WO2015014099A1 - 热电联供、冷电联供与热电-冷电两用联供系统 - Google Patents

热电联供、冷电联供与热电-冷电两用联供系统 Download PDF

Info

Publication number
WO2015014099A1
WO2015014099A1 PCT/CN2014/000707 CN2014000707W WO2015014099A1 WO 2015014099 A1 WO2015014099 A1 WO 2015014099A1 CN 2014000707 W CN2014000707 W CN 2014000707W WO 2015014099 A1 WO2015014099 A1 WO 2015014099A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
generator
valve
solution
line
Prior art date
Application number
PCT/CN2014/000707
Other languages
English (en)
French (fr)
Inventor
李华玉
Original Assignee
Li Huayu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Li Huayu filed Critical Li Huayu
Publication of WO2015014099A1 publication Critical patent/WO2015014099A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/008Sorption machines, plants or systems, operating continuously, e.g. absorption type with multi-stage operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the invention belongs to the technical field of thermoelectric cooling and heat supply and heat pump.
  • a grading heating system is required.
  • the heating temperature of the primary heating pipe network is high, and there is a large heating temperature difference between the primary heat medium and the secondary heat medium, such as the primary pipe network supply.
  • the temperature difference between the two is more than 32. 5 ° C.
  • the average temperature difference between the two is more than 32. 5 ° C. From the perspective of the rational use of thermal energy, the existence of a large temperature difference is unreasonable.
  • the heat transfer temperature difference at the heat source end, the heat transfer temperature difference between adjacent pipe networks, and the heat transfer temperature difference in the heat energy utilization link should be fully utilized; in addition, the heat load provided by the primary heat medium should be considered. Reduce the flow rate of the primary heat medium, etc.
  • the present invention provides a combined heat and power supply, a combination of cold and power supply, and a combined heat and power-cooling and power supply system capable of achieving stepwise heating and reasonable heat utilization, and satisfies and meets five requirements:
  • the temperature difference during the heating process of the heat source is small.
  • the staged extraction and stepwise heating technology are adopted.
  • the main purpose of the present invention is to provide a cogeneration system for cogeneration, cogeneration, and cogeneration, and the contents of the specific invention are as follows:
  • Combined heat and power system mainly by power machine, power circulation condenser, first heater, second heater, third heater, generator, second generator, absorber, second absorber, condenser,
  • the power machine respectively has a working new steam pipeline connected to the outside and
  • the working exhaust steam pipeline is connected with the power circulation condenser, the power circulation condenser and the condensate pipeline are connected to the outside, the power circulation condenser and the cooling medium pipeline are connected to the outside, and the power machine also has the first steam pipeline respectively.
  • the second heater has a second condensate line connected to the outside, and the third heater and the third condensate line are connected to the outside;
  • the absorber has a dilute solution line through the solution pump and the solution heat exchanger and the first The second absorber is connected, the second absorber and the dilute solution pipeline are connected to the generator via the second solution pump and the second solution heat exchanger, and the generator has a concentrated solution pipeline through the second solution heat exchanger and the second The generator is connected, the second generator has a concentrated solution pipeline connected to the absorber via the solution heat exchanger, the generator and the refrigerant vapor passage are connected to the condenser, and the second generator has a refrigerant vapor passage and a second The absorber is connected, the condenser and the refrigerant liquid pipeline are connected to the evaporator through the throttle valve
  • the cogeneration system is the third generator, the third absorber, the third solution pump and the third solution heat exchanger added in the cogeneration system according to item 1, the dilute solution is provided in the absorber
  • the pipeline is connected to the second absorber through the solution pump and the solution heat exchanger to adjust the absorber to have a dilute solution pipeline connected to the third absorber through the solution pump and the third solution heat exchanger, and the third absorber has a dilute solution
  • the pipeline is connected to the second absorber via the third solution pump and the solution heat exchanger, and the second generator has a concentrated solution pipeline connected to the absorber through the solution heat exchanger to adjust the second generator to have a concentrated solution pipeline
  • the solution heat exchanger is in communication with the third generator, and the third generator further has a concentrated solution line communicating with the absorber via the third solution heat exchanger, and the third generator further has a refrigerant vapor passage communicating with the third absorber.
  • the second generator has a first-stage heat medium pipeline connected to the evaporator through the secondary heat exchanger to be adjusted to a second generator, and the first heat medium pipeline is connected to the evaporator through the third generator and the second heat exchanger, Triple absorber Conduit communicating with the outside, is formed cogeneration system.
  • the cogeneration system in any of the cogeneration systems described in item 3, cancels the first heater, and the circulation pump has a primary heat medium line through the first heater, the second heater, and the first
  • the three heaters are connected to the generator to be adjusted to be a circulating pump.
  • the first heat medium line is connected to the generator through the second heater and the third heater to form a combined heat and power system.
  • the cogeneration system in any of the cogeneration systems described in item 3, the first heater and the second heater are eliminated, and the circulation pump has a primary heat medium line through the first heater, The two heaters and the third heater are connected to the generator to be adjusted to be a circulating pump. The first heat medium pipeline is connected to the generator through the third heater to form a combined heat and power system.
  • Cogeneration system mainly by power machine, power circulation condenser, first heater, second heater, third heater, generator, second generator, absorber, second absorber, condenser , the evaporator, the solution pump, the second solution pump, the throttle valve, the solution heat exchanger, the second solution heat exchanger and the circulation pump;
  • the power machine respectively has a working new steam pipeline connected to the outside and has a working steam pipe
  • the road is connected with the power circulation condenser, the power circulation condenser and the condensate pipeline are connected to the outside, the power circulation condenser and the cooling medium pipeline are connected to the outside, and the power machine also has the first steam pipeline and the first heater respectively.
  • a second steam line is in communication with the second heater, and a third steam line is in communication with the third heater, the first heater and the first condensate line are in communication with the outside, and the second heater is further
  • the second condensate line is in communication with the outside, the third heater and the third condensate line are in communication with the outside;
  • the absorber has a dilute solution line through the solution pump and the solution heat exchanger and the second absorber Passing, the second absorber and the dilute solution line are connected to the generator via the second solution pump and the second solution heat exchanger, and the generator and the concentrated solution line are connected to the second generator via the second solution heat exchanger
  • the second generator further has a concentrated solution line connected to the absorber via the solution heat exchanger, the generator and the refrigerant vapor passage are connected to the condenser, and the second generator and the refrigerant vapor passage are connected to the second absorber.
  • the condenser and the refrigerant liquid pipeline are connected to the evaporator via a throttle valve, and the evaporator and the refrigerant vapor passage are connected to the absorber;
  • the circulation pump has a first heat medium pipeline passing through the first heater and the second heater
  • the third heater, the generator and the second generator are in communication with the circulation pump itself to form a circulation loop
  • the absorber, the second absorber and the condenser further have a cooling medium line respectively communicating with the outside, and the evaporator and the refrigerant medium
  • the pipeline communicates with the outside to form a cold electricity supply system.
  • the third generator, the third absorber, the third solution pump and the third solution heat exchanger are added, and the absorber is diluted.
  • the solution pipeline is connected to the second absorber through the solution pump and the solution heat exchanger to adjust the absorber to have a dilute solution pipeline connected to the third absorber through the solution pump and the third solution heat exchanger.
  • the third absorber further has a dilute solution pipeline connected to the second absorber via the third solution pump and the solution heat exchanger
  • the second generator has a concentrated solution pipeline connected to the absorber through the solution heat exchanger to be adjusted to the second
  • the generator has a concentrated solution pipeline connected to the third generator via the solution heat exchanger
  • the third generator further has a concentrated solution pipeline connected to the absorber via the third solution heat exchanger
  • the third generator further has a refrigerant vapor
  • the passage is in communication with the third absorber, and the second generator has a primary heat medium pipeline connected to the first heater through the circulation pump to be adjusted to a second generator having a primary heat medium pipeline through the third generator and the circulation pump and the first A heater is connected, and the third absorber and the cooling medium pipeline communicate with the outside to form a cold electricity supply system.
  • the cold-light co-generation system in any of the cogeneration systems described in items 6-7, cancels the first heater, and the circulating pump has a primary heat medium pipe through the first heater, the second The heater and the third heater are connected to the generator to be adjusted to be a circulating pump.
  • the primary heat medium line is connected to the generator via the second heater and the third heater to form a cold electricity supply system.
  • the cold-light co-generation system in any of the cogeneration systems described in items 6-7, cancels the first heater and the second heater, and the circulation pump has a first-stage heat medium pipeline through the first
  • the heater, the second heater and the third heater are connected to the generator to be adjusted to be a circulating pump.
  • the primary heat medium line is connected to the generator via the third heater to form a cold electricity supply system.
  • Thermoelectric-cooling and power supply system mainly by power machine, power circulation condenser, first heater, second heater, third heater, generator, second generator, absorber, second absorption , condenser, evaporator, solution pump, second solution pump, throttle valve, solution heat exchanger, second solution heat exchanger, circulation pump, secondary heat exchanger, first shut-off valve, second shut-off valve , a third shut-off valve, a fourth shut-off valve, a fifth cut-off valve, a sixth cut-off wide, a seventh cut-off valve, an eighth cut-off valve, a ninth cut-off valve, a tenth cut-off valve, and an eleventh cut-off valve;
  • the power machine further has a first steam line communicating with the first heater, a second steam line communicating with the second heater, and a third steam line communicating with the third heater
  • the first heater further a condensate line is connected to the outside
  • a second heater and a second condensate line are connected to the outside
  • a third heater and a third condensate line are connected to the outside
  • the absorber has a dilute solution line through the solution
  • the pump and the solution heat exchanger are in communication with the second absorber, the second absorber and the dilute solution line are connected to the generator via the second solution pump and the second solution heat exchanger
  • the generator has a concentrated solution line
  • the second solution heat exchanger is in communication with the second generator, the second generator and the concentrated solution line are connected to the absorber via the solution heat exchanger, and the generator and the refrigerant vapor passage are connected to the condenser
  • the second generator is further a refrigerant vapor passage is connected to the second absorber, and the condenser
  • thermoelectric-cold-electric dual-purpose co-supply system in the cogeneration-cooling-coupling system described in item 10, cancels the ninth cut-off valve, the tenth cut-off valve and the eleventh cut-off valve, and will circulate
  • the pump has a primary heat medium pipeline divided into two paths - the first passage through the ninth cutoff valve, the second passage through the tenth cutoff valve, the power circulation condenser and the eleventh cutoff valve - after the merge and the first heater
  • the communication is adjusted to have a primary heat medium pipeline directly connected to the first heater to form a thermoelectric-cooling power supply system.
  • thermoelectric-cold-electric dual-purpose co-supply system in the cogeneration system of the thermoelectric-cold-electric dual-purpose system according to item 11, cancels the first heater, and the circulating pump has a first-stage heat medium pipeline through the first heating
  • the second heater and the third heater are connected to the generator to be adjusted to be a circulating pump.
  • the primary heat medium line is connected to the generator via the second heater and the third heater to form a cold electricity supply system.
  • thermoelectric-cold-electric dual-purpose co-supply system in the thermoelectric-cooling/cogeneration system according to item 11, cancels the first heater and the second heater, and the circulation pump has a primary heat medium tube
  • the first heater, the second heater and the third heater are connected to the generator to be adjusted to be a circulating pump.
  • the first heat medium pipeline is connected to the generator via the third heater to form a cold electricity supply system.
  • Thermoelectric-cold-electric dual-purpose system mainly by power machine, power circulation condenser, first heater, second heater, third heater, generator, second generator, absorber, second absorption , condenser, evaporator, solution pump, second solution pump, throttle valve, solution heat exchanger, second solution heat exchanger, circulation pump, secondary heat exchanger, third generator, third absorber , a third solution pump, a third solution heat exchanger, a first shut-off valve, a second shut-off valve, a third shut-off valve, a fourth shut-off valve, a fifth shut-off valve, a sixth cut-off valve, a seventh cut-off valve, an eighth
  • the cut-off valve, the ninth cut-off valve, the tenth cut-off valve and the eleventh cut-off valve are composed; the power machine has a working new steam line respectively connected to the outside and a working exhaust steam line is connected with the power circulation condenser, the power circulation condenser The condensate line is connected to the outside,
  • the combined heat and power-cooling-electric dual-purpose system is a combination of the ninth cut-off valve, the tenth cut-off valve and the eleventh cut-off valve in the combined heat and power-cooling system described in item 14, which will circulate
  • the pump has a primary heat medium pipeline divided into two paths - the first passage through the ninth cutoff valve, the second passage through the tenth cutoff valve, the power circulation condenser and the eleventh cutoff valve - after the merge and the first heater
  • the communication is adjusted to have a primary heat medium pipeline directly connected to the first heater to form a thermoelectric-cooling power supply system.
  • thermoelectric-cold-electric dual-purpose co-supply system in the cogeneration system of the thermoelectric-cold-electric dual-purpose system according to item 15, cancels the first heater, and the circulating pump has a first-stage heat medium pipeline through the first heating
  • the second heater and the third heater are connected to the generator to be adjusted to be a circulating pump.
  • the first heat medium pipeline is connected to the generator via the second heater and the third heater to form a thermoelectric-cooling power supply system. .
  • thermoelectric-cold-electric dual-purpose co-supply system in the thermoelectric-cooling/cogeneration system according to item 15, cancels the first heater and the second heater, and the circulation pump has a primary heat medium tube
  • the first heater, the second heater and the third heater are connected to the generator to be adjusted to be a circulating pump.
  • the first heat medium pipeline is connected to the generator via the third heater to form a thermoelectric-cooling power supply system. .
  • the cogeneration system is to add a new heater to any of the cogeneration systems described in items 1-5.
  • the new steam line is added to the power unit to connect with the new heater.
  • a new condensate line is connected to the outside, and the third heater has a primary heat medium line connected to the generator to be adjusted to a third heater.
  • the first heat medium line is connected to the generator via a new heater to form a thermoelectricity. Joint supply system.
  • the device in any of the cogeneration systems described in items 6-9, additional heaters are added, and additional steam lines are added to the power unit to connect with the new heaters.
  • the device also has a new condensate pipeline connected to the outside, and the third heater has a primary heat medium pipeline connected to the generator to be adjusted to a third heater.
  • the first heat medium pipeline is connected to the generator via a new heater.
  • the combined heat and power-cooling-electric dual-purpose system is to add a new heater to the thermoelectric-cooling/cogeneration system as described in items 10-17, and add a new steam line to the power machine.
  • the heater is connected, the new heater is added, and the new condensate line is connected to the outside.
  • the third heater has a first-stage heat medium line connected to the generator to adjust the third heater to have a first-stage heat medium pipeline.
  • the heater is connected to the generator to form a combined thermoelectric-cooling system.
  • Cogeneration system it is mainly condensed by power machine, power cycle ⁇ ! a first heater, a second heater, a third heater, a circulation pump, a first set of absorption heat exchange subsystems and a second set of absorption heat exchange subsystems;
  • the power machine has a working new steam pipeline and The external communication and the working exhaust steam pipeline are connected with the power circulation condenser, the power circulation condenser and the condensate pipeline are connected to the outside, the power circulation condenser and the cooling medium pipeline are connected to the outside, and the power machine also has the first The steam line is in communication with the first heater, the second steam line is in communication with the second heater, and the third steam line is in communication with the third heater, the first heater having the first condensate line and the exterior Connected, the second heater has a second condensate line communicating with the outside, and the third heater and the third condensate line are connected to the outside;
  • the circulation pump further has a primary heat medium line via the power circulation condenser
  • the pipeline is connected to the evaporator in the second set of absorption heat exchange subsystems, and the evaporator in the second set of absorption heat exchange subsystems further has a primary heat medium pipeline connected to the circulation pump to form a combined heat and power system.
  • the cogeneration system is the cogeneration system according to item 22, wherein the circulating pump has a primary heat medium pipe connected to the first heater via a power circulation condenser and is adjusted to a circulating pump having a primary heat medium pipe.
  • the road is in direct communication with the first heater to form a cogeneration system.
  • the cogeneration system in the cogeneration system according to item 23, wherein the first heater is cancelled, and the circulation pump has a primary heat medium line through the first heater and the second heater and the third heating
  • the device is adjusted to be a circulating pump having a primary heat medium line connected to the third heater via the second heater to form a combined heat and power system.
  • the cogeneration system is to add a new heater to any of the cogeneration systems described in items 21-24.
  • the additional steam line is added to the power unit to connect with the new heater.
  • a new condensate line is connected to the outside, and the third heater has a primary heat medium line connected to the generator to be adjusted to a third heater.
  • the first heat medium line is connected to the generator via a new heater to form a thermoelectricity. Joint supply system.
  • Figure 1 is a schematic view showing the first structure and flow of a cogeneration system according to the present invention.
  • FIG. 2 is a schematic view showing the second structure and flow of the cogeneration system according to the present invention.
  • FIG. 3 is a schematic view showing the third structure and flow of the cogeneration system according to the present invention.
  • FIG. 4 is a schematic view showing the fourth structure and flow of the cogeneration system according to the present invention.
  • Figure 5 is a schematic view showing the first structure and flow of the cold electricity supply system according to the present invention.
  • Figure 6 is a schematic view showing the second structure and flow of the cold electricity supply system according to the present invention.
  • Figure 7 is a schematic view showing the third structure and flow of the cold power supply system according to the present invention.
  • FIG. 8 is a first schematic structural view and a flow chart of a combined heat and power-cooling power supply system according to the present invention.
  • Figure 9 is a schematic view showing the second structure and flow of the combined heat, power and cold power supply system according to the present invention.
  • Figure 10 is a third structural and flow diagram of a combined heat, power and cold power supply system according to the present invention.
  • FIG. 11 is a schematic diagram showing the structure and flow of a cogeneration system in a two-stage heat exchange sub-system with shunt heat transfer according to the present invention.
  • Absorption heat exchange subsystem - in the cogeneration system except for the power machine 1, the power circulation condenser 2, the first heater 3, the second heater 4, the third heater 5, and the circulation pump 17,
  • the portion consisting of the remaining components; its function is to transfer the thermal load in the primary heat medium to the secondary heat medium.
  • the heat exchanger, the second solution heat exchanger and the secondary heat exchanger constitute an absorption heat exchange subsystem.
  • the cogeneration system shown in Figure 1 is implemented as follows:
  • the power machine 1 respectively has a working new steam pipeline connected to the outside
  • the working exhaust steam pipeline is connected with the power circulation condenser 2
  • the power circulation condenser 2 and the condensate pipeline are connected to the outside
  • the power circulation condenser 2 and the cooling medium pipeline are connected to the outside
  • the power machine 1 also has respectively
  • the first steam line is in communication with the first heater 3
  • the second steam line is in communication with the second heater 4
  • the third steam line is in communication with the third heater 5, the first heater 3 having the first
  • the condensate line is in communication with the outside, the second heater 4 and the second con
  • the working new steam enters the power machine 1, and part of the steam after the work is gradually provided through the third steam line
  • the third heater 5 is supplied to the second heater 4 via the second steam line and to the first heater 3 via the first steam line, and the remaining steam continues to work and then enters the power through the working steam line.
  • the condenser 2; the working exhaust gas of the power condenser 2 is respectively discharged into the condensed liquid and discharged to the cooling medium and the primary heat medium, and the steam of the first heater 3 is exotherned after the first-stage heat medium is formed into the condensate.
  • the first condensate line is discharged to the outside, and the steam of the second heater 4 is exothermic to the condensate after the first stage heat medium is discharged into the condensate, and the steam of the third heater 5 is discharged to the first stage.
  • the heat medium is discharged into the condensate and then discharged to the outside through the third condensate line; the diluted solution of the absorber 8 passes through the solution pump 12 and the solution heat exchanger 15 and then enters the second absorber 9, absorbs the refrigerant vapor and releases the heat to the second stage.
  • the heat medium, the dilute solution of the second absorber 9 enters the generator 6 after passing through the second solution pump 13 and the second solution heat exchanger 16, and the primary heat medium flows through the generator 6, and the solution heated into the solution is released and directed
  • the condenser 10 provides refrigerant vapor, the generator 6
  • the solution enters the second generator 7 via the second solution heat exchanger 16, the primary heat medium flows through the second generator 7, the solution heated into it is released and the refrigerant vapor is supplied to the second absorber 9, the second occurrence
  • the concentrated solution of the device 7 enters the absorber 8 through the solution heat exchanger 15, absorbs the refrigerant vapor and radiates heat to the secondary heat medium; the refrigerant vapor of the condenser 10 radiates heat to the secondary heat medium to form a refrigerant liquid, and the condenser
  • the refrigerant liquid of 10 is throttled and depressurized into the evaporator 11 through the throttle valve 14, and absorbs heat into the refrigerant vapor and
  • the primary heat medium is pressurized by the circulation pump 17 and then sequentially flows through the power circulation condenser. 2.
  • the first heater 3, the second heater 4 and the third heater 5 absorb heat step by step, and the primary heat medium after the temperature rise flows through the generator 6, the second generator 7, and the secondary heat exchanger in sequence. 18 and the evaporator 11 are gradually released and cooled to enter the circulation pump 17, forming a cogeneration system.
  • the cogeneration system shown in Figure 2 is implemented as follows:
  • the circulating pump 17 has a first-stage heat medium line connected to the first heater 3 via the power circulation condenser 2, and the circulation pump 17 has a first-stage heat medium line directly and first.
  • the heaters 3 are connected to form a cogeneration system.
  • the cogeneration system shown in Figure 3 is implemented as follows:
  • the solution pump 12 and the solution heat exchanger 15 are connected to the second absorber 9 to be adjusted so that the absorber 8 has a dilute solution line connected to the third absorber 20 via the solution pump 12 and the third solution heat exchanger 22, and the third absorption
  • the device 20 further has a dilute solution line connected to the second absorber 9 via the third solution pump 21 and the solution heat exchanger 15, and the second generator 7 has a concentrated solution line connected to the absorber 8 via the solution heat exchanger 15.
  • the second generator 7 has a concentrated solution line connected to the third generator 19 via the solution heat exchanger 15, and the third generator 19 has a concentrated solution line connected to the absorber 8 via the third solution heat exchanger 22.
  • the third generator 19 further has a refrigerant vapor passage communicating with the third absorber 20, and the second generator 7 has a primary heat medium line connected to the evaporator 11 via the secondary heat exchanger 18 to be adjusted to a second generator.
  • 7 has a primary heat medium pipeline through the third generator 19 and secondary heat
  • the exchanger 18 is in communication with the evaporator 11, and the third absorber 20 has a secondary heat medium line in communication with the outside.
  • the dilute solution of the absorber 8 enters the third absorber 20 via the solution pump 12 and the third solution heat exchanger 22, absorbs the refrigerant vapor and radiates heat to the secondary heat medium, and the third absorber 20
  • the dilute solution enters the second absorber 9 via the third solution pump 21 and the solution heat exchanger 15;
  • the concentrated solution of the second generator 7 enters the third generator 19 via the solution heat exchanger 15, and the primary heat medium flows through the third
  • the generator 9 the solution heated into the solution is released and supplies the refrigerant vapor to the third absorber 20.
  • the concentrated solution of the third generator 19 enters the absorber 8 through the third solution heat exchanger 22, and the primary heat medium flows sequentially.
  • Generator 6 The second generator 7, the third generator 19, the secondary heat exchanger 18 and the evaporator 11 are gradually cooled and cooled to form a combined heat and power system.
  • the cogeneration system shown in Figure 4 is implemented as follows:
  • a new heater is added, and a new steam line is added to the power machine 1 to communicate with the newly added heater A, and a new heater A is added, and a new condensate line is connected to the outside.
  • the third heater 5 has a first-stage heat medium pipeline connected to the generator 6 to be adjusted to a third heater 5, and the first-stage heat medium pipeline is connected to the generator 6 via the newly-added heater A; the power heater 1 adds a heater A provides the refrigerant vapor and releases the heat to the primary heat medium to form a condensate, and the condensate of the newly added heater A is discharged to the outside through the newly added condensate line, and the primary heat medium from the third heater 5 flows through the new The heater A is supplied to the generator 6 after the heat absorption is raised to form a cogeneration system.
  • the cogeneration system shown in Figure 5 is implemented as follows:
  • the evaporator, the solution pump, the second solution pump, the throttle valve, the solution heat exchanger, the second solution heat exchanger and the circulation pump are composed;
  • the power machine 1 has a working new steam line respectively connected to the outside and has a working steam pipe
  • the road is connected with the power circulation condenser 2, the power circulation condenser 2 and the condensate line are connected to the outside, the power circulation condenser 2 and the cooling medium pipeline are connected to the outside, and the power machine 1 also has a first steam line and
  • the first heater 3 is in communication
  • the second steam line is in communication with the second heater 4
  • the third steam line is in communication with the third heater 5
  • the first heater 3 also has a first condensate line and an
  • the second solution 7 and the second generator 7 are connected via the second solution heat exchanger 16.
  • the second generator 7 and the concentrated solution line are connected to the absorber 8 via the solution heat exchanger 15.
  • the generator 6 also has a refrigerant vapor channel and condensation.
  • the first generator 7 is connected to the second absorber 7, and the refrigerant vapor passage is connected to the second absorber 9.
  • the condenser 10 and the refrigerant liquid pipeline are connected to the evaporator 11 via the throttle valve 14, and the evaporator 11 is also cooled.
  • the agent vapor passage is in communication with the absorber 8; the circulation pump 17 has a primary heat medium line through the first heater 3, the second heater 4, the third heater 5, the generator 6 and the second generator 7, and the circulation pump 17
  • the self-connecting forms a circulation loop, and the absorber 8, the second absorber 9, and the condenser 10 respectively have a cooling medium line communicating with the outside, and the evaporator 11 is also connected to the outside by the refrigerant medium line.
  • the working new steam enters the power machine 1, and part of the steam after the work is gradually supplied to the third heater 5 through the third steam line, and to the second heater 4 and the second steam line.
  • the first steam line is supplied to the first heater 3, and the remaining steam continues to work, and then enters the power condenser 2 through the working exhaust steam line; the working steam of the power condenser 2 releases heat to the cooling medium to form a condensate and Discharged outward, the steam of the first heater 3 is exothermic after the first-stage heat medium is condensed, and is discharged to the outside through the first condensate line, and the steam of the second heater 4 is exotherned after the first-stage heat medium is formed into the condensate.
  • the steam of the third heater 5 is exothermic to the first condensate after the primary heat medium is formed into a condensate; the dilute solution of the absorber 8 is passed through the solution pump 12 and the solution The heat exchanger 15 then enters the second absorber 9, absorbs the refrigerant vapor and exotherms the cooling medium, and the dilute solution of the second absorber 9 enters the generator 6 after passing through the second solution pump 13 and the second solution heat exchanger 16.
  • the primary heat medium flows through the generator 6, Release the solution into it And supplying the refrigerant vapor to the condenser 10, the concentrated solution of the generator 6 enters the second generator 7 through the second solution heat exchanger 16, and the primary heat medium flows through the second generator 7, and the solution heated into the solution is released.
  • the refrigerant vapor of the condenser 10 is placed
  • the refrigerant liquid is heated to the cooling medium, and the refrigerant liquid of the condenser 10 is throttled and depressurized into the evaporator 11 through the throttle valve 14.
  • the refrigerant medium flows through the evaporator 11 and heats the refrigerant liquid into the refrigerant.
  • the steam is supplied to the absorber 8; the primary heat medium is pressurized by the circulation pump 17 and then sequentially flows through the first heater 3, the second heater 4, and the third heater 5, and absorbs heat step by step.
  • the heat medium flows through the generator 6 and the second generator 7 in sequence and gradually releases heat to cool down, and then enters the circulation pump 17 to form a cold electricity supply system.
  • the cogeneration system shown in Figure 6 is implemented as follows:
  • the first heater is cancelled, and the circulation pump 17 has a primary heat medium line through the first heater 3, the second heater 4, and the third heater 5 and the generator.
  • the 6-connected adjustment is such that the circulating pump 17 has a primary heat medium line connected to the generator 6 via the second heater 4 and the third heater 5 to form a cold-electric power supply system.
  • the cogeneration system shown in Figure 7 is implemented as follows:
  • the third generator, the third absorber, the third solution pump, and the third solution heat exchanger are added, and the absorber 8 has a dilute solution tube.
  • the passage solution pump 12 and the solution heat exchanger 15 are connected to the second absorber 9 to be adjusted so that the absorber 8 has a dilute solution line connected to the third absorber 20 via the solution pump 12 and the third solution heat exchanger 22, and the third
  • the absorber 20 has a dilute solution line communicating with the second absorber 9 via the third solution pump 21 and the solution heat exchanger 15, and the second generator 7 has a concentrated solution line through the solution heat exchanger 15 and the absorber 8.
  • the communication is adjusted so that the second generator 7 has a concentrated solution line connected to the third generator 19 via the solution heat exchanger 15, and the third generator 19 has a concentrated solution line through the third solution heat exchanger 22 and the absorber 8.
  • the third generator 19 and the refrigerant vapor passage are in communication with the third absorber 20, and the second generator 7 has a primary heat medium line connected to the first heater 3 via the circulation pump 17 to be adjusted to the second generator.
  • 7 has a primary heat medium pipeline through the third generator 19 and the circulation pump 17 Communicating the first heater 3, there is a third absorber 20 communicates with the outside coolant lines.
  • the dilute solution of the absorber 8 enters the third absorber 20 via the solution pump 12 and the third solution heat exchanger 22, absorbs the refrigerant vapor and releases the heat to the cooling medium, and the dilute solution of the third absorber 20
  • the third solution pump 21 and the solution heat exchanger 15 enter the second absorber 9;
  • the concentrated solution of the second generator 7 enters the third generator 19 via the solution heat exchanger 15, and the primary heat medium flows through the third generator 9.
  • the solution heated into the solution is released and the refrigerant vapor is supplied to the third absorber 20.
  • the concentrated solution of the third generator 19 enters the absorber 8 through the third solution heat exchanger 22, and the primary heat medium flows through the sequence.
  • the second generator 7 and the third generator 19 are gradually heated and cooled to enter the circulation pump 17, forming a cold electricity supply system.
  • thermoelectric-cold-cooled dual-purpose system shown in Figure 8 is implemented as follows:
  • the fourth cut-off valve, the fifth cut-off valve, the sixth cut-off valve, the seventh cut-off valve, the eighth cut-off valve, the ninth cut-off valve, the tenth cut-off valve and the eleventh cut-off valve are formed; the power machine 1 has a new work respectively
  • the steam line is connected to the outside and the working exhaust steam line is connected to the power circulation condenser 2
  • the power circulation condenser 2 has a condensate line and an external part.
  • the power circulation condenser 2 and the cooling medium pipeline are connected to the outside, and the power machine 1 further has a first steam line communicating with the first heater 3, a second steam line communicating with the second heater 4, and The third steam line is in communication with the third heater 5, the first heater 3 and the first condensate line are in communication with the outside, and the second heater 4 and the second condensate line are in communication with the outside, the third heating
  • the fifth condensate line is further connected to the outside;
  • the absorber 8 has a dilute solution line connected to the second absorber 9 via the solution pump 12 and the solution heat exchanger 15, and the second absorber 9 has a dilute solution tube
  • the second solution pump 13 and the second solution heat exchanger 16 are in communication with the generator 6, and the generator 6 and the concentrated solution line are connected to the second generator 7 via the second solution heat exchanger 16, the second generator 7 also has a concentrated solution line connected to the absorber 8 via the solution heat exchanger 15, the generator 6 also has a refrigerant vapor passage communicating with the condens
  • the heating period is operated according to the cogeneration mode
  • the cooling period is operated according to the cogeneration mode
  • the cogeneration mode is as follows: the first shut-off valve J1, the fourth shut-off valve J4, the seventh cut-off valve J7, the eighth cut-off valve J8, the ninth cut-off valve J9 are closed, the second cut-off valve J2, the third cut-off valve J3, the fifth cut-off valve J5, the sixth cut-off valve J6, the tenth cut-off valve J10 and the eleventh cut-off valve J11 are opened; the working new steam enters the power machine 1, and part of the steam after the work is gradually provided through the third steam line
  • the third heater 5 is supplied to the second heater 4 via the second steam line and to the first heater 3 via the first steam line, and the remaining steam continues to work and then enters the power through the working steam line.
  • the condenser 2; the working steam of the power condenser 2 is respectively released into the condensate after the heat release to the cooling medium and the first-stage heat medium, and is discharged to the outside, and the steam of the first heater 3 is exotherned after the first-stage heat medium is formed into the condensate.
  • the first condensate line is discharged to the outside, and the steam of the second heater 4 is exothermic to the condensate after the first stage heat medium is discharged into the condensate, and the steam of the third heater 5 is discharged to the first stage. After the heat medium is condensed, it passes through the third condensate line.
  • the dilute solution of the absorber 8 passes through the solution pump 12 and the solution heat exchanger 15 and then enters the second absorber 9, absorbs the refrigerant vapor and exotherms the heated medium, and the dilute solution of the second absorber 9 passes through the second
  • the solution pump 13 and the second solution heat exchanger 16 then enter the generator 6, and the -stage heat medium flows through the generator 6, and the solution heated therein is released and supplies the refrigerant vapor to the condenser 10, the concentrated solution of the generator 6.
  • the second solution heat exchanger 16 Passing through the second solution heat exchanger 16 into the second generator 7, the primary heat medium flows through the second generator 7, the solution heated into it is released and supplies the refrigerant vapor to the second absorber 9, the second generator
  • the concentrated solution of 7 enters the absorber 8 through the solution heat exchanger 15, absorbs the refrigerant vapor and radiates heat to the heated medium; the refrigerant vapor of the condenser 10 radiates heat to the heated medium to form a refrigerant liquid, and the condenser 10 is cooled.
  • the solution liquid is depressurized into a vaporizer 11 by a throttling and a throttling, and is absorbed into a refrigerant vapor and supplied to the absorber 8; the first-stage heat medium is pressurized by the circulation pump 17 and sequentially flows through the power circulation condenser 2, One plus The heat exchanger 3, the second heater 4 and the third heater 5 absorb heat step by step, and the primary heat medium after the temperature rise flows through the generator 6, the second generator 7, the secondary heat exchanger 18 and the evaporator in sequence. 11 and gradually release heat to cool down and enter the circulation pump 17.
  • the cooling and power supply mode is as follows: the first shut-off valve J1, the fourth shut-off valve J4, the seventh cut-off valve J7, the eighth cut-off valve J8, the ninth cut-off width J9 open, the second cut-off valve J2, the third cut-off The valve J3, the fifth cut-off valve J5, the sixth cut-off valve J6, the tenth cut-off valve J10 and the eleventh cut-off valve J11 are closed; the working new steam enters the power machine 1, and part of the steam after the work is gradually passed through the third steam line Provided to the third heater 5, supplied to the second heater 4 via the second steam line, and supplied to the first heater 3 via the first steam line, and the remaining steam continues to work after entering the working steam line
  • the pipeline is discharged to the outside, and the steam of the second heater 4 is exothermic to the condensate after the first-stage heat medium is discharged into the condensate, and the steam of the third heater 5 is radiated to the first-stage heat medium to form a condensate.
  • the dilute solution of the absorber 8 passes through the solution pump 12 and the solution heat exchanger 15 and then enters the second absorber 9, absorbs the refrigerant vapor and exotherms the heated medium, and the dilute solution of the second absorber 9 passes through the second
  • the solution pump 13 and the second solution heat exchanger 16 then enter the generator 6, the primary heat medium flows through the generator 6, the solution heated therein is released and the refrigerant vapor is supplied to the condenser 10, and the concentrated solution of the generator 6 Passing through the second solution heat exchanger 16 into the second generator 7, the primary heat medium flows through the second generator 7, the solution heated into it is released and supplies the refrigerant vapor to the second absorber 9, the second generator
  • the concentrated solution of 7 enters the absorber 8 through the solution heat exchanger 15, absorbs the refrigerant vapor and radiates heat to the heated medium; the refrigerant vapor of the condenser 10 radiates heat to the heated medium to form a refrigerant liquid
  • the agent liquid is throttled and depressurized into the evaporator 11 through the throttle valve 14, and the refrigerant medium flows through the evaporator 11, and the refrigerant liquid heated into the refrigerant liquid is supplied into the refrigerant 8 and supplied to the absorber 8.
  • the primary heat medium is circulated After pump 17 is pressurized
  • the first heater 3, the second heater 4 and the third heater 5 absorb heat step by step, and the first-stage heat medium after the temperature rises sequentially flows through the generator 6 and the second generator 7 and gradually releases heat to cool down and then enters the cycle. Pump 17.
  • thermoelectric-cooling power supply system shown in Figure 9 is implemented as follows:
  • the ninth cut-off valve, the tenth cut-off wide and the eleventh cut-off valve are canceled, and the circulating pump 17 has a first-stage heat medium line divided into two paths - All the way through the ninth cut-off valve J9, the second pass through the tenth cut-off valve J10, the power circulation condenser 2 and the eleventh cut-off width J11 - after the convergence and then communicate with the first heater 3 to adjust the circulation pump 17 has a level
  • the heat medium pipeline directly communicates with the first heater 3 to form a combined thermoelectric-cooling power supply system.
  • thermoelectric-cold-cooled dual-purpose system shown in Figure 10 is implemented as follows:
  • the power machine 1 has a working new steam pipeline connected to the outside and a working exhaust steam pipeline connected with the power circulation condenser 2, the power circulation condenser 2 and the condensate pipeline are connected to the outside, and the power circulation condenser 2 has cooling.
  • the medium pipe is connected to the outside, and the power machine 1 further has a first steam line communicating with the first heater 3, a second steam line communicating with the second heater 4, and a third steam line and a third heater. 5 connected, first The heater 3 as well as a first condensate conduit in communication with the outside, a second heating
  • the second condensate line has a second condensate line communicating with the outside, and the third heater 5 has a third condensate line communicating with the outside;
  • the absorber 8 has a dilute solution line through the solution pump 12 and the third solution heat exchanger 22 is in communication with the third absorber 20, the third absorber 20 and the dilute solution line are in communication with the second absorber 9 via the third solution pump 21 and the solution heat exchanger 15, and the second absorber 9 has a dilute solution tube
  • the second solution pump 13 and the second solution heat exchanger 16 are in communication with the generator 6, and the generator 6 and the concentrated solution line are connected to the second generator 7 via the second solution heat exchanger 16, the second generator 7 further, the
  • the passage is in communication with the absorber 8;
  • the circulation pump 17 has a primary heat medium line through the first heater 3, the second heater 4, the third heater 5, the generator 6 and the second generator 7 and the third generator 19 Connected, the third generator 19 and the first-stage heat medium pipeline are divided into two paths - the first passage through the first shut-off valve J1, the second passage through the second shut-off valve J2, the secondary heat exchanger 18 and the third shut-off valve J3 - after recombination, the merged primary heat medium pipeline is divided into two paths - the first passage is connected to the circulation pump 17 via the fourth shutoff valve J4, and the second passage is through the fifth shutoff valve J5, the evaporator 11 and
  • the sixth shut-off valve J6 is in communication with the circulation pump 17, and the evaporator 11 is further connected to the outside through the seventh shut-off valve J7 and the outside through the eighth shut-off valve J8, the absorber 8, the second absorber 9.
  • the third absorber 20, the condenser 10, and the secondary heat exchanger 18
  • the heating period is operated according to the cogeneration mode
  • the cooling period is operated according to the cogeneration mode
  • the cogeneration mode is as follows: the first cut-off valve J1, the fourth cut-off valve J4, the seventh cut-off valve J7 and the eighth cut-off valve J8 are closed, the second cut-off valve J2, the third cut-off valve J3, the fifth cut-off valve J5 and the sixth cut-off valve J6 are opened; the working new steam enters the power machine 1, and part of the steam after the work is gradually supplied to the third heater 5 through the third steam line, and is supplied to the second heater through the second steam line.
  • the remaining steam continues to work, and then enters the power condenser 2 through the working exhaust steam line; the working steam of the power condenser 2 is released to the cooling medium
  • the condensate is discharged to the outside, and the steam of the first heater 3 is exothermic to the condensate after the first-stage heat medium is discharged into the condensate, and the steam of the second heater 4 is radiated to the first-stage heat medium.
  • the condensate is discharged to the outside through the second condensate line, and the steam of the third heater 5 is exothermic to the condensate after the first stage heat medium is discharged into the condensate; the dilute solution of the absorber 8 is passed through the solution pump.
  • the absorber 20 absorbs the refrigerant vapor and exotherms the heated medium, and the diluted solution of the third absorber 20 passes through the third solution pump 21 and the solution heat exchanger 15 to enter the second absorber 9, absorbs the refrigerant vapor, and discharges Heated by the heated medium, the dilute solution of the second absorber 9 enters the generator 6 after passing through the second solution pump 13 and the second solution heat exchanger 16, and the primary heat medium flows through the generator 6 to heat the solution therein.
  • the refrigerant vapor is released and supplied to the condenser 10, and the concentrated solution of the generator 6 enters the second generator 7 through the second solution heat exchanger 16, and the primary heat medium flows through the second generator 7, and the solution into which the heat is introduced
  • the refrigerant vapor is released and supplied to the second absorber 9, and the concentrated solution of the second generator 7 enters the third generator 19 via the solution heat exchanger 15, and the primary heat medium flows through the third generator 19 and is heated therein.
  • the solution releases and supplies refrigerant vapor to the third absorber 20, and the concentrated solution of the third generator 19 enters the absorber 8 through the third solution heat exchanger 22, absorbs the refrigerant vapor and radiates heat to the heated medium; 10 of the refrigerant vapor is exothermic to the heated medium Agent solution, the liquid refrigerant condenser 10 via throttle valve 14 throttle down Pressing into the evaporator 11, absorbing heat into the refrigerant vapor and supplying it to the absorber 8; the primary heat medium is pressurized by the circulation pump 17 and sequentially flows through the first heater 3, the second heater 4, and the third heater 5 And stepping up the heat step by step, the primary heat medium after the temperature rise flows through the generator 6, the second generator 7, the third generator 19, the secondary heat exchanger 18 and the evaporator 11 in sequence and gradually enters the circulation after the heat is cooled down. Pump 17.
  • the cooling and power supply mode is as follows: the first shut-off valve J1, the fourth cut-off valve J4, the seventh cut-off valve J7 and the eighth cut-off valve J8 ⁇ , the second cut-off valve J2, the third cut-off valve J3, the fifth The cut-off valve J5 and the sixth cut-off valve J6 are closed; the working new steam enters the power machine 1, and part of the steam after the work is gradually supplied to the third heater 5 through the third steam line, and is supplied to the second steam line through the second steam line
  • the heater 4 is supplied to the first heater 3 via the first steam line, and the remaining steam continues to work, and then enters the power condenser 2 through the working exhaust steam line; the working steam of the power condenser 2 releases heat to the cooling medium After that, the condensate is discharged to the outside, and the steam of the first heater 3 is exothermic to the condensate after the first-stage heat medium is discharged into the condensate, and the steam of the second heater 4 is radiated to the first-
  • the medium After the medium is condensed, it is discharged to the outside through the second condensate line, and the steam of the third heater 5 is exothermic to the condensate after the first-stage heat medium is discharged into the condensate; the diluted solution of the absorber 8 is discharged through the third condensate line; Solution pump 12 and third solution
  • the heat exchanger 22 enters the third absorber 20, absorbs the refrigerant vapor and radiates heat to the heated medium, and the diluted solution of the third absorber 20 enters the second absorber 9 through the third solution pump 21 and the solution heat exchanger 15.
  • the dilute solution of the second absorber 9 enters the generator 6 through the second solution pump 13 and the second solution heat exchanger 16, and the primary heat medium flows through the generator 6,
  • the solution heated into the solution is released and the refrigerant vapor is supplied to the condenser 10.
  • the concentrated solution of the generator 6 enters the second generator 7 through the second solution heat exchanger 16, and the primary heat medium flows through the second generator 7,
  • the solution heated into it is released and the refrigerant vapor is supplied to the second absorber 9, and the concentrated solution of the second generator 7 enters the third generator 19 via the solution heat exchanger 15, and the primary heat medium flows through the third generator. 19.
  • the solution heated into it releases and supplies refrigerant vapor to the third absorber 20, and the concentrated solution of the third generator 19 enters the absorber 8 through the third solution heat exchanger 22, absorbs the refrigerant vapor, and releases the heat.
  • Heated medium; cold The refrigerant vapor of the condenser 10 is radiated to the heated medium to form a refrigerant liquid, and the refrigerant liquid of the condenser 10 is throttled and depressurized into the evaporator 11 through the throttle valve 14, and the refrigerant medium flows through the evaporator 11 and is heated to enter.
  • the refrigerant liquid therein is formed into a refrigerant vapor and supplied to the absorber 8; the primary heat medium is pressurized by the circulation pump 17 and sequentially flows through the first heater 3, the second heater 4, and the third heater 5, respectively.
  • the stage heat absorption, the first stage heat medium after the temperature rise flows through the generator 6, the second generator 7 and the third generator 19 in sequence and gradually releases the heat to cool down and then enters the circulation pump 17.
  • the combined heat and power supply system of the secondary heat exchange subsystem shown in Fig. 11 is realized in the following manner: (1) Structurally, in the cogeneration system shown in Fig. 1, the second set of absorption is added.
  • Type heat exchange subsystem II the third heater 5 has a first-stage heat medium pipeline divided into two paths - the first road is connected with the generator 6 in the first set of absorption heat exchange subsystem I, the second road and the second The generator 6 in the set of absorption heat exchange subsystem II is connected, and the secondary heat exchanger 18 in the second set of absorption heat exchange subsystem II has a primary heat medium pipeline connected to the evaporator 11 to be adjusted to a second set.
  • the secondary heat exchanger 18 in the absorption heat exchange subsystem II has a primary heat medium line connected to the evaporator 11 in the first set of absorption heat exchange subsystems I, and the first set of absorption heat exchange subsystems I
  • the intermediate evaporator 11 has a primary heat medium line connected to the circulation pump 17 and is adjusted to be the first set of absorption heat exchange subsystem I.
  • the evaporator 11 has a primary heat medium line and a second set of absorption heat exchange system II. The evaporator 11 is connected, and the evaporator 11 in the second set of absorption heat exchange subsystem II Further, a primary heat medium line is connected to the circulation pump 17.
  • the working new steam enters the power machine 1, and part of the steam after the work is gradually supplied to the third heater 5 through the third steam line, and to the second heater 4 and the second steam line.
  • the first steam line is supplied to the first heater 3, and the remaining steam continues to work, and then enters the power condenser 2 through the working exhaust steam line; the working steam of the power condenser 2 is respectively discharged to the cooling medium and the first-stage heat medium After the heat is condensed and discharged to the outside, the steam of the first heater 3 is exothermic to the condensate after the first-stage heat medium is discharged into the condensate, and the steam of the second heater 4 is discharged to the first stage.
  • the hot medium After the hot medium is condensed, it is discharged to the outside through the second condensate line, and the steam of the third heater 5 is exothermic to the condensate after the first stage heat medium is discharged into the condensate; the first stage heat medium is circulated; After the pump 17 is pressurized, it sequentially flows through the power circulation condenser 2, the first heater 3, the second heater 4, and the third heater 5, and absorbs heat step by step.
  • the first-stage heat medium after the temperature rise is divided into two paths—the first All the way into the first set of absorption heat exchange systems After I, it flows through the generator 6, the second generator 7 and the secondary heat exchanger 18 in turn, and the second way enters the second set of absorption heat exchange subsystem II, which flows through each generator and the secondary heat exchanger in turn.
  • the merged primary heat medium flows through the evaporator 11 in the first set of absorption heat exchange subsystems I and the evaporator 11 in the second set of absorption heat exchange subsystems II and is gradually placed After the heat is cooled, it enters the circulation pump 17, forming a cogeneration system.
  • High-grade steam works first (power generation), and is used for heating/cooling after the grade is lowered, in line with the principle of thermal energy cascade utilization.
  • the first heater, the second heater and the third heater complete the heating of the first-stage heat medium step by step, and reduce the heat transfer temperature difference in the heating process, which is beneficial to improve the heat energy utilization efficiency.
  • the generator and the second generator or the third generator, the step-by-step realization of the full utilization of the heat load of the first-stage heat medium temperature section is beneficial to reduce the flow rate of the first-stage heat medium and reduce the first-stage heat medium Pipe network investment and expansion of heating / cooling scale.
  • the heat load of the second generator and the second absorber can be adjusted to improve the flexibility and rationality of the system.
  • the combined heat and power-cooling and power supply system realizes the sharing of the pipe network and the absorption heat pump unit in the two operation modes, thereby reducing the system investment cost.

Abstract

提供了一种热电联供、冷电联供与热电-冷电两用联供系统。动力机(1)分段供汽,一级热介质流经第一加热器(3)、第二加热器(4)和第三加热器(5)吸热,再流经发生器(6)、第二发生器(7)、二级热交换器(18)和蒸发器(11)放热,吸收器(8)、第二吸收器(9)、冷凝器(10)和二级热交换器(18)分别向二级热介质供热,形成由动力机(1)、第一加热器(3)、第二加热器(4)、第三加热器(5)、发生器(6)、第二发生器(7)、吸收器(8)、第二吸收器(9)、冷凝器(10)、蒸发器(11)、溶液泵(12)、第二溶液泵(13)、节流阀(14)、溶液热交换器(15)、第二溶液热交换器(16)、循环泵(17)和二级热交换器(18)所组成的热电联供系统;增减部件和调整流程,可以形成冷电联供系统或热电-冷电两用联供系统。

Description

热电联供、 冷电联供与热电 -冷电两用联供系统 技术领域:
本发明属于热电冷联供与热泵技术领域。
背景技术:
在以热流体显热为热负荷输送方式的热电联供 /冷电联供系统中, 需要采用分级供热系 统。 以冬季供热用大规模热电联供系统为例, 其一级供热管网供热温度高, 一级热介质与 二级热介质之间存在较大供热温差, 如一级管网供回水温度 135°C/65t;, 二级管网供回水 温度 75°C/60°C, 二者之间的平均温度差超过 32. 5°C。 从热能合理利用的角度看, 较大温 差的存在是不合理的。 综合来看, 热源端的传热温差、 相邻管网之间的传热温差、 热能利 用环节的传热温差应考虑加以充分利用; 另外, 还要考虑分利用一级热介质提供的热负荷, 减少一级热介质的流量等。
从提高热能利用率的角度, 本发明提供能够实现逐级加热和合理用热的供热电联供、 冷电联供与热电-冷电两用联供系统, 兼顾并满足五方面要求: ①符合热能梯级利用原则, 高品位热能先作功 (发电), 品位降低后的热能用于供热 /供冷。 ②热源端加热过程中的温 差小, 针对一级热介质供回水温差较大的情况, 采用分段抽汽、 逐级加热技术。 ③大规模、 远距离热电联供 /冷电联供系统, 加大回水温差, 降低一级供热管网的初投资。 ④二级热交 换或二级用热环节, 不论供热还是制冷, 都能够充分利用一级热介质提供的热负荷, 减少 一级热介质的流量, 降低一级供热管网投资。 ⑤在热力学参数上体现出较好的灵活性和适 用范围。
发明内容:
本发明主要目的是要提供热电联供、 冷电联供与热电-冷电两用联供系统, 具体发明内 容分项阐述如下:
1. 热电联供系统, 主要由动力机、动力循环冷凝器、第一加热器、第二加热器、第三 加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶 液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵和二级热交换器所组成; 动力 机分别有工作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器连通, 动力循环冷 凝器还有冷凝液管路与外部连通, 动力循环冷凝器还有冷却介质管路与外部连通, 动力机 还分别有第一蒸汽管路与第一加热器连通、 有第二蒸汽管路与第二加热器连通和有第三蒸 汽管路与第三加热器连通, 第一加热器还有第一冷凝液管路与外部连通, 第二加热器还有 第二冷凝液管路与外部连通, 第三加热器还有第三冷凝液管路与外部连通; 吸收器有稀溶 液管路经溶液泵和溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液管路经第二溶 液泵和第二溶液热交换器与发生器连通, 发生器还有浓溶液管路经第二溶液热交换器与第 二发生器连通, 第二发生器还有浓溶液管路经溶液热交换器与吸收器连通, 发生器还有冷 剂蒸汽通道与冷凝器连通, 第二发生器还有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有 冷剂液管路经节流阀与蒸发器连通, 蒸发器还有冷剂蒸汽通道与吸收器连通; 循环泵有一 级热介质管路经动力循环冷凝器、 第一加热器、 第二加热器、 第三加热器、 发生器、 第二 发生器、 二级热交换器和蒸发器与循环泵自身连通形成循环回路, 吸收器、 第二吸收器、 冷凝器和二级热交换器还分别有二级热介质管路与外部连通, 形成热电联供系统。
2. 热电联供系统,是在第 1项所述的热电联供系统中,增加第三发生器、第三吸收器、 第三溶液泵和第三溶液热交换器, 将吸收器有稀溶液管路经溶液泵和溶液热交换器与第二 吸收器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第三吸收器连通, 第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与第二吸收器连通, 将第二发生 器有浓溶液管路经溶液热交换器与吸收器连通调整为第二发生器有浓溶液管路经溶液热交 换器与第三发生器连通, 第三发生器再有浓溶液管路经第三溶液热交换器与吸收器连通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 将第二发生器有一级热介质管路经二级 热交换器与蒸发器连通调整为第二发生器有一级热介质管路经第三发生器和二级热交换器 与蒸发器连通, 第三吸收器还有二级热介质管路与外部连通, 形成热电联供系统。
3. 热电联供系统,是在第 1-2项所述的任一热电联供系统中,将循环泵有一级热介质 管路经动力循环冷凝器与第一加热器连通调整为循环泵有一级热介质管路直接与第一加热 器连通, 形成热电联供系统。
4. 热电联供系统, 是在第 3项所述的任一热电联供系统中, 取消第一加热器,将循环 泵有一级热介质管路经第一加热器、 第二加热器和第三加热器与发生器连通调整为循环泵 有一级热介质管路经第二加热器和第三加热器与发生器连通, 形成热电联供系统。
5. 热电联供系统,是在第 3项所述的任一热电联供系统中,取消第一加热器和第二加 热器, 将循环泵有一级热介质管路经第一加热器、 第二加热器和第三加热器与发生器连通 调整为循环泵有一级热介质管路经第三加热器与发生器连通, 形成热电联供系统。
6. 冷电联供系统, 主要由动力机、 动力循环冷凝器、第一加热器、第二加热器、第三 加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶 液泵、 节流阀、 溶液热交换器、 第二溶液热交换器和循环泵所组成; 动力机分别有工作新 汽管路与外部连通和有工作乏汽管路与动力循环冷凝器连通, 动力循环冷凝器还有冷凝液 管路与外部连通, 动力循环冷凝器还有冷却介质管路与外部连通, 动力机还分别有第一蒸 汽管路与第一加热器连通、 有第二蒸汽管路与第二加热器连通和有第三蒸汽管路与第三加 热器连通, 第一加热器还有第一冷凝液管路与外部连通, 第二加热器还有第二冷凝液管路 与外部连通, 第三加热器还有第三冷凝液管路与外部连通; 吸收器有稀溶液管路经溶液泵 和溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液管路经第二溶液泵和第二溶液 热交换器与发生器连通, 发生器还有浓溶液管路经第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经溶液热交换器与吸收器连通, 发生器还有冷剂蒸汽通道与冷 凝器连通, 第二发生器还有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有冷剂液管路经节 流阀与蒸发器连通, 蒸发器还有冷剂蒸汽通道与吸收器连通; 循环泵有一级热介质管路经 第一加热器、 第二加热器、 第三加热器、 发生器和第二发生器与循环泵自身连通形成循环 回路, 吸收器、 第二吸收器和冷凝器还分别有冷却介质管路与外部连通, 蒸发器还有被制 冷介质管路与外部连通, 形成冷电联供系统。
7. 冷电联供系统,是在第 6项所述的热电联供系统中,增加第三发生器、第三吸收器、 第三溶液泵和第三溶液热交换器, 将吸收器有稀溶液管路经溶液泵和溶液热交换器与第二 吸收器连通调整为吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第三吸收器连通, 第三吸收器再有稀溶液管路经第三溶液泵和溶液热交换器与第二吸收器连通, 将第二发生 器有浓溶液管路经溶液热交换器与吸收器连通调整为第二发生器有浓溶液管路经溶液热交 换器与第三发生器连通, 第三发生器再有浓溶液管路经第三溶液热交换器与吸收器连通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 将第二发生器有一级热介质管路经循环 泵与第一加热器连通调整为第二发生器有一级热介质管路经第三发生器和循环泵与第一加 热器连通, 第三吸收器还有冷却介质管路与外部连通, 形成冷电联供系统。
8. 冷电联供系统, 是在第 6-7项所述的任一冷电联供系统中, 取消第一加热器, 将循 环泵有一级热介质管路经第一加热器、 第二加热器和第三加热器与发生器连通调整为循环 泵有一级热介质管路经第二加热器和第三加热器与发生器连通, 形成冷电联供系统。
9. 冷电联供系统,是在第 6-7项所述的任一冷电联供系统中,取消第一加热器和第二 加热器, 将循环泵有一级热介质管路经第一加热器、 第二加热器和第三加热器与发生器连 通调整为循环泵有一级热介质管路经第三加热器与发生器连通, 形成冷电联供系统。
10. 热电-冷电两用联供系统, 主要由动力机、动力循环冷凝器、第一加热器、第二加 热器、 第三加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液 泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵、 二级热交换器、 第一截断阀、 第二截断阀、 第三截断阀、 第四截断阀、 第五截断阀、 第六截断阔、 第七截 断阀、 第八截断阀、 第九截断阀、 第十截断阀和第十一截断阀所组成; 动力机分别有工作 新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器连通, 动力循环冷凝器还有冷凝 液管路与外部连通, 动力循环冷凝器还有冷却介质管路与外部连通, 动力机还分别有第一 蒸汽管路与第一加热器连通、 有第二蒸汽管路与第二加热器连通和有第三蒸汽管路与第三 加热器连通, 第一加热器还有第一冷凝液管路与外部连通, 第二加热器还有第二冷凝液管 路与外部连通, 第三加热器还有第三冷凝液管路与外部连通; 吸收器有稀溶液管路经溶液 泵和溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液管路经第二溶液泵和第二溶 液热交换器与发生器连通, 发生器还有浓溶液管路经第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经溶液热交换器与吸收器连通, 发生器还有冷剂蒸汽通道与冷 凝器连通, 第二发生器还有冷剂蒸汽通道与第二吸收器连通, 冷凝器还有冷剂液管路经节 流阀与蒸发器连通, 蒸发器还有冷剂蒸汽通道与吸收器连通; 循环泵有一级热介质管路分 成两路——第一路经第九截断阀, 第二路经第十截断阀、 动力循环冷凝器和第十一截断阀 ——之后再汇合, 汇合后的一级热介质管路经第一加热器、 第二加热器、 第三加热器和发 生器与第二发生器连通, 第二发生器再有一级热介质管路分成两路——第一路经第一截断 阀, 第二路经第二截断阀、 二级热交换器和第三截断阀——之后再汇合, 汇合后的一级热 介质管路分成两路——第一路经第四截断阀, 第二路经第五截断阀、 蒸发器和第六截断阀 ——之后汇合再与循环泵连通, 蒸发器还有被制冷介质管路分别经第七截断阀与外部连通 和经第八截断阀与外部连通, 吸收器、 第二吸收器、 冷凝器和二级热交换器还分别有被加 热介质管路与外部连通, 形成热电-冷电两用联供系统; 其中: ①第一截断阔、第四截断阀、 第七截断阀、 第八截断阀、 第九截断阀关闭, 第二截断陶、 第三截断阀、 第五截断阀、 第 六截断阀、 第十截断阔和第十一截断阀开启, 为热电联供模式; ②第一截断阀、 第四截断 阀、 第七截断阀、 第八截断阀、 第九截断阀开启, 第二截断阀、 第三截断阔、 第五截断阀、 第六截断阀、 第十截断阀和第十一截断阀关闭, 为冷电联供模式。 u . 热电-冷电两用联供系统,是在第 10项所述的热电 -冷电两用联供系统中,取消第 九截断阀、 第十截断阀和第十一截断阀, 将循环泵有一级热介质管路分成两路——第一路 经第九截断阀, 第二路经第十截断阀、 动力循环冷凝器和第十一截断阀——之后汇合再与 第一加热器连通调整为循环泵有一级热介质管路直接与第一加热器连通, 形成热电-冷电两 用联供系统。
12. 热电-冷电两用联供系统,是在第 11项所述的热电 -冷电两用联供系统中,取消第 一加热器, 将循环泵有一级热介质管路经第一加热器、 第二加热器和第三加热器与发生器 连通调整为循环泵有一级热介质管路经第二加热器和第三加热器与发生器连通, 形成冷电 联供系统。
13. 热电-冷电两用联供系统,是在第 11项所述的热电 -冷电两用联供系统中,取消第 一加热器和第二加热器, 将循环泵有一级热介质管路经第一加热器、 第二加热器和第三加 热器与发生器连通调整为循环泵有一级热介质管路经第三加热器与发生器连通, 形成冷电 联供系统。
14. 热电-冷电两用联供系统, 主要由动力机、动力循环冷凝器、第一加热器、第二加 热器、 第三加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液 泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵、 二级热交换器、 第三发生器、 第三吸收器、 第三溶液泵、 第三溶液热交换器、 第一截断阀、 第二截断阀、 第三截断阀、 第四截断阀、 第五截断阀、 第六截断阀、 第七截断阀、 第八截断阀、 第九截 断阀、 第十截断阀和第十一截断阀所组成; 动力机分别有工作新汽管路与外部连通和有工 作乏汽管路与动力循环冷凝器连通, 动力循环冷凝器还有冷凝液管路与外部连通, 动力循 环冷凝器还有冷却介质管路与外部连通, 动力机还分别有第一蒸汽管路与第一加热器连通、 有第二蒸汽管路与第二加热器连通和有第三蒸汽管路与第三加热器连通, 第一加热器还有 第一冷凝液管路与外部连通, 第二加热器还有第二冷凝液管路与外部连通, 第三加热器还 有第三冷凝液管路与外部连通; 吸收器有稀溶液管路经溶液泵和第三溶液热交换器与第三 吸收器连通, 第三吸收器还有稀溶液管路经第三溶液泵和溶液热交换器与第二吸收器连通, 第二吸收器还有稀溶液管路经第二溶液泵和第二溶液热交换器与发生器连通, 发生器还有 浓溶液管路经第二溶液热交换器与第二发生器连通, 第二发生器还有浓溶液管路经溶液热 交换器与第三发生器连通, 第三发生器还有浓溶液管路经第三溶液热交换器与吸收器连通, 发生器还有冷剂蒸汽通道与冷凝器连通, 第二发生器还有冷剂蒸汽通道与第二吸收器连通, 第三发生器还有冷剂蒸汽通道与第三吸收器连通, 冷凝器还有冷剂液管路经节流阔与蒸发 器连通, 蒸发器还有冷剂蒸汽通道与吸收器连通; 循环泵有一级热介质管路分成两路—— 第一路经第九截断阀, 第二路经第十截断阀、 动力循环冷凝器和第十一截断阀——之后再 汇合, 汇合后的一级热介质管路经第一加热器、 第二加热器、 第三加热器、 发生器和第二 发生器与第三发生器连通, 第三发生器再有一级热介质管路分成两路——第一路经第一截 断阀, 第二路经第二截断阀、 二级热交换器和第三截断阀——之后再汇合, 汇合后的一级 热介质管路分成两路——第一路经第四截断阀, 第二路经第五截断阀、 蒸发器和第六截断 阀——之后汇合再与循环泵连通, 蒸发器还有被制冷介质管路分别经第七截断阀与外部连 通和经第八截断阔与外部连通, 吸收器、 第二吸收器、 第三吸收器、 冷凝器和二级热交换 器还分别有被加热介质管路与外部连通, 形成热电-冷电两用联供系统; 其中: ①第一截断 阀、 第四截断阀、 第七截断阀、 第八截断阔、 第九截断阀关闭, 第二截断阀、 第三截断阀、 第五截断阀、 第六截断阀、 第十截断阔和第十一截断阀幵启, 为热电联供模式; ②第一截 断阔、 第四截断阀、 第七截断阀、 第八截断阀、 第九截断阀开启, 第二截断阀、 第三截断 阀、 第五截断阀、 第六截断阀、 第十截断阀和第十一截断阀关闭, 为冷电联供模式。
15. 热电-冷电两用联供系统,是在第 14项所述的热电 -冷电两用联供系统中,取消第 九截断阀、 第十截断阀和第十一截断阀, 将循环泵有一级热介质管路分成两路——第一路 经第九截断阀, 第二路经第十截断阀、 动力循环冷凝器和第十一截断阀——之后汇合再与 第一加热器连通调整为循环泵有一级热介质管路直接与第一加热器连通, 形成热电-冷电两 用联供系统。
16. 热电-冷电两用联供系统,是在第 15项所述的热电 -冷电两用联供系统中,取消第 一加热器, 将循环泵有一级热介质管路经第一加热器、 第二加热器和第三加热器与发生器 连通调整为循环泵有一级热介质管路经第二加热器和第三加热器与发生器连通, 形成热电- 冷电两用联供系统。
17. 热电-冷电两用联供系统,是在第 15项所述的热电-冷电两用联供系统中,取消第 一加热器和第二加热器, 将循环泵有一级热介质管路经第一加热器、 第二加热器和第三加 热器与发生器连通调整为循环泵有一级热介质管路经第三加热器与发生器连通, 形成热电- 冷电两用联供系统。
18. 热电联供系统, 是在第 1-5项所述的任一热电联供系统中, 增加新增加热器, 动 力机增设新增蒸汽管路与新增加热器连通, 新增加热器还有新增冷凝液管路与外部连通, 将第三加热器有一级热介质管路与发生器连通调整为第三加热器有一级热介质管路经新增 加热器与发生器连通, 形成热电联供系统。
19. 冷电联供系统, 是在第 6- 9项所述的任一冷电联供系统中, 增加新增加热器, 动 力机增设新增蒸汽管路与新增加热器连通, 新增加热器还有新增冷凝液管路与外部连通, 将第三加热器有一级热介质管路与发生器连通调整为第三加热器有一级热介质管路经新增 加热器与发生器连通, 形成冷电联供系统。
20. 热电-冷电两用联供系统,是在第 10-17项所述的任一热电-冷电两用联供系统中, 增加新增加热器, 动力机增设新增蒸汽管路与新增加热器连通, 新增加热器还有新增冷凝 液管路与外部连通, 将第三加热器有一级热介质管路与发生器连通调整为第三加热器有一 级热介质管路经新增加热器与发生器连通, 形成热电-冷电两用联供系统。
21. 热电联供系统, 它主要由动力机、 动力循环冷凝 ^!、 第一加热器、 第二加热器、 第三加热器、 循环泵、 第一套吸收式热交换分系统和第二套吸收式热交换分系统所组成; 动力机分别有工作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器连通, 动力循 环冷凝器还有冷凝液管路与外部连通, 动力循环冷凝器还有冷却介质管路与外部连通, 动 力机还分别有第一蒸汽管路与第一加热器连通、 有第二蒸汽管路与第二加热器连通和有第 三蒸汽管路与第三加热器连通, 第一加热器还有第一冷凝液管路与外部连通, 第二加热器 还有第二冷凝液管路与外部连通, 第三加热器还有第三冷凝液管路与外部连通; 循环泵还 有一级热介质管路经动力循环冷凝器、 第一加热器和第二加热器与第三加热器连通之后, 第三加热器再有一级热介质管路分成两路——第一路与第一套吸收式热交换分系统中的发 生器连通, 第二路与第二套吸收式热交换分系统中的发生器连通, 将第二套吸收式热交换 分系统中的二级热交换器有一级热介质管路与蒸发器连通调整为第二套吸收式热交换分系 统中的二级热交换器有一级热介质管路与第一套吸收式热交换分系统中的蒸发器连通, 将 第一套吸收式热交换分系统中蒸发器有一级热介质管路与循环泵连通调整为第一套吸收式 热交换分系统中蒸发器有一级热介质管路与第二套吸收式热交换分系统中的蒸发器连通, 第二套吸收式热交换分系统中的蒸发器再有一级热介质管路与循环泵连通, 形成热电联供 系统。
22. 热电联供系统,是在第 22项所述的热电联供系统中,将循环泵有一级热介质管路 经动力循环冷凝器与第一加热器连通调整为循环泵有一级热介质管路直接与第一加热器连 通, 形成热电联供系统。
23. 热电联供系统, 是在第 23项所述的热电联供系统中, 取消第一加热器, 将循环泵 有一级热介质管路经第一加热器和第二加热器与第三加热器连通调整为循环泵有一级热介 质管路经第二加热器与第三加热器连通, 形成热电联供系统。
24. 热电联供系统,是在第 23项所述的热电联供系统中,取消第一加热器和第二加热 器, 将循环泵有一级热介质管路经第一加热器和第二加热器与第三加热器连通调整为循环 泵有一级热介质管路直接与第三加热器连通, 形成热电联供系统。
25. 热电联供系统, 是在第 21- 24项所述的任一热电联供系统中, 增加新增加热器, 动力机增设新增蒸汽管路与新增加热器连通, 新增加热器还有新增冷凝液管路与外部连通, 将第三加热器有一级热介质管路与发生器连通调整为第三加热器有一级热介质管路经新增 加热器与发生器连通, 形成热电联供系统。
附图说明- 图 1是依据本发明所提供的热电联供系统第 1种结构和流程示意图。
图 2是依据本发明所提供的热电联供系统第 2种结构和流程示意图。
图 3是依据本发明所提供的热电联供系统第 3种结构和流程示意图。
图 4是依据本发明所提供的热电联供系统第 4种结构和流程示意图。
图 5是依据本发明所提供的冷电联供系统第 1种结构和流程示意图。
图 6是依据本发明所提供的冷电联供系统第 2种结构和流程示意图。
图 7是依据本发明所提供的冷电联供系统第 3种结构和流程示意图。
图 8是依据本发明所提供的热电-冷电两用联供系统第 1种结构和流程示意图。
图 9是依据本发明所提供的热电-冷电两用联供系统第 2种结构和流程示意图。
图 10是依据本发明所提供的热电-冷电两用联供系统第 3种结构和流程示意图。
图 11是依据本发明所提供的、 二级热交换分系统分路换热情况下的热电联供系统结构 和流程示意图。
图中, 1一动力机, 2—动力循环冷凝器, 3—第一加热器, 4一第二加热器, 5—第三加 热器, 6—发生器, 7—第二发生器, 8—吸收器, 9一第二吸收器, 10—冷凝器, 11一蒸发 器, 12—溶液泵, 13—第二溶液泵, 14一节流阀, 15—溶液热交换器, 16—第二溶液热交 换器, 17—循环泵, 18—二级热交换器, 19一第三发生器, 20—第三吸收器, 21—第三溶液 泵, 22—第三溶液热交换器; J1一第一截断阀, J2—第二截断阀, J3—第三截断阔, J4一第 四截断阀, J5—第五截断阀, J6—第六截断阀, J7—第七截断阀, J8—第八截断阀, J9一 第九截断阀, J10—第十截断阀, J11一第十一截断阀, J1一新增加热器; I一第一套吸收 式热交换分系统, II一第二套吸收式热交换分系统。
这里给出如下术语和说明:
(1)吸收式热交换分系统——指热电联供系统中, 除去动力机 1、 动力循环冷凝器 2、 第 一加热器 3、 第二加热器 4、 第三加热器 5和循环泵 17之外, 由其余部件组成的部分; 其 作用是将一级热介质中的热负荷传递到二级热介质中。 举例说明: 在图 1 所示的热电联供 系统中, 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶 液泵、 节流阀、 溶液热交换器、 第二溶液热交换器和二级热交换器所组成吸收式热交换分 系统。
(2)需要说明的是:图 11中,没有给出第二套吸收式热交换分系统 II的具体结构和流程, 仅标出了与一级热介质进出有关的发生器 6、 二级热交换器 18和蒸发器 11 ; 第二套吸收式 热交换分系统 Π可以与图 11中第一套吸收式热交换分系统 I一致, 也可以是图 3中所包含 的吸收式热交换分系统, 也可以是其它具体结构和流程的吸收式热交换分系统。
具体实施方式:
首先要说明的是, 在结构和流程的表述上, 非必要情况下不重复进行; 对显而易见的 流程不作表述。 下面结合附图和实例来详细描述本发明。
图 1所示的热电联供系统是这样实现的:
(1)结构上, 它主要由动力机、 动力循环冷凝器、 第一加热器、 第二加热器、 第三加热 器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵和二级热交换器所组成; 动力机 1 分 别有工作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器 2连通, 动力循环冷凝 器 2还有冷凝液管路与外部连通, 动力循环冷凝器 2还有冷却介质管路与外部连通, 动力 机 1还分别有第一蒸汽管路与第一加热器 3连通、 有第二蒸汽管路与第二加热器 4连通和 有第三蒸汽管路与第三加热器 5连通, 第一加热器 3还有第一冷凝液管路与外部连通, 第 二加热器 4还有第二冷凝液管路与外部连通, 第三加热器 5还有第三冷凝液管路与外部连 通; 吸收器 8有稀溶液管路经溶液泵 12和溶液热交换器 15与第二吸收器 9连通, 第二吸 收器 9还有稀溶液管路经第二溶液泵 13和第二溶液热交换器 16与发生器 6连通,发生器 6 还有浓溶液管路经第二溶液热交换器 16与第二发生器 7连通, 第二发生器 7还有浓溶液管 路经溶液热交换器 15与吸收器 8连通, 发生器 6还有冷剂蒸汽通道与冷凝器 10连通, 第 二发生器 7还有冷剂蒸汽通道与第二吸收器 9连通,冷凝器 10还有冷剂液管路经节流阀 14 与蒸发器 11连通, 蒸发器 11还有冷剂蒸汽通道与吸收器 8连通; 循环泵 17有一级热介质 管路经动力循环冷凝器 2、 第一加热器 3、 第二加热器 4、 第三加热器 5、 发生器 6、 第二发 生器 7、 二级热交换器 18和蒸发器 11与循环泵 17自身连通形成循环回路, 吸收器 8、 第 二吸收器 9、 冷凝器 10和二级热交换器 18还分别有二级热介质管路与外部连通。
(2)流程上, 工作新汽进入动力机 1, 逐步作功之后的部分蒸汽分别经第三蒸汽管路提供 给第三加热器 5、经第二蒸汽管路提供给第二加热器 4和经第一蒸汽管路提供给第一加热器 3, 余下蒸汽继续完成作功后经工作乏汽管路进入动力冷凝器 2; 动力冷凝器 2的工作乏汽 分别向冷却介质和一级热介质放热之后成冷凝液并向外排出, 第一加热器 3 的蒸汽放热于 一级热介质成冷凝液之后经第一冷凝液管路对外排出, 第二加热器 4 的蒸汽放热于一级热 介质成冷凝液之后经第二冷凝液管路对外排出, 第三加热器 5 的蒸汽放热于一级热介质成 冷凝液之后经第三冷凝液管路对外排出;吸收器 8的稀溶液经溶液泵 12和溶液热交换器 15 之后进入第二吸收器 9、吸收冷剂蒸汽并放热于二级热介质, 第二吸收器 9的稀溶液经第二 溶液泵 13和第二溶液热交换器 16之后进入发生器 6, 一级热介质流经发生器 6、 加热进入 其内的溶液释放并向冷凝器 10提供冷剂蒸汽, 发生器 6的浓溶液经第二溶液热交换器 16 进入第二发生器 7, 一级热介质流经第二发生器 7、 加热进入其内的溶液释放并向第二吸收 器 9提供冷剂蒸汽, 第二发生器 7的浓溶液经溶液热交换器 15进入吸收器 8、 吸收冷剂蒸 汽并放热于二级热介质; 冷凝器 10的冷剂蒸汽放热于二级热介质成冷剂液, 冷凝器 10的 冷剂液经节流阀 14节流降压进入蒸发器 11、吸热成冷剂蒸汽并向吸收器 8提供;一级热介 质经循环泵 17加压之后依次流经动力循环冷凝器 2、 第一加热器 3、 第二加热器 4和第三 加热器 5并逐级吸热, 升温之后的一级热介质依次流经发生器 6、 第二发生器 7、 二级热交 换器 18和蒸发器 11并逐步放热降温进入循环泵 17, 形成热电联供系统。
图 2所示的热电联供系统是这样实现的:
在图 1所示的热电联供系统中, 将循环泵 17有一级热介质管路经动力循环冷凝器 2与 第一加热器 3连通调整为循环泵 17有一级热介质管路直接与第一加热器 3连通, 形成热电 联供系统。
图 3所示的热电联供系统是这样实现的:
(1)结构上, 在图 2所示的热电联供系统中, 增加第三发生器、 第三吸收器、 第三溶液 泵和第三溶液热交换器, 将吸收器 8有稀溶液管路经溶液泵 12和溶液热交换器 15与第二 吸收器 9连通调整为吸收器 8有稀溶液管路经溶液泵 12和第三溶液热交换器 22与第三吸 收器 20连通, 第三吸收器 20再有稀溶液管路经第三溶液泵 21和溶液热交换器 15与第二 吸收器 9连通, 将第二发生器 7有浓溶液管路经溶液热交换器 15与吸收器 8连通调整为第 二发生器 7有浓溶液管路经溶液热交换器 15与第三发生器 19连通, 第三发生器 19再有浓 溶液管路经第三溶液热交换器 22与吸收器 8连通, 第三发生器 19还有冷剂蒸汽通道与第 三吸收器 20连通, 将第二发生器 7有一级热介质管路经二级热交换器 18与蒸发器 11连通 调整为第二发生器 7有一级热介质管路经第三发生器 19和二级热交换器 18与蒸发器 11连 通, 第三吸收器 20还有二级热介质管路与外部连通。
(2)流程上,吸收器 8的稀溶液经溶液泵 12和第三溶液热交换器 22进入第三吸收器 20、 吸收冷剂蒸汽并放热于二级热介质, 第三吸收器 20的稀溶液经第三溶液泵 21和溶液热交 换器 15进入第二吸收器 9; 第二发生器 7的浓溶液经溶液热交换器 15进入第三发生器 19, 一级热介质流经第三发生器 9、加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发生器 19的浓溶液经第三溶液热交换器 22进入吸收器 8,一级热介质依次流经发生器 6、 第二发生器 7、 第三发生器 19、 二级热交换器 18和蒸发器 11并逐步放热降温, 形成热 电联供系统。
图 4所示的热电联供系统是这样实现的:
在图 2所示的热电联供系统中,增加新增加热器 , 动力机 1增设新增蒸汽管路与新增 加热器 A连通, 新增加热器 A还有新增冷凝液管路与外部连通, 将第三加热器 5有一级热 介质管路与发生器 6连通调整为第三加热器 5有一级热介质管路经新增加热器 A与发生器 6 连通; 动力机 1 向新增加热器 A提供冷剂蒸汽并放热于一级热介质之后成冷凝液, 新增加 热器 A的冷凝液经新增冷凝液管路向外排出, 来自第三加热器 5的一级热介质流经新增加 热器 A、 吸热升温之后向发生器 6提供, 形成热电联供系统。
图 5所示的冷电联供系统是这样实现的:
(1)结构上, 它主要由动力机、 动力循环冷凝器、 第一加热器、 第二加热器、 第三加热 器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器和循环泵所组成; 动力机 1 分别有工作新汽管 路与外部连通和有工作乏汽管路与动力循环冷凝器 2连通, 动力循环冷凝器 2还有冷凝液 管路与外部连通, 动力循环冷凝器 2还有冷却介质管路与外部连通, 动力机 1还分别有第 一蒸汽管路与第一加热器 3连通、 有第二蒸汽管路与第二加热器 4连通和有第三蒸汽管路 与第三加热器 5连通, 第一加热器 3还有第一冷凝液管路与外部连通, 第二加热器 4还有 第二冷凝液管路与外部连通, 第三加热器 5还有第三冷凝液管路与外部连通; 吸收器 8有 稀溶液管路经溶液泵 12和溶液热交换器 15与第二吸收器 9连通, 第二吸收器 9还有稀溶 液管路经第二溶液泵 13和第二溶液热交换器 16与发生器 6连通, 发生器 6还有浓溶液管 路经第二溶液热交换器 16与第二发生器 7连通, 第二发生器 7还有浓溶液管路经溶液热交 换器 15与吸收器 8连通, 发生器 6还有冷剂蒸汽通道与冷凝器 10连通, 第二发生器 7还 有冷剂蒸汽通道与第二吸收器 9连通, 冷凝器 10还有冷剂液管路经节流阀 14与蒸发器 11 连通, 蒸发器 11还有冷剂蒸汽通道与吸收器 8连通; 循环泵 17有一级热介质管路经第一 加热器 3、第二加热器 4、 第三加热器 5、 发生器 6和第二发生器 7与循环泵 17自身连通形 成循环回路, 吸收器 8、 第二吸收器 9和冷凝器 10还分别有冷却介质管路与外部连通, 蒸 发器 11还有被制冷介质管路与外部连通。
(2)流程上, 工作新汽进入动力机 1, 逐步作功之后的部分蒸汽分别经第三蒸汽管路提供 给第三加热器 5、经第二蒸汽管路提供给第二加热器 4和经第一蒸汽管路提供给第一加热器 3, 余下蒸汽继续完成作功后经工作乏汽管路进入动力冷凝器 2; 动力冷凝器 2的工作乏汽 向冷却介质放热之后成冷凝液并向外排出, 第一加热器 3 的蒸汽放热于一级热介质成冷凝 液之后经第一冷凝液管路对外排出, 第二加热器 4 的蒸汽放热于一级热介质成冷凝液之后 经第二冷凝液管路对外排出, 第三加热器 5 的蒸汽放热于一级热介质成冷凝液之后经第三 冷凝液管路对外排出; 吸收器 8的稀溶液经溶液泵 12和溶液热交换器 15之后进入第二吸 收器 9、 吸收冷剂蒸汽并放热于冷却介质, 第二吸收器 9的稀溶液经第二溶液泵 13和第二 溶液热交换器 16之后进入发生器 6, 一级热介质流经发生器 6、 加热进入其内的溶液释放 并向冷凝器 10提供冷剂蒸汽,发生器 6的浓溶液经第二溶液热交换器 16进入第二发生器 7, 一级热介质流经第二发生器 7、 加热进入其内的溶液释放并向第二吸收器 9提供冷剂蒸汽, 第二发生器 7的浓溶液经溶液热交换器 15进入吸收器 8、吸收冷剂蒸汽并放热于冷却介质; 冷凝器 10的冷剂蒸汽放热于冷却介质成冷剂液, 冷凝器 10的冷剂液经节流阀 14节流降压 进入蒸发器 11, 被制冷介质流经蒸发器 11、 加热进入其内的冷剂液成冷剂蒸汽并向吸收器 8提供; 一级热介质经循环泵 17加压之后依次流经第一加热器 3、 第二加热器 4和第三加 热器 5并逐级吸热, 升温之后的一级热介质依次流经发生器 6和第二发生器 7并逐步放热 降温后进入循环泵 17, 形成冷电联供系统。
图 6所示的冷电联供系统是这样实现的:
在图 5所示的冷电联供系统中, 取消第一加热器, 将循环泵 17有一级热介质管路经第 一加热器 3、 第二加热器 4和第三加热器 5与发生器 6连通调整为循环泵 17有一级热介质 管路经第二加热器 4和第三加热器 5与发生器 6连通, 形成冷电联供系统。
图 7所示的冷电联供系统是这样实现的:
(1)结构上, 在图 5所示的冷电联供系统中, 增加第三发生器、 第三吸收器、 第三溶液 泵和第三溶液热交换器, 将吸收器 8有稀溶液管路经溶液泵 12和溶液热交换器 15与第二 吸收器 9连通调整为吸收器 8有稀溶液管路经溶液泵 12和第三溶液热交换器 22与第三吸 收器 20连通, 第三吸收器 20再有稀溶液管路经第三溶液泵 21和溶液热交换器 15与第二 吸收器 9连通, 将第二发生器 7有浓溶液管路经溶液热交换器 15与吸收器 8连通调整为第 二发生器 7有浓溶液管路经溶液热交换器 15与第三发生器 19连通, 第三发生器 19再有浓 溶液管路经第三溶液热交换器 22与吸收器 8连通, 第三发生器 19还有冷剂蒸汽通道与第 三吸收器 20连通, 将第二发生器 7有一级热介质管路经循环泵 17与第一加热器 3连通调 整为第二发生器 7有一级热介质管路经第三发生器 19和循环泵 17与第一加热器 3连通, 第三吸收器 20还有冷却介质管路与外部连通。
(2)流程上,吸收器 8的稀溶液经溶液泵 12和第三溶液热交换器 22进入第三吸收器 20、 吸收冷剂蒸汽并放热于冷却介质, 第三吸收器 20的稀溶液经第三溶液泵 21和溶液热交换 器 15进入第二吸收器 9; 第二发生器 7的浓溶液经溶液热交换器 15进入第三发生器 19, 一级热介质流经第三发生器 9、加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发生器 19的浓溶液经第三溶液热交换器 22进入吸收器 8,一级热介质依次流经发生器 6、 第二发生器 7和第三发生器 19并逐步放热降温后进入循环泵 17, 形成冷电联供系统。
图 8所示的热电-冷电两用联供系统是这样实现的:
(1)结构上, 它主要由动力机、 动力循环冷凝器、 第一加热器、 第二加热器、 第三加热 器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵、 二级热交换器、 第一截断阀、 第二 截断阀、 第三截断阀、 第四截断阀、 第五截断阀、 第六截断阀、 第七截断阀、 第八截断阀、 第九截断阀、 第十截断阀和第十一截断阀所组成; 动力机 1 分别有工作新汽管路与外部连 通和有工作乏汽管路与动力循环冷凝器 2连通, 动力循环冷凝器 2还有冷凝液管路与外部 连通, 动力循环冷凝器 2还有冷却介质管路与外部连通, 动力机 1还分别有第一蒸汽管路 与第一加热器 3连通、 有第二蒸汽管路与第二加热器 4连通和有第三蒸汽管路与第三加热 器 5连通, 第一加热器 3还有第一冷凝液管路与外部连通, 第二加热器 4还有第二冷凝液 管路与外部连通, 第三加热器 5还有第三冷凝液管路与外部连通; 吸收器 8有稀溶液管路 经溶液泵 12和溶液热交换器 15与第二吸收器 9连通, 第二吸收器 9还有稀溶液管路经第 二溶液泵 13和第二溶液热交换器 16与发生器 6连通, 发生器 6还有浓溶液管路经第二溶 液热交换器 16与第二发生器 7连通, 第二发生器 7还有浓溶液管路经溶液热交换器 15与 吸收器 8连通, 发生器 6还有冷剂蒸汽通道与冷凝器 10连通, 第二发生器 7还有冷剂蒸汽 通道与第二吸收器 9连通, 冷凝器 10还有冷剂液管路经节流阀 14与蒸发器 11连通, 蒸发 器 11还有冷剂蒸汽通道与吸收器 8连通; 循环泵 17有一级热介质管路分成两路——第一 路经第九截断阀 J9, 第二路经第十截断阀 J10、动力循环冷凝器 2和第十一截断阀 J11—— 之后再汇合, 汇合后的一级热介质管路经第一加热器 3、 第二加热器 4、 第三加热器 5和发 生器 6与第二发生器 7连通, 第二发生器 7再有一级热介质管路分成两路——第一路经第 一截断阀 Jl,第二路经第二截断阀 J2、二级热交换器 18和第三截断阀 J3——之后再汇合, 汇合后的一级热介质管路分成两路——第一路经第四截断阀 J4, 第二路经第五截断阀 J5、 蒸发器 12和第六截断阀 J6——之后汇合再与循环泵 17连通,蒸发器 11还有被制冷介质管 路分别经第七截断阀 J7与外部连通和经第八截断阀 J8与外部连通, 吸收器 8、第二吸收器 9、 冷凝器 10和二级热交换器 18还分别有被加热介质管路与外部连通。
(2)流程上, 供热时节按照热电联供模式运行, 供冷时节按照冷电联供模式运行。
①热电联供模式是这样的: 第一截断阀 Jl、 第四截断阀 J4、 第七截断阀 J7、 第八截断 阀 J8、 第九截断阀 J9关闭, 第二截断阀 J2、 第三截断阀 J3、 第五截断阀 J5、 第六截断阀 J6、第十截断阀 J10和第十一截断阀 J11开启; 工作新汽进入动力机 1, 逐步作功之后的部 分蒸汽分别经第三蒸汽管路提供给第三加热器 5、经第二蒸汽管路提供给第二加热器 4和经 第一蒸汽管路提供给第一加热器 3,余下蒸汽继续完成作功后经工作乏汽管路进入动力冷凝 器 2;动力冷凝器 2的工作乏汽分别向冷却介质和一级热介质放热之后成冷凝液并向外排出, 第一加热器 3 的蒸汽放热于一级热介质成冷凝液之后经第一冷凝液管路对外排出, 第二加 热器 4 的蒸汽放热于一级热介质成冷凝液之后经第二冷凝液管路对外排出, 第三加热器 5 的蒸汽放热于一级热介质成冷凝液之后经第三冷凝液管路对外排出; 吸收器 8 的稀溶液经 溶液泵 12和溶液热交换器 15之后进入第二吸收器 9、 吸收冷剂蒸汽并放热于被加热介质, 第二吸收器 9的稀溶液经第二溶液泵 13和第二溶液热交换器 16之后进入发生器 6,—级热 介质流经发生器 6、 加热进入其内的溶液释放并向冷凝器 10提供冷剂蒸汽, 发生器 6的浓 溶液经第二溶液热交换器 16进入第二发生器 7, 一级热介质流经第二发生器 7、 加热进入 其内的溶液释放并向第二吸收器 9提供冷剂蒸汽, 第二发生器 7的浓溶液经溶液热交换器 15进入吸收器 8、 吸收冷剂蒸汽并放热于被加热介质; 冷凝器 10的冷剂蒸汽放热于被加热 介质成冷剂液, 冷凝器 10的冷剂液经节流阔 14节流降压进入蒸发器 11、 吸热成冷剂蒸汽 并向吸收器 8提供; 一级热介质经循环泵 17加压之后依次流经动力循环冷凝器 2、 第一加 热器 3、第二加热器 4和第三加热器 5并逐级吸热, 升温之后的一级热介质依次流经发生器 6、 第二发生器 7、 二级热交换器 18和蒸发器 11并逐步放热降温后进入循环泵 17。
②冷电联供模式是这样的: 第一截断阀 Jl、 第四截断阀 J4、 第七截断阀 J7、 第八截断 阀 J8、 第九截断阔 J9开启, 第二截断阀 J2、 第三截断阀 J3、 第五截断阀 J5、 第六截断阀 J6、第十截断阀 J10和第十一截断阔 J11关闭; 工作新汽进入动力机 1, 逐步作功之后的部 分蒸汽分别经第三蒸汽管路提供给第三加热器 5、经第二蒸汽管路提供给第二加热器 4和经 第一蒸汽管路提供给第一加热器 3,余下蒸汽继续完成作功后经工作乏汽管路进入动力冷凝 器 2; 动力冷凝器 2的工作乏汽向冷却介质放热之后成冷凝液并向外排出, 第一加热器 3的 蒸汽放热于一级热介质成冷凝液之后经第一冷凝液管路对外排出, 第二加热器 4 的蒸汽放 热于一级热介质成冷凝液之后经第二冷凝液管路对外排出, 第三加热器 5 的蒸汽放热于一 级热介质成冷凝液之后经第三冷凝液管路对外排出; 吸收器 8的稀溶液经溶液泵 12和溶液 热交换器 15之后进入第二吸收器 9、 吸收冷剂蒸汽并放热于被加热介质, 第二吸收器 9的 稀溶液经第二溶液泵 13和第二溶液热交换器 16之后进入发生器 6,一级热介质流经发生器 6、 加热进入其内的溶液释放并向冷凝器 10提供冷剂蒸汽, 发生器 6的浓溶液经第二溶液 热交换器 16进入第二发生器 7, 一级热介质流经第二发生器 7、 加热进入其内的溶液释放 并向第二吸收器 9提供冷剂蒸汽,第二发生器 7的浓溶液经溶液热交换器 15进入吸收器 8、 吸收冷剂蒸汽并放热于被加热介质; 冷凝器 10的冷剂蒸汽放热于被加热介质成冷剂液, 冷 凝器 10的冷剂液经节流阀 14节流降压进入蒸发器 11, 被制冷介质流经蒸发器 11、 加热进 入其内的冷剂液成冷剂蒸汽并向吸收器 8提供; 一级热介质经循环泵 17加压之后依次第一 加热器 3、第二加热器 4和第三加热器 5并逐级吸热, 升温之后的一级热介质依次流经发生 器 6和第二发生器 7并逐步放热降温后进入循环泵 17。
图 9所示的热电-冷电两用联供系统是这样实现的:
在图 8所示的热电-冷电两用联供系统中, 取消第九截断阀、 第十截断阔和第十一截断 阀,将循环泵 17有一级热介质管路分成两路——第一路经第九截断阀 J9, 第二路经第十截 断阀 J10、 动力循环冷凝器 2和第十一截断阔 J11——之后汇合再与第一加热器 3连通调整 为循环泵 17有一级热介质管路直接与第一加热器 3连通, 形成热电-冷电两用联供系统。
图 10所示的热电-冷电两用联供系统是这样实现的:
(1)结构上, 它主要由动力机、 动力循环冷凝器、 第一加热器、 第二加热器、 第三加热 器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵、 二级热交换器、 第三发生器、 第三 吸收器、 第三溶液泵、 第三溶液热交换器、 第一截断阀、 第二截断阀、 第三截断阀、 第四 截断阀、 第五截断阀、 第六截断阀、 第七截断阀和第八截断阀所组成; 动力机 1 分别有工 作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器 2连通, 动力循环冷凝器 2还 有冷凝液管路与外部连通, 动力循环冷凝器 2还有冷却介质管路与外部连通, 动力机 1还 分别有第一蒸汽管路与第一加热器 3连通、 有第二蒸汽管路与第二加热器 4连通和有第三 蒸汽管路与第三加热器 5连通, 第一加热器 3还有第一冷凝液管路与外部连通, 第二加热 器 4还有第二冷凝液管路与外部连通, 第三加热器 5还有第三冷凝液管路与外部连通; 吸 收器 8有稀溶液管路经溶液泵 12和第三溶液热交换器 22与第三吸收器 20连通, 第三吸收 器 20还有稀溶液管路经第三溶液泵 21和溶液热交换器 15与第二吸收器 9连通, 第二吸收 器 9还有稀溶液管路经第二溶液泵 13和第二溶液热交换器 16与发生器 6连通, 发生器 6 还有浓溶液管路经第二溶液热交换器 16与第二发生器 7连通, 第二发生器 7还有浓溶液管 路经溶液热交换器 15与第三发生器 19连通, 第三发生器 19还有浓溶液管路经第三溶液热 交换器 22与吸收器 8连通, 发生器 6还有冷剂蒸汽通道与冷凝器 10连通, 第二发生器 7 还有冷剂蒸汽通道与第二吸收器 9连通,第三发生器 19还有冷剂蒸汽通道与第三吸收器 20 连通, 冷凝器 10还有冷剂液管路经节流阀 14与蒸发器 11连通, 蒸发器 11还有冷剂蒸汽 通道与吸收器 8连通; 循环泵 17有一级热介质管路经第一加热器 3、 第二加热器 4、 第三 加热器 5、发生器 6和第二发生器 7与第三发生器 19连通, 第三发生器 19还有一级热介质 管路分成两路——第一路经第一截断阀 Jl, 第二路经第二截断阀 J2、 二级热交换器 18和 第三截断阀 J3——之后再汇合, 汇合后的一级热介质管路分成两路——第一路经第四截断 阀 J4与循环泵 17连通, 第二路经第五截断阀 J5、 蒸发器 11和第六截断阀 J6与循环泵 17 连通, 蒸发器 11还有被制冷介质管路分别经第七截断阀 J7与外部连通和经第八截断阀 J8 与外部连通, 吸收器 8、 第二吸收器 9、 第三吸收器 20、 冷凝器 10和二级热交换器 18还分 别有被加热介质管路与外部连通。
(2)流程上, 供热时节按照热电联供模式运行, 供冷时节按照冷电联供模式运行。
①热电联供模式是这样的: 第一截断阀 Jl、 第四截断阀 J4、 第七截断阀 J7和第八截 断阀 J8关闭, 第二截断阀 J2、 第三截断阀 J3、 第五截断阀 J5和第六截断阀 J6开启; 工 作新汽进入动力机 1, 逐步作功之后的部分蒸汽分别经第三蒸汽管路提供给第三加热器 5、 经第二蒸汽管路提供给第二加热器 4和经第一蒸汽管路提供给第一加热器 3,余下蒸汽继续 完成作功后经工作乏汽管路进入动力冷凝器 2;动力冷凝器 2的工作乏汽向冷却介质放热之 后成冷凝液并向外排出, 第一加热器 3 的蒸汽放热于一级热介质成冷凝液之后经第一冷凝 液管路对外排出, 第二加热器 4 的蒸汽放热于一级热介质成冷凝液之后经第二冷凝液管路 对外排出, 第三加热器 5 的蒸汽放热于一级热介质成冷凝液之后经第三冷凝液管路对外排 出; 吸收器 8的稀溶液经溶液泵 12和第三溶液热交换器 22进入第三吸收器 20、 吸收冷剂 蒸汽并放热于被加热介质, 第三吸收器 20的稀溶液经第三溶液泵 21和溶液热交换器 15之 后进入第二吸收器 9、吸收冷剂蒸汽并放热于被加热介质, 第二吸收器 9的稀溶液经第二溶 液泵 13和第二溶液热交换器 16之后进入发生器 6, 一级热介质流经发生器 6、 加热进入其 内的溶液释放并向冷凝器 10提供冷剂蒸汽, 发生器 6的浓溶液经第二溶液热交换器 16进 入第二发生器 7, 一级热介质流经第二发生器 7、 加热进入其内的溶液释放并向第二吸收器 9提供冷剂蒸汽, 第二发生器 7的浓溶液经溶液热交换器 15进入第三发生器 19, 一级热介 质流经第三发生器 19、加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发 生器 19的浓溶液经第三溶液热交换器 22进入吸收器 8、吸收冷剂蒸汽并放热于被加热介质; 冷凝器 10的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 10的冷剂液经节流阀 14节流降 压进入蒸发器 11、吸热成冷剂蒸汽并向吸收器 8提供; 一级热介质经循环泵 17加压之后依 次流经第一加热器 3、第二加热器 4和第三加热器 5并逐级吸热, 升温之后的一级热介质依 次流经发生器 6、第二发生器 7、第三发生器 19、 二级热交换器 18和蒸发器 11并逐步放热 降温之后进入循环泵 17。
②冷电联供模式是这样的: 第一截断阀 Jl、 第四截断阀 J4、 第七截断阀 J7和第八截 断阀 J8幵启, 第二截断阀 J2、 第三截断阀 J3、 第五截断阀 J5和第六截断阀 J6关闭; 工 作新汽进入动力机 1, 逐步作功之后的部分蒸汽分别经第三蒸汽管路提供给第三加热器 5、 经第二蒸汽管路提供给第二加热器 4和经第一蒸汽管路提供给第一加热器 3,余下蒸汽继续 完成作功后经工作乏汽管路进入动力冷凝器 2;动力冷凝器 2的工作乏汽向冷却介质放热之 后成冷凝液并向外排出, 第一加热器 3 的蒸汽放热于一级热介质成冷凝液之后经第一冷凝 液管路对外排出, 第二加热器 4 的蒸汽放热于一级热介质成冷凝液之后经第二冷凝液管路 对外排出, 第三加热器 5 的蒸汽放热于一级热介质成冷凝液之后经第三冷凝液管路对外排 出; 吸收器 8的稀溶液经溶液泵 12和第三溶液热交换器 22进入第三吸收器 20、 吸收冷剂 蒸汽并放热于被加热介质, 第三吸收器 20的稀溶液经第三溶液泵 21和溶液热交换器 15进 入第二吸收器 9、吸收冷剂蒸汽并放热于被加热介质, 第二吸收器 9的稀溶液经第二溶液泵 13和第二溶液热交换器 16之后进入发生器 6, 一级热介质流经发生器 6、 加热进入其内的 溶液释放并向冷凝器 10提供冷剂蒸汽, 发生器 6的浓溶液经第二溶液热交换器 16进入第 二发生器 7, 一级热介质流经第二发生器 7、 加热进入其内的溶液释放并向第二吸收器 9提 供冷剂蒸汽, 第二发生器 7的浓溶液经溶液热交换器 15进入第三发生器 19, 一级热介质流 经第三发生器 19、加热进入其内的溶液释放并向第三吸收器 20提供冷剂蒸汽, 第三发生器 19的浓溶液经第三溶液热交换器 22进入吸收器 8、 吸收冷剂蒸汽并放热于被加热介质; 冷 凝器 10的冷剂蒸汽放热于被加热介质成冷剂液, 冷凝器 10的冷剂液经节流阀 14节流降压 进入蒸发器 11, 被制冷介质流经蒸发器 11、 加热进入其内的冷剂液成冷剂蒸汽并向吸收器 8提供; 一级热介质经循环泵 17加压之后依次流经第一加热器 3、 第二加热器 4和第三加 热器 5并逐级吸热, 升温之后的一级热介质依次流经发生器 6、第二发生器 7和第三发生器 19并逐步放热降温之后进入循环泵 17。
图 11所示的二级热交换分系统分路换热情况下的热电联供系统是这样实现的: (1)结构上, 在图 1 所示的热电联供系统中, 增加第二套吸收式热交换分系统 II, 第三 加热器 5有一级热介质管路分成两路——第一路与第一套吸收式热交换分系统 I中的发生 器 6连通, 第二路与第二套吸收式热交换分系统 II中的发生器 6连通, 将第二套吸收式热 交换分系统 II中的二级热交换器 18有一级热介质管路与蒸发器 11连通调整为第二套吸收 式热交换分系统 II中的二级热交换器 18有一级热介质管路与第一套吸收式热交换分系统 I 中的蒸发器 11连通, 将第一套吸收式热交换分系统 I中蒸发器 11有一级热介质管路与循 环泵 17连通调整为第一套吸收式热交换分系统 I中蒸发器 11有一级热介质管路与第二套 吸收式热交换分系统 II中的蒸发器 11 连通, 第二套吸收式热交换分系统 II中的蒸发器 11 再有一级热介质管路与循环泵 17连通。 (2)流程上, 工作新汽进入动力机 1, 逐步作功之后的部分蒸汽分别经第三蒸汽管路提供 给第三加热器 5、经第二蒸汽管路提供给第二加热器 4和经第一蒸汽管路提供给第一加热器 3, 余下蒸汽继续完成作功后经工作乏汽管路进入动力冷凝器 2; 动力冷凝器 2的工作乏汽 分别向冷却介质和一级热介质放热之后成冷凝液并向外排出, 第一加热器 3 的蒸汽放热于 一级热介质成冷凝液之后经第一冷凝液管路对外排出, 第二加热器 4 的蒸汽放热于一级热 介质成冷凝液之后经第二冷凝液管路对外排出, 第三加热器 5 的蒸汽放热于一级热介质成 冷凝液之后经第三冷凝液管路对外排出; 一级热介质经循环泵 17加压之后依次流经动力循 环冷凝器 2、 第一加热器 3、 第二加热器 4和第三加热器 5并逐级吸热, 升温之后的一级热 介质分成两路——第一路进入第一套吸收式热交换分系统 I之后, 依次流经发生器 6、第二 发生器 7和二级热交换器 18, 第二路进入第二套吸收式热交换分系统 II, 依次流经各发生 器和二级热交换器 18——之后汇合, 汇合后的一级热介质依次流经第一套吸收式热交换分 系统 I中的蒸发器 11和第二套吸收式热交换分系统 II中的蒸发器 11并逐步放热降温之后 进入循环泵 17, 形成热电联供系统。
本发明技术可以实现的效果——本发明所提出的热电联供、 冷电联供与热电-冷电两用 联供系统具有如下的效果和优势:
(1)高品位蒸汽先作功 (发电), 品位降低后用于供热 /制冷, 符合热能梯级利用原则。
(2)由第一加热器、 第二加热器和第三加热器逐级完成一级热介质加热, 减小加热过程 传热温差, 有利于提高热能利用效率。
(3)发生器和第二发生器或再加上第三发生器, 分步实现对一级热介质髙温段热负荷的 充分利用, 有利于降低一级热介质流量、 降低一级热介质管网投资和扩大供热 /供冷规模。
(4)第二发生器和第二吸收器的热负荷可调节, 有利于提高系统的灵活性与合理性。
(5)热电-冷电两用联供系统, 在两种运行模式中实现管网和吸收式热泵机组的共用, 降 低系统投资成本。
(6)丰富了热电联供、 冷电联供与热电-冷电两用联供系统的类型, 扩展了第一类吸收式 热泵的应用范围, 有利于更好地采用第一类吸收式热泵来提高热能利用率。

Claims

权 利 要 求 书
1. 热电联供系统, 主要由动力机、 动力循环冷凝器、第一加热器、第二加热器、第三 加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶 液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵和二级热交换器所组成; 动力 机 (1 ) 分别有工作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器 (2) 连通, 动力循环冷凝器 (2) 还有冷凝液管路与外部连通, 动力循环冷凝器 (2) 还有冷却介质管 路与外部连通, 动力机 (1 ) 还分别有第一蒸汽管路与第一加热器 (3) 连通、 有第二蒸汽 管路与第二加热器 (4) 连通和有第三蒸汽管路与第三加热器 (5) 连通, 第一加热器 (3) 还有第一冷凝液管路与外部连通, 第二加热器 (4) 还有第二冷凝液管路与外部连通, 第三 加热器 (5) 还有第三冷凝液管路与外部连通; 吸收器 (8) 有稀溶液管路经溶液泵 (12) 和溶液热交换器 (15) 与第二吸收器(9) 连通, 第二吸收器(9) 还有稀溶液管路经第二 溶液泵 (13)和第二溶液热交换器 (16) 与发生器 (6)连通, 发生器 (6) 还有浓溶液管 路经第二溶液热交换器 (16) 与第二发生器 (7) 连通, 第二发生器 (7) 还有浓溶液管路 经溶液热交换器(15) 与吸收器(8)连通, 发生器 (6) 还有冷剂蒸汽通道与冷凝器 ( 10) 连通, 第二发生器 (7) 还有冷剂蒸汽通道与第二吸收器 (9) 连通, 冷凝器 (10) 还有冷 剂液管路经节流阀 (14) 与蒸发器 (11 ) 连通, 蒸发器 (11 ) 还有冷剂蒸汽通道与吸收器 (8)连通; 循环泵 (17)有一级热介质管路经动力循环冷凝器(2)、 第一加热器(3)、 第 二加热器 (4)、 第三加热器 (5)、 发生器 (6)、 第二发生器 (7)、 二级热交换器(18) 和 蒸发器 (11 ) 与循环泵 (17) 自身连通形成循环回路, 吸收器 (8)、 第二吸收器 (9)、 冷 凝器 (10) 和二级热交换器 (18) 还分别有二级热介质管路与外部连通, 形成热电联供系 统。
2. 热电联供系统, 是在权利要求 1所述的热电联供系统中,增加第三发生器、第三吸 收器、 第三溶液泵和第三溶液热交换器, 将吸收器(8)有稀溶液管路经溶液泵 (12)和溶 液热交换器 (15) 与第二吸收器 (9) 连通调整为吸收器 (8)有稀溶液管路经溶液泵(12) 和第三溶液热交换器 (22) 与第三吸收器 (20)连通, 第三吸收器(20) 再有稀溶液管路 经第三溶液泵 (21 ) 和溶液热交换器 (15) 与第二吸收器 (9) 连通, 将第二发生器 (7) 有浓溶液管路经溶液热交换器 (15) 与吸收器 (8) 连通调整为第二发生器 (7) 有浓溶液 管路经溶液热交换器(15) 与第三发生器(19) 连通, 第三发生器 (19) 再有浓溶液管路 经第三溶液热交换器 (22) 与吸收器(8)连通, 第三发生器 (19) 还有冷剂蒸汽通道与第 三吸收器(20)连通, 将第二发生器 (7)有一级热介质管路经二级热交换器(18) 与蒸发 器(11 )连通调整为第二发生器(7)有一级热介质管路经第三发生器 (19)和二级热交换 器 (18) 与蒸发器 (11 ) 连通, 第三吸收器 (20) 还有二级热介质管路与外部连通, 形成 热电联供系统。
3. 热电联供系统, 是在权利要求 1-2所述的任一热电联供系统中, 将循环泵(17)有 一级热介质管路经动力循环冷凝器 (2) 与第一加热器 (3) 连通调整为循环泵 (17 ) 有一 级热介质管路直接与第一加热器 (3) 连通, 形成热电联供系统。
4. 热电联供系统, 是在权利要求 3所述的任一热电联供系统中, 取消第一加热器, 将 循环泵 (17)有一级热介质管路经第一加热器 (3)、 第二加热器 (4) 和第三加热器 (5) 与发生器 (6) 连通调整为循环泵 (17 )有一级热介质管路经第二加热器 (4) 和第三加热 器(5) 与发生器 (6) 连通, 形成热电联供系统。
5. 热电联供系统,是在权利要求 3所述的任一热电联供系统中,取消第一加热器和第 二加热器, 将循环泵 (17) 有一级热介质管路经第一加热器 (3)、 第二加热器(4)和第三 加热器(5) 与发生器(6)连通调整为循环泵 (17) 有一级热介质管路经第三加热器(5) 与发生器 (6) 连通, 形成热电联供系统。
6. 冷电联供系统, 主要由动力机、动力循环冷凝器、第一加热器、第二加热器、第三 加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液泵、 第二溶 液泵、 节流阀、 溶液热交换器、 第二溶液热交换器和循环泵所组成; 动力机(1 ) 分别有工 作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器(2)连通,动力循环冷凝器(2) 还有冷凝液管路与外部连通, 动力循环冷凝器(2)还有冷却介质管路与外部连通, 动力机
( 1 )还分别有第一蒸汽管路与第一加热器 (3)连通、 有第二蒸汽管路与第二加热器 (4) 连通和有第三蒸汽管路与第三加热器 (5) 连通, 第一加热器 (3) 还有第一冷凝液管路与 外部连通, 第二加热器 (4) 还有第二冷凝液管路与外部连通, 第三加热器 (5) 还有第三 冷凝液管路与外部连通; 吸收器 (8) 有稀溶液管路经溶液泵 (12) 和溶液热交换器 (15) 与第二吸收器(9) 连通, 第二吸收器 (9 ) 还有稀溶液管路经第二溶液泵 (13) 和第二溶 液热交换器 (16) 与发生器 (6) 连通, 发生器 (6) 还有浓溶液管路经第二溶液热交换器
( 16) 与第二发生器 (7) 连通, 第二发生器 (7)还有浓溶液管路经溶液热交换器(15) 与吸收器(8)连通, 发生器(6)还有冷剂蒸汽通道与冷凝器(10)连通, 第二发生器(7) 还有冷剂蒸汽通道与第二吸收器(9)连通, 冷凝器(10)还有冷剂液管路经节流阀 (14) 与蒸发器 U1 )连通, 蒸发器 (11 )还有冷剂蒸汽通道与吸收器 (8)连通; 循环泵 (17) 有一级热介质管路经第一加热器(3)、 第二加热器(4)、 第三加热器(5)、 发生器(6)和 第二发生器 (7) 与循环泵 (17) 自身连通形成循环回路, 吸收器 (8)、 第二吸收器 (9) 和冷凝器 (10) 还分别有冷却介质管路与外部连通, 蒸发器 (11 ) 还有被制冷介质管路与 外部连通, 形成冷电联供系统。
7. 冷电联供系统, 是在权利要求 6所述的热电联供系统中, 增加第三发生器、第三吸 收器、 第三溶液泵和第三溶液热交换器, 将吸收器(8) 有稀溶液管路经溶液泵(12)和溶 液热交换器(15) 与第二吸收器(9)连通调整为吸收器(8)有稀溶液管路经溶液泵 (12) 和第三溶液热交换器(22) 与第三吸收器(20) 连通, 第三吸收器 (20) 再有稀溶液管路 经第三溶液泵 (21 ) 和溶液热交换器 (15) 与第二吸收器 (9) 连通, 将第二发生器 (7) 有浓溶液管路经溶液热交换器 (15) 与吸收器 (8) 连通调整为第二发生器 (7) 有浓溶液 管路经溶液热交换器 (15) 与第三发生器 (19) 连通, 第三发生器 (19) 再有浓溶液管路 经第三溶液热交换器(22) 与吸收器(8)连通, 第三发生器(19)还有冷剂蒸汽通道与第 三吸收器(20)连通, 将第二发生器 (7)有一级热介质管路经循环泵 (17) 与第一加热器
(3)连通调整为第二发生器 (7 ) 有一级热介质管路经第三发生器 (19) 和循环泵(17) 与第一加热器(3)连通, 第三吸收器 (20) 还有冷却介质管路与外部连通, 形成冷电联供 系统。
8. 冷电联供系统, 是在权利要求 6-7所述的任一冷电联供系统中, 取消第一加热器, 将循环泵 (17)有一级热介质管路经第一加热器(3)、 第二加热器(4)和第三加热器 (5) 与发生器 (6) 连通调整为循环泵 (17) 有一级热介质管路经第二加热器 (4) 和第三加热 器 (5) 与发生器 (6) 连通, 形成冷电联供系统。
9. 冷电联供系统,是在权利要求 6-7所述的任一冷电联供系统中,取消第一加热器和 第二加热器, 将循环泵 (17 )有一级热介质管路经第一加热器(3)、 第二加热器(4) 和第 三加热器(5)与发生器(6)连通调整为循环泵(17)有一级热介质管路经第三加热器(5) 与发生器 (6) 连通, 形成冷电联供系统。
10. 热电-冷电两用联供系统, 主要由动力机、动力循环冷凝器、第一加热器、第二加 热器、 第三加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液 泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵、 二级热交换器、 第一截断阀、 第二截断阀、 第三截断阀、 第四截断阀、 第五截断阀、 第六截断阀、 第七截 断阀、 第八截断阀、 第九截断阀、 第十截断阀和第十一截断阀所组成; 动力机(1 )分别有 工作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器(2)连通, 动力循环冷凝器
(2 )还有冷凝液管路与外部连通, 动力循环冷凝器 (2 ) 还有冷却介质管路与外部连通, 动力机 (1 ) 还分别有第一蒸汽管路与第一加热器 (3) 连通、 有第二蒸汽管路与第二加热 器(4)连通和有第三蒸汽管路与第三加热器 (5)连通, 第一加热器(3 ) 还有第一冷凝液 管路与外部连通, 第二加热器 (4) 还有第二冷凝液管路与外部连通, 第三加热器 (5) 还 有第三冷凝液管路与外部连通; 吸收器(8)有稀溶液管路经溶液泵 (12 )和溶液热交换器
( 15 ) 与第二吸收器 (9 ) 连通, 第二吸收器 (9 ) 还有稀溶液管路经第二溶液泵 (13 ) 和 第二溶液热交换器 (16) 与发生器 (6) 连通, 发生器 (6) 还有浓溶液管路经第二溶液热 交换器 (16) 与第二发生器 (7 ) 连通, 第二发生器 (7 ) 还有浓溶液管路经溶液热交换器
( 15 ) 与吸收器 (8 ) 连通, 发生器 (6) 还有冷剂蒸汽通道与冷凝器 (10) 连通, 第二发 生器 (7 )还有冷剂蒸汽通道与第二吸收器 (9) 连通, 冷凝器 (10 ) 还有冷剂液管路经节 流阀 (14) 与蒸发器 (11 )连通, 蒸发器 (11 )还有冷剂蒸汽通道与吸收器(8) 连通; 循 环泵(17)有一级热介质管路分成两路——第一路经第九截断阀 (J9), 第二路经第十截断 阀 (J10)、 动力循环冷凝器 (2) 和第十一截断阀 (J11 )——之后再汇合, 汇合后的一级 热介质管路经第一加热器 (3)、 第二加热器 (4)、 第三加热器 (5 ) 和发生器 (6) 与第二 发生器(7) 连通, 第二发生器 (7) 再有一级热介质管路分成两路——第一路经第一截断 阀 (Jl ), 第二路经第二截断闽 (J2)、 二级热交换器 (18 ) 和第三截断阔 (J3 )——之后 再汇合, 汇合后的一级热介质管路分成两路——第一路经第四截断阀 (J4), 第二路经第五 截断阀 (J5)、 蒸发器 (12)和第六截断阀 (J6)——之后汇合再与循环泵 (17)连通, 蒸 发器(11 )还有被制冷介质管路分别经第七截断阀 (J7 ) 与外部连通和经第八截断阀 (J8) 与外部连通, 吸收器 (8)、 第二吸收器 (9)、 冷凝器 (10) 和二级热交换器 (18) 还分别 有被加热介质管路与外部连通, 形成热电-冷电两用联供系统; 其中: ①第一截断阀 (Jl )、 第四截断阀 (J4)、 第七截断阀 (J7)、 第八截断阀 (J8)、 第九截断阀 (J9) 关闭, 第二截 断阀 (J2)、 第三截断阀 (J3)、 第五截断阀 (J5)、 第六截断阀 (J6)、 第十截断阀 (J10) 和第十一截断阀 (J11 ) 开启, 为热电联供模式; ②第一截断阀 (Jl )、 第四截断阀 (J4)、 第七截断阀 (J7)、 第八截断阀 (J8)、 第九截断阀 (J9) 开启, 第二截断阀 (J2)、 第三截 断阀(J3)、第五截断阀(J5)、第六截断阀(J6)、第十截断阀(J10)和第十一截断阀(J11 ) 关闭, 为冷电联供模式。
11. 热电-冷电两用联供系统,是在权利要求 10所述的热电-冷电两用联供系统中,取 消第九截断阀、 第十截断阀和第十一截断阀, 将循环泵 (17 ) 有一级热介质管路分成两路 ——第一路经第九截断阀 (J9), 第二路经第十截断阀 (J10)、 动力循环冷凝器 (2) 和第 十一截断阀 (J11 )——之后汇合再与第一加热器 (3) 连通调整为循环泵 (17) 有一级热 介质管路直接与第一加热器 (3)连通, 形成热电-冷电两用联供系统。
12. 热电-冷电两用联供系统,是在权利要求 11所述的热电-冷电两用联供系统中,取 消第一加热器, 将循环泵(17)有一级热介质管路经第一加热器 (3)、 第二加热器 (4) 和 第三加热器 (5) 与发生器 (6)连通调整为循环泵 (17) 有一级热介质管路经第二加热器
(4)和第三加热器 (5) 与发生器 (6) 连通, 形成冷电联供系统。
13. 热电-冷电两用联供系统,是在权利要求 11所述的热电-冷电两用联供系统中,取 消第一加热器和第二加热器, 将循环泵 (17) 有一级热介质管路经第一加热器 (3)、 第二 加热器(4)和第三加热器 (5) 与发生器 (6)连通调整为循环泵 (17) 有一级热介质管路 经第三加热器 (5) 与发生器 (6) 连通, 形成冷电联供系统。
14. 热电-冷电两用联供系统, 主要由动力机、动力循环冷凝器、第一加热器、第二加 热器、 第三加热器、 发生器、 第二发生器、 吸收器、 第二吸收器、 冷凝器、 蒸发器、 溶液 泵、 第二溶液泵、 节流阀、 溶液热交换器、 第二溶液热交换器、 循环泵、 二级热交换器、 第三发生器、 第三吸收器、 第三溶液泵、 第三溶液热交换器、 第一截断阀、 第二截断阀、 第三截断阀、 第四截断阀、 第五截断阀、 第六截断阀、 第七截断阀、 第八截断阀、 第九截 断阀、 第十截断阀和第十一截断阀所组成; 动力机(1 ) 分别有工作新汽管路与外部连通和 有工作乏汽管路与动力循环冷凝器 (2) 连通, 动力循环冷凝器 (2) 还有冷凝液管路与外 部连通, 动力循环冷凝器 (2)还有冷却介质管路与外部连通, 动力机 (1 )还分别有第一 蒸汽管路与第一加热器 (3) 连通、 有第二蒸汽管路与第二加热器 (4) 连通和有第三蒸汽 管路与第三加热器 (5) 连通, 第一加热器 (3) 还有第一冷凝液管路与外部连通, 第二加 热器 (4) 还有第二冷凝液管路与外部连通, 第三加热器 (5) 还有第三冷凝液管路与外部 连通; 吸收器 (8)有稀溶液管路经溶液泵 (12)和第三溶液热交换器 (22) 与第三吸收器
(20)连通, 第三吸收器(20)还有稀溶液管路经第三溶液泵 (21 )和溶液热交换器 (15) 与第二吸收器 (9) 连通, 第二吸收器 (9) 还有稀溶液管路经第二溶液泵 (13) 和第二溶 液热交换器 (16) 与发生器 (6) 连通, 发生器 (6) 还有浓溶液管路经第二溶液热交换器
( 16) 与第二发生器 (7 ) 连通, 第二发生器 (7) 还有浓溶液管路经溶液热交换器 (15) 与第三发生器 (19) 连通, 第三发生器 (19) 还有浓溶液管路经第三溶液热交换器 (22) 与吸收器(8)连通, 发生器(6)还有冷剂蒸汽通道与冷凝器(10)连通, 第二发生器(7) 还有冷剂蒸汽通道与第二吸收器(9)连通, 第三发生器 (19)还有冷剂蒸汽通道与第三吸 收器 (20) 连通, 冷凝器 (10) 还有冷剂液管路经节流阀 (14) 与蒸发器 (11 ) 连通, 蒸 发器(11 )还有冷剂蒸汽通道与吸收器(8) 连通; 循环泵 (17)有一级热介质管路分成两 路——第一路经第九截断阀 (J9), 第二路经第十截断阀 (J10)、 动力循环冷凝器 (2) 和 第十一截断阀 (J11 )——之后再汇合, 汇合后的一级热介质管路经第一加热器(3)、 第二 加热器(4)、 第三加热器 (5)、 发生器 (6) 和第二发生器 (7) 与第三发生器(19)连通, 第三发生器(19) 再有一级热介质管路分成两路——第一路经第一截断阀 (Jl ), 第二路经 第二截断阀 (J2)、 二级热交换器(18)和第三截断阔 (J3)——之后再汇合, 汇合后的一 级热介质管路分成两路——第一路经第四截断阀 (J4), 第二路经第五截断阀 (J5)、 蒸发 器(12) 和第六截断阔 (J6)——之后汇合再与循环泵 (17) 连通, 蒸发器 (11 ) 还有被 制冷介质管路分别经第七截断阀 (J7) 与外部连通和经第八截断阀 (J8) 与外部连通, 吸 收器(8)、 第二吸收器 (9)、 第三吸收器 (20)、 冷凝器(10)和二级热交换器 (18) 还分 别有被加热介质管路与外部连通,形成热电-冷电两用联供系统;其中:①第一截断阀(Jl )、 第四截断阀 (J4)、 第七截断阀 (J7)、 第八截断阀 (J8)、 第九截断阀 (J9)关闭, 第二截 断阀 (J2)、 第三截断阀 (J3)、 第五截断阀 (J5)、 第六截断阀 (J6)、 第十截断阀 (J10) 和第十一截断阀 (J11 ) 开启, 为热电联供模式; ②第一截断阀 (Jl )、 第四截断阀 (J4)、 第七截断阀 (J7)、 第八截断阀 (J8)、 第九截断阀 (J9) 开启, 第二截断阀 (J2)、 第三截 断阀(J3)、第五截断阀(J5)、第六截断阀(J6)、第十截断阀(J10)和第十一截断阀(J11 ) 关闭, 为冷电联供模式。
15. 热电-冷电两用联供系统,是在权利要求 14所述的热电-冷电两用联供系统中,取 消第九截断阀、 第十截断阀和第十一截断阀, 将循环泵 (17) 有一级热介质管路分成两路 ——第一路经第九截断阀 (J9), 第二路经第十截断阀 (J10)、 动力循环冷凝器 (2)和第 十一截断阀 (J11 )——之后汇合再与第一加热器 (3) 连通调整为循环泵 (17) 有一级热 介质管路直接与第一加热器 (3)连通, 形成热电-冷电两用联供系统。
16. 热电-冷电两用联供系统,是在权利要求 15所述的热电-冷电两用联供系统中,取 消第一加热器, 将循环泵 (17)有一级热介质管路经第一加热器 (3)、 第二加热器(4)和 第三加热器 (5) 与发生器 (6) 连通调整为循环泵 (17) 有一级热介质管路经第二加热器
(4)和第三加热器(5) 与发生器 (6) 连通, 形成热电-冷电两用联供系统。
17. 热电-冷电两用联供系统,是在权利要求 15所述的热电-冷电两用联供系统中,取 消第一加热器和第二加热器, 将循环泵 (Π ) 有一级热介质管路经第一加热器(3)、 第二 加热器(4)和第三加热器(5) 与发生器(6)连通调整为循环泵 (17) 有一级热介质管路 经第三加热器(5) 与发生器 (6) 连通, 形成热电-冷电两用联供系统。
18. 热电联供系统, 是在权利要求 1-5所述的任一热电联供系统中, 增加新增加热器 (A), 动力机(1 )增设新增蒸汽管路与新增加热器(A) 连通, 新增加热器(A)还有新增 冷凝液管路与外部连通, 将第三加热器 (5) 有一级热介质管路与发生器 (6)连通调整为 第三加热器(5)有一级热介质管路经新增加热器 (A) 与发生器(6) 连通, 形成热电联供 系统。
19. 冷电联供系统, 是在权利要求 6-9所述的任一冷电联供系统中, 增加新增加热器 , 动力机(1 ) 增设新增蒸汽管路与新增加热器(A)连通, 新增加热器(A)还有新增 冷凝液管路与外部连通, 将第三加热器 (5) 有一级热介质管路与发生器 (6) 连通调整为 第三加热器(5)有一级热介质管路经新增加热器 (A) 与发生器(6)连通, 形成冷电联供 系统。
20. 热电-冷电两用联供系统, 是在权利要求 10-17所述的任一热电-冷电两用联供系 统中, 增加新增加热器 (A), 动力机 (1 ) 增设新增蒸汽管路与新增加热器 (A) 连通, 新 增加热器 (A) 还有新增冷凝液管路与外部连通, 将第三加热器 (5)有一级热介质管路与 发生器(6)连通调整为第三加热器(5)有一级热介质管路经新增加热器(A)与发生器(6) 连通, 形成热电-冷电两用联供系统。
21. 热电联供系统, 它主要由动力机、 动力循环冷凝器、 第一加热器、 第二加热器、 第三加热器、 循环泵、 第一套吸收式热交换分系统和第二套吸收式热交换分系统所组成; 动力机 (1 ) 分别有工作新汽管路与外部连通和有工作乏汽管路与动力循环冷凝器 (2) 连 通, 动力循环冷凝器 (2) 还有冷凝液管路与外部连通, 动力循环冷凝器 (2) 还有冷却介 质管路与外部连通, 动力机 (1 ) 还分别有第一蒸汽管路与第一加热器 (3) 连通、 有第二 蒸汽管路与第二加热器 (4) 连通和有第三蒸汽管路与第三加热器 (5) 连通, 第一加热器
(3)还有第一冷凝液管路与外部连通, 第二加热器 (4) 还有第二冷凝液管路与外部连通, 第三加热器 (5)还有第三冷凝液管路与外部连通; 循环泵 (17) 还有一级热介质管路经动 力循环冷凝器 (2)、 第一加热器 (3)和第二加热器 (4) 与第三加热器(5)连通之后, 第 三加热器(5)再有一级热介质管路分成两路——第一路与第一套吸收式热交换分系统( I ) 中的发生器(6)连通, 第二路与第二套吸收式热交换分系统 (Π ) 中的发生器(6)连通, 将第二套吸收式热交换分系统 (Π ) 中的二级热交换器 (18) 有一级热介质管路与蒸发器
( 11 ) 连通调整为第二套吸收式热交换分系统 (II ) 中的二级热交换器 (18) 有一级热介 质管路与第一套吸收式热交换分系统 ( I ) 中的蒸发器 (11 ) 连通, 将第一套吸收式热交 换分系统 ( I ) 中蒸发器 (11 ) 有一级热介质管路与循环泵 (17) 连通调整为第一套吸收 式热交换分系统( I )中蒸发器(11 )有一级热介质管路与第二套吸收式热交换分系统( II ) 中的蒸发器 (11 ) 连通, 第二套吸收式热交换分系统 (II ) 中的蒸发器 (11 ) 再有一级热 介质管路与循环泵 (17) 连通, 形成热电联供系统。
22. 热电联供系统, 是在权利要求 22所述的热电联供系统中, 将循环泵(17)有一级 热介质管路经动力循环冷凝器 (2) 与第一加热器 (3) 连通调整为循环泵 (17) 有一级热 介质管路直接与第一加热器(3) 连通, 形成热电联供系统。
23. 热电联供系统, 是在权利要求 23所述的热电联供系统中, 取消第一加热器, 将循 环泵 (17) 有一级热介质管路经第一加热器(3)和第二加热器(4) 与第三加热器(5)连 通调整为循环泵 (17) 有一级热介质管路经第二加热器 (4) 与第三加热器 (5) 连通, 形 成热电联供系统。
24. 热电联供系统,是在权利要求 23所述的热电联供系统中,取消第一加热器和第二 加热器, 将循环泵 (17) 有一级热介质管路经第一加热器 (3) 和第二加热器 (4) 与第三 加热器(5) 连通调整为循环泵 (17) 有一级热介质管路直接与第三加热器 (5) 连通, 形 成热电联供系统。
25. 热电联供系统, 是在权利要求 21-24所述的任一热电联供系统中, 增加新增加热 器(A), 动力机(1 )增设新增蒸汽管路与新增加热器(Α)连通, 新增加热器(Α)还有新 增冷凝液管路与外部连通, 将第三加热器 (5) 有一级热介质管路与发生器 (6) 连通调整 为第三加热器(5)有一级热介质管路经新增加热器(Α) 与发生器 (6)连通, 形成热电联 供系统。
PCT/CN2014/000707 2013-07-30 2014-07-28 热电联供、冷电联供与热电-冷电两用联供系统 WO2015014099A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310342421.8 2013-07-30
CN201310342421 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015014099A1 true WO2015014099A1 (zh) 2015-02-05

Family

ID=51961776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000707 WO2015014099A1 (zh) 2013-07-30 2014-07-28 热电联供、冷电联供与热电-冷电两用联供系统

Country Status (2)

Country Link
CN (1) CN104180557B (zh)
WO (1) WO2015014099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939464A (zh) * 2017-12-21 2018-04-20 西安热工研究院有限公司 一种基于吸收式热泵循环的热电联产供热系统及工作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106403350B (zh) * 2016-05-30 2020-04-21 李华玉 热动联供系统
CN106440466B (zh) * 2016-05-30 2020-04-21 李华玉 热动联供系统
CN106440474B (zh) * 2016-06-27 2020-04-21 李华玉 热动联供系统
CN107490209A (zh) * 2017-07-04 2017-12-19 天津城建大学 一种燃气机结合吸收式热泵的冷热电供应系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099520A (ja) * 1999-09-29 2001-04-13 Osaka Gas Co Ltd ハイブリッド吸収式電力冷温熱供給装置
CN1811303A (zh) * 2006-02-18 2006-08-02 李华玉 单效热泵/双效(或多效)制冷吸收式机组和热电冷联供系统
CN1912499A (zh) * 2006-08-11 2007-02-14 李华玉 开式第一类吸收式热泵及其应用技术
CN1967055A (zh) * 2006-08-25 2007-05-23 李华玉 利用蒸汽动力循环中的乏汽余热进行回热与对外供热技术
US20100107593A1 (en) * 2007-03-07 2010-05-06 University Of New Orleans Research & Technology Foundation Integrated Cooling, Heating, and Power Systems
CN102759265A (zh) * 2012-07-12 2012-10-31 西安交通大学 一种集成吸收式热泵的褐煤预干燥发电系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202041017U (zh) * 2011-04-19 2011-11-16 宁波工程学院 一种吸收式容量调节热泵系统
CN102878603B (zh) * 2012-10-30 2014-10-15 哈尔滨工业大学 燃气-蒸汽循环联合双级耦合热泵供暖装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001099520A (ja) * 1999-09-29 2001-04-13 Osaka Gas Co Ltd ハイブリッド吸収式電力冷温熱供給装置
CN1811303A (zh) * 2006-02-18 2006-08-02 李华玉 单效热泵/双效(或多效)制冷吸收式机组和热电冷联供系统
CN1912499A (zh) * 2006-08-11 2007-02-14 李华玉 开式第一类吸收式热泵及其应用技术
CN1967055A (zh) * 2006-08-25 2007-05-23 李华玉 利用蒸汽动力循环中的乏汽余热进行回热与对外供热技术
US20100107593A1 (en) * 2007-03-07 2010-05-06 University Of New Orleans Research & Technology Foundation Integrated Cooling, Heating, and Power Systems
CN102759265A (zh) * 2012-07-12 2012-10-31 西安交通大学 一种集成吸收式热泵的褐煤预干燥发电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107939464A (zh) * 2017-12-21 2018-04-20 西安热工研究院有限公司 一种基于吸收式热泵循环的热电联产供热系统及工作方法
CN107939464B (zh) * 2017-12-21 2024-03-01 西安热工研究院有限公司 一种基于吸收式热泵循环的热电联产供热系统及工作方法

Also Published As

Publication number Publication date
CN104180557B (zh) 2017-07-21
CN104180557A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5194122B2 (ja) 熱供給用熱交換装置
CN100507375C (zh) 一种大温差集中供热系统
CN105841396B (zh) 一种基于余热深度回收的冷热电三联供复合供能系统
WO2015014099A1 (zh) 热电联供、冷电联供与热电-冷电两用联供系统
CN101619662A (zh) 一种热电厂余热回收及热水梯级加热供热方法
CN106382667B (zh) 一种电厂供热节能系统及方法
CN103727703B (zh) 一种再利用冷热电三联供系统
CN102997482B (zh) 采暖工况回收烟气余热的直燃型溴化锂吸收式冷热水机组
WO2015014098A1 (zh) 热电联供、冷电联供与热电-冷电两用联供系统
CN206320832U (zh) 一种热泵与高背压凝汽器联合供热系统
WO2015066831A1 (zh) 一种复合式换热机组
CN208040541U (zh) 燃气轮机循环烟气余热回收与进气冷却联合系统
CN107270373A (zh) 一种分级抽汽梯级利用供热系统
CN101701537A (zh) 使用中低焓能源作为热源的热电联产系统
Lei et al. Study on different heat supplementation strategies for a combined cooling, heating and power system
WO2023029404A1 (zh) 一种可实现能量梯级回收利用的高效灵活供热发电系统
WO2014180163A1 (zh) 分路循环第一类吸收式热泵
CN108638794B (zh) 一种汽车尾气余热利用的综合系统
CN207648903U (zh) 一种分级抽汽梯级利用供热系统
CN101701534B (zh) 利用中低焓能源的热电联产系统
CN207094730U (zh) 一种工业采暖耦合供热系统
CN207230694U (zh) 一种工业抽汽梯级利用供热系统
CN103644006B (zh) 提高汽轮机组余热利用的方法
CN219160443U (zh) 一种多重复合热泵型换热系统
CN106440467B (zh) 热动联供系统

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831781

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14831781

Country of ref document: EP

Kind code of ref document: A1