WO2015014108A1 - 电源变换模块、供电装置和供电方法 - Google Patents

电源变换模块、供电装置和供电方法 Download PDF

Info

Publication number
WO2015014108A1
WO2015014108A1 PCT/CN2014/070869 CN2014070869W WO2015014108A1 WO 2015014108 A1 WO2015014108 A1 WO 2015014108A1 CN 2014070869 W CN2014070869 W CN 2014070869W WO 2015014108 A1 WO2015014108 A1 WO 2015014108A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
subunit
unit
channel
switching
Prior art date
Application number
PCT/CN2014/070869
Other languages
English (en)
French (fr)
Inventor
方庆银
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14755766.4A priority Critical patent/EP2854281B1/en
Priority to US14/481,216 priority patent/US9088175B2/en
Publication of WO2015014108A1 publication Critical patent/WO2015014108A1/zh
Priority to US14/738,164 priority patent/US10014715B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/20Error detection or correction of the data by redundancy in hardware using active fault-masking, e.g. by switching out faulty elements or by switching in spare elements
    • G06F11/2015Redundant power supplies
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3058Monitoring arrangements for monitoring environmental properties or parameters of the computing system or of the computing system component, e.g. monitoring of power, currents, temperature, humidity, position, vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to an electronic technology, and in particular, to a power conversion module, a power supply device, and a power supply method.
  • a typical communication device, an information communication technology (ICT) device includes a power supply device, a service board, and a cooling fan.
  • the power supply device is responsible for receiving one or more power inputs external to the device, and converting the power input from the device into a power source (including a service board, a cooling fan, etc.).
  • N power conversion modules need to be installed in the power supply device, and each power conversion module is connected to one power supply, that is, the N power supply needs to have N power conversion modules, and the power conversion The module converts the output voltage of the power supply to the DC voltage required by the load in the device, typically -48V or 12V.
  • the power supply is usually N+N backed up, that is, one power supply is backed up for each power supply.
  • Each power conversion module takes power from a power supply.
  • the power conversion module is also N+N backup.
  • N power conversion modules take power from N A-channel power supplies, and the other N power conversion modules are from N B. The road power supply is taken.
  • the power conversion module when N+N backup is performed on N power supplies, the power conversion module also needs to perform N+N backup.
  • the number of power conversion modules required by the power supply device is large, especially for high-power devices, and the number of power conversion modules required by the power supply device will be More. For example, for devices that consume more than 20kw, the number of power conversion modules may exceed 16. Therefore, the power supply device has a large demand for the power conversion module, which increases the power supply cost of the system, and also increases the space occupied by the power conversion module.
  • the embodiment of the invention provides a power conversion module, a power supply device and a power supply method, which are used for solving the defects of a large number of power conversion modules in the power supply device, and reduce the power conversion module in the power supply device when the power supply high reliability is satisfied. The number.
  • a power conversion module provided by an embodiment of the present invention includes
  • the detecting switching unit is respectively connected to an output end of the first alternating current power source and an output end of the second alternating current power source, wherein the detecting switching unit is further connected to the converting unit, the converting unit and the load Connection
  • the detecting switching unit is configured to monitor an operating state of the first alternating current power source and an operating state of the second alternating current power source in real time, and close the normal working state of the first alternating current power source and the second alternating current power source a passage between the power source and the conversion unit, and cutting off a passage between the other of the first alternating current power source and the second alternating current power source and the conversion unit;
  • the conversion unit is configured to rectify the AC voltage outputted by the AC power source in the normal working state in the channel in which the detecting switching unit is closed, and convert the DC voltage into a DC voltage required by the load.
  • the detecting switching unit includes: a detecting subunit, a controlling subunit, a first switching subunit, and a second switching subunit;
  • the detecting subunit is respectively connected to an output end of the first alternating current power source and an output end of the second alternating current power source, and the detecting subunit is further connected to the control subunit; the detecting subunit is used for Detecting a voltage value of the first alternating current power source and a voltage value of the second alternating current power source in real time, and transmitting the detected voltage value of the first alternating current power source and a voltage value of the second alternating current power source to the Control subunit
  • the control subunit is respectively connected to the detecting subunit, the first switching subunit, and the second switching subunit; the control subunit is configured to perform real time according to a voltage value of the first alternating current power source. Monitoring whether the first AC power source is in a normal working state, and monitoring, according to the voltage value of the second AC power source, whether the second AC power source is in a normal working state;
  • the first switching subunit is respectively connected to the first alternating current power source, the converting unit and the control subunit; the second switching subunit is respectively connected to the second alternating current power source, the converting unit and the Control subunit connection;
  • the control subunit is further configured to: according to the working state of the first alternating current power source and the second a working state of the AC power source, sending a closing signal to the first switching subunit or the second switching subunit connected to an AC power source in the normal working state of the first AC power source and the second AC power source, to the other power source
  • the connected first switching subunit or the second switching subunit sends a disconnection signal to close a channel between the AC power source and the conversion unit in the normal working state of the first alternating current power source and the second alternating current power source Cutting off a channel between the first alternating current power source and another alternating current power source of the second alternating current power source and the conversion unit;
  • the first switching subunit is configured to cut or close a channel between the first alternating current power source and the converting unit according to a control signal sent by the control subunit;
  • the second switching subunit is configured to cut or close a channel between the second alternating current power source and the converting unit according to a control signal sent by the control subunit.
  • the detecting switching unit further includes: a cut confirmation subunit;
  • the cut confirmation subunit is respectively connected to the control subunit, the first switching subunit and the second switching subunit, and the conversion unit;
  • the control subunit is further configured to first connect the first switching subunit or the second switcher to an AC power source in an abnormal working state of the first AC power source and the second AC power source
  • the unit transmits a disconnection signal, and then sends a disconnection confirmation instruction signal including a channel identifier to the disconnection confirmation subunit, and after receiving the disconnection confirmation signal sent by the disconnection confirmation subunit, the first alternating current power source and the first
  • the first switching subunit or the second switching subunit connected to another AC power source of the AC power source sends a closing signal;
  • the channel identifier is used to identify between the first AC power source and the connecting unit a passage, or a passage between the second alternating current power source and the conversion unit;
  • the cut confirmation subunit is configured to: after receiving the cut confirmation indication signal sent by the control subunit, determine whether the channel corresponding to the channel identifier is cut off, and after determining that the channel corresponding to the channel identifier is cut off, the control is performed.
  • the subunit transmits a cutoff confirmation response signal.
  • the embodiment of the present invention provides a power control method, in which each power conversion module in the power supply device is respectively connected with a first alternating current power source and a second alternating current power source, and the method includes:
  • the AC voltage of the AC power output in the normal working state in the channel in which the detecting switching unit is closed is rectified and converted into a DC voltage required by the load.
  • the method further includes: if the first AC power source is in an abnormal working state and the second AC power source is in an abnormal working state, The host of the power supply device sends an alarm message.
  • the real-time monitoring of an operating state of the first alternating current power source and an operating state of the second alternating current power source including:
  • the voltage value of the AC power source determines whether the second AC power source is in a normal working state.
  • the embodiment of the present invention further provides a power supply device, including: N+m power conversion modules as described above, and N+m output terminals of the power conversion module are connected in parallel to implement load balancing; wherein, N The power conversion module is a main power conversion module, and the m power conversion modules are standby power conversion modules; N is a natural number, and the m is an integer greater than or equal to 0 and less than or equal to the N.
  • the power conversion module uses an AC power source in a normal working state of the two AC power sources connected as a power supply, converts the AC voltage outputted by the power source, and outputs the AC voltage to the load. Therefore, the power conversion module is connected to the AC.
  • the power supply implements dual backup. Because the AC power supply connected to each power conversion module realizes double backup, for the power supply device including N power conversion modules, the input power supply realizes N+N backup, which satisfies the high reliable power supply for the load. demand. In the prior art, the power supply N+N backup is implemented, and N+N power conversion modules are required in the power supply device, and the power supply device provided in this embodiment only needs N power conversion modules.
  • the number of the power conversion modules included in the power supply device provided by the embodiment is far less than the number of the power conversion modules included in the power supply device provided by the prior art, and the power supply device is reduced. Cost of production. Further, in order to implement backup of the power conversion module, at least one power conversion module may be added to the power supply device, and therefore, the power supply of the N+m power conversion modules is included. Device. Not only the N+N backup of the power supply is realized, but also the N+m backup of the power conversion module is realized.
  • FIG. 1 is a schematic structural view of a power supply device provided by the prior art
  • FIG. 2 is a schematic structural diagram of a power conversion module according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another power conversion module according to an embodiment of the present invention.
  • FIG. 4 is a circuit structural diagram of a detecting subunit according to an embodiment of the present invention.
  • FIG. 5A is a circuit configuration diagram of a first switching subunit provided by an embodiment of the present invention
  • FIG. 5B is a circuit structural diagram of a second switching subunit provided by an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a power supply conversion module according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a power conversion module according to an embodiment of the present invention
  • FIG. 8 is a schematic circuit diagram of an auxiliary power subunit according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of a conversion unit according to an embodiment of the present invention.
  • FIG. 10 is a schematic circuit diagram of a rectification and PFC module according to an embodiment of the present invention
  • FIG. 11 is a flowchart of a power control method according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a power supply device according to an embodiment of the present invention. detailed description
  • the power conversion module includes a detection switching unit 21 and a conversion unit 22.
  • the detection switching unit is connected to the conversion unit, and the output of the conversion unit can be connected to the load to supply power to the load.
  • the detection switching unit is also connected to the output end of the first alternating current power source and the output end of the second alternating current power source, respectively.
  • the detection switching unit has two input terminals, one input terminal is connected to the output end of the first alternating current power source, and the other input terminal is connected to the output end of the second alternating current power source.
  • One of the two AC power supplies connected to the power conversion module works normally, and the power conversion module can supply power to the load.
  • the first AC power source and the second AC power source may come from different power supply networks in the equipment room, or may come from two different UPS or batteries. Among them, AC (Alternating Current, AC for short) power supply can Is 220V, 110V or 120V o
  • the detecting switching unit is configured to monitor the working state of the first alternating current power source and the working state of the second alternating current power source in real time, and close a channel between the alternating current power source and the converting unit in the normal working state of the first alternating current power source and the second alternating current power source And cutting off the passage between the first alternating current power source and the other alternating current power source and the conversion unit of the second alternating current power source.
  • the detecting switching unit can close the channel between any AC power source and the conversion unit, cut off the channel between the other AC power source and the conversion unit, and make the channel closed AC power supply power supply.
  • the AC power supply that detects the channel between the switching unit and the conversion unit is the power supply for the load.
  • the AC power supply can be called the main power supply, and the other is called the standby power supply. power supply.
  • one of the two AC power sources is in a non-working state, and the other is in a normal working state, detecting a channel between the power source and the conversion unit in which the switching unit is closed in a normal working state, and cutting off the channel between the faulty power source and the conversion unit.
  • the AC power that closes the channel is the power supply.
  • the channel between the faulty power supply and the conversion unit is first cut, and then the channel between the power supply and the conversion unit in a normal working state is closed, so as to prevent the faulty power supply from returning to normal operation, the power supply of the two power supplies simultaneously affects the load.
  • the detection switching unit supports two AC inputs and one AC output, that is, both power supplies are AC power, and the power supply for detecting the switching unit output is one AC power.
  • a conversion unit configured to rectify the AC voltage outputted by the AC power source in the normal working state in the channel in which the detecting switching unit is closed, and convert the DC voltage into a DC voltage required by the load. Further, the converting unit is further configured to filter and rectify the AC voltage of the AC power output in the normal working state in the channel in which the detecting switching unit is closed, and convert the DC voltage into a DC voltage required by the load.
  • the voltage output from the first alternating current power source is converted into a direct current voltage required by the load.
  • the voltage output from the second AC power source is converted into a DC voltage required for the load.
  • the voltage required to convert the output load of the unit can be -48V or 12V.
  • the detecting switching unit is connected to two alternating current power sources, and the detecting switching unit can close a channel between an alternating current power source and a converting unit of the two power sources in a normal working state, and cut off the first alternating current Another power supply and conversion in the power supply and the second AC power source
  • the channel between the units, the conversion unit converts the voltage of the AC power output in the channel detecting the closed unit of the switching unit into the DC voltage required by the load.
  • the detecting switching unit determines whether to switch the power supply connected to the converting unit according to the working state of the power source in the closed channel. details as follows:
  • the detecting switching unit is further configured to: when the channel between the first alternating current power source and the converting unit is closed, if the first alternating current power source is in an abnormal working state, the second alternating current power source is in a In a normal working state, the channel between the first alternating current power source and the conversion unit is cut off and the channel between the second alternating current power source and the conversion unit is closed.
  • the detection switching unit detects that the first AC power source is in an abnormal working state, that is, a fault state, and detects that the second AC power source is in a normal working state, and cuts off the a channel between the first alternating current power source and the conversion unit and closing a channel between the second alternating current power source and the conversion unit.
  • the detecting switching unit is further configured to: when the channel between the second alternating current power source and the converting unit is closed, if the second alternating current power source is in an abnormal working state, the first alternating current power source is in a In a normal working state, the channel between the second alternating current power source and the conversion unit is cut off and the channel between the first alternating current power source and the conversion unit is closed.
  • the detecting switching unit detects that the second AC power source is in an abnormal working state, that is, a fault state, and detects that the first AC power source is in a normal working state, and cuts off the a channel between the second alternating current power source and the conversion unit and closing a channel between the first alternating current power source and the conversion unit.
  • the power conversion module provided in this embodiment uses an AC power source in a normal working state of the two connected AC power sources as a power source, converts the AC voltage outputted by the power source, and outputs the AC voltage to the load. Therefore, the power conversion module is connected to the AC.
  • the power supply achieves dual backups, meeting the need to provide highly reliable power to the load.
  • FIG. 3 is a schematic structural diagram of another power conversion module according to an embodiment of the present invention.
  • the detection switching unit in the power conversion module includes a detection subunit 31, a control subunit 32, a first switching subunit 33, and a second switching subunit 34.
  • the detecting subunit is respectively connected to the output end of the first alternating current power source and the output end of the second alternating current power source, and the detecting subunit is further connected to the control subunit.
  • the detection subunit includes two inputs and one input The output terminal is connected to the output end of the first alternating current power source, the other input end is connected to the output end of the second alternating current power source, and the output unit of the detecting subunit is connected to the control subunit.
  • the detecting subunit is configured to detect the voltage value of the first alternating current power source and the voltage value of the second alternating current power source in real time, and send the detected voltage value of the first alternating current power source and the voltage value of the second alternating current power source to the control subunit.
  • a circuit diagram for implementing the detection subunit is shown in Figure 4.
  • the control subunit is connected to the detection subunit, the first switching subunit and the second switching subunit, respectively.
  • the first switching subunits are respectively connected to the first alternating current power source, the converting unit and the control subunit, and the second switching subunits are respectively connected to the second alternating current power source, the converting unit and the control subunit.
  • the control subunit is configured to monitor whether the first AC power source is in a normal working state according to the voltage value of the first AC power source, and monitor whether the second AC power source is in a normal working state according to the voltage value of the second AC power source.
  • the control sub-unit can be implemented by a DSP or an MCU, and the voltage value transmitted by the detecting sub-unit can be calculated by an algorithm to determine whether the two input power sources are AC or DC.
  • determine whether the AC power supply is in normal operation by judging whether the voltage is normal and/or whether the frequency is normal.
  • the DC power supply judge whether the DC power supply is in normal working condition by judging whether the voltage is normal.
  • voltage abnormalities include undervoltage, overvoltage and / or voltage loss.
  • For DC power supply if the voltage is abnormal, make sure the DC power supply is not working properly.
  • the normal frequency range of the AC power supply is 47HZ ⁇ 63HZ. When the frequency is outside the normal frequency range, it is determined that the AC power supply is in abnormal working condition.
  • For AC power if the voltage is abnormal, or if the frequency is outside the normal range, make sure the AC power is not working properly.
  • the control subunit is further configured to, according to the working state of the first alternating current power source and the working state of the second alternating current power source, a first switching subunit connected to an alternating current power source in a normal working state of the first alternating current power source and the second alternating current power source Or the second switching subunit sends a closing signal, and sends a disconnection signal to the first switching subunit or the second switching subunit connected to the other alternating current power source to close one of the first alternating current power source and the second alternating current power source in a normal working state.
  • a passage between the AC power source and the conversion unit cutting off a channel between the first AC power source and the other AC power source and the conversion unit of the second AC power source.
  • control subunit may send a closing signal to the first switching subunit connection of the first AC power source connection to close the first AC power source and the conversion unit.
  • the switching unit sends a cutoff signal to cut off the channel between the second alternating current power source and the converting unit; the control subunit may also send a closing signal to the second switching subunit connection of the second alternating current power source to close the second alternating current power source and the converting unit.
  • the channel between the two switches simultaneously sends a cut signal to the first switching subunit connected to the first alternating current power source to cut off the channel between the first alternating current power source and the conversion unit.
  • the control subunit when it is determined that the first AC power source is in a normal working state and the second AC power source is in a non-working state, the control subunit sends a closing signal to the first switching subunit connected to the first AC power source to close the first AC power source and convert The channel between the units simultaneously sends a cutoff signal to the second switching subunit connected to the second alternating current power source to cut off the channel between the second alternating current power source and the conversion unit.
  • the control subunit when it is determined that the second AC power source is in a normal working state and the first AC power source is in an abnormal working state, the control subunit sends a closing signal to the second switching subunit connected to the second AC power source to close the second AC power source and The channel between the conversion units is simultaneously sent to the first switching sub-unit connected to the first alternating current power source to cut off the channel between the first alternating current power source and the conversion unit.
  • the control subunit determines whether to switch and convert according to the working states of the first alternating current power source and the second alternating current power source.
  • the channel to which the unit is connected details as follows:
  • the control subunit is further configured to: if the channel between the first AC power source and the conversion unit is closed, if the first AC power source is in an abnormal working state and the second AC power source is in In a normal working state, a disconnection signal is sent to the first switching subunit, and a closing signal is sent to the second switching subunit.
  • the control subunit is further configured to: if the channel between the second AC power source and the conversion unit is closed, if the second AC power source is in an abnormal working state and the first AC power source is in the In a normal working state, a disconnection signal is sent to the second switching subunit, and a closing signal is sent to the first switching subunit.
  • the control subunit determines to send a disconnection signal to the first switching subunit when the first alternating current power source is in an abnormal working state, that is, in a fault state. Further, it is determined whether the second AC power source is in a normal working state, and if the second AC power source is in a normal working state, the control subunit sends a closing signal to the second switching subunit. In the case that the channel connecting the first alternating current power source and the conversion unit is closed, the control subunit determines that the first alternating current power source is in a normal working state, and does not need to send the first switching subunit and the second switching subunit Send control signals to maintain the original state of the two channels.
  • the control subunit determines that the second alternating current power source is in a fault state, and sends a disconnection signal to the second switching subunit. Further, it is judged whether the first AC power source is in a normal working state, and if the first AC power source is in a normal working state, the control subunit also sends a closing signal to the first switching subunit. In the case that the channel connected to the second alternating current power source and the conversion unit is closed, the control subunit determines that the second alternating current power source is in a normal working state, and does not need to send control signals to the first switching subunit and the second switching subunit, maintaining two The original state of the channel.
  • one of the first AC power source and the second AC power source can be selected as the main power source, and the other power source is the standby power source.
  • the control subunit determines that the main power source is in an abnormal working state, and when the standby power source is in the working state, sends a disconnection signal to the switching subunit connected to the main power source, and sends a closing signal to the switching subunit connected to the standby power source. In the case where the channel between the main power source and the conversion unit is closed, if it is determined that the main power source is in a normal operating state, the control subunit does not need to send a control signal to the two switching subunits.
  • the first switching subunit is configured to cut or close a channel between the first alternating current power source and the conversion unit according to the control signal sent by the control subunit. If the control signal sent by the control subunit to the first switching subunit is a cutoff signal, the channel between the first alternating current power source and the conversion unit is cut off, so that the first alternating current power source is isolated from the conversion unit, and if the control signal is a closed signal, The channel between the first alternating current power source and the conversion unit is closed, and the first alternating current power source is connected to the conversion unit.
  • the second switching subunit is configured to cut or close the channel of the second alternating current power source and the converting unit according to the control signal sent by the control subunit. If the control signal sent by the control subunit to the second switching subunit is a cutoff signal, the channel between the second alternating current power source and the conversion unit is cut off, and if the control signal is a closed signal, the second alternating current power source and the conversion unit are closed Channel.
  • the circuit structure of the first switching subunit is the same as that of the second switching subunit. For details, refer to the circuit structure diagrams provided in FIG. 5A and FIG. 5B, respectively.
  • control subunit sends a control signal to the first switching subunit and the second switching subunit respectively according to the voltage value of the first alternating current power source and the voltage value of the second alternating current power source transmitted by the detecting subunit, so that the converting unit and the converting unit respectively
  • the channel between one of the two power supplies in a normal operating state is in a closed state, thereby satisfying the need to provide a highly reliable power supply to the load connected to the conversion unit.
  • FIG. 4 is a circuit structural diagram of a detecting subunit according to an embodiment of the present invention.
  • Figure 4 provides The detection subunit can support AC fault detection and also support HVDC fault detection.
  • the A-channel power supply and the B-channel power supply are respectively connected to the detection sub-unit, and the voltage of the A-channel power supply and the voltage of the B-channel power supply are respectively converted into a proper range of positive voltages by the operational amplifier circuit and sent to the ADC module for detection. .
  • a total of two-stage op amp circuits as shown in Figure 4.
  • the first stage op amp circuit is U0 and the resistor R1/R2/R3/R4, and the second stage op amp circuit is U1 and resistor R5/R6/R7.
  • the main function is to convert the high voltage to be detected into a low suitable measurement. Voltage (usually the voltage does not exceed 5V).
  • Utl _U A *R3/Rl.
  • the operational amplifier U1 and the resistor R5/R6/R7 form a second-stage amplifying circuit, and the main function is to convert the voltage output of the first-stage operational amplifier (which may be a positive voltage or a negative voltage) into a positive voltage detectable by the ADC, usually The voltage range is 0 ⁇ 3. 3V.
  • Ut2 (U 0Utl /R5+VDD/R6 ) / (1/R5+1/R6+1/R7).
  • the ADC module is connected to the control subunit via a digital interface, such as an SPI interface or an I2C interface.
  • the control subunit can obtain the voltage value outputted by the ADC module in real time through the digital interface.
  • the A-channel power supply shown in Figure 3 can be a first AC power source or a second AC power source. Accordingly, the B-channel power source can be a second AC power source or a first AC power source.
  • FIG. 5 is a circuit structural diagram of a first switching subunit provided by an embodiment of the present invention.
  • FIG. 5B is a circuit structural diagram of a second switching subunit provided by an embodiment of the present invention.
  • the switching component inside the first switching sub-unit and the switching component inside the second switching sub-unit may use a metal oxide semiconductor field effect transistor (MOSFET) or a potassium nitride field effect transistor. (Gal lium Nitride Field Effect Transistor, GaNFET for short), can also use relays.
  • MOSFET metal oxide semiconductor field effect transistor
  • GaNFET potassium nitride field effect transistor
  • Two N-channel MOSFETs or GaNFETs are employed as switching components in FIGS. 5A and 5B.
  • Two back-to-back-connected MOSFETs or GaNFETs are used on each channel to turn off and turn on AC or HVDC.
  • the main function of the voltage isolation unit 0, the voltage isolation unit 1, the voltage isolation unit 2 and the voltage isolation unit 3 is to generate a VGS voltage of the MOSFET or GaNFET source terminal (S terminal) of the channel in which it is driven, for the MOSFET of the channel in which it is located. Or the gate of the GaNFET is controlled.
  • the VGS voltage is typically around 6V; in the case of MOSFETs, the VGS voltage is typically around 12V.
  • the voltage isolation unit 0, the voltage isolation unit 1, the voltage isolation unit 2 and the voltage isolation unit 3 each include a control for turning off and turning on the output voltage.
  • the pin by changing the level of the control pin, realizes the turn-off and turn-on control of the output voltage of the voltage isolation unit.
  • the control pin is connected to the control sub-unit through the isolation optocoupler, and the output of the voltage isolation unit can be turned on or off according to the control signal sent by the control sub-unit, thereby controlling the corresponding channel.
  • the MOSFET or GaNFET is turned on or off.
  • the control subunit driving control signal 0 and the control signal 1 are both at a high level, and the corresponding isolation is performed.
  • the optocoupler 0C0 and the isolated optocoupler 0C1 are not turned on, and the corresponding voltage isolation unit 0 and the shutdown terminal of the voltage isolation unit 1 are pulled up to the positive voltage VCC_OUT, so that the voltage isolation unit 0 and the power isolation unit 1 are turned off.
  • the MOSFET or GaNFET to which A+ and A- are connected in the first switching subunit is turned off.
  • the driving control signal 2 and the control signal 3 are both low, and the corresponding isolated optocoupler 0C2 and the isolated optocoupler 0C3 are turned on, and the corresponding voltage is further
  • the shutdown terminals of the isolation unit 2 and the voltage isolation unit 3 correspond to a low level, so that the voltage isolation unit 2 and the voltage isolation unit 3 output valid VGS-B+ and VGS-B-voltages, and drive the MOSFET or GaNFET of the first switching sub-unit. It is turned on, so that the main power source is switched from the power source A to the power source B.
  • FIG. 6 is a schematic structural diagram of another power conversion module according to an embodiment of the present invention.
  • the detection switching unit may further include a cut confirmation subunit 35, so that the control subunit determines the switcher that receives the cutoff signal. After the unit cuts off the corresponding channel, it sends a close signal to the other switching subunit.
  • the cut confirmation subunit is connected to the control subunit, the first switching subunit and the second switching subunit, and the conversion unit, respectively.
  • the control subunit is further configured to send a cutoff signal to the first switching subunit or the second switching subunit connected to an AC power source in a non-normal working state of the first alternating current power source and the second alternating current power source, and then Sending a disconnection confirmation instruction signal including a channel identifier to the disconnection confirmation subunit, and after receiving the disconnection confirmation signal sent by the disconnection confirmation subunit, the first AC power supply is connected to the first alternating current power source and the second alternating current power source
  • the switching subunit or the second switching subunit sends a closing signal; the channel identifier is used to identify a channel between the first alternating current power source and the connecting unit, or a channel between the second alternating current power source and the converting unit.
  • the control subunit sends a cutoff signal to the first switching subunit connected to the first AC power source, and then cuts
  • the disconnection confirmation subunit transmits a disconnection confirmation instruction signal including the channel identifier, and after receiving the disconnection confirmation signal transmitted by the disconnection confirmation subunit, transmits a close signal to the second switching subunit connected to the second alternating current power source.
  • the control subunit identifies the disconnected confirmation subunit by the carried channel identification, and informs the disconnection confirmation subunit that it is necessary to confirm which channel between the power supply and the conversion unit has been cut.
  • the cut confirmation subunit is configured to: after receiving the cut confirmation indication signal sent by the control subunit, determine whether the channel corresponding to the channel identifier is cut off, and send a cut confirmation response signal to the control subunit after determining that the channel corresponding to the channel identifier is cut off.
  • the main function of the cut-off confirmation sub-unit is to confirm whether the power supply connected to the conversion unit has been cut off when the control sub-unit performs power switching, so as to ensure that the other power supply and conversion unit are not present when the original power supply is not cut off.
  • the passage between the channels is closed.
  • the specific circuit diagram of the cut-off confirmation subunit is shown in Fig. 6B. Check if the channel where the power supply is cut off by detecting whether the current is lower than the set threshold by the Hall current sensor. In order to avoid the misjudgment of the AC sine wave at the zero crossing point, usually the software will confirm the current value multiple times. If the current value is lower than the set threshold, the channel of the original power supply is considered to be off.
  • control subunit turns off the MOSFET or GaNFET in the first switching subunit, it detects whether the response signal output by the disconnection confirmation subunit is a disconnection confirmation response signal, and if it is the shutdown confirmation response signal, it confirms The channel where current power A is located is turned off.
  • the drive control signal 2 and the control signal 3 are both low, then the corresponding isolated optocoupler 0C2 and the isolated optocoupler 0C3 are turned on, and then the corresponding voltage isolation unit 2 and The shutdown end of the voltage isolation unit 3 corresponds to a low level, so that the voltage isolation unit 2 and the voltage isolation unit 3 output valid VGS-B+ and VGS-B-voltages, driving the MOSFET or GaNFET of the first switching sub-unit to be turned on, thereby The main power is switched from power supply A to power supply B.
  • FIG. 7 is a schematic structural diagram of still another power conversion module according to an embodiment of the present invention. As shown in FIG. 7, the detection switching unit in the power conversion module provided in this embodiment further includes a communication subunit 36.
  • the communication subunit is respectively connected to the control subunit and the host that manages the power supply device.
  • the control subunit is further configured to send the alarm information to the communication subunit when both the first AC power source and the second AC power source are in an abnormal working state.
  • the communication subunit is configured to transmit the alarm information sent by the control subunit to the host that manages the power supply device.
  • the communication subunit can also send control and query information sent by the host to the control subunit.
  • the communication subunit can provide a communication interface matching the host according to the interface requirements of different hosts, for example I2C interface, RS485 interface and FE interface.
  • the detection switching unit in the power supply switching module provided in this embodiment further includes an auxiliary power sub-unit to provide the voltage required for the operation of each sub-unit in the switching unit. , for example, 12V or 3. 3V.
  • the auxiliary power subunits are respectively connected to the first alternating current power source and the second alternating current power source, and the auxiliary power source subunits are further respectively connected to the control subunit, the first switching subunit, the second switching subunit, and the cut confirmation subunit
  • the communication subunit is connected to supply power to the control subunit, the first switching subunit, the second switching subunit, the disconnection confirmation subunit, and the communication subunit.
  • FIG. 8 is a schematic circuit diagram of an auxiliary power subunit according to an embodiment of the present invention.
  • each of the A input and the B input has one rectifier module, and the main function is to implement rectification processing on the input AC. Convert AC input to DC output.
  • the transformer module T1 and the transformer module T2 function to realize voltage conversion according to the number of turns of the primary side and the number of turns of the secondary side, and to isolate the primary side voltage from the secondary side voltage.
  • the function of feedback module A and feedback module B is to detect the output voltage of each channel and feed back the detected voltage to the PWM (Pulse Width Modulation) control module.
  • PWM Pulse Width Modulation
  • the PMW control module A determines the duty cycle of the PWM signal output to M1 according to the output voltage VCC1 detected by the feedback module A, and changes the output voltage value by changing the duty ratio.
  • the control module B determines the duty ratio of the PWM signal output to M2 according to the output voltage VCC2 detected by the feedback module B, and changes the output voltage value by changing the duty ratio.
  • Ml and M2 are M0SFETs, respectively.
  • the function of the combination module is to realize the combined processing of the two output voltages of VCC1 and VCC2, and output the voltage after the combination to other subunits inside the detection switching unit, thereby ensuring that the switching unit is detected in the case of any one power failure. Can maintain normal work. Since the output power of the auxiliary power subunit is very low, the combined module can usually be realized by two diodes.
  • the auxiliary power subunit supports both the input power source and the input power source as the HVDC power source.
  • input channel A when the input power is AC, during the positive half cycle of the AC voltage, the internal current of the auxiliary power subunit flows as follows: A+>D0>T1>M1>AGND0>D3>A -.
  • the internal current of the auxiliary power sub-unit flows as follows: A -> Dl>Tl>Ml>AGND0>D2>A+.
  • the internal current of the auxiliary power subunit flows as follows: A+>D0>T1>M1>AGND0>D3>A-.
  • FIG. 9 is a schematic structural diagram of a conversion unit in a power conversion module according to an embodiment of the present invention.
  • the conversion unit includes a filtering module, a rectification and PFC module, and a DC/DC conversion module.
  • PFC is the English abbreviation of Power Factor Correction.
  • the filter module, the rectification and PFC module and the DC/DC converter module are all compatible with the AC input and the HVDC input, and the filter module is used for filtering the power supply of the power conversion module.
  • the rectification and PFC modules implement AC harmonic suppression and convert AC into a DC voltage, such as 380V.
  • the power supply of the power conversion module is HVDC power
  • the HVDC voltage is converted to the DC voltage required for the DC/DC input, for example, 380V.
  • the rectification and PFC module can follow the circuit diagram of the current common rectification and PFC module, and is compatible with the AC input and the HVDC input. In the rectification and PFC module, components with high withstand voltage performance are required.
  • FIG. 10 is a rectification provided by an embodiment of the present invention. And a schematic circuit diagram of the PFC module. As shown in Figure 10.
  • the power supply is HVDC
  • the current passes from the positive terminal of the input to the diode D2, then through the PFC circuit, and finally through the diode D4 to the negative terminal.
  • the DC/DC converter module converts the DC voltage output from the PFC module into a DC voltage required for the device load, such as 12V or -48V, and can achieve current sharing control when multiple DC/DC converter modules are connected in parallel.
  • FIG. 11 is a flowchart of a power control method according to an embodiment of the present invention.
  • Each power conversion module in the power supply device is respectively connected to a first alternating current power source and a second alternating current power source.
  • the execution body of this embodiment is a power conversion module.
  • the power control method provided in this embodiment includes: Step 111: Monitor the working state of the first AC power source and the working state of the second AC power source in real time.
  • the power conversion module has two input terminals, one input terminal is connected to the output end of the first AC power source, and the other input terminal is connected to the output end of the second AC power source.
  • One of the two AC power supplies connected to the power conversion module works normally, and the power conversion module can supply power to the load.
  • the first AC power source and the second AC power source may come from different power supply networks in the equipment room, or from two different UPSs or batteries.
  • the AC power supply can be 220V, 110V or 120V.
  • the power conversion module can monitor the voltage value of the first alternating current power source and the voltage value of the second alternating current power source in real time, and determine whether the first alternating current power source is in a normal working state according to the voltage value of the first alternating current power source. Determining whether the second AC power source is in a normal working state according to the voltage value of the second AC power source.
  • Step 112 Close a power supply and a power in a normal working state of the first alternating current power source and the second alternating current power source according to the working state of the first alternating current power source and the working state of the second alternating current power source.
  • the source conversion module converts the channels between the units and cuts off the channel between the first alternating current power source and the other of the second alternating current power sources and the conversion unit.
  • the power conversion module can close the channel between any one of the power supply and the conversion unit, and cut off the channel between the other AC power supply and the conversion unit, so that the power supply that is closed by the channel is the power supply. .
  • the power conversion module supports two AC inputs and one AC output.
  • the power conversion module detects that the first AC power source and the second AC power source are both in an abnormal working state, and sends an alarm message to the host that manages the power supply device.
  • the channel between the first alternating current power source and the conversion unit is closed, if the first alternating current power source is in an abnormal working state and the second alternating current power source is in a normal working state, the first a passage between the alternating current power source and the conversion unit, and then closing a passage between the second alternating current power source and the conversion unit.
  • the channel between the second alternating current power source and the conversion unit is closed, if the second alternating current power source is in an abnormal working state and the first alternating current power source is in a normal working state, the first And a channel between the AC power source and the conversion unit, and then closing a channel between the first AC power source and the conversion unit.
  • Step 1 13 The AC voltage of the power output that is closed by the channel between the conversion unit is rectified and converted into a DC voltage required by the load.
  • the AC voltage outputted from the first AC power source is rectified and converted into a DC voltage required for the load.
  • the alternating current voltage outputted from the first alternating current power source is rectified and converted into a direct current voltage required by the load.
  • the AC voltage output from the power supply that is closed with the switching unit is rectified and converted into a DC voltage required for the load.
  • each power conversion module in the power supply device can use one power supply in a normal working state of the two connected power sources as a power supply, and convert the voltage output from the power supply to the load, so
  • the power supply connected to each power conversion module realizes double backup.
  • the input power supply realizes N+N backup, which satisfies the requirement of providing high reliability power for the load.
  • the power supply N+N backup is implemented, and N+N power conversion modules are required in the power supply device, and the power supply device provided in this embodiment only needs N power conversion modules.
  • the number of power conversion modules included in the power supply device provided by the embodiment is much smaller than that of the power supply device provided by the prior art.
  • the number of power conversion modules included reduces the production cost of the power supply unit.
  • at least one power conversion module may be added to the power supply device, and therefore, the power supply device of the N+m power conversion modules is included. Not only the N+N backup of the power supply is realized, but also the N+m backup of the power conversion module is realized.
  • FIG. 12 is a schematic structural diagram of a power supply device according to an embodiment of the present invention.
  • the power supply device includes: N+m power conversion modules.
  • the output ends of the N+m power conversion modules are connected in parallel to support load sharing, where N is a natural number, and m is an integer greater than or equal to 0 and less than or equal to N.
  • N power conversion modules are main power conversion modules, and m power conversion modules are standby power conversion modules. m may be zero, indicating that there may be no backup power conversion module in the power supply device provided by this embodiment. In order to implement the backup of the power conversion module, 1, 2, 3, ..., N-l, or N power conversion modules may be added to the power supply device provided in this embodiment.
  • the power conversion module in FIG. 12 may be any one of the power source conversion modules of FIG. 2, FIG. 3, FIG. 6A and FIG. 7.
  • the specific functions and circuit structures of the power conversion module in FIG. 12 are shown in FIG. 2, FIG. 3, FIG. 6A and FIG. 7 corresponds to the description of the embodiment, and details are not described herein again.
  • each power conversion module can use an AC power source in a normal working state of the two connected AC power sources as a power source, and convert the AC voltage outputted by the power source to the load. Therefore, the AC power supply connected to each power conversion module realizes double backup.
  • the input power supply realizes N+N backup, which satisfies the high reliable power supply for the load. demand.
  • N+N backup of the power supply is implemented, and N+N power conversion modules are required in the power supply device, and the power supply device provided in this embodiment only needs N power conversion modules.
  • the number of the power conversion modules included in the power supply device provided by the embodiment is far less than the number of the power conversion modules included in the power supply device provided by the prior art, and the power supply device is reduced. Production costs, at the same time. Reduced power supply.
  • at least one power conversion module may be added to the power supply device. Therefore, it includes a power supply device of N+m power conversion modules. Not only the N+N backup of the power supply is realized, but also the N+m backup of the power conversion module is realized.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: R0M, RAM, disk or optical disk, and the like, which can store program codes. Medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Computing Systems (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种供电装置和电源控制方法。供电装置包括:N+m个电源变换模块。其中,N个电源变换模块为主电源变换模块。电源变换模块包括检测切换单元(21)和转换单元(22),检测切换单元分别与第一交流电源的输出端和第二交流电源的输出端连接,检测切换单元用于实时监控第一交流电源的工作状态和第二交流电源的工作状态,闭合第一交流电源和第二交流电源中处于正常工作状态的一个电源与转换单元之间的通道,并切断第一交流电源和第二交流电源中另一个电源与转换单元之间的通道;转换单元用于将检测切换单元闭合的通道中电源输出的电压转换成负载需要的直流电压。因此减少了供电装置中电源变换模块的个数。

Description

电源变换模块、 供电装置和供电方法 技术领域 本发明实施例涉及电子技术, 尤其涉及一种电源变换模块、 供电装置和 供电方法。 背景技术 典型的通信设备、 信息与通信技术 (Information Communication Technology,简称 ICT)设备包括供电装置、业务单板以及散热风扇等。其中, 供电装置负责接收设备外部的一个或多个电源输入, 并把设备外输入的电源 转换成设备内负载 (包括业务单板、 散热风扇等) 可用的电源。
如图 1所示, N路电源输入到供电装置时,供电装置内需设置 N个电源变 换模块, 每个电源变换模块均连接一路电源, 也就是 N路电源需要有 N个电 源变换模块, 电源变换模块将电源的输出电压转换成设备内负载需要的直流 电压, 通常为 -48V或 12V。 为满足高可靠性, 通常电源进行 N+N备份, 也就 是, 为每个电源均备份一个电源。 每个电源变换模块均从一个电源取电, 相 应地, 电源变换模块也是 N+N备份, 其中, N个电源变换模块从 N个 A路电源 取电, 另外 N个电源变换模块从 N个 B路电源取电。
所以, 对 N个电源进行 N+N备份时, 电源变换模块也需要进行 N+N备份, 供电装置需求的电源变换模块数量较多, 尤其是大功率设备, 供电装置需求 的电源变换模块数量会更多。 例如, 功耗超过 20kw的设备, 电源变换模块的 数量可能超过 16个。 因此, 供电装置对电源变换模块的需求量较大, 增加了 系统的供电成本, 同时还增加了电源变换模块占用的空间。
发明内容 本发明实施例提供一种电源变换模块、 供电装置和供电方法, 用于解决 供电装置中电源变换模块数量较多的缺陷, 在满足供电高可靠性的情况下, 减少了供电装置中电源变换模块的个数。
第一方面, 本发明实施例提供的一种电源变换模块, 包括
检测切换单元和转换单元; 所述检测切换单元分别与第一交流电源的输 出端和第二交流电源的输出端连接, 所述检测切换单元还与所述转换单元连 接, 所述转换单元与负载连接;
所述检测切换单元, 用于实时监控所述第一交流电源的工作状态和所述 第二交流电源的工作状态, 闭合所述第一交流电源和所述第二交流电源中处 于正常工作状态的一个电源与所述转换单元之间的通道, 并切断所述第一交 流电源和所述第二交流电源中另一个电源与所述转换单元之间的通道;
所述转换单元, 用于将所述检测切换单元闭合的通道中所述处于正常工 作状态一个交流电源输出的交流电压进行整流后转换成负载需要的直流电 压。
结合第一方面, 在第一种可能的实现方式中, 所述检测切换单元包括: 检测子单元、 控制子单元、 第一切换子单元和第二切换子单元;
所述检测子单元分别与所述第一交流电源的输出端和所述第二交流电源 的输出端连接, 所述检测子单元还与所述控制子单元连接; 所述检测子单元, 用于实时检测所述第一交流电源的电压值和所述第二交流电源的电压值, 并 将检测到的所述第一交流电源的电压值和所述第二交流电源的电压值发送给 所述控制子单元;
所述控制子单元分别与所述检测子单元、 所述第一切换子单元和所述第 二切换子单元连接; 所述控制子单元, 用于根据所述第一交流电源的电压值, 实时监控所述第一交流电源是否处于正常工作状态, 根据所述第二交流电源 的电压值, 实时监控所述第二交流电源是否处于正常工作状态;
所述第一切换子单元分别与所述第一交流电源、 所述转换单元和所述控 制子单元连接; 所述第二切换子单元分别与所述第二交流电源、 所述转换单 元和所述控制子单元连接;
所述控制子单元, 还用于根据所述第一交流电源的工作状态和所述第二 交流电源的工作状态, 向所述第一交流电源和所述第二交流电源中处于正常 工作状态的一个交流电源连接的第一切换子单元或第二切换子单元发送闭合 信号, 向另一个电源连接的第一切换子单元或第二切换子单元发送切断信号, 以闭合所述第一交流电源和所述第二交流电源中处于正常工作状态的一个交 流电源与所述转换单元之间的通道, 切断所述第一交流电源和所述第二交流 电源中另一个交流电源与所述转换单元之间的通道;
所述第一切换子单元, 用于根据所述控制子单元发送的控制信号, 切断 或闭合所述第一交流电源与所述转换单元之间的通道;
所述第二切换子单元, 用于根据所述控制子单元发送的控制信号, 切断 或闭合所述第二交流电源与所述转换单元之间的通道。
结合第一方面, 或第一方面的第一种可能实现方式, 在第二种可能的实 现方式中, 所述检测切换单元还包括: 切断确认子单元;
所述切断确认子单元分别与所述控制子单元、 所述第一切换子单元和所 述第二切换子单元以及所述转换单元连接;
所述控制子单元, 还用于先向所述第一交流电源和所述第二交流电源中 处于非正常工作状态的一个交流电源连接的所述第一切换子单元或所述第二 切换子单元发送切断信号, 然后向所述切断确认子单元发送包括通道标识的 切断确认指示信号, 在接收到所述切断确认子单元发送的切断确认信号后, 向所述第一交流电源和所述第二交流电源中另一个交流电源连接的所述第一 切换子单元或所述第二切换子单元发送闭合信号; 所述通道标识用于标识所 述第一交流电源与所述连接单元之间的通道, 或所述第二交流电源与所述转 换单元之间的通道;
所述切断确认子单元, 用于接收到所述控制子单元发送的切断确认指示 信号后, 判断所述通道标识对应的通道是否切断, 在确定所述通道标识对应 的通道切断后向所述控制子单元发送切断确认响应信号。
第二方面, 本发明实施例提供一种电源控制方法, 供电装置内每个电源 变换模块分别连接有第一交流电源和第二交流电源, 所述方法包括:
实时监控所述第一交流电源的工作状态和所述第二交流电源的工作状 态;
根据所述第一交流电源的工作状态和所述第二交流电源的工作状态, 闭 合所述第一交流电源和所述第二交流电源中处于正常工作状态的一个电源与 所述电源变换模块中转换单元之间的通道, 并切断所述第一交流电源和所述 第二交流电源中另一个电源与所述转换单元之间的通道;
将所述检测切换单元闭合的通道中所述处于正常工作状态一个交流电源 输出的交流电压进行整流后转换成负载需要的直流电压。
结合第二方面, 在第一种可能实现方式中, 所述方法还包括: 若所述第 一交流电源处于非正常工作状态和所述第二交流电源均处于非正常工作状 态, 向管理所述供电装置的主机发送告警消息。
结合第二方面, 或第二方面的第一种可能实现方式, 在第二种可能的实 现式中, 所述实时监控所述第一交流电源的工作状态和所述第二交流电源的 工作状态, 包括:
实时监控所述第一交流电源的电压值和所述第二交流电源的电压值, 根 据所述第一交流电源的电压值, 判断所述第一交流电源是否处于正常工作状 态, 根据所述第二交流电源的电压值, 判断所述第二交流电源是否处于正常 工作状态。
第三方面, 本发明实施例还提供一种供电装置, 包括: N+m个如上所述的 电源变换模块, N+m个所述电源变换模块的输出端并联,实现负载均衡;其中, N个所述电源变换模块为主电源变换模块, m个所述电源变换模块为备用电源 变换模块; N为自然数,所述 m为大于或等于 0, 且小于或等于所述 N的整数。
上述技术方案中, 电源变换模块将连接的两个交流电源中处于正常工作 状态的一个交流电源作为供电源, 将供电源输出的交流电压进行转换后输出 给负载, 因此, 电源变换模块连接的交流电源实现了双备份。 因为, 每个电 源变换模块连接的交流电源都实现了双备份, 对于包括 N个电源变换模块的 供电装置来说, 其输入的电源实现了 N+N备份, 满足了为负载提供高可靠供 电的需求。 现有技术中, 实现电源 N+N备份, 供电装置中需要 N+N个电源变 换模块, 而本实施列提供的供电装置只需要 N个电源变换模块。 因而, 在满 足供电高可靠性的情况下, 本实施例提供的供电装置中包括的电源变换模块 数量远少于现有技术提供的供电装置中包括的电源变换模块的数量, 降低了 供电装置的生产成本。 进一步, 为实现对电源变换模块的备份, 可以在供电 装置中增加至少 1个电源变换模块, 因此, 包括 N+m个电源变换模块的供电 装置。 不仅实现了供电源的 N+N备份, 还实现了电源变换模块的 N+m备份。
附图说明
图 1为现有技术提供的供电装置结构示意图;
图 2为本发明实施例提供的一种电源变换模块结构示意图;
图 3为本发明实施例提供的另一种电源变换模块结构示意图;
图 4为本发明实施例提供的检测子单元的一种电路结构图;
图 5A本发明实施例提供的第一切换子单元的一种电路结构图; 图 5B本发明实施例提供的第二切换子单元的一种电路结构图; 图 6A为本发明实施例提供的又一种电源变换模块结构示意图; 图 6B本发明实施例提供的切断确认子单元的一种电路结构图; 图 7为本发明实施例提供的再一种电源变换模块结构示意图;
图 8为本发明实施例提供的辅助电源子单元的一种电路示意图; 图 9为本发明实施例提供的转换单元的一种结构示意图;
图 10为本发明实施例提供的整流及 PFC模块的一种电路示意图; 图 11为本发明实施例提供的一种电源控制方法流程图;
图 12为本发明实施例提供的一种供电装置结构示意图。 具体实施方式
图 2 为本发明实施例提供的一种电源变换模块供电装置结构示意图。 如 图 2所示, 电源变换模块包括检测切换单元 21和转换单元 22。检测切换单元 与转换单元连接, 转换单元的输出端可与负载连接, 从而为负载供电。
检测切换单元还分别与第一交流电源的输出端和第二交流电源的输出端 连接。 检测切换单元有两个输入端, 一个输入端与第一交流电源的输出端连 接, 另一个输入端与第二交流电源的输出端连接。 电源变换模块连接的两个 交流电源中有一个交流电源正常工作, 该电源变换模块就可为负载供电。 第 一交流电源和第二交流电源可能来自机房不同的供电网络, 也可能来自两个 不同的 UPS或电池。 其中, 交流 (Alternating Current , 简称 AC) 电源可以 是 220V、 110V或 120V o
检测切换单元, 用于实时监控第一交流电源的工作状态和第二交流电源 的工作状态, 闭合第一交流电源和第二交流电源中处于正常工作状态的一个 交流电源与转换单元之间的通道, 并切断第一交流电源和第二交流电源中另 一个交流电源与转换单元之间的通道。
监控到两个交流电源均处于正常工作状态, 检测切换单元可以闭合任意 一个交流电源与转换单元之间的通道, 切断另一个交流电源与转换单元之间 的通道, 使通道闭合的交流电源为供电源。 两个交流电源均处于正常工作状 态情况下, 检测切换单元闭合与转换单元之间的通道的交流电源是为负载供 电的供电源, 该交流电源可称为主供电源, 另一个称为备用供电源。 监控到 两个交流电源中有一个电源处于非工作状态, 另一个处于正常工作状态, 则 检测切换单元闭合正常工作状态的电源与转换单元之间的通道, 切断故障电 源与转换单元之间的通道, 使通道闭合的交流电源为供电源。 可选地, 先切 断故障电源与转换单元之间的通道, 后闭合正常工作状态的电源与转换单元 之间的通道, 避免故障电源恢复正常工作后, 两个电源同时供电对负载造成 影响。
检测切换单元支持双路 AC输入和 1路 AC输出,即两路电源均为 AC电源, 检测切换单元输出的供电源为一路 AC电源。
转换单元, 用于将所述检测切换单元闭合的通道中所述处于正常工作状 态一个交流电源输出的交流电压进行整流后转换成负载需要的直流电压。 进 一步, 转换单元, 还用于将所述检测切换单元闭合的通道中所述处于正常工 作状态一个交流电源输出的交流电压进行滤波和整流后转换成负载需要的直 流电压。
在第一交流电源与转换单元之间的通道闭合的情况下, 将第一交流电源 输出的电压转换成负载需要的直流电压。 在第二交流电源与转换单元之间的 通道闭合的情况下, 将第二交流电源输出的电压转换成负载需要的直流电压。 转换单元输出负载需要的电压可以是 -48V, 也可以是 12V。
本实施例提供的电源变换模块中, 检测切换单元与两个交流电源连接, 检测切换单元可以闭合两个电源中处于正常工作状态的一个交流电源与转换 单元之间的通道, 并切断第一交流电源和第二交流电源中另一个电源与转换 单元之间的通道, 转换单元将检测切换单元闭合的通道中交流电源输出的电 压转换成负载需要的直流电压。
进一步, 第一交流电源和第二交流电源中有一个电源与转换单元之间的 通道闭合后, 检测切换单元根据已闭合通道中电源的工作状态, 确定是否切 换转换单元连接的电源。 具体如下:
所述检测切换单元, 还用于在所述第一交流电源与所述转换单元之间的 通道闭合的情况下, 若所述第一交流电源处于非正常工作状态而所述第二交 流电源处于正常工作状态, 切断所述第一交流电源与所述转换单元之间的通 道并闭合所述第二交流电源与所述转换单元之间的通道。
在第一交流电源与转换单元之间的通道闭合的情况下, 检测切换单元监 测到第一交流电源处于非正常工作状态即故障状态, 同时监测到第二交流电 源处于正常工作状态时, 切断所述第一交流电源与所述转换单元之间的通道 并闭合所述第二交流电源与所述转换单元之间的通道。
所述检测切换单元, 还用于在所述第二交流电源与所述转换单元之间的 通道闭合的情况下, 若所述第二交流电源处于非正常工作状态而所述第一交 流电源处于正常工作状态, 切断所述第二交流电源与所述转换单元之间的通 道并闭合所述第一交流电源与所述转换单元之间的通道。
在第二交流电源与转换单元之间的通道闭合的情况下, 检测切换单元监 测到第二交流电源处于非正常工作状态即故障状态, 同时监测到第一交流电 源处于正常工作状态时, 切断所述第二交流电源与所述转换单元之间的通道 并闭合所述第一交流电源与所述转换单元之间的通道。
本实施例提供的电源变换模块将连接的两个交流电源中处于正常工作状 态的一个交流电源作为供电源, 将供电源输出的交流电压进行转换后输出给 负载, 因此, 电源变换模块连接的交流电源实现了双备份, 满足了为负载提 供高可靠供电的需求。
图 3为本发明实施例提供的另一种电源变换模块结构示意图。 如图 3所 示, 电源变换模块中检测切换单元包括检测子单元 31、 控制子单元 32、 第一 切换子单元 33和第二切换子单元 34。
检测子单元分别与第一交流电源的输出端和第二交流电源的输出端连 接, 检测子单元还与控制子单元连接。 检测子单元包括两个输入端和一个输 出端, 其中一个输入端与第一交流电源的输出端连接, 另一个输入端与第二 交流电源的输出端连接, 检测子单元的输出单元与控制子单元连接。 检测子 单元, 用于实时检测第一交流电源的电压值和第二交流电源的电压值, 并将 检测到的第一交流电源的电压值和第二交流电源的电压值发送给控制子单 元。 实现检测子单元的一种电路图请参见图 4所示。
控制子单元分别与检测子单元、 第一切换子单元和第二切换子单元连接。 第一切换子单元分别与第一交流电源、 转换单元和控制子单元连接, 第二切 换子单元分别与第二交流电源、 转换单元和控制子单元连接。 控制子单元, 用于根据第一交流电源的电压值, 实时监控第一交流电源是否处于正常工作 状态, 根据第二交流电源的电压值, 实时监控第二交流电源是否处于正常工 作状态。
控制子单元可以由 DSP或 MCU实现, 可以通过算法对检测子单元传送过 来的电压值进行计算, 判断出当前输入的两路电源是交流还是直流。 对于交 流电源, 通过判断电压是否正常和 /或频率是否正常, 来判断交流电源是否处 于正常工作状态。 对于直流电源, 通过判断电压是否正常判断直流电源是否 处于正常工作状态。 其中, 电压异常包括欠压、 过压和 /或电压丢失等。 对于 直流电源, 如果电压异常, 确定直流电源处于非正常工作状态。 通常交流电 源的正常频率范围为 47HZ〜63HZ, 频率超出正常频率范围时, 确定交流电源处 于非正常工作状态。 对于交流电源来说, 如果电压异常, 或者, 频率超出正 常范围, 确定交流电源处于非正常工作状态。
控制子单元, 还用于根据第一交流电源的工作状态和第二交流电源的工 作状态, 向第一交流电源和第二交流电源中处于正常工作状态的一个交流电 源连接的第一切换子单元或第二切换子单元发送闭合信号, 向另一个交流电 源连接的第一切换子单元或第二切换子单元发送切断信号, 以闭合第一交流 电源和第二交流电源中处于正常工作状态的一个交流电源与转换单元之间的 通道, 切断第一交流电源和第二交流电源中另一个交流电源与转换单元之间 的通道。
例如, 确定第一交流电源和第二交流电源均处于正常工作状态时, 控制 子单元可以向第一交流电源连接的第一切换子单元连接发送闭合信号以闭合 第一交流电源与转换单元之间的通道, 同时向与第二交流电源连接的第二切 换子单元发送切断信号以切断第二交流电源与转换单元之间的通道; 控制子 单元也可以向第二交流电源连接的第二切换子单元连接发送闭合信号以闭合 第二交流电源与转换单元之间的通道, 同时向与第一交流电源连接的第一切 换子单元发送切断信号以切断第一交流电源与转换单元之间的通道。
又例如, 确定第一交流电源处于正常工作状态而第二交流电源处于非工 作状态时, 控制子单元向与第一交流电源连接的第一切换子单元发送闭合信 号以闭合第一交流电源与转换单元之间的通道, 同时向与第二交流电源连接 的第二切换子单元发送切断信号以切断第二交流电源与转换单元之间的通 道。
又例如, 确定第二交流电源处于正常工作状态而第一交流电源处于非正 常工作状态时, 控制子单元向与第二交流电源连接的第二切换子单元发送闭 合信号以闭合第二交流电源与转换单元之间的通道, 同时向与第一交流电源 连接的第一切换子单元发送切断信号以切断第一交流电源与转换单元之间的 通道。
进一步, 在第一交流电源和第二交流电源中有一个电源与转换单元之间 的通道闭合的情况下, 控制子单元根据第一交流电源和第二交流电源的工作 状态, 确定是否切换与转换单元连接的通道。 具体如下:
所述控制子单元, 还用于在所述第一交流电源与所述转换单元之间的通 道闭合的情况下, 若所述第一交流电源处于非正常工作状态且所述第二交流 电源处于正常工作状态, 向所述第一切换子单元发送切断信号, 并向所述第 二切换子单元发送闭合信号。 所述控制子单元, 还用于在所述第二交流电源 与所述转换单元之间的通道闭合的情况下, 若所述第二交流电源处于非正常 工作状态且所述第一交流电源处于正常工作状态, 向所述第二切换子单元发 送切断信号, 并向所述第一切换子单元发送闭合信号。
在第一交流电源与转换单元连接的通道闭合的情况下, 控制子单元确定 第一交流电源处于非正常工作状态即处于故障状态时, 向第一切换子单元发 送切断信号。 进一步, 判断第二交流电源是否处于正常工作状态, 如果第二 交流电源处于正常工作状态, 控制子单元向第二切换子单元发送闭合信号。 在第一交流电源与转换单元连接的通道闭合的情况下, 控制子单元确定第一 交流电源处于正常工作状态时, 无需向第一切换子单元和第二切换子单元发 送控制信号, 保持两个通道的原有状态。
同理, 在第二交流电源与转换单元连接的通道闭合的情况下, 控制子单 元确定第二交流电源处于故障状态时, 向第二切换子单元发送切断信号。 进 一步, 判断第一交流电源是否处于正常工作状态, 如果第一交流电源处于正 常工作状态, 控制子单元还向第一切换子单元发送闭合信号。 在第二交流电 源与转换单元连接的通道闭合的情况下, 控制子单元确定第二交流电源处于 正常工作状态时, 无需向第一切换子单元和第二切换子单元发送控制信号, 保持两个通道的原有状态。
通常情况下, 可以在第一交流电源和第二交流电源中选择一个电源为主 电源, 另一个电源为备用电源。 控制子单元确定主电源处于非正常工作状态 而备用电源处于工作状态时, 向与主电源连接的切换子单元发送切断信号, 向与备用电源连接的切换子单元发送闭合信号。 在主电源与转换单元之间的 通道闭合的情况下, 如果确定主电源处于正常工作状态, 控制子单元无需向 两个切换子单元发送控制信号。
第一切换子单元, 用于根据控制子单元发送的控制信号, 切断或闭合第 一交流电源与转换单元之间的通道。 如果控制子单元向第一切换子单元发送 的控制信号是切断信号, 则切断第一交流电源与转换单元之间的通道, 使第 一交流电源与转换单元隔离, 如果控制信号是闭合信号, 则闭合第一交流电 源与转换单元之间的通道, 使第一交流电源与转换单元连接。
第二切换子单元, 用于根据控制子单元发送的控制信号, 切断或闭合第 二交流电源与转换单元的通道。 如果控制子单元向第二切换子单元发送的控 制信号是切断信号, 则切断第二交流电源与转换单元之间的通道, 如果控制 信号是闭合信号, 则闭合第二交流电源与转换单元之间的通道。
第一切换子单元的电路结构与第二切换子单元的电路结构相同, 具体请 分别参见图 5A和图 5B提供的电路结构图。
本实施例中控制子单元根据检测子单元传送的第一交流电源的电压值和 第二交流电源的电压值, 分别向第一切换子单元和第二切换子单元发送控制 信号, 使转换单元与两个电源中处于正常工作状态的一个电源之间的通道处 于闭合状态, 从而满足了为与转换单元连接的负载提供高可靠供电的需求。
图 4为本发明实施例提供的检测子单元的一种电路结构图。 图 4提供的 检测子单元可以支持 AC故障检测, 也可以支持 HVDC故障检测。 如图 4所示, A路电源和 B路电源分别接入到检测子单元, A路电源的电压和 B路电源的电 压分别通过运放电路转换成合适范围的正电压送给 ADC模块进行检测。如图 4 所示的共两级运放电路。 以 A 路输入为例, 第一级运放电路为 U0 和电阻 R1/R2/R3/R4 , 第二级运放电路为 U1 和电阻 R5/R6/R7。 A 路输入电压值为 UA=A+-A-, 运放 U0与电阻 R1/R2/R3/R4形成第一级放大电路, 主要作用是实现 把需要检测的高电压转换成适合测量的低电压 (通常电压不超过 5V) 。 通常 电阻取值 R1=R2, R3=R4, 经过第一级运放后的输出电压 U。utl=_UA*R3/Rl。运放 U1和电阻 R5/R6/R7形成第二级放大电路,主要作用是把第一级运放输出的电 压 (可能是正电压, 也可能是负电压) 转换成 ADC可检测的正电压, 通常电 压范围为 0〜3. 3V。 经过第二级运放后输出的电压 U。ut2= (U0Utl/R5+VDD/R6 ) / (1/R5+1/R6+1/R7)。
ADC模块通过数字接口与控制子单元连接, 例如, SPI接口或 I2C接口。 控制子单元通过该数字接口可以实时获取到 ADC模块输出的电压值。 其中, 图 3所示的 A路电源可为第一交流电源或第二交流电源, 相应地, B路电源可 为第二交流电源或第一交流电源。
图 5A本发明实施例提供的第一切换子单元的一种电路结构图。 图 5B本 发明实施例提供的第二切换子单元的一种电路结构图。
第一切换子单元内部的开关部件和第二切换子单元内部的开关部件可以 用金属氧化物半导体场效应管 (Metal Oxide Semiconductor Field Effect Transi stor,简称 MOSFET),也可以用氮化钾场效应管(Gal l ium Nitride Field Effect Transistor, 简称 GaNFET) , 还可以用继电器。 图 5A和图 5B中采用 2个 N沟道 MOSFET或 GaNFET作为开关部件。每个通道上采用 2个背靠背连接 的 MOSFET或 GaNFET来实现对 AC或 HVDC的关断和打开功能。电压隔离单元 0、 电压隔离单元 1、电压隔离单元 2和电压隔离单元 3的各自主要作用是产生可 驱动所在通道的 MOSFET或 GaNFET源端(S端) 的 VGS电压, 用于对所在通道 的 MOSFET或 GaNFET的栅极进行控制。 如果是 GaNFET, 该 VGS电压通常为 6V 左右; 如果是 MOSFET, 该 VGS电压通常为 12V左右。 另外, 为方便控制子单 元根据切换需要打开或关闭所在通道, 电压隔离单元 0、 电压隔离单元 1、 电 压隔离单元 2和电压隔离单元 3各包括一个用于关断和打开输出电压的控制 管脚, 通过改变该控制管脚的电平实现对所在电压隔离单元输出电压的关断 和打开控制。 该控制管脚通过隔离光耦与控制子单元连接, 可以根据控制子 单元下发的控制信号打开或关闭电压隔离单元的输出, 进而控制对应通道的
M0SFET或 GaNFET的打开或关闭。
如图 5A和图 5B所示, 当控制子单元需要把当前的主电源由电源 A切换 到电源 B时, 首先控制子单元驱动控制信号 0和控制信号 1均为高电平, 则 对应的隔离光耦 0C0和隔离光耦 0C1不导通, 进而对应的电压隔离单元 0和 电压隔离单元 1的 shutdown端为上拉到正电压 VCC— OUT, 从而电压隔离单元 0和电源隔离单元 1关断输出,第一切换子单元中 A+和 A-所连接的 M0SFET或 GaNFET关闭。 控制子单元在关闭第一切换子单元中的 M0SFET或 GaNFET后, 驱动控制信号 2和控制信号 3均为低电平, 则对应的隔离光耦 0C2和隔离光 耦 0C3导通, 进而对应的电压隔离单元 2和电压隔离单元 3的 shutdown端对 应为低电平, 从而电压隔离单元 2 和电压隔离单元 3 输出有效的 VGS— B+和 VGS— B—电压, 驱动第一切换子单元的 M0SFET或 GaNFET导通, 从而主电源由 电源 A切换为电源 B。
图 6A为本发明实施例提供的又一种电源变换模块结构示意图。 如图 6A 所示, 为避免处于故障状态的电源在恢复工作的瞬间对负载造成的影响, 检 测切换单元中还可包括切断确认子单元 35, 以使控制子单元确定接收到切断 信号的切换子单元切断相应的通道后, 再向另一个切换子单元发送闭合信号。
切断确认子单元分别与控制子单元、 第一切换子单元和第二切换子单元 以及转换单元连接。
控制子单元, 还用于先向第一交流电源和第二交流电源中处于非正常工 作状态的一个交流电源连接的所述第一切换子单元或所述第二切换子单元发 送切断信号, 然后向切断确认子单元发送包括通道标识的切断确认指示信号, 在接收到切断确认子单元发送的切断确认信号后, 向第一交流电源和第二交 流电源中另一个交流电源连接的所述第一切换子单元或所述第二切换子单元 发送闭合信号; 通道标识用于标识第一交流电源与连接单元之间的通道, 或 第二交流电源与转换单元之间的通道。
如果第一交流电源处于非工作状态而第二交流电源处于正常工作状态, , 控制子单元向第一交流电源连接的第一切换子单元发送切断信号, 然后向切 断确认子单元发送包括通道标识的切断确认指示信号, 在接收到切断确认子 单元发送的切断确认信号后, 向第二交流电源连接的第二切换子单元发送闭 合信号。 控制子单元在切断确认指示信号中通过携带的通道标识, 告知切断 确认子单元需要确认哪个电源与转换单元之间的通道是否已切断。
切断确认子单元, 用于接收到控制子单元发送的切断确认指示信号后, 判断通道标识对应的通道是否切断, 在确定通道标识对应的通道切断后向控 制子单元发送切断确认响应信号。
切断确认子单元主要功能是在控制子单元进行电源切换时, 先确认原来 与转换单元连接的电源是否已被切断, 确保不会出现在原来的电源未切断情 况下, 使另一个电源与转换单元之间的通道闭合。 切断确认子单元的具体电 路图如图 6B所示。 通过霍尔电流传感器检测输电流是否已低于设定的门限来 确认电源所在的通道是否切断。 为避免交流正弦波在过零点的误判, 通常软 件会进行连续多次电流值确认, 如果多次电流值都低于设定的门限, 则认为 原电源所在通道已关断。
结合图 5A和图 5B, 控制子单元在关闭第一切换子单元中的 M0SFET或 GaNFET后,再检测切断确认子单元输出的响应信号是否是切断确认响应信号, 如果是切断确认响应信号, 则确认当前电源 A所在通道已关闭。 当确认到当 前电源 A所在通道已关闭后, 再驱动控制信号 2和控制信号 3均为低电平, 则对应的隔离光耦 0C2和隔离光耦 0C3导通, 进而对应的电压隔离单元 2和 电压隔离单元 3的 shutdown端对应为低电平, 从而电压隔离单元 2和电压隔 离单元 3输出有效的 VGS— B+和 VGS— B—电压, 驱动第一切换子单元的 M0SFET 或 GaNFET导通, 从而主电源由电源 A切换为电源 B。
图 7为本发明实施例提供的再一种电源变换模块结构示意图。 如图 7所 示, 本实施例提供的电源变换模块中检测切换单元还包括通信子单元 36。
通信子单元分别与控制子单元和管理供电装置的主机连接; 控制子单元, 还用于在第一交流电源和第二交流电源均处于非正常工作状态时, 向通信子 单元发送告警信息。 通信子单元, 用于将控制子单元发送的告警信息传输给 管理供电装置的主机。
通信子单元也可以把主机下发的控制及查询信息发送给控制子单元。 通 信子单元可以根据不同主机的接口需要, 提供与主机匹配的通信接口, 例如 I2C接口、 RS485接口和 FE接口等。
为使电源变换模块在单路电源输入的情况下维持正常工作, 本实施例提 供的电源变交模块中检测切换单元还包括辅助电源子单元, 以为检测切换单 元中各子单元提供工作需要的电压, 例如, 12V或 3. 3V。 辅助电源子单元分 别与第一交流电源和第二交流电源连接, 辅助电源子单元还分别与控制子单 元、 所述第一切换子单元、 所述第二切换子单元、 所述切断确认子单元和所 述通信子单元连接, 用于向控制子单元、 所述第一切换子单元、 所述第二切 换子单元、 所述切断确认子单元和所述通信子单元供电。
图 8 为本发明实施例提供的辅助电源子单元的一种电路示意图, 如图 8 所示, A路输入和 B路输入各有 1个整流模块, 主要功能是实现对输入交流的 整流处理, 把交流输入转换成直流输出。 变压器模块 T1和变压器模块 T2作 用是, 根据原边的匝数和副边的匝数实现电压变换, 并实现原边电压与副边 电压的电器隔离。 反馈模块 A和反馈模块 B的功能是对各自通道的输出电压 进行检测, 并把检测的电压反馈给 PWM (Pulse Width Modulation, 脉冲宽度 调制) 控制模块。 PMW控制模块 A根据反馈模块 A检测的输出电压 VCC1确定 输出给 Ml的 PWM信号占空比,通过改变占空比来改变输出电压值。同理, P丽 控制模块 B根据反馈模块 B检测的输出电压 VCC2确定输出给 M2的 PWM信号 占空比, 通过改变占空比来改变输出电压值。 其中, Ml和 M2分别是 M0SFET。 合路模块的作用是实现 VCC1和 VCC2两路输出电压的合路处理, 把合路之后 的电压输出给检测切换单元内部的其它子单元, 从而确保在任何一路电源故 障的情况下, 检测切换单元可以维持正常工作。 由于辅助电源子单元输出功 率很低, 通常合路模块可以通过 2个二极管实现。
辅助电源子单元既支持输入的电源为 AC 电源, 也支持输入电源为 HVDC 电源。 以输入通道 A为例, 当输入的电源为 AC时, 在 AC电压的正半周期内, 辅助电源子单元内部电流流向如下: A+>D0>T1>M1>AGND0>D3>A -。 在 AC 电压 的 负 半 周 期 内 , 辅助 电源 子 单 元 内 部 电 流流 向 如 下 : A -〉 Dl>Tl>Ml>AGND0>D2>A+。 当输入的电源为 HVDC 时, 辅助电源子单元内部 电流流向如下: A+>D0>T1 >M1 >AGND0>D3>A-。
图 9为本发明实施例提供的一种电源变换模块中转换单元的结构示意图。 如图 9所示, 转换单元包括滤波模块、 整流及 PFC模块和 DC/DC转换模块。 其中, PFC是 Power Factor Correction (功率因素校准) 的英文缩写。
滤波模块、 整流及 PFC模块和 DC/DC转换模块均可兼容 AC输入和 HVDC 输入, 滤波模块用于对电源变换模块的供电源进行滤波处理。 当电源变换模 块的供电源为 AC电源时, 整流及 PFC模块实现 AC的谐波抑制, 并把 AC转换 成直流电压, 例如 380V电压。 当电源变换模块的供电源为 HVDC电源时, 则 把 HVDC电压转换成 DC/DC输入需要的直流电压, 例如 380V。整流及 PFC模块 可以沿用目前通用的整流及 PFC模块的电路图, 为兼容 AC输入和 HVDC输入, 整流及 PFC模块中需采用耐压性能较高的元器件, 图 10为本发明实施例提供 的整流及 PFC模块的一种电路示意图。 如图 10所示。 当供电源为 HVDC电源 时, 电流从输入的正端经过二极管 D2后, 再通过 PFC电路, 最后经过二极管 D4回到负端。
DC/DC转换模块实现把 PFC模块输出的直流电压转换成设备负载需要的直 流电压, 例如 12V或 -48V, 并可以实现多路 DC/DC转换模块并联时的均流控 制。
图 11为本发明实施例提供的一种电源控制方法流程图。 供电装置内每个 电源变换模块分别连接有第一交流电源和第二交流电源。 本实施例的执行主 体为电源变换模块。 如图 1 1所示, 本实施例提供的电源控制方法, 包括: 步骤 111 : 实时监控第一交流电源的工作状态和第二交流电源的工作状 态。
电源变换模块有两个输入端, 一个输入端与第一交流电源的输出端连接, 另一个输入端与第二交流电源的输出端连接。 电源变换模块连接的两个交流 电源中有一个电源正常工作, 该电源变换模块就可为负载供电。 第一交流电 源和第二交流电源可能来自机房不同的供电网络,也可能来自两个不同的 UPS 或电池。 AC电源可以是 220V、 110V或 120V。
电源变换模块可以实时监控所述第一交流电源的电压值和所述第二交流 电源的电压值, 根据所述第一交流电源的电压值, 判断所述第一交流电源是 否处于正常工作状态, 根据所述第二交流电源的电压值, 判断所述第二交流 电源是否处于正常工作状态。
步骤 112 : 根据第一交流电源的工作状态和所述第二交流电源的工作状 态, 闭合第一交流电源和第二交流电源中处于正常工作状态的一个电源与电 源变换模块中转换单元之间的通道, 并切断第一交流电源和第二交流电源中 另一个电源与转换单元之间的通道。
监控到两个交流电源均处于正常工作状态, 电源变换模块可以闭合任意 一个电源与转换单元之间的通道, 并切断另一个交流电源与转换单元之间的 通道, 使通道闭合的电源为供电源。 电源变换模块支持双路 AC输入和 1路 AC 输出。
电源变换模块监测到所述第一交流电源和所述第二交流电源均处于非正 常工作状态时, 向管理所述供电装置的主机发送告警消息。
在所述第一交流电源与所述转换单元之间的通道闭合的情况下, 若所述 第一交流电源处于非正常工作状态而所述第二交流电源处于正常工作状态, 先切断所述第一交流电源与所述转换单元之间的通道, 然后闭合所述第二交 流电源与所述转换单元之间的通道。 在所述第二交流电源与所述转换单元之 间的通道闭合的情况下, 若所述第二交流电源处于非正常工作状态而所述第 一交流电源处于正常工作状态, 先切断所述第二交流电源与所述转换单元之 间的通道, 然后闭合所述第一交流电源与所述转换单元之间的通道。
步骤 1 13 :将与转换单元之间的通道闭合的电源输出的交流电压进行整流 处理后转换成负载需要的直流电压。
在第一交流电源与转换单元之间的通道闭合的情况下, 将第一交流电源 输出的交流电压进行整流处理后转换成负载需要的直流电压。 在第二交流电 源与转换单元之间的通道闭合的情况下, 将第一交流电源输出的交流电压进 行整流处理后转换成负载需要的直流电压。 进一步, 将与转换单元之间的通 道闭合的电源输出的交流电压进行整流处理后转换成负载需要的直流电压。
本实施例提供的电源控制方法, 供电装置中每个电源变换模块都可以将 连接的两个电源中处于正常工作状态的一个电源作为供电源, 将供电源输出 的电压转换后输出给负载, 因此, 每个电源变换模块连接的电源都实现了双 备份, 对于包括 N个电源变换模块的供电装置来说, 其输入的电源实现了 N+N 备份, 满足了为负载提供高可靠供电的需求。 现有技术中, 实现电源 N+N备 份, 供电装置中需要 N+N个电源变换模块, 而本实施列提供的供电装置只需 要 N个电源变换模块。 因而, 在满足供电高可靠性的情况下, 本实施例提供 的供电装置中包括的电源变换模块数量远少于现有技术提供的供电装置中包 括的电源变换模块的数量, 降低了供电装置的生产成本。 进一步, 为实现对 电源变换模块的备份, 可以在供电装置中增加至少 1个电源变换模块, 因此, 包括 N+m个电源变换模块的供电装置。 不仅实现了供电源的 N+N备份, 还实 现了电源变换模块的 N+m备份。
图 12为本发明实施例提供的一种供电装置结构示意图。 如图 12所示, 供电装置包括: N+m个电源变换模块。 其中, N+m个电源变换模块的输出端并 联, 支持负载均流, 其中, N为自然数, m为大于等于 0小于等于 N的整数。
N个电源变换模块为主电源变换模块, m个电源变换模块为备用电源变换模块。 m可以为零, 表示本实施例提供的供电装置中可以没有备用电源变换模块。为 实现对电源变换模块的备份, 可以在本实施例提供的供电装置中增加 1、 2、 3、 …… N-l、 或 N个电源变换模块。
图 12中电源变换模块可以是图 2、 图 3、 图 6A和图 7中任意一个电源源 变换模块, 图 12中电源变换模块的具体功能和电路结构参见图 2、 图 3、 图 6A和图 7对应实施例的描述, 在此不再赘述。
本实施例提供的供电装置中, 每个电源变换模块都可以将连接的两个交 流电源中处于正常工作状态的一个交流电源作为供电源, 将供电源输出的交 流电压进行转换后输出给负载, 因此, 每个电源变换模块连接的交流电源都 实现了双备份, 对于包括 N个电源变换模块的供电装置来说, 其输入的电源 实现了 N+N备份, 满足了为负载提供高可靠供电的需求。 现有技术中, 实现 电源 N+N备份, 供电装置中需要 N+N个电源变换模块, 而本实施列提供的供 电装置只需要 N个电源变换模块。 因而, 在满足供电高可靠性的情况下, 本 实施例提供的供电装置中包括的电源变换模块数量远少于现有技术提供的供 电装置中包括的电源变换模块的数量, 降低了供电装置的生产成本, 同时。 降低了供电装置。 进一步, 为实现对电源变换模块的备份, 可以在供电装置 中增加至少 1个电源变换模块。 因此, 包括 N+m个电源变换模块的供电装置。 不仅实现了供电源的 N+N备份, 还实现了电源变换模块的 N+m备份。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步骤; 而 前述的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的 介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权利 要 求 书
1、 一种电源变换模块, 其特征在于, 包括检测切换单元和转换单元; 所述 检测切换单元分别与所述第一交流电源的输出端和所述第二交流电源的输出端 连接, 所述检测切换单元还与所述转换单元连接, 所述转换单元与负载连接; 所述检测切换单元, 用于实时监控所述第一交流电源的工作状态和所述第 二交流电源的工作状态, 闭合所述第一交流电源和所述第二交流电源中处于正 常工作状态的一个交流电源与所述转换单元之间的通道, 并切断所述第一交流 电源和所述第二交流电源中另一个交流电源与所述转换单元之间的通道;
所述转换单元, 用于将所述检测切换单元闭合的通道中所述处于正常工作 状态一个交流电源输出的交流电压进行整流后转换成负载需要的直流电压。
2、 根据权利要求 1所述的模块, 其特征在于:
所述检测切换单元, 还用于在所述第一交流电源与所述转换单元之间的通 道闭合的情况下, 若所述第一交流电源处于非正常工作状态而所述第二交流电 源处于正常工作状态, 切断所述第一交流电源与所述转换单元之间的通道并闭 合所述第二交流电源与所述转换单元之间的通道;
所述检测切换单元, 还用于在所述第二交流电源与所述转换单元之间的通 道闭合的情况下, 若所述第二交流电源处于非正常工作状态而所述第一交流电 源处于正常工作状态, 切断所述第二交流电源与所述转换单元之间的通道并闭 合所述第一交流电源与所述转换单元之间的通道。
3、 根据权利要求 1所述的模块, 其特征在于, 所述检测切换单元包括: 检 测子单元、 控制子单元、 第一切换子单元和第二切换子单元;
所述检测子单元分别与所述第一交流电源的输出端和所述第二交流电源的 输出端连接, 所述检测子单元还与所述控制子单元连接; 所述检测子单元, 用 于实时检测所述第一交流电源的电压值和所述第二交流电源的电压值, 并将检 测到的所述第一交流电源的电压值和所述第二交流电源的电压值发送给所述控 制子单元;
所述控制子单元分别与所述检测子单元、 所述第一切换子单元和所述第二 切换子单元连接; 所述控制子单元, 用于根据所述第一交流电源的电压值, 实 时监控所述第一交流电源是否处于正常工作状态, 根据所述第二交流电源的电 压值, 实时监控所述第二交流电源是否处于正常工作状态; 所述第一切换子单元分别与所述第一交流电源、 所述转换单元和所述控制 子单元连接; 所述第二切换子单元分别与所述第二交流电源、 所述转换单元和 所述控制子单元连接;
所述控制子单元, 还用于根据所述第一交流电源的工作状态和所述第二交 流电源的工作状态, 向所述第一交流电源和所述第二交流电源中处于正常工作 状态的一个交流电源连接的所述第一切换子单元或所述第二切换子单元发送闭 合信号, 向另一个电源连接的所述第一切换子单元或所述第二切换子单元发送 切断信号, 以闭合所述第一交流电源和所述第二交流电源中处于正常工作状态 的一个交流电源与所述转换单元之间的通道, 切断所述第一交流电源和所述第 二交流电源中另一个交流电源与所述转换单元之间的通道;
所述第一切换子单元, 用于根据所述控制子单元发送的控制信号, 切断或 闭合所述第一交流电源与所述转换单元之间的通道;
所述第二切换子单元, 用于根据所述控制子单元发送的控制信号, 切断或 闭合所述第二交流电源与所述转换单元之间的通道。
4、 根据权利要求 3所述的模块, 其特征在于:
所述控制子单元, 还用于在所述第一交流电源与所述转换单元之间的通道 闭合的情况下, 若所述第一交流电源处于非正常工作状态且所述第二交流电源 处于正常工作状态, 向所述第一切换子单元发送切断信号, 并向所述第二切换 子单元发送闭合信号;
所述控制子单元, 还用于在所述第二交流电源与所述转换单元之间的通道 闭合的情况下, 若所述第二交流电源处于非正常工作状态且所述第一交流电源 处于正常工作状态, 向所述第二切换子单元发送切断信号, 并向所述第一切换 子单元发送闭合信号。
5、 根据权利要求 3或 4所述的模块, 其特征在于, 所述检测切换单元还包 括: 切断确认子单元;
所述切断确认子单元分别与所述控制子单元、 所述第一切换子单元和所述 第二切换子单元以及所述转换单元连接;
所述控制子单元, 还用于先向所述第一交流电源和所述第二交流电源中处 于非正常工作状态的一个交流电源连接的所述第一切换子单元或所述第二切换 子单元发送切断信号, 然后向所述切断确认子单元发送包括通道标识的切断确 认指示信号, 在接收到所述切断确认子单元发送的切断确认信号后, 向所述第 一交流电源和所述第二交流电源中另一个交流电源连接的所述第一切换子单元 或所述第二切换子单元发送闭合信号; 所述通道标识用于标识所述第一交流电 源与所述连接单元之间的通道, 或所述第二交流电源与所述转换单元之间的通 道;
所述切断确认子单元, 用于接收到所述控制子单元发送的切断确认指示信 号后, 判断所述通道标识对应的通道是否切断, 在确定所述通道标识对应的通 道切断后向所述控制子单元发送切断确认响应信号。
6、 根据权利要求 5所述的模块, 其特征在于, 所述检测切换单元还包括: 通信子单元;
所述通信子单元分别与所述控制子单元和管理所述供电装置的主机连接; 所述控制子单元, 还用于在所述第一交流电源处于非正常工作状态和 /或所 述第二交流电源处于非正常工作状态时, 向所述通信子单元发送告警信息; 所述通信子单元, 用于将所述控制子单元发送的告警信息传输给管理所述 供电装置的主机。
7、 根据权利要求 6所述的模块, 其特征在于, 所述检测切换单元还包括: 辅助电源子单元;
所述辅助电源子单元分别与所述第一交流电源和第二交流电源连接, 所述 辅助电源子单元还分别与所述控制子单元、 所述第一切换子单元、 所述第二切 换子单元、 所述切断确认子单元和所述通信子单元连接, 用于向所述控制子单 元、 所述第一切换子单元、 所述第二切换子单元、 所述切断确认子单元和所述 通信子单元供电。
8、 一种供电方法, 其特征在于, 供电装置内每个电源变换模块分别连接有 第一交流电源和第二交流电源, 所述方法包括:
实时监控所述第一交流电源的工作状态和所述第二交流电源的工作状态; 根据所述第一交流电源的工作状态和所述第二交流电源的工作状态, 闭合 所述第一交流电源和所述第二交流电源中处于正常工作状态的一个电源与所述 电源变换模块中转换单元之间的通道, 并切断所述第一交流电源和所述第二交 流电源中另一个电源与所述转换单元之间的通道;
将所述检测切换单元闭合的通道中所述处于正常工作状态一个交流电源输 出的交流电压进行整流后转换成负载需要的直流电压。
9、 根据权利要 8所述的方法, 其特征在于, 所述方法还包括:
在所述第一交流电源与所述转换单元之间的通道闭合的情况下, 若所述第 一交流电源处于非正常工作状态而所述第二交流电源处于正常工作状态, 先切 断所述第一交流电源与所述转换单元之间的通道, 然后闭合所述第二交流电源 与所述转换单元之间的通道;
在所述第二交流电源与所述转换单元之间的通道闭合的情况下, 若所述第 二交流电源处于非正常工作状态而所述第一交流电源处于正常工作状态, 先切 断所述第二交流电源与所述转换单元之间的通道, 然后闭合所述第一交流电源 与所述转换单元之间的通道。
10、 根据权利要 8或 9所述的方法, 其特征在于, 所述方法还包括: 若所述第一交流电源和所述第二交流电源均处于非正常工作状态, 向管理 所述供电装置的主机发送告警消息。
11、 根据权利要求 10所述的方法, 其特征在于, 所述实时监控所述第一交 流电源的工作状态和所述第二交流电源的工作状态, 包括:
实时监控所述第一交流电源的电压值和所述第二交流电源的电压值, 根据 所述第一交流电源的电压值, 判断所述第一交流电源是否处于正常工作状态, 根据所述第二交流电源的电压值, 判断所述第二交流电源是否处于正常工作状 态。
12、 一种供电装置, 其特征在于, 包括: N+m个如权利要求 1至 7任一项 所述的电源变换模块, N+m个所述电源变换模块的输出端并联,以实现负载均流; 其中, N个所述电源变换模块为主电源变换模块, m个所述电源变换模块为备用 电源变换模块; N为自然数, 所述 m为大于或等于 0, 且小于或等于所述 N的整 数。
PCT/CN2014/070869 2013-08-01 2014-01-20 电源变换模块、供电装置和供电方法 WO2015014108A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14755766.4A EP2854281B1 (en) 2013-08-01 2014-01-20 Power supply conversion module, power supply device and power supply method
US14/481,216 US9088175B2 (en) 2013-08-01 2014-09-09 Power source conversion module, power supply apparatus and power supply method
US14/738,164 US10014715B2 (en) 2013-08-01 2015-06-12 Power source conversion module, power supply apparatus and power supply method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310331761.0 2013-08-01
CN201310331761.0A CN104348370A (zh) 2013-08-01 2013-08-01 电源变换模块、供电装置和供电方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/481,216 Continuation US9088175B2 (en) 2013-08-01 2014-09-09 Power source conversion module, power supply apparatus and power supply method

Publications (1)

Publication Number Publication Date
WO2015014108A1 true WO2015014108A1 (zh) 2015-02-05

Family

ID=51703121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/070869 WO2015014108A1 (zh) 2013-08-01 2014-01-20 电源变换模块、供电装置和供电方法

Country Status (3)

Country Link
EP (1) EP2854281B1 (zh)
CN (2) CN109861560A (zh)
WO (1) WO2015014108A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787644A (zh) * 2016-12-16 2017-05-31 上海传英信息技术有限公司 电源管理系统及其电力供应方法
CN110542890A (zh) * 2019-10-01 2019-12-06 西安电子工程研究所 一种雷达中央配电箱离线自动检测系统及方法
CN114498253A (zh) * 2022-02-18 2022-05-13 中国工程物理研究院应用电子学研究所 一种小型化分布式激光保障系统
CN115224787A (zh) * 2022-07-30 2022-10-21 上海锐星微电子科技有限公司 一种电源切换电路及方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM514037U (zh) * 2015-08-07 2015-12-11 Digipower Mfg Inc 具遠端監控及電力備援機制的電源管理裝置
CN106026374A (zh) * 2016-07-29 2016-10-12 国网浙江省电力公司衢州供电公司 一种无人机供电方法及系统
TWI613877B (zh) 2016-08-25 2018-02-01 和碩聯合科技股份有限公司 備援電源控制電路
CN106774766B (zh) * 2016-12-16 2021-02-05 广东威创视讯科技股份有限公司 桌面处理器的供电架构系统
CN107394998B (zh) * 2017-06-12 2020-04-17 矽力杰半导体技术(杭州)有限公司 控制电路、控制方法及开关电源
CN111226369A (zh) * 2018-11-22 2020-06-02 深圳市大疆创新科技有限公司 开关电路以及充电设备的充电电路
WO2020103084A1 (zh) * 2018-11-22 2020-05-28 深圳市大疆创新科技有限公司 充电器和充电管理方法
CN111371169A (zh) * 2018-12-26 2020-07-03 中兴通讯股份有限公司 一种多输入供电系统、方法、设备及可读存储介质
CN110955317B (zh) * 2019-11-01 2022-04-05 华为技术有限公司 一种电源模组及整机柜
CN111106667B (zh) * 2019-12-19 2022-03-29 华为数字能源技术有限公司 一种供电装置和供电系统
CN113342105B (zh) * 2021-06-03 2022-11-11 昆山国显光电有限公司 显示面板的电源调节装置及方法、显示装置
DE102021123118B3 (de) * 2021-09-07 2022-08-25 Fujitsu Client Computing Limited Systemkomponente, Mini-PC und Betriebsverfahren für eine Systemkomponente
CN114142550A (zh) * 2021-10-29 2022-03-04 漳州科华电气技术有限公司 储能装置的控制方法、装置及储能装置
CN116961208A (zh) * 2022-04-18 2023-10-27 维谛公司 电源装置及电源装置的控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630753B2 (en) * 2001-10-29 2003-10-07 International Business Machines Corporation Low cost redundant AC to DC power supply
CN201838298U (zh) * 2010-09-07 2011-05-18 深圳市洲明科技股份有限公司 Led显示屏电源双备份电路及系统
CN101621214B (zh) * 2009-07-28 2012-09-19 成都市华为赛门铁克科技有限公司 电池备份模块、电池备份模块的供电方法及存储系统
CN102710010A (zh) * 2012-05-23 2012-10-03 华为技术有限公司 供电设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6330176B1 (en) * 2000-11-15 2001-12-11 Powerware Corporation Multi-input power transfer and uninterruptible power supply apparatus and methods of operation thereof
TW561676B (en) * 2001-04-06 2003-11-11 Delta Electronics Inc Power supply device having an AC redundant function
US6747369B2 (en) * 2002-08-22 2004-06-08 Intel Corporation Power system including redundant power supplies
US7709976B2 (en) * 2005-07-19 2010-05-04 Linear Technology Corporation Dual-input DC-DC converter with integrated ideal diode function
US8232680B2 (en) * 2009-12-21 2012-07-31 International Business Machines Corporation Selecting a single AC source for a switching power supply
US8674555B2 (en) * 2011-03-07 2014-03-18 Layerzero Power Systems, Inc. Neutral switching high speed AC transfer switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630753B2 (en) * 2001-10-29 2003-10-07 International Business Machines Corporation Low cost redundant AC to DC power supply
CN101621214B (zh) * 2009-07-28 2012-09-19 成都市华为赛门铁克科技有限公司 电池备份模块、电池备份模块的供电方法及存储系统
CN201838298U (zh) * 2010-09-07 2011-05-18 深圳市洲明科技股份有限公司 Led显示屏电源双备份电路及系统
CN102710010A (zh) * 2012-05-23 2012-10-03 华为技术有限公司 供电设备

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787644A (zh) * 2016-12-16 2017-05-31 上海传英信息技术有限公司 电源管理系统及其电力供应方法
CN106787644B (zh) * 2016-12-16 2024-03-22 上海传英信息技术有限公司 电源管理系统及其电力供应方法
CN110542890A (zh) * 2019-10-01 2019-12-06 西安电子工程研究所 一种雷达中央配电箱离线自动检测系统及方法
CN114498253A (zh) * 2022-02-18 2022-05-13 中国工程物理研究院应用电子学研究所 一种小型化分布式激光保障系统
CN114498253B (zh) * 2022-02-18 2023-08-15 中国工程物理研究院应用电子学研究所 一种小型化分布式激光保障系统
CN115224787A (zh) * 2022-07-30 2022-10-21 上海锐星微电子科技有限公司 一种电源切换电路及方法
CN115224787B (zh) * 2022-07-30 2023-06-23 上海锐星微电子科技有限公司 一种电源切换电路及方法

Also Published As

Publication number Publication date
EP2854281A1 (en) 2015-04-01
CN109861560A (zh) 2019-06-07
EP2854281A4 (en) 2015-10-07
CN104348370A (zh) 2015-02-11
EP2854281B1 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
WO2015014108A1 (zh) 电源变换模块、供电装置和供电方法
US9088175B2 (en) Power source conversion module, power supply apparatus and power supply method
US9837855B2 (en) Uninterruptible power supply control
US7932636B2 (en) Automatic start-up circuit and uninterruptible power supply apparatus having such automatic start-up circuit
TWI436540B (zh) 電源供應器與電源供應器的控制方法以及其所適用之電源供電系統
US9871409B2 (en) LPS architecture for UPS systems
CN101447666A (zh) 一种电源供电系统及电源过压安全保护控制方法
WO2009059516A1 (fr) Dispositif et procédé pour commander la commutation d'une alimentation principale et d'une alimentation de secours
US9979218B2 (en) LPS architecture for UPS systems
CN107579591B (zh) 一种交流电源供电的备电系统
US8390260B2 (en) Power supply for negative voltage load
CN110875630B (zh) 备援切换装置及其控制方法
CN113506706B (zh) 高可靠性的接触器驱动电路及工作方法
WO2023226208A1 (zh) 机器人控制器电源检测及保护系统、机器人
JP2004013257A (ja) 火災受信機
JP2003309937A (ja) 電源装置
CN220913219U (zh) 一种设备异常处理电路
WO2012104980A1 (ja) 電源装置、電子機器、および電子機器システム
CN103944253A (zh) 无线基站内部设备在线供电系统
WO2024002336A1 (zh) 一种电源自动转换装置
WO2024002228A1 (zh) 快速自动转换开关装置及其操作方法
CN217445080U (zh) 基于硬件模块控制的互为备份电源
JP7009261B2 (ja) パワーコンディショナシステム
CN203299809U (zh) 一种数据保护电路
KR101082068B1 (ko) 양전원 회로의 전원 이상 검출 및 보호회로, 그에따른 방송 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014755766

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14755766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE