WO2023226208A1 - 机器人控制器电源检测及保护系统、机器人 - Google Patents

机器人控制器电源检测及保护系统、机器人 Download PDF

Info

Publication number
WO2023226208A1
WO2023226208A1 PCT/CN2022/113051 CN2022113051W WO2023226208A1 WO 2023226208 A1 WO2023226208 A1 WO 2023226208A1 CN 2022113051 W CN2022113051 W CN 2022113051W WO 2023226208 A1 WO2023226208 A1 WO 2023226208A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
detection
unit
control
output
Prior art date
Application number
PCT/CN2022/113051
Other languages
English (en)
French (fr)
Inventor
杨跞
苏绍徽
李羊
陈宏伟
Original Assignee
中科新松有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科新松有限公司 filed Critical 中科新松有限公司
Publication of WO2023226208A1 publication Critical patent/WO2023226208A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0061Details of emergency protective circuit arrangements concerning transmission of signals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices

Definitions

  • Embodiments of the present application relate to the field of robot technology, for example, to a robot controller power detection and protection system and a robot.
  • Robots are modern tools that can be used in multiple fields and scenarios.
  • the research and development direction of contemporary robots is also an important direction: safety. People have been studying robot safety issues. To address this problem, robot safety controllers emerged.
  • the power supply system of the entire safety controller itself is the basis for ensuring that the safety controller can effectively protect the robot.
  • Abnormalities in any power node may cause the safety controller itself to be unable to effectively protect the subsequent robots.
  • the safety signal is abnormal, which in turn causes the robot to not stop running in an abnormal state and cannot effectively turn off the bus power supply, which may damage the robot, and the robot is often expensive and the loss is very high. Large, the safety controller has not achieved the purpose of "safety".
  • Embodiments of the present application provide a robot controller power supply detection and protection system and a robot to safely protect the power supply system of the robot safety controller itself, ensure the reliability of the robot safety controller, and thereby achieve effective safety protection for the robot.
  • inventions of the present application provide a robot controller power supply detection and protection system.
  • the robot controller power supply includes a bus power supply, a safety input and output circuit power supply, and a control power supply.
  • the system includes: a first control unit , the second control unit and the power detection and protection module;
  • the power detection and protection module is respectively connected to the bus power supply, the power supply, the control power supply, the first control unit and the second control unit;
  • the power supply detection and protection module is configured to detect the output voltage of the bus power supply in real time, and output the detected bus power supply output signal to the first control unit and the second control unit simultaneously; and is configured to respond Upon detecting an abnormality in the output voltage of the power supply, control the power supply to be turned off, and simultaneously output a power supply abnormality signal to the first control unit and the second control unit; and be configured to respond to the detection of an abnormality in the output voltage of the power supply. If the output voltage of the control power supply is abnormal, at least the control power supply is controlled to be turned off;
  • the first control unit and the second control unit are communicatively connected and mutually redundant;
  • the first control unit and the second control unit are configured to respond to at least one of determining that the output voltage of the bus power supply is abnormal according to the bus power supply output signal and receiving the power supply abnormality signal, to
  • the power detection and protection module outputs a bus power shut-off control signal to control the power detection and protection module to shut off the bus power.
  • embodiments of the present application also provide a robot, which includes the robot controller power detection and protection system described in the first aspect.
  • Figure 1 is a schematic structural diagram of a robot controller power detection and protection system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another robot controller power detection and protection system provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a bus power detection and protection sub-module provided by an embodiment of the present application.
  • Figure 4 is a schematic work flow diagram of a bus power detection and protection sub-module provided by an embodiment of the present application
  • Figure 5 is a schematic structural diagram of a power supply detection and protection sub-module provided by an embodiment of the present application.
  • Figure 6 is a schematic work flow diagram of a power supply detection and protection sub-module provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a control power supply detection and protection sub-module provided by an embodiment of the present application.
  • Figure 8 is a schematic work flow diagram of a control power supply detection and protection sub-module provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a robot controller power detection and protection system provided by an embodiment of the present application.
  • the robot controller power supply detection and protection system includes: a first control unit 400 , a second control unit 500 and a power supply detection and protection module 600 .
  • the power detection and protection module 600 is connected to the bus power supply 100, the power supply 200, the control power supply 300, the first control unit 400 and the second control unit 500.
  • the power detection and protection module 600 is configured to detect the output voltage of the bus power supply 100 in real time, and output the detected output signal of the bus power supply 100 to the first control unit 400 and the second control unit 500 at the same time; and is configured to detect the power supply.
  • the power supply 200 is controlled to be turned off, and the power supply abnormality signal is output to the first control unit 400 and the second control unit 500 at the same time; and it is configured to at least control when an abnormality in the output voltage of the control power supply 300 is detected.
  • the control power supply 300 is turned off; the first control unit 400 and the second control unit 500 are communicatively connected and redundant with each other; the first control unit 400 and the second control unit 500 are configured to determine the status of the bus power supply 100 based on the output signal of the bus power supply 100
  • the bus power supply shutdown control signal is output to the power supply detection and protection module 600 to control the power supply 300 detection and protection module to switch off the bus power supply 100 .
  • the robot controller includes a bus power supply 100, a safety input and output circuit power supply 200 (referred to as the power supply 200), and a control power supply 300.
  • the bus power supply 100 is mainly configured to provide power to the robot.
  • the safety input and output circuit is a circuit related to safety input and output signals.
  • the safety input and output signals include key safety signals such as system emergency stop and user emergency stop.
  • the power supply 200 is set as the power supply to the safety input and output circuit. The stability of this part of the power supply is Importantly, the power supply 200 may be powered by the bus power supply 100 .
  • the control power supply 300 is a core power supply of the safety controller and can be configured to supply power to the first control unit 400 and the second control unit 500 through other low-voltage circuits, such as communication circuits, detection circuits, etc. Abnormalities in the control power supply 300 may easily cause safety hazards. The controller misjudges or even fails completely, making it impossible to safely protect the robot.
  • both the first control unit 400 and the second control unit 500 may be microprocessors.
  • the power detection and protection module 600 has the function of real-time detection, judgment and control of the output voltages of the bus power supply 100, the power supply 200 and the control power supply 300, and has the function of information interaction with the first control unit 400 and the second control unit 500.
  • An abnormality in the output voltage of a certain power supply means that overvoltage or undervoltage occurs at a certain node on the output circuit of the power supply.
  • the power detection and protection module 600 detects voltages at multiple nodes on the output circuit of the bus power supply 100 in real time, and sends the detected output signals of the bus power supply 100 to the first control unit 400 and the second control unit 500 at the same time.
  • the first control unit 400 and the second control unit 500 respectively determine whether the output voltage of the bus power supply 100 is abnormal based on the output signal of the bus power supply 100 .
  • the first control unit 400 and/or the second control unit 500 The bus power supply shutdown control signal is output to the power detection and protection module 600 .
  • the power supply detection and protection module 600 turns off the bus power supply 100 according to the bus power supply shut-off control signal, and cuts off the power supply of the bus power supply 100 to the robot, thereby realizing the safety protection of the controller bus power supply 100 and thereby ensuring the safety of the subsequent robots.
  • the power supply detection and protection module 600 detects voltages at multiple nodes on the output loop of the power supply 200 in real time. When the power detection and protection module 600 detects an abnormal situation such as overvoltage or undervoltage at a certain node, the power detection and protection module 600 directly shuts off the power supply 200 in time without going through the first control unit 400 and/or the second control unit 500 , to achieve safety protection for the controller power supply 200; and simultaneously output power supply abnormal signals to the first control unit 400 and the second control unit 500.
  • the first control unit 400 and/or the second control unit 500 output the bus power supply shutdown control signal to the power supply detection and protection module 600 according to the power supply abnormal signal to shut down the bus power supply 100 and realize the safety protection of the controller power supply 200. At the same time, the safety protection of the controller bus power supply 100 is realized, thereby ensuring the safety of the downstream robot.
  • the power detection and protection module 600 detects the voltages at multiple nodes on the output loop of the control power supply 300 in real time. When the power detection and protection module 600 detects an abnormal situation such as overvoltage or undervoltage at a certain node, the power detection and protection module 600 directly shuts off the control power supply 300 in time without going through the first control unit 400 and the second control unit 500 to achieve Safety protection for the controller control power supply 300. In this case, in order to avoid misoperation of the controller, the power supply detection and protection module 600 can also control the power supply 200 to be turned off while the control power supply 300 is turned off.
  • the first control unit 400 and/or the second control unit 500 can also detect and determine the ripple of the output voltage of the control power supply 300 based on the detection of the output voltage of the control power supply 300 by the power supply detection and protection module 600 .
  • the bus power supply shutdown control signal will also be output to the power supply detection and protection module 600 to shut off the bus power supply. 100.
  • the embodiment of the present application uses this to perform real-time detection of multiple power supplies in the robot safety controller, and promptly shuts off at least this abnormal power supply when an abnormality is detected, thus realizing the safety of the power supply system of the robot safety controller itself.
  • protection ensuring the reliability of the safety controller, thereby achieving effective safety protection for the downstream robot; and, in the embodiment of the present application, the first control unit 400 and the second control unit 500 are set up redundantly, and one of them is abnormal or The fault will not affect the normal operation of the other one, ensuring the reliability of the robot controller's power detection and protection system, thereby providing reliable safety protection for the power supply system of the safety controller.
  • FIG 2 is a schematic structural diagram of another robot controller power detection and protection system provided by an embodiment of the present application.
  • the module 600 includes a bus power detection and protection sub-module 610 .
  • the power input terminal A1 of the bus power detection and protection sub-module 610 is connected to the bus power supply 100; the first output terminal A3 and the first input terminal A4 of the bus power supply detection and protection sub-module 610 are both connected to the first control unit 400.
  • the bus power supply detection and protection sub-module 610 The second output terminal A5 and the second input terminal A6 of the sub-module 610 are both connected to the second control unit 500; the power output terminal A2 of the bus power detection and protection sub-module 610 is connected to the bus power output terminal 101, and the bus power supply 100 passes through the bus power supply The output terminal 101 supplies power to the robot; the bus power supply detection and protection sub-module 610 is configured to detect the output voltage of the bus power supply 100 in real time, and pass the detected bus power supply output signal through its own first output terminal A3 and second output terminal respectively.
  • A5 is simultaneously output to the first control unit 400 and the second control unit 500, and is configured to receive the bus power shut-off control signal through its own first input terminal A4 and second input terminal A6 respectively, so as to according to the bus power shut-off control signal
  • the control bus power supply 100 and the bus power supply output terminal 101 are disconnected.
  • the output circuit of the bus power supply 100 is a circuit through which the bus power supply 100 supplies power to the robot, and the circuit includes an output path from the bus power supply 100 to the bus power supply output end 101 .
  • the bus power supply detection and protection sub-module 610 detects voltages at multiple nodes on the output loop of the bus power supply 100 in real time, and outputs the detected bus power output signals simultaneously through its first output terminal and second output terminal respectively. to the first control unit 400 and the second control unit 500 .
  • the first control unit 400 and the second control unit 500 determines that the output voltage of the bus power supply 100 has an abnormal situation such as overvoltage or undervoltage
  • the first control unit 400 and/or the second control unit 500 The bus power supply shutdown control signal is output to the first input terminal A4 and/or the second input terminal A6 of the bus power supply detection and protection sub-module 610 respectively, so that the bus power supply detection and protection sub-module 610 turns off the bus power supply according to the bus power supply shutdown control signal.
  • 100 cut off the power supply of the bus power supply 100 to the robot, thereby realizing the safety protection of the controller bus power supply 100, thereby ensuring the safety of the subsequent robot.
  • FIG. 3 is a schematic structural diagram of a busbar power supply detection and protection sub-module provided by an embodiment of the present application.
  • a busbar power supply detection and protection sub-module 610 includes: a first switch unit 611, a second switch unit 612, a first drive unit 613, a second drive unit 614, a first detection unit 615 and a second detection unit 616.
  • the first end of the first switch unit 611 serves as the power input end A1 of the bus power detection and protection sub-module 610.
  • the second end of the first switch unit 611 is connected to the first end of the second switch unit 612.
  • the control terminal is connected to the output terminal of the first driving unit 613;
  • the second terminal of the second switch unit 612 serves as the power output terminal A2 of the bus power detection and protection sub-module 610, and the control terminal of the second switch unit 612 is connected to the output terminal of the second drive unit 614;
  • the input terminal of the first driving unit 613 serves as the first input terminal A4 of the bus power detection and protection sub-module 610;
  • the input terminal of the second driving unit 614 serves as the second input terminal A6 of the bus power detection and protection sub-module 610;
  • the input end of the first detection unit 615 is connected to the second end of the first switch unit 611, the input end of the second detection unit 616 is connected to the second end of the second switch unit 612, and the first output end of the first detection unit 615 After being connected to the first output terminal of the second detection unit 616, it serves as the first output terminal A3 of the bus power detection and protection sub-module 610.
  • the second output terminal of the first detection unit 615 is connected to the second output terminal of the second detection unit 616. It is later used as the second output terminal A5 of the bus power detection and protection sub-module 610;
  • the first detection unit 615 is configured to detect the output voltage of the second terminal of the first switch unit 611 in real time, and simultaneously output the detected first bus power output signal to The first control unit 400 and the second control unit 500;
  • the second detection unit 616 is configured to detect the output voltage of the second terminal of the second switch unit 612 in real time, and simultaneously output the detected second bus power output signal to The first control unit 400 and the second control unit 500;
  • the first control unit 400 and the second control unit 500 are respectively configured to determine that the first bus power supply output signal is greater than the first overvoltage threshold or less than the first undervoltage threshold, and/or determine that the second bus power supply output signal is greater than the first undervoltage threshold.
  • a bus power shutdown control signal is generated;
  • the first driving unit 613 is configured to control the first switch unit 611 to turn off according to the bus power supply cut-off control signal
  • the second driving unit 614 is configured to control the second switch unit 612 to turn off according to the bus power supply cut-off control signal.
  • first switch unit 611 and the second switch unit 612 are both arranged in the output circuit of the bus power supply 100, and the second end of the first switch unit 611 and the second end of the second switch unit 612 are both on the output circuit of the bus power supply 100. node.
  • the first detection unit 615 is configured to detect the output voltage of the second terminal of the first switch unit 611 in real time, and pass the detected first bus power output signal through its first output terminal A3 and the second output terminal respectively.
  • A5 is output to the first control unit 400 and the second control unit 500 simultaneously.
  • the first control unit 400 and the second control unit 500 determines that the output signal of the first bus power supply is greater than the first overvoltage threshold or less than the first undervoltage threshold, it is determined that the output voltage of the bus power supply 100 is abnormal.
  • a control unit 400 and/or a second control unit 500 generate a bus power off control signal.
  • the first driving unit 613 controls the first switch unit 611 to turn off according to the bus power supply shut-off control signal to cut off the output path from the bus power supply 100 to the bus power supply output terminal 101.
  • the bus power supply 100 stops powering the robot, thereby realizing the control of the controller bus.
  • the safety protection of the power supply 100 ensures the safety of the downstream robot.
  • the second detection unit 616 detects the output voltage of the second terminal of the second switch in real time, and simultaneously outputs the detected second bus power output signal to the first control unit through its first output terminal and second output terminal respectively. 400 and the second control unit 500.
  • the first control unit 400 and the second control unit 500 determines that the second bus power supply output signal is greater than the second overvoltage threshold or less than the second undervoltage threshold, it is also determined that the output voltage of the bus power supply 100 is abnormal
  • the first control unit 400 and/or the second control unit 500 generate a bus power off control signal.
  • the second driving unit 614 controls the second switch unit 612 to turn off according to the bus power supply shut-off control signal to cut off the output path from the bus power supply 100 to the bus power supply output terminal 101.
  • the bus power supply 100 stops supplying power to the robot, thereby realizing the control of the controller bus.
  • the safety protection of the power supply 100 ensures the safety of the downstream robot.
  • FIG. 4 is a schematic work flow diagram of a bus power supply detection and protection sub-module provided by an embodiment of the present application.
  • the work flow of the bus power detection and protection sub-module includes:
  • the power input terminal receives the voltage output from the bus power supply.
  • the first detection unit detects the output voltage of the second terminal of the first switch unit.
  • the first detection unit simultaneously outputs the first bus power output signal to the first control unit and the second control unit through the first output terminal and the second output terminal of the first detection unit respectively.
  • the first control unit and the second control unit determines that the first bus power supply output signal is greater than the first overvoltage threshold or less than the first undervoltage threshold
  • the first driving unit and/or the second driving unit receives the bus power shut-off control signal to control the first switch unit and/or the second switch unit to shut off.
  • the second detection unit detects the output voltage of the second terminal of the second switch unit.
  • the second detection unit simultaneously outputs the second bus power output signal to the first control unit and the second control unit through the first output terminal and the second output terminal of the second detection unit respectively.
  • the first control unit and the second control unit determines that the second bus power supply output signal is greater than the second overvoltage threshold or less than the second undervoltage threshold
  • the first driving unit and/or the second driving unit receives the bus power shut-off control signal to control the first switch unit and/or the second switch unit to shut off.
  • the first control unit 400 and the second control unit 500 can compare signals with each other only when the second bus power output signals received by the first control unit 400 and the second control unit 500 are the same and have no abnormalities (or When the received first bus power output signal is the same and there is no abnormality), the first control unit 400 and the second control unit 500 do not output the bus power shutdown control signal, and the first switch unit 611 and the second switch unit 612 remain on. .
  • the bus power supply detection and protection sub-module 610 detects the voltages at multiple nodes on the output circuit of the bus power supply 100 (such as the output voltage of the second end of the first switch unit 611 and the output voltage of the second switch unit 612 The output voltage of the second terminal) is detected in real time.
  • the first control unit 400 and the second control unit 500 determines that an abnormal situation such as overvoltage or undervoltage occurs at a certain node
  • the first control unit The unit 400 and/or the second control unit 500 immediately generate a bus power supply cut-off control signal to cut off the output path of the bus power supply 100 to the bus power supply output terminal 101 through the first driving unit 613 and/or the second driving unit 614, so that the bus power supply 100 stops supplying power to the robot, thereby achieving safety protection for the controller bus power supply 100, ensuring the reliability of the controller, and thus ensuring the safety of the downstream robot.
  • bus power supply detection and protection sub-module 610 includes two switch units, two detection units and two drive units, thus forming a dual-channel design. An abnormality in any one of the channels will not affect the bus power supply detection and protection sub-module 610 The safety protection of the bus power supply 100 ensures reliable safety protection of the bus power supply 100 .
  • the first switch unit 611 may include a first transistor, a first terminal of the first transistor serves as the first terminal of the first switch unit 611, and a second terminal of the first transistor serves as the second terminal of the first switch unit 611.
  • the control terminal of a transistor serves as the control terminal of the first switch unit 611 .
  • the second switching unit 612 may include a second transistor, a first terminal of the second transistor serving as the first terminal of the second switching unit 612, and a second terminal serving as the second terminal of the second switching unit 612.
  • the second transistor The control end serves as the control end of the second switch unit 612.
  • optocoupler isolation input and output can be used in both the first driving unit 613 and the second driving unit 614. Its function can be to use a lower level to turn on the transistor, or to enable the high-voltage part of the bus and the low-voltage part of the microprocessor to operate. isolation.
  • the power supply detection and protection module 600 further includes: a power supply detection and protection sub-module 620 .
  • the power input terminal B1 of the power supply detection and protection sub-module 620 is connected to the power supply 200; the first output terminal B3 of the power supply detection and protection sub-module 620 is connected to both the first control unit 400 and the second control unit 500.
  • the power supply detection and protection The second output terminal B4 of the sub-module 620 is connected to both the first control unit 400 and the second control unit 500; the power output terminal B2 of the power supply detection and protection sub-module 620 is connected to the power supply output terminal 201, and the power supply 200 passes through the power supply.
  • the output terminal 201 supplies power to the safety input and output circuit; the power supply detection and protection sub-module 620 is configured to control the power supply 200 to shut down when detecting an abnormality in the output voltage of the power supply 200, and through its first output terminal and second output respectively.
  • the terminal outputs power supply abnormality signals to the first control unit 400 and the second control unit 500 at the same time.
  • the output circuit of the power supply 200 includes an output path through which the power supply 200 supplies power to the safety input and output circuit, that is, it includes an output path from the power supply 200 to the output terminal 201 of the power supply.
  • the power supply detection and protection sub-module 620 performs real-time detection of the voltages at multiple nodes on the output loop of the power supply 200. When an abnormality such as overvoltage or undervoltage is detected at a node, the power supply 200 is directly turned off.
  • the path through which the power supply 200 supplies power to the safety input and output circuit realizes the safety protection of the power supply 200, and at the same time supplies power to the first control unit through the first output terminal B3 and/or the second output terminal B4 of the power supply detection and protection sub-module 620.
  • the unit 400 and/or the second control unit 500 output a power supply abnormality signal.
  • the first control unit 400 and the second control unit 500 output the bus power supply shutdown control signal to the bus power supply detection and protection sub-module 610 according to the power supply abnormal signal, thereby turning off the bus power supply 100 and realizing the safety protection of the controller power supply 200.
  • the safety protection of the controller bus power supply 100 is realized, thereby ensuring the safety of the downstream robot.
  • FIG. 5 is a schematic structural diagram of a power supply detection and protection sub-module provided by an embodiment of the present application.
  • a power supply detection and protection sub-module 620 includes: a first voltage conversion unit 621, a third switch unit 622, a third detection unit 623 and a fourth detection unit 624;
  • the input end of the first voltage conversion unit 621 serves as the power input end B1 of the power supply detection and protection sub-module 620, and the output end of the first voltage conversion unit 621 is connected to the first end of the third switch unit 622;
  • the second end of the third switch unit 622 serves as the power output end B2 of the power supply detection and protection sub-module 620, and the control end of the third switch unit 622 is connected to the output end of the third drive unit 625;
  • the first input terminal of the third driving unit 625 is connected to the output terminal of the third detection unit 623, and the second input terminal of the third driving unit 625 is connected to the output terminal of the fourth detection unit 624;
  • the input terminal of the third detection unit 623 is connected to the output terminal of the first voltage conversion unit 621, and the output terminal of the third detection unit 623 is connected to the first output terminal B3 of the power supply detection and protection sub-module 620;
  • the fourth detection unit 624 The input end is connected to the second end of the third switch unit 622, and the output end of the fourth detection unit 624 is connected to the second output end B4 of the power supply detection and protection sub-module 620;
  • the third detection unit 623 is configured to detect that the output voltage of the output terminal of the first voltage conversion unit 621 is greater than the third overvoltage threshold or less than the third undervoltage threshold, and simultaneously sends signals to the third driving unit 625 , the first control unit 400 and the third undervoltage threshold.
  • the second control unit 500 outputs a power supply abnormality signal;
  • the fourth detection unit 624 is configured to detect that the output voltage of the second terminal of the third switch unit 622 is greater than the fourth overvoltage threshold or less than the fourth undervoltage threshold, and simultaneously sends signals to the third driving unit 625, the first control unit 400 and the third undervoltage threshold.
  • the second control unit 500 outputs a power supply abnormality signal
  • the third driving unit 625 is configured to control the third switch unit 622 to turn off according to the abnormal signal of the power supply;
  • the first control unit 400 and the second control unit 500 respectively generate bus power supply shutdown control signals according to the power supply abnormal signal.
  • the power supply 200 may be directly provided by the bus power supply 100 .
  • the power output from the power supply 200 is converted by the first voltage conversion unit 621 and then provided to the safety input and output circuit.
  • the third switch unit 622 is disposed in the output circuit of the power supply 200 , and both the first end and the second end of the third switch unit 622 are nodes on the output circuit of the power supply 200 .
  • This embodiment sets the third detection unit 623 to detect the output voltage of the first terminal of the third switch unit 622 in real time, and detects that the output voltage of the first terminal of the third switch unit 622 is greater than the third overvoltage threshold or less than the third overvoltage threshold.
  • the third detection unit 623 simultaneously outputs a power supply abnormality signal to the third driving unit 625, the first control unit 400 and the second control unit 500.
  • the third driving unit 625 directly controls the third switch unit 622 to turn off in time, so as to cut off the output path from the power supply 200 to the power supply output end, and the power supply 200 stops supplying power to the safety input and output circuit, thereby realizing the power supply to the controller 200 safety protection, thereby ensuring the safety of the downstream robot.
  • the fourth detection unit 624 detects the output voltage of the second terminal of the third switch unit 622 in real time, and detects that the output voltage of the second terminal of the third switch unit 622 is greater than the fourth overvoltage threshold or less than the fourth undervoltage threshold. , it is determined that the output voltage of the first voltage conversion unit 621 is abnormal after passing through the third switch unit 622, then the fourth detection unit 624 simultaneously outputs the power supply abnormality to the third driving unit 625, the first control unit 400 and the second control unit 500. signal, so that the third driving unit 625 directly controls the third switch unit 622 to turn off in time to cut off the output path from the power supply 200 to the power supply output end.
  • the power supply 200 stops supplying power to the safety input and output circuit, thereby realizing the power supply to the controller. 200% safety protection, thus ensuring the safety of the subsequent robots.
  • the third switch unit 622 includes a third transistor; the first terminal of the third transistor serves as the first terminal of the third switch unit 622, the second terminal of the third transistor serves as the second terminal of the third switch unit 622, and the third The control terminal of the transistor serves as the control terminal of the third switch unit 622 .
  • FIG. 6 is a schematic work flow diagram of a power supply detection and protection sub-module provided by an embodiment of the present application.
  • the work flow of the power supply detection and protection sub-module 620 includes:
  • the power input terminal receives the voltage output from the power supply.
  • the first voltage conversion unit outputs voltage.
  • the third detection unit detects the output voltage of the first terminal of the third switching unit, and detects that the output voltage of the first terminal of the third switching unit is greater than the third overvoltage threshold or less than the third undervoltage threshold. , and simultaneously outputs a power supply abnormality signal to the third drive unit, the first control unit and the second control unit.
  • the third drive unit turns off the third switch unit according to the abnormal signal of the power supply.
  • the fourth detection unit detects the output voltage of the second terminal of the third switching unit, and when detecting that the output voltage of the second terminal of the third switching unit is greater than the fourth overvoltage threshold or less than the fourth undervoltage threshold, at the same time A power supply abnormality signal is output to the third drive unit, the first control unit and the second control unit.
  • the third drive unit turns off the third switch unit according to the abnormal signal of the power supply.
  • the third driving unit does not receive at least one of the power supply abnormal signal and the control power supply abnormal signal, it does not control the third switch unit to turn off.
  • the technical solution of the embodiment of the present application is that the power supply detection and protection sub-module 620 detects the voltages at multiple nodes on the output circuit of the power supply 200 (such as the output voltage of the output terminal of the first voltage conversion unit 621 and the output voltage of the third switching unit 622 The output voltage of the second terminal) is detected and determined in real time.
  • the power supply 200 is directly turned off in time, and the power supply 200 stops supplying power to the safety input and output circuit, realizing
  • the safety protection of the controller power supply 200 ensures the safety of the downstream robot.
  • the power supply abnormal signal is used to control the bus power detection and protection sub-module 610 to turn off the bus power supply 100, thereby simultaneously realizing the safety protection of the controller bus power supply 100. .
  • the power supply detection and protection module 600 further includes: a control power supply detection and protection sub-module 630 .
  • the power input terminal C1 of the control power supply detection and protection sub-module 630 is connected to the control power supply 300; the first output terminal C3 of the control power supply detection and protection sub-module 630 is connected to the power supply detection and protection sub-module 620; the power supply of the control power supply detection and protection sub-module 630 is connected
  • the output terminal C2 is connected to the control power supply output terminal 301, and the control power supply 300 supplies power to the first control unit 400 and the second control unit 500 through the control power supply output terminal 301; the control power supply detection and protection sub-module 630 is configured to detect the power of the control power supply 300.
  • the power supply 300 is controlled to be turned off, and the power supply 200 is controlled to be turned off by controlling the power supply detection and protection sub-module 620 .
  • the output circuit of the control power supply 300 includes an output path through which the control power supply 300 supplies power to the first control unit 400 and the second control unit 500 through other low-voltage circuits, that is, it includes an output path from the control power supply 300 to the control power supply output terminal 301 .
  • the control power supply detection and protection sub-module 630 performs real-time detection of the voltages at multiple nodes on the output loop of the control power supply 300. When an abnormality such as overvoltage or undervoltage is detected at a node, the control power supply 300 is directly turned off, and The output path from the control power supply 300 to the control power supply output terminal 301 realizes the safety protection of the control power supply 300. In this case, in order to avoid misoperation of the controller, the power supply detection and protection sub-module 630 can also be controlled to turn off the power supply 200 while turning off the control power supply 300.
  • FIG. 7 is a schematic structural diagram of a control power supply detection and protection sub-module provided by an embodiment of the present application.
  • the control power supply detection and protection sub-module 630 includes : the second voltage conversion unit 632, the fourth switch unit 631, the fifth detection unit 633 and the detection control unit 634;
  • the first end of the fourth switch unit 631 serves as the power input end C1 of the control power supply detection and protection sub-module 630.
  • the second end of the fourth switch unit 631 is connected to the input end of the second voltage conversion unit 632.
  • the control terminal is connected to the output terminal of the detection control unit 634;
  • the output terminal of the second voltage conversion unit 632 serves as the control power output terminal 301;
  • the first input terminal of the detection control unit 634 is connected to the second terminal of the fourth switch unit 631;
  • the input terminal of the fifth detection unit 633 is connected to the output terminal of the second voltage conversion unit 632, and the output terminal of the fifth detection unit 633 is connected to the second input terminal of the detection control unit 634 and the first output of the control power supply detection and protection sub-module 630.
  • Terminal C3 is connected;
  • the detection control unit 634 is configured to control the fourth switch unit 631 to turn off when detecting that the output voltage of the second terminal of the fourth switch unit 631 is greater than the fifth overvoltage threshold or less than the fifth undervoltage threshold;
  • the fifth detection unit 633 is configured to control the fourth switch unit 631 to turn off by controlling the detection control unit 634 when detecting that the output voltage of the output terminal of the second voltage conversion unit 632 is greater than the sixth overvoltage threshold or less than the sixth undervoltage threshold. And by controlling the power supply detection and protection sub-module 620 to control the power supply 200 to turn off.
  • the output circuit of the control power supply 300 includes a fourth switch unit 631, and the output of the control power supply 300 is converted by the second voltage conversion unit 632 and then provided to the first control unit 400, the second control unit 500 and other low-voltage circuits.
  • the fourth switch unit 631 and the second voltage conversion unit 632 are both disposed in the output circuit of the control power supply 300.
  • the second end of the fourth switch unit 631 and the output end of the second voltage conversion unit 632 are both on the output circuit of the control power supply 300. node.
  • the detection control unit 634 is configured to detect the output voltage of the second terminal of the fourth switch unit 631 in real time, and detect that the output voltage of the second terminal of the fourth switch unit 631 is greater than the fifth overvoltage threshold or less than the fifth overvoltage threshold.
  • the detection control unit 634 directly controls the fourth switch unit 631 to turn off in time, thereby turning off the control power supply 300 and cutting off the output path of the control power supply 300, thereby realizing the safety protection of the controller control power supply 300, thereby ensuring the subsequent Level robot safety.
  • the fifth detection unit 633 detects the output voltage of the output terminal of the second voltage conversion unit 632 in real time, and detects that the output voltage of the output terminal of the second voltage conversion unit 632 is greater than the sixth overvoltage threshold or less than the sixth undervoltage threshold. , sending a control power supply abnormality signal to the detection control unit 634, so that the detection control unit 634 controls the fourth switch unit 631 to turn off, thereby turning off the control power supply 300.
  • the fifth detection unit 633 can also send the control power supply abnormal signal to the third driving unit 625 of the power supply detection and protection sub-module 620, so that the third driving unit 625 controls the third switch unit 622 Turn off, thereby turning off the power supply 200.
  • the fourth switch unit 631 includes a fourth transistor; the first terminal of the fourth transistor serves as the first terminal of the fourth switch unit 631, the second terminal of the fourth transistor serves as the second terminal of the fourth switch unit 631, and the fourth The control terminal of the transistor serves as the control terminal of the fourth switch unit 631 .
  • FIG. 8 is a schematic work flow diagram of a control power supply detection and protection sub-module provided by an embodiment of the present application.
  • the workflow of the control power supply detection and protection sub-module includes:
  • the power input terminal receives the voltage output by the control power supply.
  • the detection control unit detects the output voltage of the second terminal of the fourth switching unit, and when detecting that the output voltage of the second terminal of the fourth switching unit is greater than the fifth overvoltage threshold or less than the fifth overvoltage threshold, directly controls The fourth switching unit is turned off.
  • the detection control unit detects that the output voltage of the second end of the fourth switch unit is not abnormal, it keeps the fourth switch unit turned on.
  • the second voltage conversion unit outputs the voltage.
  • the fifth detection unit detects the output voltage of the output terminal of the second voltage conversion unit, and detects that the output voltage of the output terminal of the second voltage conversion unit is greater than the sixth overvoltage threshold or less than the sixth undervoltage threshold.
  • the detection control unit sends a control power supply abnormality signal, and at the same time sends the control power supply abnormality signal to the third drive unit of the power supply detection and protection sub-module.
  • both the fourth switch unit and the third switch unit are kept on.
  • control power supply detection and protection sub-module 630 controls the voltage at multiple nodes on the output circuit of the control power supply 300 (such as the output voltage of the second end of the fourth switch unit 631 and the second voltage conversion unit 632 The output voltage of the output terminal) is detected and determined in real time.
  • the control power supply 300 is directly turned off in time, and the control power supply 300 stops external power supply, realizing the control of the controller.
  • the safety protection of the control power supply 300 ensures the safety of the subsequent robot.
  • control power supply detection and protection sub-module 630 also includes: a sixth detection unit 635 .
  • the second output terminal C4 of the control power supply detection and protection sub-module 630 is connected to the first control unit 400, and the third output terminal C5 of the control power supply detection and protection sub-module 630 is connected to the second control unit 500;
  • the input terminal of the sixth detection unit 635 is connected to the output terminal of the second voltage conversion unit 632.
  • the first output terminal of the sixth detection unit 635 serves as the second output terminal C4 of the control power supply detection and protection sub-module 630.
  • the sixth detection unit 635 The second output terminal serves as the third output terminal C5 of the control power supply detection and protection sub-module 630; the sixth detection unit 635 is configured to simultaneously output voltage detection signals to the first control unit 400 and the second control unit 500 in real time;
  • the first control unit 400 and the second control unit 500 are configured to generate a bus power off control signal when it is determined that the ripple of the output voltage detection signal exceeds the ripple threshold.
  • the sixth detection unit 635 detects the output voltage of the output end of the second voltage conversion unit 632 in real time, and transmits the detected voltage signal to the first control unit 400 and the second control unit 500 at the same time.
  • the first control unit 400 and the second control unit 500 determine the ripple size of the voltage signal according to the received voltage signal.
  • the first control unit 400 and the second control unit 500 determine the ripple size of the voltage signal.
  • the second control unit 500 generates a bus power supply shut-off control signal to shut down the bus power supply 100 . Since the ripple hazard does not cause danger to the safety controller itself, but only has potential factors of instability, it is not necessary to turn off other power sources of the safety controller.
  • the sixth detection unit 635 can use an operational amplifier circuit, and its output is connected to the AD pin of the microprocessor. The microprocessor monitors the voltage of this circuit in real time to monitor whether the ripple is too large.
  • the first control unit 400 and the second control unit 500 are further configured to output corresponding error code information to the robot teaching pendant when outputting the bus power off control signal.
  • the robot teaching pendant when any abnormality occurs in any node of the controller's power system, corresponding error code information will be provided to the robot teaching pendant for maintenance personnel to repair.
  • the first control unit 400 and the second control unit 500 when the output voltage of the bus power supply 100 is abnormal, the first control unit 400 and the second control unit 500 will provide error code information about the abnormality of the bus power supply 100 to the teach pendant (which may include corresponding to the first switch unit 611 respectively).
  • abnormal error code information of the second terminal of the second switch unit 612 and/or abnormal error code information of the second terminal of the second switch unit 612 when the output voltage of the power supply 200 is abnormal, the first control unit 400 and the second control unit 500 Error code information about the abnormality of the power supply 200 will be provided to the teaching pendant (which may include error code information corresponding to the abnormality of the first end of the third switch unit 622 and/or the error code of the abnormality of the second end of the third switch unit 622). information); similarly, when the control power supply 300 is abnormal and the voltage ripple on the power output path of the control power supply 300 is large, corresponding error code information will be provided to the robot teaching pendant for maintenance personnel to repair.
  • the robot controller includes a bus power supply, a safety input and output circuit power supply and a control power supply.
  • the robot controller power supply detection and protection system includes a first control unit, a second control unit and a power supply detection and protection system. module, the power detection and protection module is connected to the bus power supply, the safety input and output circuit power supply, the first control unit and the second control unit.
  • the power supply detection and protection module detects the output voltage of the bus power supply in real time, and outputs the detected bus power output signal to the first control unit and the second control unit at the same time; when the first control unit and/or the second control unit responds to the bus
  • the first control unit and/or the second control unit outputs a bus power shutdown control signal to the power detection and protection module, thereby controlling the power detection and protection module to turn off the bus power supply.
  • the power supply detection and protection module When the power supply detection and protection module detects an abnormality in the output voltage of the safety input and output circuit power supply, the power supply detection and protection module controls the safety input and output circuit power supply to turn off, and simultaneously outputs the power supply abnormality to the first control unit and the second control unit. signal, so that the first control unit and/or the second control unit outputs a bus power shut-off control signal to the power supply detection and protection module according to the power supply abnormal signal, thereby controlling the power supply detection and protection module to shut off the bus power supply.
  • the power detection and protection module when the power detection and protection module detects an abnormality in the output voltage of the control power supply, the power detection and protection module at least controls the control power supply to be turned off.
  • the embodiment of the present application uses this to perform real-time detection of each power supply in the robot safety controller, and promptly shuts off at least this abnormal power supply when an abnormality is detected, thereby realizing the safety of the power supply system of the robot safety controller itself.
  • protection ensuring the reliability of the safety controller, thereby achieving effective safety protection for the downstream robot; and, in the embodiment of the present application, the first control unit and the second control unit are set up redundantly, and an abnormality in one of them will not It affects the other one to continue to work normally, ensuring the reliability of the robot controller's power detection and protection system, thus providing reliable safety protection for the power supply system of the safety controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本申请实施例公开了一种机器人控制器电源检测及保护系统、机器人。包括:电源检测保护模块设置为对母线电源的输出电压进行实时检测,并将检测到的母线电源输出信号同时输出至第一控制单元和第二控制单元;以及设置为响应于检测到供电电源的输出电压出现异常,控制供电电源关断,并同时向第一控制单元和第二控制单元输出供电电源异常信号;以及设置为响应于检测到控制电源的输出电压出现异常,至少控制控制电源关断;第一控制单元和第二控制单元设置为响应于确定根据母线电源输出信号判断到母线电源的输出电压出现异常,和接收到供电电源异常信号中至少之一,向电源检测保护模块输出母线电源关断控制信号,以控制电源检测保护模块关断母线电源。

Description

机器人控制器电源检测及保护系统、机器人
本申请要求在2022年5月27日提交中国专利局、申请号为202210594611.8受理通知书的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及机器人技术领域,例如涉及一种机器人控制器电源检测及保护系统、机器人。
背景技术
机器人是一种多领域、多场景应用的现代化工具,当代机器人的研发方向除了使其更为智能、高效外还有一个重要的方向就是安全。人们一直在研究机器人安全问题,针对这个问题,机器人安全控制器应运而生。
市面上的安全控制器大都针对异常安全输入输出信号进行了安全防护,但对于安全控制器本身特别是安全控制器的供电部分异常没有一个完整的安全防护方案。如果安全控制器本身不够稳定可靠,就不能有效的保护后级的机器人。
整个安全控制器本身的电源系统是保证安全控制器有效保护机器人的基础,任意一个电源节点出现异常,对于安全控制器本身而言都可能成为不能有效保护后级机器人的因素。例如因安全控制器本身某个节点电源异常,造成安全信号异常,进而导致机器人在异常状态下不停止运行,无法有效的关断母线电源,则可能损坏机器人,而机器人往往造价昂贵,其损失很大,安全控制器也未达到“安全”的目的。
发明内容
本申请实施例提供一种机器人控制器电源检测及保护系统、机器人,以对机器人安全控制器本身的电源系统进行安全防护,保证机器人安全控制器的可靠性,进而实现对机器人的有效安全保护。
第一方面,本申请实施例提供了一种机器人控制器电源检测及保护系统,所述机器人控制器电源包括母线电源、安全输入输出电路供电电源以及控制电源,所述系统包括:第一控制单元、第二控制单元以及电源检测保护模块;
所述电源检测保护模块与所述母线电源、所述供电电源、所述控制电源、所述第一控制单元以及所述第二控制单元分别连接;
所述电源检测保护模块设置为对所述母线电源的输出电压进行实时检测,并将检测到的母线电源输出信号同时输出至所述第一控制单元和所述第二控制单元;以及设置为响应于检测到所述供电电源的输出电压出现异常,控制所述供电电源关断,并同时向所述第一控制单元和所述第二控制单元输出供电电源异常信号;以及设置为响应于检测到所述控制电源的输出电压出现异常,至少控制所述控制电源关断;
所述第一控制单元与所述第二控制单元通信连接且互为冗余;
所述第一控制单元和所述第二控制单元设置为响应于确定根据母线电源输出信号判断到所述母线电源的输出电压出现异常,和接收到所述供电电源异常信号中至少之一,向所述电源检测保护模块输出母线电源关断控制信号,以控制所述电源检测保护模块关断所述母线电源。
第二方面,本申请实施例还提供了一种机器人,机器人包括如上述第一方面上述的机器人控制器电源检测及保护系统。
附图说明
图1是本申请实施例提供的一种机器人控制器电源检测及保护系统的结构示意图;
图2是本申请实施例提供的另一种机器人控制器电源检测及保护系统的结构示意图;
图3是本申请实施例提供的一种母线电源检测保护子模块的结构示意图;
图4是本申请实施例提供的一种母线电源检测保护子模块的工作流程示意图;
图5是本申请实施例提供的一种供电电源检测保护子模块的结构示意图;
图6是本申请实施例提供的一种供电电源检测保护子模块的工作流程示意图;
图7是本申请实施例提供的一种控制电源检测保护子模块的结构示意图;
图8是本申请实施例提供的一种控制电源检测保护子模块的工作流程示意图。
具体实施方式
图1是本申请实施例提供的一种机器人控制器电源检测及保护系统的结构示意图。参考图1,机器人控制器电源检测及保护系统包括:第一控制单元400、第二控制单元500以及电源检测保护模块600。其中,电源检测保护模块600与母线电源100、供电电源200、控制电源300、第一控制单元400以及第二控制单元500均连接。
电源检测保护模块600设置为对母线电源100的输出电压进行实时检测,并将检测到的母线电源100输出信号同时输出至第一控制单元400和第二控制单元500;以及设置为检测到供电电源200的输出电压出现异常时控制供电电源200关断,并同时向第一控制单元400和第二控制单元500输出供电电源异常信号;以及设置为检测到控制电源300的输出电压出现异常时至少控制控制电源300关断;第一控制单元400与第二控制单元500通信连接且互为冗余;第一控制单元400和第二控制单元500设置为根据母线电源100输出信号判断到母线电源100的输出电压出现异常时,和/或接收到供电电源异常信号时,向电源检测保护模块600输出母线电源关断控制信号,以控制电源300检测保护模块关断母线电源100。
本实施例中,机器人的控制器内包括母线电源100、安全输入输出电路供电电源200(简称供电电源200)以及控制电源300。母线电源100主要设置为向机器人供电。安全输入输出电路为安全输入输出信号相关电路,安全输入输出信号包括系统急停、用户急停等关键安全信号,供电电源200即设置为向安全输入输出电路供电的电源,此部分电源的稳定至关重要,供电电源200可以是由母线电源100供电。控制电源300是安全控制器的一路核心电源,可设置为向第一控制单元400、第二控制单元500以其它低压电路供电,例如向通讯电路、检测电路等供电,控制电源300异常容易造成安全控制器误判甚至是完全失效,无法对机器人进行安全保护。
例如,第一控制单元400和第二控制单元500可均为微处理器。电源检测保护模块600具有对母线电源100、供电电源200以及控制电源300的输出电压进行实时检测、判断和控制的功能,且具有和第一控制单元400与第二控制单元500进行信息交互的功能。而某路电源的输出电压出现异常是指:在该路电源的输出回路上,某节点处出现过压或者欠压等情况。
电源检测保护模块600对母线电源100输出回路上的多个节点处的电压进行实时检测,并将检测到的母线电源100输出信号同时发送至第一控制单元400和第二控制单元500。第一控制单元400和第二控制单元500分别根据母线电源100输出信号判断母线电源100的输出电压有无异常。当第一控制单元400和第二控制单元500两者中至少有一者判断到母线电源100的输出电压出现过压或者欠压等异常情况时,第一控制单元400和/或第二控制单元500向电源检测保护模块600输出母线电源关断控制信号。电源检测保护模块600根据母线电源关断控制信号关断母线电源100,切断母线电源100对机器人的供电,实现对控制器母线电源100的安全防护,进而保证后级机器人安全。
电源检测保护模块600对供电电源200输出回路上的多个节点处的电压进行实时检测。 当电源检测保护模块600检测到某节点处出现过压或者欠压等异常情况时,电源检测保护模块600无需通过第一控制单元400和/或第二控制单元500而直接及时关断供电电源200,实现对控制器供电电源200的安全防护;并同时向第一控制单元400和第二控制单元500输出供电电源异常信号。第一控制单元400和/或第二控制单元500根据供电电源异常信号向电源检测保护模块600输出母线电源关断控制信号,以关断母线电源100,在实现对控制器供电电源200的安全防护的同时实现对控制器母线电源100的安全防护,进而保证后级机器人安全。
电源检测保护模块600对控制电源300输出回路上的多个节点处的电压进行实时检测。当电源检测保护模块600检测到某节点处出现过压或者欠压等异常情况时,电源检测保护模块600无需通过第一控制单元400和第二控制单元500而直接及时关断控制电源300,实现对控制器控制电源300的安全防护。在此情况下,为了避免控制器误操作,还可以在关断控制电源300的同时电源检测保护模块600控制供电电源200也关断。例如,第一控制单元400和/或第二控制单元500还可以基于电源检测保护模块600对控制电源300输出电压的检测,对控制电源300输出电压的纹波进行检测与判断。当第一控制单元400和/或第二控制单元500判断到控制电源300输出电压的纹波超过纹波阈值时也会向电源检测保护模块600输出母线电源关断控制信号,以关断母线电源100。
本申请实施例以此对机器人安全控制器内的多路电源均进行实时检测,并在检测到异常时及时地至少关断此路异常电源,实现了对机器人安全控制器本身的电源系统的安全防护,保证了安全控制器的可靠性,进而实现了对后级机器人的有效安全保护;并且,本申请实施例中第一控制单元400和第二控制单元500冗余设置,其中一个出现异常或故障并不会影响另外一个继续正常工作,保证了机器人控制器电源检测及保护系统的可靠性,从而为安全控制器的电源系统提供了可靠的安全防护。
图2是本申请实施例提供的另一种机器人控制器电源检测及保护系统的结构示意图,参考图2,在上述技术方案的基础上,作为本申请的一种实施方式,例如,电源检测保护模块600包括母线电源检测保护子模块610。
母线电源检测保护子模块610的电源输入端A1接入母线电源100;母线电源检测保护子模块610的第一输出端A3和第一输入端A4均与第一控制单元400连接,母线电源检测保护子模块610的第二输出端A5和第二输入端A6均与第二控制单元500连接;母线电源检测保护子模块610的电源输出端A2与母线电源输出端101连接,母线电源100通过母线电源输出端101向机器人供电;母线电源检测保护子模块610设置为对母线电源100的输出电压进行实时检测,并将检测到的母线电源输出信号分别通过自身的第一输出端A3和第二输出端A5同时输出至第一控制单元400和第二控制单元500,以及设置为分别通过自身的第一输入端A4和第二输入端A6接收母线电源关断控制信号,以根据母线电源关断控制信号控制母线电源100与母线电源输出端101之间断开。
例如,母线电源100的输出回路为母线电源100向机器人供电的回路,该回路包括母线电源100至母线电源输出端101的输出路径。母线电源检测保护子模块610对母线电源100输出回路上的多个节点处的电压进行实时检测,并将检测到的母线电源输出信号,分别通过自身的第一输出端和第二输出端同时输出至第一控制单元400和第二控制单元500。当第一控制单元400和第二控制单元500两者中至少有一者判断到母线电源100的输出电压出现过压或者欠压等异常情况时,第一控制单元400和/或第二控制单元500分别向母线电源检测保护子模块610的第一输入端A4和/或第二输入端A6输出母线电源关断控制信号,使得母线电源检测保护子模块610根据母线电源关断控制信号关断母线电源100,切断母线电源100对机器人的供电,实现对控制器母线电源100的安全防护,进而保证后级机器人安全。
图3是本申请实施例提供的一种母线电源检测保护子模块的结构示意图,参考图3,在 上述技术方案的基础上,作为本申请的一种实施方式,例如,母线电源检测保护子模块610包括:第一开关单元611、第二开关单元612、第一驱动单元613、第二驱动单元614、第一检测单元615以及第二检测单元616。
第一开关单元611的第一端作为母线电源检测保护子模块610的电源输入端A1,第一开关单元611的第二端与第二开关单元612的第一端连接,第一开关单元611的控制端与第一驱动单元613的输出端连接;
第二开关单元612的第二端作为母线电源检测保护子模块610的电源输出端A2,第二开关单元612的控制端与第二驱动单元614的输出端连接;
第一驱动单元613的输入端作为母线电源检测保护子模块610的第一输入端A4;
第二驱动单元614的输入端作为母线电源检测保护子模块610的第二输入端A6;
第一检测单元615的输入端与第一开关单元611的第二端连接,第二检测单元616的输入端与第二开关单元612的第二端连接,第一检测单元615的第一输出端与第二检测单元616的第一输出端连接后作为母线电源检测保护子模块610的第一输出端A3,第一检测单元615的第二输出端与第二检测单元616的第二输出端连接后作为母线电源检测保护子模块610的第二输出端A5;
第一检测单元615设置为对第一开关单元611的第二端的输出电压进行实时检测,并将检测到的第一母线电源输出信号分别通过自身的第一输出端和第二输出端同时输出至第一控制单元400和第二控制单元500;
第二检测单元616设置为对第二开关单元612的第二端的输出电压进行实时检测,并将检测到的第二母线电源输出信号分别通过自身的第一输出端和第二输出端同时输出至第一控制单元400和第二控制单元500;
第一控制单元400和第二控制单元500分别设置为判断到第一母线电源输出信号大于第一过压阈值或者小于第一欠压阈值时,和/或判断到第二母线电源输出信号大于第二过压阈值或者小于第二欠压阈值时,生成母线电源关断控制信号;
第一驱动单元613设置为根据母线电源关断控制信号控制第一开关单元611关断,第二驱动单元614设置为根据母线电源关断控制信号控制第二开关单元612关断。
例如,第一开关单元611和第二开关单元612均设置在母线电源100输出回路中,第一开关单元611的第二端和第二开关单元612的第二端均为母线电源100输出回路上的节点。
本实施例设置第一检测单元615对第一开关单元611的第二端的输出电压进行实时检测,并将检测到的第一母线电源输出信号分别通过自身的第一输出端A3和第二输出端A5同时输出至第一控制单元400和第二控制单元500。第一控制单元400和第二控制单元500中有至少一者判断到第一母线电源输出信号大于第一过压阈值或者小于第一欠压阈值时,确定母线电源100的输出电压出现异常,第一控制单元400和/或第二控制单元500生成母线电源关断控制信号。第一驱动单元613根据母线电源关断控制信号控制第一开关单元611关断,以切断母线电源100至母线电源输出端101的输出路径,母线电源100停止对机器人供电,实现了对控制器母线电源100的安全防护,进而保证了后级机器人安全。
第二检测单元616对第二开关的第二端的输出电压进行实时检测,并将检测到的第二母线电源输出信号分别通过自身的第一输出端和第二输出端同时输出至第一控制单元400和第二控制单元500。第一控制单元400和第二控制单元500中有至少一者判断到第二母线电源输出信号大于第二过压阈值或者小于第二欠压阈值时,同样确定母线电源100的输出电压出现异常,第一控制单元400和/或第二控制单元500生成母线电源关断控制信号。第二驱动单元614根据母线电源关断控制信号控制第二开关单元612关断,以切断母线电源100至母线电源输出端101的输出路径,母线电源100停止对机器人供电,实现了对控制器母线电源100的安全防护,进而保证了后级机器人安全。
示例性地,图4是本申请实施例提供的一种母线电源检测保护子模块的工作流程示意图。结合图3和图4,母线电源检测保护子模块的工作流程包括:
S10、电源输入端接收母线电源输出的电压。
S11、第一检测单元对第一开关单元的第二端的输出电压进行检测。
S12、第一检测单元将第一母线电源输出信号分别通过第一检测单元的第一输出端和第二输出端同时输出至第一控制单元和第二控制单元。
S13、当第一控制单元和第二控制单元中有至少一者判断到第一母线电源输出信号大于第一过压阈值或者小于第一欠压阈值时,第一驱动单元和/或第二驱动单元接收母线电源关断控制信号,以控制第一开关单元和/或第二开关单元关断。
S14、第二检测单元对第二开关单元的第二端的输出电压进行检测。
S15、第二检测单元将第二母线电源输出信号分别通过第二检测单元的第一输出端和第二输出端同时输出至第一控制单元和第二控制单元。
S16、当第一控制单元和第二控制单元中有至少一者判断到第二母线电源输出信号大于第二过压阈值或者小于第二欠压阈值时,第一驱动单元和/或第二驱动单元接收母线电源关断控制信号,以控制第一开关单元和/或第二开关单元关断。
其中,第一控制单元400和第二控制单元500可互相进行信号的比对,仅当第一控制单元400和第二控制单元500接收到的第二母线电源输出信号相同且无异常时(或者接收到的第一母线电源输出信号相同且无异常时),第一控制单元400和第二控制单元500不输出母线电源关断控制信号,第一开关单元611和第二开关单元612保持导通。
即本申请实施例的技术方案,母线电源检测保护子模块610对母线电源100输出回路上的多个节点处的电压(如第一开关单元611的第二端的输出电压和第二开关单元612的第二端的输出电压)进行实时检测,当第一控制单元400和第二控制单元500两者中有至少一者判断到其中的某节点处出现过压或者欠压等异常情况时,第一控制单元400和/或第二控制单元500即刻生成母线电源关断控制信号以通过第一驱动单元613和/或第二驱动单元614切断母线电源100至母线电源输出端101的输出路径,使母线电源100停止对机器人供电,实现了对控制器母线电源100的安全防护,保证了控制器的可靠性,进而保证了后级机器人安全。
此外,母线电源检测保护子模块610内包括两个开关单元、两个检测单元和两个驱动单元,由此形成双通道设计,其中的任意一通道出现异常不会影响母线电源检测保护子模块610对母线电源100的安全防护,保证了对母线电源100可靠的安全防护。
例如,第一开关单元611可包括第一晶体管,第一晶体管的第一端作为第一开关单元611的第一端,第一晶体管的第二端作为第一开关单元611的第二端,第一晶体管的控制端作为第一开关单元611的控制端。第二开关单元612可包括第二晶体管,第二晶体管的第一端作为第二开关单元612的第一端,第二晶体管的第二端作为第二开关单元612的第二端,第二晶体管的控制端作为第二开关单元612的控制端。例如,第一驱动单元613和第二驱动单元614内均可使用光耦隔离输入输出,其作用可使用一个较低的电平打开晶体管,也可以使母线的高压部分和微处理器低压部分进行隔离。
可继续参考图2,在上述技术方案的基础上,作为本申请的一种实施方式,例如,电源检测保护模块600还包括:供电电源检测保护子模块620。
供电电源检测保护子模块620的电源输入端B1接入供电电源200;供电电源检测保护子模块620的第一输出端B3与第一控制单元400和第二控制单元500均连接,供电电源检测保护子模块620的第二输出端B4与第一控制单元400和第二控制单元500均连接;供电电源检测保护子模块620的电源输出端B2与供电电源输出端201连接,供电电源200通过供电电源输出端201向安全输入输出电路供电;供电电源检测保护子模块620设置为检测到 供电电源200的输出电压出现异常时控制供电电源200关断,并分别通过自身的第一输出端和第二输出端同时向第一控制单元400和第二控制单元500输出供电电源异常信号。
例如,供电电源200的输出回路包括供电电源200向安全输入输出电路供电的输出路径,也即包括供电电源200至供电电源输出端201的输出路径。供电电源检测保护子模块620对供电电源200输出回路上的多个节点处的电压进行实时检测,当检测到某节点处出现过压或者欠压等异常情况时,直接关断供电电源200,切断供电电源200向安全输入输出电路供电的路径,实现了对供电电源200的安全防护,并同时通过供电电源检测保护子模块620的第一输出端B3和/或第二输出端B4向第一控制单元400和/或第二控制单元500输出供电电源异常信号。第一控制单元400和第二控制单元500根据供电电源异常信号向母线电源检测保护子模块610输出母线电源关断控制信号,从而关断母线电源100,在实现对控制器供电电源200的安全防护的同时实现对控制器母线电源100的安全防护,进而保证后级机器人安全。
图5是本申请实施例提供的一种供电电源检测保护子模块的结构示意图,参考图5,在上述技术方案的基础上,作为本申请的一种实施方式,例如,供电电源检测保护子模块620包括:第一电压转换单元621、第三开关单元622、第三检测单元623以及第四检测单元624;
第一电压转换单元621的输入端作为供电电源检测保护子模块620的电源输入端B1,第一电压转换单元621的输出端与第三开关单元622的第一端连接;
第三开关单元622的第二端作为供电电源检测保护子模块620的电源输出端B2,第三开关单元622的控制端与第三驱动单元625的输出端连接;
第三驱动单元625的第一输入端与第三检测单元623的输出端连接,第三驱动单元625的第二输入端与第四检测单元624的输出端连接;
第三检测单元623的输入端与第一电压转换单元621的输出端连接,第三检测单元623的输出端与供电电源检测保护子模块620的第一输出端B3连接;第四检测单元624的输入端与第三开关单元622的第二端连接,第四检测单元624的输出端与供电电源检测保护子模块620的第二输出端B4连接;
第三检测单元623设置为检测到第一电压转换单元621的输出端的输出电压大于第三过压阈值或者小于第三欠压阈值时,同时向第三驱动单元625、第一控制单元400以及第二控制单元500输出供电电源异常信号;
第四检测单元624设置为检测到第三开关单元622的第二端的输出电压大于第四过压阈值或者小于第四欠压阈值时,同时向第三驱动单元625、第一控制单元400以及第二控制单元500输出供电电源异常信号;
第三驱动单元625设置为根据供电电源异常信号控制第三开关单元622关断;
第一控制单元400和第二控制单元500分别根据供电电源异常信号生成母线电源关断控制信号。
例如,供电电源200可由母线电源100直接提供。供电电源200输出的电源经过第一电压转换单元621转换后提供给安全输入输出电路。第三开关单元622设置在供电电源200输出回路中,第三开关单元622的第一端和第二端均为供电电源200输出回路上的节点。
本实施例设置第三检测单元623对第三开关单元622的第一端的输出电压进行实时检测,并在检测到第三开关单元622的第一端的输出电压大于第三过压阈值或者小于第三欠压阈值时,确定第一电压转换单元621的输出电压出现异常,则第三检测单元623同时向第三驱动单元625、第一控制单元400以及第二控制单元500输出供电电源异常信号,以使得第三驱动单元625直接及时控制第三开关单元622关断,以切断供电电源200至供电输出端的输出路径,供电电源200停止对安全输入输出电路供电,实现了对控制器供电电源200的安全防护,进而保证了后级机器人安全。
第四检测单元624对第三开关单元622的第二端的输出电压进行实时检测,并在检测到第三开关单元622的第二端的输出电压大于第四过压阈值或者小于第四欠压阈值时,确定第一电压转换单元621的输出电压经过第三开关单元622后出现异常,则第四检测单元624同时向第三驱动单元625、第一控制单元400以及第二控制单元500输出供电电源异常信号,以使得第三驱动单元625直接及时控制第三开关单元622关断,以切断供电电源200至供电输出端的输出路径,供电电源200停止对安全输入输出电路供电,实现了对控制器供电电源200的安全防护,进而保证了后级机器人安全。
例如,第三开关单元622包括第三晶体管;第三晶体管的第一端作为第三开关单元622的第一端,第三晶体管的第二端作为第三开关单元622的第二端,第三晶体管的控制端作为第三开关单元622的控制端。
示例性地,图6是本申请实施例提供的一种供电电源检测保护子模块的工作流程示意图。结合图5和图6,供电电源检测保护子模块620的工作流程包括:
S20、电源输入端接收供电电源输出的电压。
S21、第一电压转换单元输出电压。
S22、第三检测单元对第三开关单元的第一端的输出电压进行检测,并在检测到第三开关单元的第一端的输出电压大于第三过压阈值或者小于第三欠压阈值时,同时向第三驱动单元、第一控制单元以及第二控制单元输出供电电源异常信号。
S23、第三驱动单元根据供电电源异常信号关断第三开关单元。
S24、第四检测单元对第三开关单元的第二端的输出电压进行检测,并在检测到第三开关单元的第二端的输出电压大于第四过压阈值或者小于第四欠压阈值时,同时向第三驱动单元、第一控制单元以及第二控制单元输出供电电源异常信号。
S25、第三驱动单元根据供电电源异常信号关断第三开关单元。
其中,第三驱动单元没有接收到供电电源异常信号和控制电源异常信号中的至少一个,则不控制第三开关单元关断。
即本申请实施例的技术方案,供电电源检测保护子模块620对供电电源200输出回路上的多个节点处的电压(如第一电压转换单元621的输出端的输出电压和第三开关单元622的第二端的输出电压)进行实时检测并判定,当其中的某节点处出现过压或者欠压等异常情况时,直接及时关断供电电源200,供电电源200停止对安全输入输出电路供电,实现了对控制器供电电源200的安全防护,进而保证了后级机器人安全,同时采用供电电源异常信号控制母线电源检测保护子模块610关断母线电源100,从而同时实现对控制器母线电源100的安全防护。
可继续参考图2,在上述技术方案的基础上,作为本申请的一种实施方式,例如,电源检测保护模块600还包括:控制电源检测保护子模块630。
控制电源检测保护子模块630的电源输入端C1接入控制电源300;控制电源检测保护子模块630的第一输出端C3与供电电源检测保护子模块620连接;控制电源检测保护子模块630的电源输出端C2与控制电源输出端301连接,控制电源300通过控制电源输出端301向第一控制单元400和第二控制单元500供电;控制电源检测保护子模块630设置为在检测到控制电源300的输出电压出现异常时控制控制电源300关断,并通过控制供电电源检测保护子模块620而控制供电电源200关断。
例如,控制电源300输出回路包括控制电源300向第一控制单元400、第二控制单元500以其它低压电路供电的输出路径,也即包括控制电源300至控制电源输出端301的输出路径。控制电源检测保护子模块630对控制电源300输出回路上的多个节点处的电压进行实时检测,当检测到某节点处出现过压或者欠压等异常情况时,直接关断控制电源300,切断控制电源300至控制电源输出端301的输出路径,实现了对控制电源300的安全防护。在此 情况下,为了避免控制器误操作,还可以在关断控制电源300的同时控制电源检测保护子模块630控制供电电源200也关断。
图7是本申请实施例提供的一种控制电源检测保护子模块的结构示意图,参考图7,在上述技术方案的基础上,作为本申请的一种实施方式,控制电源检测保护子模块630包括:第二电压转换单元632、第四开关单元631、第五检测单元633以及检测控制单元634;
第四开关单元631的第一端作为控制电源检测保护子模块630的电源输入端C1,第四开关单元631的第二端与第二电压转换单元632的输入端连接,第四开关单元631的控制端与检测控制单元634的输出端连接;
第二电压转换单元632的输出端作为控制电源输出端301;
检测控制单元634的第一输入端与第四开关单元631的第二端连接;
第五检测单元633的输入端与第二电压转换单元632的输出端连接,第五检测单元633的输出端与检测控制单元634的第二输入端以及控制电源检测保护子模块630的第一输出端C3均连接;
检测控制单元634设置为检测到第四开关单元631的第二端的输出电压大于第五过压阈值或者小于第五欠压阈值时控制第四开关单元631关断;
第五检测单元633设置为检测到第二电压转换单元632的输出端的输出电压大于第六过压阈值或者小于第六欠压阈值时,通过控制检测控制单元634而控制第四开关单元631关断以及通过控制供电电源检测保护子模块620而控制供电电源200关断。
例如,控制电源300的输出回路包括第四开关单元631,控制电源300的输出经过第二电压转换单元632转换后提供给第一控制单元400、第二控制单元500以其它低压电路。第四开关单元631和第二电压转换单元632均设置在控制电源300的输出回路中,第四开关单元631的第二端和第二电压转换单元632的输出端均为控制电源300输出回路上的节点。
本实施例设置检测控制单元634对第四开关单元631的第二端的输出电压进行实时检测,并在检测到第四开关单元631的第二端的输出电压大于第五过压阈值或者小于第五过压阈值时,检测控制单元634直接及时控制第四开关单元631关断,从而关断控制电源300,切断控制电源300的输出路径,实现了对控制器控制电源300的安全防护,进而保证了后级机器人安全。
第五检测单元633对第二电压转换单元632的输出端的输出电压进行实时检测,并在检测到第二电压转换单元632的输出端的输出电压大于第六过压阈值或者小于第六欠压阈值时,向检测控制单元634发出控制电源异常信号,以使得检测控制单元634控制第四开关单元631关断,从而关断控制电源300。同时,为了避免控制器误操作,第五检测单元633还可以将控制电源异常信号发送至供电电源检测保护子模块620的第三驱动单元625,以使得第三驱动单元625控制第三开关单元622关断,从而关断供电电源200。
例如,第四开关单元631包括第四晶体管;第四晶体管的第一端作为第四开关单元631的第一端,第四晶体管的第二端作为第四开关单元631的第二端,第四晶体管的控制端作为第四开关单元631的控制端。
示例性地,图8是本申请实施例提供的一种控制电源检测保护子模块的工作流程示意图。结合图7和图8,控制电源检测保护子模块的工作流程包括:
S30、电源输入端接收控制电源输出的电压。
S31、检测控制单元对第四开关单元的第二端的输出电压进行检测,并在检测到第四开关单元的第二端的输出电压大于第五过压阈值或者小于第五过压阈值时,直接控制第四开关单元关断。
其中,若检测控制单元检测到第四开关单元的第二端的输出电压没有异常,则保持第四开关单元导通。
S32、第二电压转换单元输出电压。
S33、第五检测单元对第二电压转换单元的输出端的输出电压进行检测,并在检测到第二电压转换单元的输出端的输出电压大于第六过压阈值或者小于第六欠压阈值时,向检测控制单元发出控制电源异常信号,同时将控制电源异常信号发送至供电电源检测保护子模块的第三驱动单元。
其中,若第五检测单元检测到第二电压转换单元的输出端的输出电压没有异常,则保持第四开关单元和第三开关单元均导通。
即本申请实施例的技术方案,控制电源检测保护子模块630对控制电源300输出回路上的多个节点处的电压(如第四开关单元631的第二端的输出电压和第二电压转换单元632的输出端的输出电压)进行实时检测并判定,当其中的某个节点处出现过压或者欠压等异常情况时,直接及时关断控制电源300,控制电源300停止对外供电,实现了对控制器控制电源300的安全防护,进而保证了后级机器人安全。
继续参考图7,在上述技术方案的基础上,作为本申请的一种实施方式,控制电源检测保护子模块630还包括:第六检测单元635。
控制电源检测保护子模块630的第二输出端C4与第一控制单元400连接,控制电源检测保护子模块630的第三输出端C5与第二控制单元500连接;
第六检测单元635的输入端与第二电压转换单元632的输出端连接,第六检测单元635的第一输出端作为控制电源检测保护子模块630的第二输出端C4,第六检测单元635的第二输出端作为控制电源检测保护子模块630的第三输出端C5;第六检测单元635设置为同时实时向第一控制单元400和第二控制单元500输出电压检测信号;
第一控制单元400和第二控制单元500设置为判断到输出电压检测信号的纹波超过纹波阈值时生成母线电源关断控制信号。
例如,第六检测单元635对第二电压转换单元632的输出端的输出电压实时检测,并将检测到的电压信号同时传输至第一控制单元400和第二控制单元500。第一控制单元400和第二控制单元500根据接收到的电压信号判断电压信号的纹波大小,当检测到纹波大于纹波阈值时,即纹波较大时,第一控制单元400和第二控制单元500生成母线电源关断控制信号以关断母线电源100。由于纹波危害性不会造成安全控制器本身的危险,只是有不稳的潜在因素,因此可以不将安全控制器其他电源关断。其中,第六检测单元635可以采用运放电路,其输出连至微处理器的AD引脚,微处理器对此路电压进行实时监测,以监测其纹波是否过大。
在上述任意实施例中,例如,第一控制单元400和第二控制单元500还分别设置为输出母线电源关断控制信号时,向机器人示教器输出相对应的错误代码信息。
本申请实施例中,在控制器的电源系统的任何一个节点出现任何一种异常情况时,都会向机器人示教器提供对应的错误代码信息以供维修人员检修。例如,当母线电源100的输出电压出现异常时,第一控制单元400和第二控制单元500会向示教器提供有关于母线电源100异常的错误代码信息(可包括分别对应第一开关单元611的第二端异常的错误代码信息和/或第二开关单元612的第二端异常的错误代码信息);当供电电源200的输出电压出现异常时,第一控制单元400和第二控制单元500会向示教器提供有关供电电源200异常的错误代码信息(可包括分别对应第三开关单元622的第一端异常的错误代码信息和/或第三开关单元622的第二端异常的错误代码信息);同样的,当控制电源300出现异常时以及控制电源300的电源输出路径上的电压纹波较大时,均会向机器人示教器提供对应的错误代码信息以供维修人员检修。
本申请实施例的技术方案中,机器人的控制器内包括母线电源、安全输入输出电路供电电源以及控制电源,机器人控制器电源检测及保护系统包括第一控制单元、第二控制单元以 及电源检测保护模块,电源检测保护模块与母线电源、安全输入输出电路供电电源、第一控制单元以及第二控制单元均连接。
电源检测保护模块对母线电源的输出电压进行实时检测,并将检测到的母线电源输出信号同时输出至第一控制单元和第二控制单元;当第一控制单元和/或第二控制单元根据母线电源输出信号判断到母线电源的输出电压出现异常时,第一控制单元和/或第二控制单元向电源检测保护模块输出母线电源关断控制信号,从而控制电源检测保护模块关断母线电源。以及,
电源检测保护模块在检测到安全输入输出电路供电电源的输出电压出现异常时,电源检测保护模块控制安全输入输出电路供电电源关断,并同时向第一控制单元和第二控制单元输出供电电源异常信号,以使得第一控制单元和/或第二控制单元根据供电电源异常信号向电源检测保护模块输出母线电源关断控制信号,从而控制电源检测保护模块关断母线电源。
以及,电源检测保护模块在检测到控制电源的输出电压出现异常时,电源检测保护模块至少控制控制电源关断。
本申请实施例以此对机器人安全控制器内的各路电源均进行实时检测,并在检测到异常时及时地至少关断此路异常电源,实现了对机器人安全控制器本身的电源系统的安全防护,保证了安全控制器的可靠性,进而实现了对后级机器人的有效安全保护;并且,本申请实施例中第一控制单元和第二控制单元冗余设置,其中一个出现异常并不会影响另外一个继续正常工作,保证了机器人控制器电源检测及保护系统的可靠性,从而为安全控制器的电源系统提供了可靠的安全防护。

Claims (10)

  1. 一种机器人控制器电源检测及保护系统,所述机器人控制器电源包括母线电源、安全输入输出电路供电电源以及控制电源,所述系统包括:第一控制单元、第二控制单元以及电源检测保护模块;
    所述电源检测保护模块与所述母线电源、所述供电电源、所述控制电源、所述第一控制单元以及所述第二控制单元分别连接;
    所述电源检测保护模块设置为对所述母线电源的输出电压进行实时检测,并将检测到的母线电源输出信号同时输出至所述第一控制单元和所述第二控制单元;以及设置为响应于检测到所述供电电源的输出电压出现异常,控制所述供电电源关断,并同时向所述第一控制单元和所述第二控制单元输出供电电源异常信号;以及设置为响应于检测到所述控制电源的输出电压出现异常,至少控制所述控制电源关断;
    所述第一控制单元与所述第二控制单元通信连接且互为冗余;
    所述第一控制单元和所述第二控制单元设置为响应于确定根据母线电源输出信号判断到所述母线电源的输出电压出现异常,和接收到所述供电电源异常信号中至少之一,向所述电源检测保护模块输出母线电源关断控制信号,以控制所述电源检测保护模块关断所述母线电源。
  2. 根据权利要求1所述的系统,其中,所述电源检测保护模块包括母线电源检测保护子模块;
    所述母线电源检测保护子模块的电源输入端接入所述母线电源;
    所述母线电源检测保护子模块的第一输出端和第一输入端分别与所述第一控制单元连接,所述母线检测保护子模块的第二输出端和第二输入端分别与所述第二控制单元连接;
    所述母线电源检测保护子模块的电源输出端与母线电源输出端连接,所述母线电源输出端设置为向机器人供电;
    所述母线电源检测保护子模块设置为对所述母线电源的输出电压进行实时检测,并将检测到的母线电源输出信号分别通过所述第一输出端和所述第二输出端同时输出至所述第一控制单元和所述第二控制单元,以及设置为分别通过所述第一输入端和所述第二输入端接收所述母线电源关断控制信号,以根据所述母线电源关断控制信号控制所述母线电源与所述母线电源输出端之间断开。
  3. 根据权利要求2所述的系统,其中,所述母线电源检测保护子模块包括:第一开关单元、第二开关单元、第一驱动单元、第二驱动单元、第一检测单元以及第二检测单元;
    所述第一开关单元的第一端作为所述母线电源检测保护子模块的电源输入端,所述第一开关单元的第二端与所述第二开关单元的第一端连接,所述第一开关单元的控制端与所述第一驱动单元的输出端连接;
    所述第二开关单元的第二端作为所述母线电源检测保护子模块的电源输出端,所述第二开关单元的控制端与所述第二驱动单元的输出端连接;
    所述第一驱动单元的输入端作为所述母线电源检测保护子模块的第一输入端;
    所述第二驱动单元的输入端作为所述母线电源检测保护子模块的第二输入端;
    所述第一检测单元的输入端与所述第一开关单元的第二端连接,所述第二检测单元的输入端与所述第二开关单元的第二端连接,所述第一检测单元的第一输出端与所述第二检测单元的第一输出端连接后作为所述母线电源检测保护子模块的第一输出端,所述第一检测单元的第二输出端与所述第二检测单元的第二输出端连接后作为所述母线电源检测保护子模块的第二输出端;
    所述第一检测单元设置为对所述第一开关单元的第二端的输出电压进行实时检测,并将检测到的第一母线电源输出信号分别通过自身的第一输出端和第二输出端同时输出至第一控制单元和第二控制单元;
    所述第二检测单元设置为对所述第二开关单元的第二端的输出电压进行实时检测,并将检测到的第二母线电源输出信号分别通过自身的第一输出端和第二输出端同时输出至第一控制单元和第二控制单元;
    所述第一控制单元和所述第二控制单元分别设置为响应于确定所述第一母线电源输出信号大于第一过压阈值或者小于第一欠压阈值,和所述第二母线电源输出信号大于第二过压阈值或者小于第二欠压阈值中至少之一,生成所述母线电源关断控制信号;
    所述第一驱动单元设置为根据所述母线电源关断控制信号控制所述第一开关单元关断,所述第二驱动单元设置为根据所述母线电源关断控制信号控制所述第二开关单元关断。
  4. 根据权利要求2或者3所述的系统,其中,所述电源检测保护模块还包括供电电源检测保护子模块;
    所述供电电源检测保护子模块的电源输入端接入所述供电电源;
    所述供电电源检测保护子模块的第一输出端与所述第一控制单元和所述第二控制单元分别连接,所述供电电源检测保护子模块的第二输出端与所述第一控制单元和所述第二控制单元分别连接;
    所述供电电源检测保护子模块的电源输出端与供电电源输出端连接,所述供电电源通过所述供电电源输出端向安全输入输出电路供电;
    所述供电电源检测保护子模块设置为响应于检测到所述供电电源的输出电压出现异常,控制所述供电电源关断,并分别通过自身的第一输出端和第二输出端同时向所述第一控制单元和所述第二控制单元输出所述供电电源异常信号。
  5. 根据权利要求4所述的系统,其中,所述供电电源检测保护子模块包括:第一电压转换单元、第三开关单元、第三检测单元以及第四检测单元;
    所述第一电压转换单元的输入端作为所述供电电源检测保护子模块的电源输入端,所述第一电压转换单元的输出端与所述第三开关单元的第一端连接;
    所述第三开关单元的第二端作为所述供电电源检测保护子模块的电源输出端,所述第三开关单元的控制端与所述第三驱动单元的输出端连接;
    所述第三驱动单元的第一输入端与所述第三检测单元的输出端连接,所述第三驱动单元的第二输入端与所述第四检测单元的输出端连接;
    所述第三检测单元的输入端与所述第一电压转换单元的输出端连接,所述第三检测单元的输出端与所述供电电源检测保护子模块的第一输出端连接;所述第四检测单元的输入端与所述第三开关单元的第二端连接,所述第四检测单元的输出端与所述供电电源检测保护子模块的第二输出端连接;
    所述第三检测单元设置为响应于检测到所述第一电压转换单元的输出端的输出电压大于第三过压阈值或者小于第三欠压阈值,同时向所述第三驱动单元、所述第一控制单元以及所述第二控制单元输出所述供电电源异常信号;
    所述第四检测单元设置为响应于检测到所述第三开关单元的第二端的输出电压大于第四过压阈值或者小于第四欠压阈值,同时向所述第三驱动单元、所述第一控制单元以及所述第二控制单元输出所述供电电源异常信号;
    所述第三驱动单元设置为根据所述供电电源异常信号控制所述第三开关单元关断;
    所述第一控制单元和所述第二控制单元分别设置为根据所述供电电源异常信号生成所述母线电源关断控制信号。
  6. 根据权利要求4所述的系统,其中,所述电源检测保护模块还包括控制电源检测保护子模块;
    所述控制电源检测保护子模块的电源输入端接入所述控制电源;
    所述控制电源检测保护子模块的第一输出端与所述供电电源检测保护子模块连接;
    所述控制电源检测保护子模块的电源输出端与控制电源输出端连接,所述控制电源通过所述控制电源输出端向所述第一控制单元和所述第二控制单元供电;
    所述控制电源检测保护子模块设置为响应于检测到所述控制电源的输出电压出现异常,控制所述控制电源关断,并通过控制所述供电电源检测保护子模块而控制所述供电电源关断。
  7. 根据权利要求6所述的系统,其中,所述控制电源检测保护子模块包括:第二电压转换单元、第四开关单元、第五检测单元以及检测控制单元;
    所述第四开关单元的第一端作为所述控制电源检测保护子模块的电源输入端,所述第四开关单元的第二端与所述第二电压转换单元的输入端连接,所述第四开关单元的控制端与所述检测控制单元的输出端连接;
    所述第二电压转换单元的输出端作为所述控制电源输出端;
    所述检测控制单元的第一输入端与所述第四开关单元的第二端连接;
    所述第五检测单元的输入端与所述第二电压转换单元的输出端连接,所述第五检测单元的输出端与所述检测控制单元的第二输入端以及所述控制电源检测保护子模块的第一输出端均连接;
    所述检测控制单元设置为响应于检测到所述第四开关单元的第二端的输出电压大于第五过压阈值或者小于第五欠压阈值,控制所述第四开关单元关断;
    所述第五检测单元设置为响应于检测到所述第二电压转换单元的输出端的输出电压大于第六过压阈值或者小于第六欠压阈值,通过控制所述检测控制单元而控制所述第四开关单元关断以及通过控制所述供电电源检测保护子模块而控制所述供电电源关断。
  8. 根据权利要求7所述的系统,其中,所述控制电源检测保护子模块还包括:第六检测单元;
    所述控制电源检测保护子模块的第二输出端与所述第一控制单元连接,所述控制电源检测保护子模块的第三输出端与所述第二控制单元连接;
    所述第六检测单元的输入端与所述第二电压转换单元的输出端连接,所述第六检测单元的第一输出端作为所述控制电源检测保护子模块的第二输出端,所述第六检测单元的第二输出端作为所述控制电源检测保护子模块的第三输出端;所述第六检测单元设置为同时实时向所述第一控制单元和所述第二控制单元输出电压检测信号;
    所述第一控制单元和所述第二控制单元设置为响应于确定所述输出电压检测信号的纹波超过纹波阈值,生成所述母线电源关断控制信号。
  9. 根据权利要求1所述的系统,其中,所述第一控制单元和所述第二控制单元还分别设置为响应于确定输出所述母线电源关断控制信号,向机器人示教器输出相对应的错误代码信息。
  10. 一种机器人,包括如权利要求1-9任一项所述的机器人控制器电源检测及保护系统。
PCT/CN2022/113051 2022-05-27 2022-08-17 机器人控制器电源检测及保护系统、机器人 WO2023226208A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210594611.8A CN114825271A (zh) 2022-05-27 2022-05-27 机器人控制器电源检测及保护系统、机器人
CN202210594611.8 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226208A1 true WO2023226208A1 (zh) 2023-11-30

Family

ID=82519250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113051 WO2023226208A1 (zh) 2022-05-27 2022-08-17 机器人控制器电源检测及保护系统、机器人

Country Status (2)

Country Link
CN (1) CN114825271A (zh)
WO (1) WO2023226208A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114825271A (zh) * 2022-05-27 2022-07-29 中科新松有限公司 机器人控制器电源检测及保护系统、机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023345A (ja) * 1998-07-02 2000-01-21 Matsushita Electric Ind Co Ltd 過電流保護制御装置
CN101797752A (zh) * 2010-04-16 2010-08-11 哈尔滨工业大学 仿人机器人一体化关节驱动器
CN111240258A (zh) * 2020-01-19 2020-06-05 大族激光科技产业集团股份有限公司 一种工业机器人及其急停装置
CN112671069A (zh) * 2020-12-30 2021-04-16 上海节卡机器人科技有限公司 超级电容模组和协作机器人系统
CN113618744A (zh) * 2021-08-27 2021-11-09 库卡机器人(广东)有限公司 机器人的安全控制方法、装置、电子设备和可读存储介质
CN114825271A (zh) * 2022-05-27 2022-07-29 中科新松有限公司 机器人控制器电源检测及保护系统、机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000023345A (ja) * 1998-07-02 2000-01-21 Matsushita Electric Ind Co Ltd 過電流保護制御装置
CN101797752A (zh) * 2010-04-16 2010-08-11 哈尔滨工业大学 仿人机器人一体化关节驱动器
CN111240258A (zh) * 2020-01-19 2020-06-05 大族激光科技产业集团股份有限公司 一种工业机器人及其急停装置
CN112671069A (zh) * 2020-12-30 2021-04-16 上海节卡机器人科技有限公司 超级电容模组和协作机器人系统
CN113618744A (zh) * 2021-08-27 2021-11-09 库卡机器人(广东)有限公司 机器人的安全控制方法、装置、电子设备和可读存储介质
CN114825271A (zh) * 2022-05-27 2022-07-29 中科新松有限公司 机器人控制器电源检测及保护系统、机器人

Also Published As

Publication number Publication date
CN114825271A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2015014108A1 (zh) 电源变换模块、供电装置和供电方法
WO2023226208A1 (zh) 机器人控制器电源检测及保护系统、机器人
CN102497002B (zh) 一种直流输电工程完全双重化保护冗余系统
WO2015131578A1 (zh) 通信电源蓄电池防反接电路及通信电源控制系统
JP2013502131A (ja) 電子パッチ装置、ネットワークシステム及びネットワークシステムにおける動作方法
JP4025216B2 (ja) 無停電電源装置
KR20200030819A (ko) 전원 공급 장치 및 전원 공급 시스템
WO2024032047A1 (zh) 一种双电源切换装置及方法
JP2009142028A (ja) 並列電源システム
US20160179154A1 (en) Controlling the operating state of a system based on the operating state of a connected peripheral or system
KR102407417B1 (ko) 전원 공급 장치 및 전원 공급 시스템
KR102515332B1 (ko) 전원 공급 시스템의 제어방법
CN113629855A (zh) 一种基于冗余控制的舞台驱动系统及方法
CN103746343B (zh) 一种消防应急电源的开关电源电路
KR20200031043A (ko) 전원 공급 장치 및 전원 공급 시스템
CN202975754U (zh) 多控制器的电源控制系统和工程机械设备
JP2009065807A (ja) スイッチング電源装置
KR102518223B1 (ko) 전원 공급 시스템
KR20200030822A (ko) 전원 공급 장치 및 전원 공급 시스템
CN112689936A (zh) 电源供应系统
KR20200030820A (ko) 전원 공급 시스템
TW201935803A (zh) 一種ups故障保護電路及ups裝置
CN215897372U (zh) 一种支持热插拔的多电源供电电路
CN115395636B (zh) 冗余备份恒流转恒压电源电路及控制方法
JP2000244373A (ja) 中継器及びそれを用いたネットワーク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943398

Country of ref document: EP

Kind code of ref document: A1