WO2015066831A1 - 一种复合式换热机组 - Google Patents

一种复合式换热机组 Download PDF

Info

Publication number
WO2015066831A1
WO2015066831A1 PCT/CN2013/001358 CN2013001358W WO2015066831A1 WO 2015066831 A1 WO2015066831 A1 WO 2015066831A1 CN 2013001358 W CN2013001358 W CN 2013001358W WO 2015066831 A1 WO2015066831 A1 WO 2015066831A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat pump
heat
side pipeline
exchange unit
Prior art date
Application number
PCT/CN2013/001358
Other languages
English (en)
French (fr)
Inventor
付林
江亿
张世刚
孙健
肖常磊
杨巍巍
唐道柯
齐心
Original Assignee
清华大学
付林
江亿
张世刚
孙健
肖常磊
杨巍巍
唐道柯
齐心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 付林, 江亿, 张世刚, 孙健, 肖常磊, 杨巍巍, 唐道柯, 齐心 filed Critical 清华大学
Priority to PCT/CN2013/001358 priority Critical patent/WO2015066831A1/zh
Publication of WO2015066831A1 publication Critical patent/WO2015066831A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/20Sewage water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the invention relates to a heat exchange unit for picking and hot water supply, in particular to a composite heat exchange unit capable of greatly increasing the temperature difference between the hot water supply and the return water of the central heating system, belonging to energy technology. field. Background technique
  • an object of the present invention is to provide a composite heat exchange unit capable of greatly increasing the temperature difference between the hot water supply and the return water of the primary heating system.
  • a composite heat exchanger unit characterized in that the heat exchange unit comprises a compression heat pump, an absorption heat pump, one or more water-water heat exchangers and a connecting pipeline;
  • the connecting pipeline is divided into two parts: a primary side pipeline and a secondary side pipeline: the primary side pipeline adopts a serially sequential connection manner, that is, the primary side pipeline sequentially passes through the absorption heat pump.
  • the secondary side adopts a connection mode of first parallel connection and then series connection, that is, the secondary side pipeline is divided into two paths, one passage passes through several water-water heat exchangers, and the other passage passes through the condenser of the absorption heat pump in turn.
  • the condenser of the compression heat pump, the two secondary side pipelines are combined into one way and then directly connected to the heat user or through the remaining water-water heat exchangers to be connected to the heat user.
  • the compression heat pump is a positive displacement compressor or a centrifugal compressor.
  • the heat exchange unit is installed in a primary network and a secondary network heat exchange station of the central heating system, and the end of the mining is in the form of a floor pick, a fan coil or a helium sheet.
  • the utility model relates to a composite heat exchange unit, characterized in that the heat exchange unit comprises a compression heat pump, an absorption heat pump, one or more water-water heat exchangers and a connecting pipeline; the connecting pipeline is divided into a primary side pipeline and The secondary side pipeline has two parts: the primary side pipeline adopts a serially sequential connection manner, that is, the primary side pipeline sequentially passes through the generator of the absorption heat pump, the water-water heat exchanger, An evaporator of the absorption heat pump and an evaporator of the compression heat pump; the secondary side pipeline also adopts a serially sequential connection manner, that is, the secondary side pipeline sequentially passes through the absorption heat pump The condenser, the condenser of the compression heat pump and the water-water heat exchanger are connected to a heat user.
  • the compression heat pump is a positive displacement compressor or a centrifugal compressor.
  • the heat exchange unit is installed in a primary network and a secondary network heat exchange station of the central heating system, and the end of the mining is in the form of a floor pick, a fan coil or a helium sheet.
  • the utility model relates to a composite heat exchange unit, characterized in that the heat exchange unit comprises a compression heat pump, an absorption heat pump, one or more water-water heat exchangers and a connecting pipeline; the connecting pipeline is divided into a primary side pipeline and The secondary side pipeline has two parts: the primary side pipeline adopts a serially sequential connection manner, that is, the primary side pipeline sequentially passes through the generator of the absorption heat pump, the water-water heat exchanger, An evaporator of the absorption heat pump and an evaporator of the compression heat pump; the secondary side pipeline adopts an independent and separate connection manner, that is, the secondary side pipeline passes through the water-water heat exchanger and The condenser of the absorption heat pump and the condenser of the compression heat pump are sequentially passed through to the heat user.
  • the primary side pipeline adopts a serially sequential connection manner, that is, the primary side pipeline sequentially passes through the generator of the absorption heat pump, the water-water heat exchanger, An evaporator of the absorption heat pump and an
  • the compression heat pump is a positive displacement compressor or a centrifugal compressor.
  • the heat exchange unit is installed in a primary network and a secondary network heat exchange station of the central heating system, and the end of the mining is in the form of a floor pick, a fan coil or a helium sheet.
  • the heat exchange unit of the invention comprises a compression heat pump, an absorption heat pump and a water-water heat exchanger, and the primary network hot water is sequentially passed through the absorption heat pump.
  • the generator, the water-water heat exchanger, the evaporator of the absorption heat pump and the evaporator of the compression heat pump utilize the heat ladder of the primary hot water, thereby greatly increasing the supply of the primary heating water of the central heating system.
  • the temperature difference of the return water can greatly reduce the initial investment of the pipeline system and the power consumption of the pump, in order to utilize the low grade of the heat source. Thermal energy and even waste heat and waste heat have created conditions to improve the overall energy utilization efficiency of the system and reduce the cost of heating.
  • the present invention makes it possible to make the outlet temperature of the primary net lower than the inlet temperature of the secondary network, which is unachievable for conventional heat exchangers.
  • the invention adopts the technology of combining heat exchange and compression heat pump to effectively expand the supply area and relieve the contradiction of insufficient heating capacity of the pipe network under the condition that the original pipe network conditions are unchanged.
  • the invention can reduce the return water temperature of the primary net to 15 ° C or below, thereby expanding the source of waste heat, increasing the amount of waste heat recovery, and improving the heating capacity of the entire system. For example, in the field of wet-cold thermal power plants or industrial waste heat recovery, a large amount of waste heat is distributed in the range of 15 ° C to 30 ° C. 4.
  • the water temperature of the generator entering the absorption heat pump of the present invention may not be high, since it still has a certain driving force, it can be used to reduce the outlet water temperature, which can reduce the output of the compression heat pump, thereby reducing the compression heat pump. Energy consumption. 5.
  • the compression heat pump of the present invention needs to consume a certain high-grade heat source, but the return water temperature of the compression heat pump can be more than the return water temperature of only the heat exchange technology. The lower, lower temperature return water can absorb more waste heat or waste heat after being transported to the concentrated heat source, so the operating cost is lower than that of the heat transfer technology alone.
  • the efficiency of the compression heat pump is also greatly improved, and the running cost will be reduced in one step.
  • the heat exchange unit adopting the heat exchange and compression heat pump composite technology has the advantages of improving the pipeline network transportation capacity, effectively recovering the waste heat resources, expanding the heating radius of the central heating, saving the heating energy consumption, and reducing the heating cost. Can produce far-reaching meaning.
  • FIG. 1 is a schematic view of a heat exchange unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view of a heat exchange unit according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic view of a heat exchange unit according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic view of a heat exchange unit according to Embodiment 4 of the present invention. detailed description
  • the heat exchange unit 10 includes a compression heat pump 1, an absorption heat pump 2, a water-water heat exchanger 3, and a connecting line.
  • the connecting pipeline is divided into a primary side pipeline 41 and a secondary side (user side) pipeline 42.
  • the primary side pipeline 41 is connected in series in a stepwise manner, that is, the primary side pipeline 41 is sequentially subjected to absorption.
  • the secondary side line 42 is connected in parallel, that is, the secondary side pipeline 42 points
  • the heat exchange unit 20 is similar in construction to the heat exchange unit 10 of the first embodiment, except that the secondary side line 42 is separately separated by two paths. That is, after passing through the water-water heat exchanger 3, it is directly connected to the heat user, and the other way passes through the condenser of the absorption heat pump 2 and the condenser of the compression heat pump 1 and then communicates to the heat user.
  • the heat exchange unit 20 can output hot water of two parameters, that is, the secondary network hot water parameter of the compression heat pump 1 and the absorption heat pump 2 and the secondary network hot water passing through the water-water heat exchanger 3. The parameters can be different and delivered to different hot users.
  • the heat exchange unit 30 is similar in construction to the heat exchange unit 10 of the first embodiment, except that the secondary side line 42 is also connected in series by series.
  • the secondary side line 42 passes through the condenser of the absorption heat pump 2, the condenser of the compression heat pump 1, and the water-water heat exchanger 3 in sequence, and then communicates to the heat user.
  • FIG. 4 shows a heat exchange unit 40 provided in accordance with an embodiment 4 of the present invention, the heat exchange unit 40 comprising a two-stage water-water heat exchanger, namely a primary water-water heat exchanger 3a and a secondary water-water heat exchanger 3b.
  • the primary side line 41 of the heat exchange unit 40 is still connected in series by series, but the secondary side line 42 is connected in series and then connected in series, that is, the secondary side line 42 is divided into two paths, one way.
  • the other passage After passing through the secondary water-water heat exchanger 3b, the other passage passes through the condenser of the absorption heat pump 2 and the condenser of the compression heat pump 1, and then the two pipelines merge into one road and then pass through the water-water heat exchanger 3a. Connect to hot users.
  • the compression heat pump 1 is a positive displacement compressor or a centrifugal compressor.
  • the heat exchanger unit 10 provided in the first embodiment and the heat exchange unit 40 provided in the embodiment 4 will be respectively described in the flow of the application of the present invention in a central heating system.
  • Embodiment 1 As shown in FIG. 1 , in actual operation, a generator of a 115° C. sub-network hot water input from a concentrated heat source enters the absorption heat pump 2 as a driving heat source, and the concentrated heat in the absorption heat pump 2 is concentrated.
  • Lithium bromide solution after the heat is cooled down to about 90 °C, it flows out from the generator of the absorption heat pump 2, enters the water-water heat exchanger 3 as a heating heat source to heat the secondary network hot water; after the heat is cooled to about 50 °C, The water-water heat exchanger 3 flows out, and then enters the evaporator of the absorption heat pump 2 as a low-grade heat source; after the heat is cooled down to about 25 ° C, the evaporator of the compression heat pump 1 is entered as a low-grade heat source, and the heat is cooled to After about 15 °C, the concentrated heat source is sent back, and the cycle is repeated.
  • the 45°C secondary network hot water returned by the hot user returns to the heat exchanger unit 20: the road enters the condenser of the absorption heat pump 2 to absorb heat, is heated to about 50 °C, then flows out, and then enters The condenser of the compression heat pump 1 absorbs heat and is heated to about 60 ° C and then flows out; the other enters the water-water heat exchanger 3 and exchanges heat with the primary hot water, and is heated to about 60 ° C and then flows out. Two 60°C hot waters are combined and sent to the hot user. It can be seen that the heat exchange unit 10 provided in this embodiment can adopt the combination of a heat pump and a heat exchanger.
  • the heat exchange unit 10 is generally installed in each heat station of a large central heating system, especially for the primary network and the secondary network heat exchange station, and the end of the mining can adopt floor picking, fan coil or xenon sheet, etc. form.
  • Embodiment 4 As shown in FIG. 4, in actual operation, the generator of the absorption heat pump 2, which is output from the 115°C-secondary hot water of the concentrated heat source, enters the generator of the absorption heat pump 2 as a driving heat source, and the concentration in the heat absorption heat pump 2 is concentrated.
  • Lithium bromide solution after the heat is cooled to about 90 °C, it flows out from the generator of the absorption heat pump 2, enters the secondary water-water heat exchanger 3b as a heating source to heat the secondary network hot water; the heat is cooled to about 65 °C Then, it flows out from the secondary water-water heat exchanger 3b, and then enters the first-stage water-water heat exchanger 3a to heat the secondary network hot water; after the heat is cooled to 50 ° C, it flows out from the first-stage water-water heat exchanger 3a.
  • the evaporator of the absorption heat pump 2 enters the evaporator of the absorption heat pump 2 as a low-grade heat source; after the heat is cooled to 25 ° C, the evaporator of the compression heat pump 1 is entered as a low-grade heat source, and the heat is cooled to about 15 ° C and then passed through the primary network. The return pipe is sent back to the centralized heat source, and the cycle is repeated.
  • the 45°C secondary network hot water returned by the hot user returns to the heat exchange unit 40: the road passes through the secondary water-water heat exchanger 3b to exchange heat with the primary hot water, and is heated to 60°. C flows out after the left and right; the other enters the condenser of the absorption heat pump 2 to absorb heat, is heated to about 50 ° C and then flows out, and then enters the condenser of the compression heat pump 1 to absorb heat, and is heated to about 60 ° C. After flowing out, the two 60°C hot waters merge and enter the first-stage water-water heat exchanger 3a, which is heated to 67 °C and sent to the hot user.
  • the heat exchange unit 40 provided by the embodiment can effectively use the cascade utilization of the high temperature hot water by the combination of the heat pump and the two-stage heat exchanger, realize the temperature difference of the supply and return water of the 10 CTC, and can produce the quality. High pick or hot water.
  • the heat exchange unit 40 is generally installed in each heat station of a large central heating system, in particular, a primary network and a secondary network heat exchange station, and the end of the picking is in the form of a helium gas sheet.

Abstract

一种复合式换热机组,包括压缩式热泵(1)、吸收式热泵(2)、一个以上水-水换热器(3)以及连接管路,连接管路分为一次侧管路(41)和二次侧管路(42)两部分,一次侧管路为逐级顺序串联的连接方式,即一次侧管路依次连通吸收式热泵的发生器、水-水换热器、吸收式热泵的蒸发器和压缩式热泵的蒸发器,二次侧管路采用先并联后串联、逐级顺序串联或独立分开的连接方式连通到热用户。该换热机组能够将一次网热水的热量梯级利用,从而大幅度增大集中供热系统一次网热水的供、回水温差,减少管路系统的初投资和水泵运行电耗,提高系统综合能源利用效率,降低供热成本。

Description

一种复合式换热机组 技术领域
本发明涉及一种用于采暧、 供热水的换热机组, 具体涉及一种能够使集中供热 系统一次网热水供、 回水温差大幅增大的复合式换热机组, 属于能源技术领域。 背景技术
随着城市集中供暧规模的不断增加, 集中热源产生的高温热水往往要经过较长 距离的输送才能达到热用户处。 为扩大供暧面积, 降低输送成本, 并为回收电厂余 热创造条件, 清华大学付林等提出了专利号为: ZL200810101064. 5 , 发明名称为: "一种热泵型换热机组" 的发明专利。 该专利采用换热与热水驱动的吸收式热泵复 合技术解决以上问题, 并且在越来越多的项目上得到应用。 然而在推广和应用中, 发现该专利存在如下问题:
1 ) 受到热网供水温度的限制: 某些供热系统由于设计温度或运行年限的限制, 一次网不能输送超过 115°C的热水, 导致进入吸收式热泵换热机组发生器的水温较 低, 对于吸收式热泵会造成驱动力不足, 因此吸收式热泵换热机组的出水温度很难 降到 35°C以下, 从而限制了供、 回水温差的扩大, 使得供热能力不足。 而管网改造 受到建设环境、 成本、 市容等得诸多限制在很多时候是无法进行的。
2 ) 由于回水温度太高, 回水输送回集中热源后, 导致无法有效回收余热源的 余热资源, 造成供热量减少。
因此在这样集中供热的应用场所, 采用新的技术手段降低高温热水的回水温度 以进一步增大其供、 回水温差, 将对扩大集中供热的供热半径, 节约供热能耗, 降 低供热成本产生深远的意义。 发明内容
针对上述问题, 本发明的目的是提供一种能够使集中供热系统一次网热水供、 回水温差大幅增大的复合式换热机组。
为实现上述目的, 本发明采取以下技术方案: 一种复合式换热机组, 其特征在 于, 该换热机组包括压缩式热泵、 吸收式热泵、 一个以上水-水换热器以及连接管 路; 所述连接管路分为一次侧管路和二次侧管路两部分: 所述一次侧管路采用逐级 顺序串联的连接方式, 即所述一次侧管路依次经过所述吸收式热泵的发生器、 所述 水 -水换热器、 所述吸收式热泵的蒸发器和所述压缩式热泵的蒸发器; 所述二次侧 管路采用先并联后串联的连接方式, 即所述二次侧管路分为两路, 一路经过若干所 述水 -水换热器, 另一路依次经过所述吸收式热泵的冷凝器、 所述压缩式热泵的冷 凝器, 两路所述二次侧管路汇合成一路后再直接连通到热用户或经过其余所述水- 水换热器后连通到热用户。
在一个优选的实施例中, 所述压缩式热泵是容积式压缩机或离心式压缩机。 在一个优选的实施例中, 该换热机组安装在集中供热系统的一次网与二次网换 热站中, 采暧末端采用地板采暧、 风机盘管或暧气片形式。
一种复合式换热机组, 其特征在于, 该换热机组包括压缩式热泵、吸收式热泵、 一个以上水 -水换热器以及连接管路; 所述连接管路分为一次侧管路和二次侧管路 两部分: 所述一次侧管路采用逐级顺序串联的连接方式, 即所述一次侧管路依次经 过所述吸收式热泵的发生器、 所述水 -水换热器、 所述吸收式热泵的蒸发器和所述 压缩式热泵的蒸发器; 所述二次侧管路也采用逐级顺序串联的连接方式, 即所述二 次侧管路依次经过所述吸收式热泵的冷凝器、 所述压缩式热泵的冷凝器和所述水- 水换热器后连通到热用户。
在一个优选的实施例中, 所述压缩式热泵是容积式压缩机或离心式压缩机。 在一个优选的实施例中, 该换热机组安装在集中供热系统的一次网与二次网换 热站中, 采暧末端采用地板采暧、 风机盘管或暧气片形式。
一种复合式换热机组, 其特征在于, 该换热机组包括压缩式热泵、吸收式热泵、 一个以上水 -水换热器以及连接管路; 所述连接管路分为一次侧管路和二次侧管路 两部分: 所述一次侧管路采用逐级顺序串联的连接方式, 即所述一次侧管路依次经 过所述吸收式热泵的发生器、 所述水 -水换热器、 所述吸收式热泵的蒸发器和所述 压缩式热泵的蒸发器; 所述二次侧管路采用独立分开的连接方式, 即所述二次侧管 路经过所述水-水换热器和依次经过所述吸收式热泵的冷凝器、 所述压缩式热泵的 冷凝器后分别连通到热用户。
在一个优选的实施例中, 所述压缩式热泵是容积式压缩机或离心式压缩机。 在一个优选的实施例中, 该换热机组安装在集中供热系统的一次网与二次网换 热站中, 采暧末端采用地板采暧、 风机盘管或暧气片形式。
本发明由于采取以上技术方案, 其具有以下优点: 1、 由于本发明的换热机组 包括压缩式热泵、 吸收式热泵和水 -水换热器, 并使得一次网热水依次经过吸收式 热泵的发生器、 水 -水换热器、 吸收式热泵的蒸发器和压缩式热泵的蒸发器, 将一 次网热水的热量梯级利用, 从而大幅度增大了集中供热系统一次网热水的供、 回水 温差, 因此可以的大大减少管路系统的初投资和水泵运行电耗, 为利用热源低品位 热能甚至废热余热等创造了条件, 提高系统综合能源利用效率, 降低供热成本。 另 外, 本发明可以使一次网的出水温度低于二次网的进水温度, 这对常规换热器而言 是无法实现的。 2、 本发明采用换热与压缩式热泵复合的技术可以在原有管网条件 不变的情况下, 有效的扩大供暧面积, 缓解管网供热能力不足的矛盾。 3、 本发明 可以将一次网的回水温度降低至 15°C或以下, 从而可以扩大余热的来源, 增大余热 回收量, 提高整个系统的供热能力。 例如在湿冷型热电厂或工业余热回收领域, 大 量的余热分布在 15°C-30°C的区间。 4、虽然本发明进入吸收式热泵的发生器水温可 能并不高, 但是由于其仍具有一定的驱动力, 因此可以用来降低出水温度, 这样可 以减少压缩式热泵的出力, 进而降低压缩式热泵的能源消耗。 5、 虽然本发明的压 缩式热泵需要消耗一定的高品位热源, 运行成本相对仅采用换热技术要高, 但是由 于采用压缩式热泵的回水温度可以比仅采用换热技术的回水温度更低, 更低温度的 回水输送到集中热源后能够吸收更多的余热或废热, 因此从整个系统而言, 运行费 用比仅采用换热技术要低。 同时随着技术的进步及流程的优化, 压缩式热泵的效率 也有很大的提高, 运行成本将一步降低。 由此可见, 本发明采用换热与压缩式热泵 复合技术的换热机组对于提高管网输送能力, 有效回收余热资源, 扩大集中供热的 供热半径, 节约供热能耗, 降低供热成本能够产生深远的意义。 附图说明
以下结合附图来对本发明进行详细的描绘。 然而应当理解, 附图的提供仅为了 更好地理解本发明, 它们不应该理解成对本发明的限制。
图 1为本发明实施例 1的换热机组示意图;
图 2为本发明实施例 2的换热机组示意图;
图 3为本发明实施例 3的换热机组示意图;
图 4为本发明实施例 4的换热机组示意图。 具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
图 1显示了根据本发明实施 1提供的换热机组 10, 该换热机组 10包括压缩式 热泵 1、 吸收式热泵 2、 水-水换热器 3以及连接管路。 其中, 连接管路分为一次侧 管路 41和二次侧 (用户侧) 管路 42两部分: 一次侧管路 41采用逐级顺序串联连 接的方式, 即一次侧管路 41依次经过吸收式热泵 2的发生器、 水-水换热器 3、 吸 收式热泵 2的蒸发器和压缩式热泵 1的蒸发器; 二次侧管路 42采用并联连接的方 式, 即二次侧管路 42分为两路, 一路经过水-水换热器 3, 另一路依次经过吸收式 热泵 2的冷凝器和压缩式热泵 1的冷凝器, 然后这两路管路汇合成一路后连通到热 用户。
图 2显示了根据本发明实施 2提供的换热机组 20, 该换热机组 20与实施例 1 中的换热机组 10结构相似, 区别仅在于二次侧管路 42采用独立分开的两路, 即一 路经过水-水换热器 3后直接连通到热用户, 另一路依次经过吸收式热泵 2的冷凝 器和压缩式热泵 1 的冷凝器后连通到热用户。 此时, 换热机组 20可以输出两种参 数的热水, 即经过压缩式热泵 1和吸收式热泵 2的二次网热水参数和经过水 -水换 热器器 3的二次网热水参数可以不相同, 分别输送到不同的热用户。
图 3显示了根据本发明实施 3提供的换热机组 30, 该换热机组 30与实施例 1 中的换热机组 10结构相似, 区别仅在于二次侧管路 42也采用逐级顺序串联连接的 方式, 即二次侧管路 42依次经过吸收式热泵 2的冷凝器、 压缩式热泵 1的冷凝器 和水-水换热器 3后连通到热用户。
图 4显示了根据本发明实施 4提供的换热机组 40,该换热机组 40包括两级水- 水换热器, 即一级水-水换热器 3a和二级水-水换热器 3b。该换热机组 40的一次侧 管路 41仍然采用逐级顺序串联连接的方式, 但二次侧管路 42采用先并联后串联连 接的方式, 即二次侧管路 42分为两路, 一路经过二级水-水换热器 3b, 另一路依次 经过吸收式热泵 2的冷凝器和压缩式热泵 1的冷凝器, 然后这两路管路汇合成一路 后经过水-水换热器 3a再连通到热用户。
在一个优选的实施例中, 压缩式热泵 1是容积式压缩机或离心式压缩机。
下面结合实施例 1提供的换热机组 10和实施例 4提供的换热机组 40分别说明 本发明在某集中供热系统中应用的流程。
实施例 1 : 如图 1所示, 在实际运行中, 由集中热源输出的 115°C—次网热水 进水进入吸收式热泵 2的发生器作为驱动热源, 加热吸收式热泵 2中的浓缩溴化锂 溶液; 放热降温至 90°C左右后从吸收式热泵 2的发生器流出, 进入水-水换热器 3 作为加热热源加热二次网热水; 放热降温至 50°C左右后从水-水换热器 3流出, 再 进入吸收式热泵 2的蒸发器作为低品位热源;放热降温至 25°C左右后再进入压缩式 热泵 1的蒸发器作为低品位热源,放热降温至 15°C左右后送回集中热源,如此循环。
由热用户输出的 45°C二次网热水回水分为两路进入换热机组 10: —路进入吸 收式热泵 2的冷凝器中吸收热量, 被加热至 50°C左右后流出, 再进入压缩式热泵 1 的冷凝器中吸收热量, 被加热至 60°C左右后流出; 另一路进入水-水换热器 3中与 一次网热水进行换热, 被加热到 60°C左右后流出, 两路 60°C热水汇合在一起后送 往热用户。 由此可见, 本实施例提供的换热机组 10采用热泵-换热器组合的方式能 够有效的进行高温热水的梯级利用, 实现了 locrc的供、 回水温差, 并能够产生出 满足使用要求的采暧或生活热水。 该换热机组 10 —般安装在大型集中供热系统的 各热力站中, 特别是一次网与二次网换热站用, 采暧末端可采用地板采暧, 风机盘 管或暧气片等形式。
实施例 4: 如图 4所示, 在实际运行中, 由集中热源输出的 115°C—次网热水 进水进入吸收式热泵 2的发生器作为驱动热源, 加热吸收式热泵 2中的浓缩溴化锂 溶液; 放热降温至 90°C左右后从吸收式热泵 2的发生器流出, 进入二级水-水换热 器 3b作为加热源加热二次网热水; 放热降温至 65°C左右后从二级水-水换热器 3b 流出, 再进入一级水-水换热器 3a加热二次网热水; 放热降温至 50°C后从一级水- 水换热器 3a流出,再进入吸收式热泵 2的蒸发器作为低品位热源;放热降温至 25°C 后再进入压缩式热泵 1的蒸发器作为低品位热源,放热降温至 15°C左右后后通过一 次网回水管送回集中热源, 如此循环。
由热用户输出的 45°C二次网热水回水分为两路进入换热机组 40: —路经过二 级水-水换热器 3b与一次网热水进行换热, 被加热到 60°C左右后流出; 另一路进入 吸收式热泵 2的冷凝器中吸收热量, 被加热至 50°C左右后流出, 再进入压缩式热泵 1的冷凝器中吸收热量, 被加热至 60°C左右后流出, 两路 60°C热水汇合在一起后进 入一级水-水换热器 3a, 被加热到 67°C后送往热用户。 由此可见, 本实施例提供的 换热机组 40采用热泵 -两级换热器组合的方式能够有效进行高温热水的梯级利用, 实现了 10CTC的供、 回水温差, 并能够产生出品质较高的采暧或生活热水。 该换热 机组 40 —般安装在大型集中供热系统的各热力站中, 特别是一次网与二次网换热 站用, 采暧末端采用暧气片形式。
上述各实施例仅用于对本发明的目的、 技术方案和有益效果进行了进一步详细 说明, 并不用于限制本发明, 凡在本发明的精神和原则之内, 所做的任何修改、 等 同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权利要求
1、 一种复合式换热机组, 其特征在于, 该换热机组包括压缩式热泵、 吸收式 热泵、 一个以上水 -水换热器以及连接管路;
所述连接管路分为一次侧管路和二次侧管路两部分: 所述一次侧管路采用逐级 顺序串联的连接方式, 即所述一次侧管路依次经过所述吸收式热泵的发生器、 所述 水 -水换热器、 所述吸收式热泵的蒸发器和所述压缩式热泵的蒸发器; 所述二次侧 管路采用先并联后串联的连接方式, 即所述二次侧管路分为两路, 一路经过若干所 述水 -水换热器, 另一路依次经过所述吸收式热泵的冷凝器、 所述压缩式热泵的冷 凝器, 两路所述二次侧管路汇合成一路后再直接连通到热用户或经过其余所述水- 水换热器后连通到热用户。
2、 如权利要求 1 所述的一种复合式换热机组, 其特征在于, 所述压缩式热泵 是容积式压缩机或离心式压缩机。
3、 如权利要求 1或 2所述的一种复合式换热机组, 其特征在于, 该换热机组 安装在集中供热系统的一次网与二次网换热站中, 采暧末端采用地板采暧、 风机盘 管或暧气片形式。
4、 一种复合式换热机组, 其特征在于, 该换热机组包括压缩式热泵、 吸收式 热泵、 一个以上水 -水换热器以及连接管路;
所述连接管路分为一次侧管路和二次侧管路两部分: 所述一次侧管路采用逐级 顺序串联的连接方式, 即所述一次侧管路依次经过所述吸收式热泵的发生器、 所述 水 -水换热器、 所述吸收式热泵的蒸发器和所述压缩式热泵的蒸发器; 所述二次侧 管路也采用逐级顺序串联的连接方式, 即所述二次侧管路依次经过所述吸收式热泵 的冷凝器、 所述压缩式热泵的冷凝器和所述水 -水换热器后连通到热用户。
5、 如权利要求 4 所述的一种复合式换热机组, 其特征在于, 所述压缩式热泵 是容积式压缩机或离心式压缩机。
6、 如权利要求 4或 5所述的一种复合式换热机组, 其特征在于, 该换热机组 安装在集中供热系统的一次网与二次网换热站中, 采暧末端采用地板采暧、 风机盘 管或暧气片形式。
7、 一种复合式换热机组, 其特征在于, 该换热机组包括压缩式热泵、 吸收式 热泵、 一个以上水 -水换热器以及连接管路;
所述连接管路分为一次侧管路和二次侧管路两部分: 所述一次侧管路采用逐级 顺序串联的连接方式, 即所述一次侧管路依次经过所述吸收式热泵的发生器、 所述 水 -水换热器、 所述吸收式热泵的蒸发器和所述压缩式热泵的蒸发器; 所述二次侧 管路采用独立分开的连接方式, 所述二次侧管路经过所述水-水换热器和依次连通 所述吸收式热泵的冷凝器、 所述压缩式热泵的冷凝器后分别连通到热用户。
8、 如权利要求 Ί 所述的一种复合式换热机组, 其特征在于, 所述压缩式热泵 是容积式压缩机或离心式压缩机。
9、 如权利要求 Ί或 8所述的一种复合式换热机组, 其特征在于, 该换热机组 安装在集中供热系统的一次网与二次网换热站中, 采暧末端采用地板采暧、 风机盘 管或暧气片形式。
PCT/CN2013/001358 2013-11-08 2013-11-08 一种复合式换热机组 WO2015066831A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001358 WO2015066831A1 (zh) 2013-11-08 2013-11-08 一种复合式换热机组

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/001358 WO2015066831A1 (zh) 2013-11-08 2013-11-08 一种复合式换热机组

Publications (1)

Publication Number Publication Date
WO2015066831A1 true WO2015066831A1 (zh) 2015-05-14

Family

ID=53040753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001358 WO2015066831A1 (zh) 2013-11-08 2013-11-08 一种复合式换热机组

Country Status (1)

Country Link
WO (1) WO2015066831A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123395A (zh) * 2016-07-20 2016-11-16 燕山大学 一种兼具大温差换热和集中热制冷功能的新型热力站系统
CN107461801A (zh) * 2017-08-08 2017-12-12 广州大学 一种集中供热系统的节能控制方法
CN107726442A (zh) * 2017-10-18 2018-02-23 烟台华蓝新瑞节能科技有限公司 一种热网平衡调控方法
CN109780611A (zh) * 2017-11-15 2019-05-21 北京华源泰盟节能设备有限公司 一种混水式大温差供热设备及供热方法
CN111637509A (zh) * 2020-06-08 2020-09-08 河北工业大学 一种新型组合散热末端系统
CN111981547A (zh) * 2020-05-22 2020-11-24 太原大四方节能环保股份有限公司 一种集中供热换热站室内温度直接调控装置与调控方法
CN113375212A (zh) * 2021-05-17 2021-09-10 大唐吉林发电有限公司热力分公司 集中供热管网回水高效回收热泵系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231004A (zh) * 2008-02-28 2008-07-30 清华大学 一种大温差集中供热系统
CN101236032A (zh) * 2008-02-28 2008-08-06 清华大学 一种热泵型换热机组
CN201138011Y (zh) * 2007-12-07 2008-10-22 李遇春 火电厂及制冷企业冷却塔循环水低位可再生能供暖装置
CN101629733A (zh) * 2009-08-18 2010-01-20 清华大学 一种降低供热管路回水温度的方法
CN201772540U (zh) * 2010-08-20 2011-03-23 吉林省宇光能源股份有限公司 污水源热泵供热系统
CN102102884A (zh) * 2011-03-18 2011-06-22 清华大学 一种季节性蓄热的供热系统及运行方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201138011Y (zh) * 2007-12-07 2008-10-22 李遇春 火电厂及制冷企业冷却塔循环水低位可再生能供暖装置
CN101231004A (zh) * 2008-02-28 2008-07-30 清华大学 一种大温差集中供热系统
CN101236032A (zh) * 2008-02-28 2008-08-06 清华大学 一种热泵型换热机组
CN101629733A (zh) * 2009-08-18 2010-01-20 清华大学 一种降低供热管路回水温度的方法
CN201772540U (zh) * 2010-08-20 2011-03-23 吉林省宇光能源股份有限公司 污水源热泵供热系统
CN102102884A (zh) * 2011-03-18 2011-06-22 清华大学 一种季节性蓄热的供热系统及运行方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123395A (zh) * 2016-07-20 2016-11-16 燕山大学 一种兼具大温差换热和集中热制冷功能的新型热力站系统
CN106123395B (zh) * 2016-07-20 2017-04-12 燕山大学 一种兼具大温差换热和集中热制冷功能的新型热力站系统
CN107461801A (zh) * 2017-08-08 2017-12-12 广州大学 一种集中供热系统的节能控制方法
CN107726442A (zh) * 2017-10-18 2018-02-23 烟台华蓝新瑞节能科技有限公司 一种热网平衡调控方法
CN107726442B (zh) * 2017-10-18 2020-10-23 烟台华蓝新瑞节能科技有限公司 一种热网平衡调控方法
CN109780611A (zh) * 2017-11-15 2019-05-21 北京华源泰盟节能设备有限公司 一种混水式大温差供热设备及供热方法
CN111981547A (zh) * 2020-05-22 2020-11-24 太原大四方节能环保股份有限公司 一种集中供热换热站室内温度直接调控装置与调控方法
CN111637509A (zh) * 2020-06-08 2020-09-08 河北工业大学 一种新型组合散热末端系统
CN113375212A (zh) * 2021-05-17 2021-09-10 大唐吉林发电有限公司热力分公司 集中供热管网回水高效回收热泵系统

Similar Documents

Publication Publication Date Title
JP5194122B2 (ja) 熱供給用熱交換装置
WO2015066831A1 (zh) 一种复合式换热机组
CN103673035A (zh) 一种复合式换热机组
CN105841396B (zh) 一种基于余热深度回收的冷热电三联供复合供能系统
CN103542446B (zh) 一种补燃型吸收式换热机组
CN103673059A (zh) 一种压缩式换热机组
WO2009105930A1 (zh) 一种集中供热系统
CN103727703B (zh) 一种再利用冷热电三联供系统
CN203586352U (zh) 复合式换热机组
CN109489101B (zh) 一种集中供热系统及其集中供热方法
CN210345602U (zh) 一种利用电压缩式热泵的大温差集中供热系统
CN105444247B (zh) 基于多种低品位余热综合回收利用的区域能源供应系统
WO2015014098A1 (zh) 热电联供、冷电联供与热电-冷电两用联供系统
CN203586377U (zh) 压缩式换热机组
WO2015014099A1 (zh) 热电联供、冷电联供与热电-冷电两用联供系统
CN106352589A (zh) 一种分体式吸收式换热机组及其换热方法
CN101929759B (zh) 以高温气体为热源的吸收式供热制冷一体机
CN204757083U (zh) 供热系统
CN201163126Y (zh) 一种热泵型换热装置
CN203837330U (zh) Co2热泵热交换增焓装置
CN104848330B (zh) 供热系统
WO2014111020A1 (zh) 一种冷热平衡机组
CN207648903U (zh) 一种分级抽汽梯级利用供热系统
CN103697523A (zh) 热泵型增热换热机组
CN202792189U (zh) 热泵型增热换热机组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897247

Country of ref document: EP

Kind code of ref document: A1