可见光通信方法的流程图;
图6为本公开实施例提供的再一种可见光通信方法的流程图;
图7为本公开实施例提供的再一种可见光通信方法的流程图;
图8为本公开实施例中对密钥信息进行编码的一种具体实施方法流程图。
图9为本公开实施例中的可见光发送设备的结构示意图;
图10为本公开实施例中的可见光接收设备的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开的技术方案,下面结合附图对本公开提供的可见光通信方法、可见光通信设备和计算机可读介质进行详细描述。
本公开所提供的可见光通信方法可用于通过可见光通信技术,将密钥信息通过发光组件在发送端发送,接收端接收光信号,对应的进行解码比对,完成密钥信息传递和验证。其中,发送端移动设备,例如手机,接收端可以为能够接收可见光信号的智能门锁,当然发送端和接收端设备不局限于上述情况,也可以是任何可以实现可见光通信的设备,在此不一一列举,在本公开实施例中的举例说明中,均以发送端为手机、发光组件为LED闪烁灯,接收端为智能门锁为例,接收端中的接收组件为光敏二极管,但这并不构成对本公开实施保护范围的限制。
第一方面,图1为本公开实施例提供的一种可见光通信方法的流程图。如图1所示,该方法应用于发送端,该方法包括:步骤S1和步骤S2。
步骤S1、响应于密钥信息,根据预设转换规则生成发光控制信号。
在步骤S1中,以发送端为移动通信设备,特别地,手机为例。手机中的接收子电路获取到密钥信息后,可通过编码子电路将密钥信息整体以字符串数据形式存储为一个字符串,之后将字符串中的每一位字符存储在一个字符数组中,对每个字符根据预设转换规则进行转换,以生成发光控制信号。
步骤S2、根据发光控制信号控制发光组件发送密钥光信号。
在步骤S2中,手机中的控制控制子电路根据编码子电路生成的发光控制信号通过发光组件,如LED闪光灯,按照发光控制信号和发光信号的对应关系进行光信号传输,也即发送密钥光信号。例如:发光控制信号对应发光组件闪烁发光三次,时间间隔为0.1S。
在一些实施例中,图2为本公开实施例提供的另一种可见光 通信方法的流程图。如图2所示,该方法为基于图1所示方法的一种具体化可选实施方案,其中,步骤S1中,根据预设转换规则生成发光控制信号的步骤,具体包括:步骤S101-步骤S103。下面仅对步骤S101-步骤S103进行详细描述。
步骤S101、将密钥信息转换为对应的二进制密钥。
在步骤S101中,如步骤S1所描述的,在密钥信息的每一位字符存储在一个字符数组中之后,可将每一个字符根据数字规则转换为其对应的二进制数,全部字符转换为二进制数后即生成二进制密钥。
步骤S102、根据预设编码规则对二进制密钥进行编码,生成编码密钥。
在一些实施例中,图3为本公开实施例中步骤S102的一种具体实施方法流程图。如图3所示,在步骤S102中,根据预设编码规则对二进制密钥进行编码,生成编码密钥的步骤,具体包括:步骤S1021。
步骤S1021、对二进制密钥中的每一比特进行编码,生成由0和1组成的编码密钥。
其中,二进制密钥的各二进制数码与两个由0和1组成的编码串一一对应;且各编码串中0的个数最多的一者为第一编码串,1的个数最多的一者为第二编码串。
具体地,二进制数码为0和1,即二进制密钥中的0和1与两个由0和1组成的编码串一一对应,两个编码串中0的个数最多的一者为第一编码串,对应0和1其中一个数码,两个编码串中1的个数最多的一者为第二编码串,对应另一个数码,以此进行编码。
在一些实施例中,其中一个数码进行编码时可保留该数码,并使用另一数码对编码位进行填充已形成编码串,如当针对0进行编码时,编码位数为3,则可使用1进行填充,形成例如“011”等的编码串以代表二进制数码0。
步骤S103、根据编码密钥生成发光控制信号。
其中,使用0和1控制发光器件的发光情况。
在一些实施例中,第一编码串和第二编码串的编码位数相等,第一编码串和第二编码串的编码位数大于等于3。
在一些实施例中,在第一编码串中,1只占用第一编码串的第一位或最后一位;在第二编码串中,0只占用第二编码串的第一位或最后一位。
其中,将0和1设置在编码串的首位或末位,以在发送密钥光信号时形成电平跳变,接收端可在跳变时进行信息采集,保证密钥各字符的独立性,便于接收端的密钥接收,减少接收错误。
本公开实施例提供了一种可见光通信方法,该方法可用于将密钥信息转换为二进制密钥,并针对二进制密钥进行编码,增加发光控制的适用性。
在一些实施例中,图4为本公开实施例提供的再一种可见光通信方法的流程图。如图4所示,该方法为基于图2所示方法的一种具体化可选实施方案,具体地,该方法不仅包括步骤S102、步骤S103和步骤S2,在步骤S101,将密钥信息转换为对应的二进制密钥的步骤之前,还包括:步骤S1a。
步骤S1a、记录密钥位数。
在步骤S1a中,如步骤S1所描述的,将密钥信息整体以字符串数据形式存储为一个字符串,并记录密钥长度,即密钥位数。
步骤S103,根据编码密钥生成发光控制信号的步骤,具体包括:步骤S1b和步骤S1c。
步骤S1b、根据第一编码串和第二编码串的编码位数,以及密钥位数生成密钥前缀。
其中,密钥前缀可包括:第一编码串和第二编码串的编码位数、密钥位数、密钥标识和编码标识等。
步骤S1c、根据密钥前缀和编码密钥生成发光控制信号。
其中,密钥前缀即数据包包头,编码密钥即数据部分。在一些实施例中,密钥位数可作为独立部分,发光控制信号还包括用于指示发送结束的包尾部分。
在一些实施例中,本公开实施例提供了一种可见光通信方法,该方法可用于将相应指示信息组合生成密钥前缀并一同发送,以保证密钥传输的连续性和资源完整性。
第二方面,图5为本公开实施例提供的再一种可见光通信方法的流程图。如图5所示,该方法应用于接收端,该方法与上述可见光通信方法相对应,也即在本公开实施例中接收端所接收的信号为上述方法中发送端所所发送的信号。本公开实施例的通信方法包括:步骤S3-步骤S4。
步骤S3、响应于发光组件发送的密钥光信号,根据密钥光信号生成密钥信息。
在步骤S3中,接收设备可以为智能门锁,智能门锁上的接收端可采用光敏二极管,当光敏二极管接收到手机上的LWD闪烁灯发送的密钥光信号,该密钥光信号可以讲过智能门锁中的滤波子电路进行经滤波、放大子电路对滤波后的密钥光信号,之后通过模数转换子电路将放大后的密钥光信号转换为相应数字信号,以进行后续的解码解密。
步骤S4、对密钥信息进行解密,以完成对密钥信息的验证。
在步骤S4中,智能门锁中解码子电路可以对步骤S3中输出的数字形式的密钥光信号进行解码,当解码成功后智能门锁将被打开,也即密钥信息验证成功;否则,门锁无法打开,与此同时还可以控制报警装置进行报警。
在一个具体示例中,对应编码位数为4时,解码规则定义了5种状态:准备状态(Pre_Mode)、同步状态(Sync_Mode)、数据接收状态(Data_Mode)、接收完成状态(Msg_Mode)和停止接收状态(Idle_Mode);并定义了6个阈值单0下限(MinShortCount)、单0上限(MaxShortCount)、三0下限(MinCount)、三0上限(MaxCount)、四0下限(MinLongCount)、四0上限(MaxLongCount)。
其中,当接收端的相应的接收组件被唤醒后进入准备状态,采样计数器开始计数;如果发生跳变(即本次采样值与上次采样 值不同),且本次采样值为1,则进入同步状态,且采样计数器清零;在同步状态下,如果发生跳变,且本次采样值为1,则判断采样计数器值的范围,是否满足处于四0下限和四0上限之间,如果不满足,则回到准备状态,如果满足,则进入数据接收状态,且采样计数器清零。
在数据接收状态下,如果发生跳变,且本次采样值为1,则判断采样计数器值的范围;如果满足处于三0下限和三0上限之间,则判断此时接收的是1,并将1存入密钥数组;如果满足处于单0下限和单0上限之间,则判断此时接收的是0,将0存入密钥数组;如果不满足处于单0下限和四0上限之间,则回到准备状态,且采样计数器清零。
如果接收的数据长度大于等于秘钥长度,则相应进入接收完成状态,表示接收完成,采样计数器清零;停止接收状态这对应接收组件未触发或指示停止的状态。
其中,由于只在信号发生跳变的时候读取采样计数器的值,在数据包包头包尾的选择上,包头中的数据要与数据位的数据有明显的区别,如编码位数为4,第一编码串和第二编码串分别包括单0和三个连0的状态时,包头可选择包括4个连0,以形成明显的区分界限,提高解码正确率;相应地,当密钥位数和二进制密钥经过编码后,出现的是偶数的有效跳变,而包头是奇数的有效跳变时,包尾如果是偶数的有效跳变,则会出现一旦因操作不当(距离、角度等),包尾将无法跳出数据接收状态,后续接收的时候,将无法正确解码,在这种情形下的包尾的选择上,应确保是奇数的有效跳变,即1次有效跳变。
其中,对密钥信息进行解码解密后,与预设密钥进行匹配比对,完成对密钥信息的验证。
本公开实施例提供了一种可见光通信方法,该方法可用于通过可见光通信技术,接收密钥光信号,对密钥信息进行解密,完成对密钥信息的验证,密钥传递安全性和接收可靠性高。
在一些实施例中,图6为本公开实施例提供的再一种可见光 通信方法的流程图。如图6所示,该方法为基于图5所示方法的一种具体化可选实施方案,具体地,该方法不仅包括步骤S4,步骤S3中,根据密钥光信号生成密钥信息的步骤,具体包括:步骤S301-步骤S303。下面仅对步骤S301-步骤S303进行详细描述。
步骤S301、根据密钥光信号生成编码密钥。
在步骤S301中,如步骤S3中的描述,接收到的密钥光信号经过适当的滤波、放大电路后,通过模数转换将密钥光信号转换为编码密钥。
步骤S302、对编码密钥进行解码,生成二进制密钥。
其中,如步骤S1021中的编码规则,在解码过程中,编码密钥的一个编码串对应二进制密钥的一个比特,二进制密钥的各二进制数码与两个由0和1组成的编码串一一对应;且各编码串中0的个数最多的一者为第一编码串,1的个数最多的一者为第二编码串。
步骤S303、将二进制密钥转换为对应的密钥信息。
其中,将解码出的二进制密钥根据数字规则转换为原始的密钥信息。
在一些实施例中,图7为本公开实施例提供的再一种可见光通信方法的流程图。如图7所示,该方法为基于图6所示方法的一种具体化可选实施方案,具体地,在步骤S301,根据密钥光信号生成编码密钥的步骤之前,还包括:步骤S3a。
步骤S3a、根据密钥光信号生成密钥前缀,并根据密钥前缀生成第一编码串和第二编码串的编码位数,以及密钥位数。
步骤S302,对编码密钥进行解码,生成二进制密钥的步骤,具体包括:步骤S3b。
步骤S3b、根据编码位数和密钥位数对编码密钥进行解码,生成二进制密钥。
本公开实施例提供了一种可见光通信方法,该方法可用于根据密钥前缀对编码密钥进行解码,提升解码正确率。
下面对本公开提供的可见光通信方法结合实际应用进行详细 描述,发送端为移动通信设备手机,具备发光器件闪光灯,并安装有相应的应用程序对闪光灯进行控制;接收端为智能门锁,通过光敏二极管进行光信号的接收。
图8为本公开实施例中对密钥信息进行编码的一种具体实施方法流程图。如图8所示,具体地,手机设备的密钥录入组件获取到密钥“88”后,将密钥信息整体以字符串数据形式存储为一个字符串;之后将字符串中的每一位字符存储在一个字符数组中,并记录密码长度,即密码位数,密码长度为2,在封装时,定义密码位数为密码长度加1,即密码位数为3,对应二进制数“0011”;将每一个字符根据数字规则转换为其对应的二进制数,生成二进制密钥“1000 1000”;对二进制密钥中的每一比特进行编码,生成由0和1组成的编码密钥,其中,二进制密钥的各二进制数码与两个由0和1组成的编码串一一对应,第一编码串“0111”对应二进制数码“0”,第二编码串“0001”对应二进制数码“1”,编码后生成编码密钥“0001 0111 0111 0111 0001 0111 0111 0111”,密钥位数“0111 0111 0001 0001”,另外包头根据各指示位取值为“11000011”,包尾为“101110”;进行封装后生成光灯的发光控制信号,通过调用手机闪光灯的应用程序接口,根据该发光控制信号控制闪光灯的亮灭,以发送密钥光信号。
智能门锁设备通过光敏二极管接收密钥光信号后,经过适当的滤波、放大电路后,通过模数转换将密钥光信号转换为编码密钥;解析密钥位数等指示信息后,通过与编码规则对应的解码规则对编码密钥进行解码,并将解码后得到的密钥“88”与用于校验的密钥进行比对,以验证该密钥的正确性。
第三方面,图9为本公开实施例的可见光发送设备的结构示意图;如图9所示,本公开实施例提供了一种可见光发送设备,包括:编码子电路11、驱动子电路12和发光组件13。其中,编码子电路11响应于密钥信息,根据预设转换规则生成发光控制信号;驱动子电路12响应于所述发光控制信号,而驱动发光组件13;发光组件13响应于所述驱动子电路12的驱动,而发送密钥 光信号。
其中,编码子电路11可以为一个或多个处理器;存储装置,用于存储一个或多个程序;当该一个或多个程序被该一个或多个处理器执行时,使得该一个或多个处理器实现如上述实施例中任一包括步骤S1的光通信方法。驱动子电路可以执行上述的步骤S2。
在一些实施例中,可见光发送设备还包括:密钥录入子电路,用于接收密钥信息。
在本公开实施例中的可见光发送设备可以为移动设备,例如手机、ipad等。
第四方面,本公开实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,该程序被处理器执行时实现如上述实施例中任一包括步骤S1-步骤S2的光通信方法中的步骤。
第五方面,图10为本公开实施例的可见光接收设备的结构示意图;如图10所示,本公开实施例还提供了一种可见光接收设备,包括:解码子电路21和验证子电路22;其中,解码子电路21响应于发光组件发送的密钥光信号,根据密钥光信号生成密钥信息;验证子电路22用于对密钥信息进行解密,以完成对所述密钥信息的验证。
具体的,解码子电路21可用于执行上述步骤S3,验证子电路22可用于执行上述步骤S4。
在一些实施例中,可见光接收设备还可以包括接收子电路,用于接收可见光信号,例如密钥光信号。接收子电路具体可以为光敏二极管。
在一些实施例中,可见光接收设备可以为智能门锁等。
在一些实施例中,编码子电路可以为一个或多个处理器;存储装置,用于存储一个或多个程序;当该一个或多个程序被该一个或多个处理器执行时,使得该一个或多个处理器实现如上述实施例中任一包括步骤S3的光通信方法。
第六方面,本公开实施例还提供了一种计算机可读介质,其 上存储有计算机程序,其中,该程序被处理器执行时实现如上述实施例中任一包括步骤S3的光通信方法中的步骤。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其它数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其它存储器技术、CD-ROM、数字多功能盘(DVD)或其它光盘存储、磁盒、磁带、磁盘存储或其它磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其它的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其它传输机制之类的调制数据信号中的其它数据,并且可包括任何信息递送介质。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (15)

  1. 一种可见光通信方法,其特征在于,包括:
    响应于密钥信息,根据预设转换规则生成发光控制信号;
    根据所述发光控制信号控制发光组件发送密钥光信号。
  2. 根据权利要求1所述的可见光通信方法,其特征在于,所述根据预设转换规则生成发光控制信号的步骤,具体包括:
    将所述密钥信息转换为对应的二进制密钥;
    根据预设编码规则对所述二进制密钥进行编码,生成编码密钥;
    根据所述编码密钥生成所述发光控制信号。
  3. 根据权利要求2所述的可见光通信方法,其特征在于,所述根据预设编码规则对所述二进制密钥进行编码,生成编码密钥的步骤,具体包括:
    对所述二进制密钥中的每一比特进行编码,生成由0和1组成的所述编码密钥;
    其中,所述二进制密钥的各二进制数码与两个由0和1组成的编码串一一对应;且各编码串中0的个数最多的一者为第一编码串,1的个数最多的一者为第二编码串。
  4. 根据权利要求3所述的可见光通信方法,其特征在于,所述第一编码串和所述第二编码串的编码位数相等,所述第一编码串和所述第二编码串的编码位数大于等于3。
  5. 根据权利要求3所述的可见光通信方法,其特征在于,在所述第一编码串中,1只占用所述第一编码串的第一位或最后一位;
    在所述第二编码串中,0只占用所述第二编码串的第一位或最后一位。
  6. 根据权利要求3-5所述的可见光通信方法,其特征在于,在所述将所述密钥信息转换为对应的二进制密钥的步骤之前,还包括:
    记录密钥位数;
    所述根据所述编码密钥生成所述发光控制信号的步骤,具体包括:
    根据所述第一编码串和所述第二编码串的编码位数,以及所述密钥位数生成密钥前缀;
    根据所述密钥前缀和所述编码密钥生成所述发光控制信号。
  7. 一种可见光通信方法,其特征在于,包括:
    响应于发光组件发送的密钥光信号,根据所述密钥光信号生成密钥信息;
    对所述密钥信息进行解密,以完成对所述密钥信息的验证。
  8. 根据权利要求7所述的可见光通信方法,其特征在于,所述根据所述密钥光信号生成密钥信息的步骤,具体包括:
    根据所述密钥光信号生成编码密钥;
    对所述编码密钥进行解码,生成二进制密钥;
    其中,所述编码密钥的一个编码串对应所述二进制密钥的一个比特,所述二进制密钥的各二进制数码与两个由0和1组成的编码串一一对应;且各编码串中0的个数最多的一者为第一编码串,1的个数最多的一者为第二编码串;
    将所述二进制密钥转换为对应的密钥信息。
  9. 根据权利要求8所述的可见光通信方法,其特征在于,在所述根据所述密钥光信号生成编码密钥的步骤之前,还包括:
    根据所述密钥光信号生成密钥前缀,并根据所述密钥前缀生成所述第一编码串和所述第二编码串的编码位数,以及密钥位数;
    所述对所述编码密钥进行解码,生成二进制密钥的步骤,具体包括:
    根据所述编码位数和所述密钥位数对所述编码密钥进行解码,生成所述二进制密钥。
  10. 一种可见光发送设备,其特征在于,包括:
    编码子电路,响应于密钥信息,根据预设转换规则生成发光控制信号;
    驱动子电路,响应于所述发光控制信号,而驱动发光组件;
    发光组件,响应于所述驱动子电路的驱动,而发送密钥光信号。
  11. 根据要求10所述可见光发送设备,其特征在于,还包括:
    密钥录入子电路,用于接收密钥信息。
  12. 一种计算机可读介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-6中任一所述的光通信方法中的步骤。
  13. 一种可见光接收设备,其特征在于,包括:
    解码子电路,响应于发光组件发送的密钥光信号,根据所述密钥光信号生成密钥信息;
    验证子电路,用于对所述密钥信息进行解密,以完成对所述密钥信息的验证。
  14. 根据权利要求14所述的可见光接收设备,其特征在于,包括:接收子电路,用于接收发光组件发送的密钥光信号。
  15. 一种计算机可读介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求7-9中任一所述的光通 信方法中的步骤。
PCT/CN2020/141489 2020-03-31 2020-12-30 可见光通信方法、可见光通信设备和计算机可读介质 WO2021196785A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010247212.5 2020-03-31
CN202010247212.5A CN111464238A (zh) 2020-03-31 2020-03-31 可见光通信方法和计算机可读介质

Publications (1)

Publication Number Publication Date
WO2021196785A1 true WO2021196785A1 (zh) 2021-10-07

Family

ID=71684297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141489 WO2021196785A1 (zh) 2020-03-31 2020-12-30 可见光通信方法、可见光通信设备和计算机可读介质

Country Status (2)

Country Link
CN (1) CN111464238A (zh)
WO (1) WO2021196785A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111464238A (zh) * 2020-03-31 2020-07-28 京东方科技集团股份有限公司 可见光通信方法和计算机可读介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542640A (zh) * 2011-11-16 2012-07-04 深圳光启高等理工研究院 门禁方法及系统、led门匙和led光控密码锁
CN102610013A (zh) * 2012-02-29 2012-07-25 深圳光启创新技术有限公司 可见光通信方法和基于可见光通信的数据存储系统
CN103198551A (zh) * 2013-04-16 2013-07-10 桂林理工大学 可见光智能门禁装置
CN103310509A (zh) * 2012-03-15 2013-09-18 深圳光启创新技术有限公司 一种门禁系统的通信方法
KR20140006513A (ko) * 2012-07-06 2014-01-16 주식회사 아이디로 가시광 통신을 이용한 도어락 시스템
US20140113592A1 (en) * 2012-10-18 2014-04-24 Ching-Fang Wu Process Method for System Login in Light-Operated Manner, Light-Operated Electronic Equipment and Mobile Electronic Device for Controlling Electronic Equipment with Light
CN107979417A (zh) * 2017-11-22 2018-05-01 重庆思柏高科技有限公司 一种可见光通信的编码方法及装置
CN110570566A (zh) * 2019-09-10 2019-12-13 南京邮电大学 基于移动终端的光子门锁控制方法
CN110910540A (zh) * 2019-11-29 2020-03-24 京东方科技集团股份有限公司 锁定装置、开锁装置以及安防系统
CN111464238A (zh) * 2020-03-31 2020-07-28 京东方科技集团股份有限公司 可见光通信方法和计算机可读介质

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102542640A (zh) * 2011-11-16 2012-07-04 深圳光启高等理工研究院 门禁方法及系统、led门匙和led光控密码锁
CN102610013A (zh) * 2012-02-29 2012-07-25 深圳光启创新技术有限公司 可见光通信方法和基于可见光通信的数据存储系统
CN103310509A (zh) * 2012-03-15 2013-09-18 深圳光启创新技术有限公司 一种门禁系统的通信方法
KR20140006513A (ko) * 2012-07-06 2014-01-16 주식회사 아이디로 가시광 통신을 이용한 도어락 시스템
US20140113592A1 (en) * 2012-10-18 2014-04-24 Ching-Fang Wu Process Method for System Login in Light-Operated Manner, Light-Operated Electronic Equipment and Mobile Electronic Device for Controlling Electronic Equipment with Light
CN103198551A (zh) * 2013-04-16 2013-07-10 桂林理工大学 可见光智能门禁装置
CN107979417A (zh) * 2017-11-22 2018-05-01 重庆思柏高科技有限公司 一种可见光通信的编码方法及装置
CN110570566A (zh) * 2019-09-10 2019-12-13 南京邮电大学 基于移动终端的光子门锁控制方法
CN110910540A (zh) * 2019-11-29 2020-03-24 京东方科技集团股份有限公司 锁定装置、开锁装置以及安防系统
CN111464238A (zh) * 2020-03-31 2020-07-28 京东方科技集团股份有限公司 可见光通信方法和计算机可读介质

Also Published As

Publication number Publication date
CN111464238A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
US9667345B2 (en) Method, apparatus, and system for encoding and decoding visible light signal
US9780877B2 (en) Multi-stage amplitude modulation-based methods, apparatuses and systems for coding and decoding visible light signal
US10659158B1 (en) Signal transmitting and receiving devices, method and system based on visible light communication
US10075238B2 (en) Methods and devices for optical signal encoding and decoding
EP3190538B1 (en) Signal encoding and decoding methods, device and system
US9577788B2 (en) Coding apparatus, coding method, data communication apparatus, and data communication method
CN1157029C (zh) 用于接收和译码信号的方法和接收机
WO2021196785A1 (zh) 可见光通信方法、可见光通信设备和计算机可读介质
US9859978B2 (en) Self-adaptive receiving method, device, and system for radio signal
KR100849427B1 (ko) 부호화된 dc 축적을 회피하며, 디코더를 동기화하고전송 에러들을 탐지하기 위한 코딩 위반을 사용할 수 있는통신 시스템의 인코더
US10116420B2 (en) Error retransmission mechanism-comprised methods, apparatuses and systems for transmitting and receiving visible light signal
US8031746B2 (en) Synchronized receiver
CN102810220A (zh) 基于门禁系统的可见光信号传输方法和门禁系统
CN109347605B (zh) 一种编码方法、解码方法及装置、计算机可读存储介质
FI102929B (fi) Kauko-ohjausjärjestelmä sekä siinä käytettävä lähetin ja vastaanotin
CN103793979A (zh) 用于升级光子接收端的方法
CN103812574B (zh) 提高光子身份认证系统识别率的方法、装置及系统
CN112486885B (zh) 数据帧的生成方法、存储介质及计算机设备
US20180069659A1 (en) Method for processing signaling sub-segment, processing apparatus, access point, and station
RU2375830C2 (ru) Способ для генерирования сигнала основной полосы и устройство для его осуществления, а также программа, заставляющая компьютер выполнять упомянутый способ
US20220216917A1 (en) Light communication method and process for the self-adaptive reception of a light communication signal
JPS60191542A (ja) 赤外光空中伝搬デ−タ伝送装置
WO2017050233A1 (zh) 信号接收方法及装置
CN118301575A (zh) 一种蓝牙通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20929570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20929570

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20929570

Country of ref document: EP

Kind code of ref document: A1