WO2015010398A1 - 核电厂安全壳及乏燃料水池事故后中长期冷却方法及系统 - Google Patents

核电厂安全壳及乏燃料水池事故后中长期冷却方法及系统 Download PDF

Info

Publication number
WO2015010398A1
WO2015010398A1 PCT/CN2013/087733 CN2013087733W WO2015010398A1 WO 2015010398 A1 WO2015010398 A1 WO 2015010398A1 CN 2013087733 W CN2013087733 W CN 2013087733W WO 2015010398 A1 WO2015010398 A1 WO 2015010398A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
medium
long
power plant
cooling circuit
Prior art date
Application number
PCT/CN2013/087733
Other languages
English (en)
French (fr)
Inventor
杨廷
彭跃
李世光
魏颖娣
Original Assignee
中广核工程有限公司
中国广核集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司 filed Critical 中广核工程有限公司
Priority to GB1602110.7A priority Critical patent/GB2531479B/en
Publication of WO2015010398A1 publication Critical patent/WO2015010398A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/02Arrangements or disposition of passages in which heat is transferred to the coolant; Coolant flow control devices
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/02Details of handling arrangements
    • G21C19/06Magazines for holding fuel elements or control elements
    • G21C19/07Storage racks; Storage pools
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D1/00Details of nuclear power plant
    • G21D1/02Arrangements of auxiliary equipment
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/04Safety arrangements
    • G21D3/06Safety arrangements responsive to faults within the plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the field of nuclear power plant safety, and more particularly to a medium and long-term cooling method and system for a nuclear power plant containment and spent fuel pool accidents that are put into use under an overdesign basis accident condition.
  • Units 1-3 are emergency shutdown due to normal operating conditions, while Unit 4 is in maintenance shutdown.
  • the earthquake caused the loss of off-site electricity, followed by the failure of the emergency power supply (diesel generator) due to the tsunami, resulting in the loss of all functions of the reactor cooling system and causing accidents.
  • the RRI system Component Cooling Water System
  • the RRI system is usually used to cool the heat exchanger including the containment spray system, the spent fuel pool heat exchanger, and the residual heat discharge heat exchanger.
  • Upstream users including heat exchangers and mechanical equipment such as pumps, and transfer heat to the SEC system (Essential Water System) through the RRI heat exchanger; the SEC system takes water from the site water to cool the RRI heat exchanger, and The water is sent to the ambient waters so that the heat is absorbed by the seawater.
  • the above RRI/SEC heat transfer system is usually designed with redundancy, that is, two safety series are adopted. It is discharged into the environment to ensure the safety of the reactor.
  • the existing three generations of nuclear power plant units are equipped with two large columns / four small columns of RRI / SEC heat transfer system, and with SRU system (Dedicated Cooling Water System, dedicated to important cooling water systems).
  • SRU system Dedicated Cooling Water System, dedicated to important cooling water systems.
  • the first column and the second column of the RRI system are coupled into one large column; the third column and the fourth column are coupled to another large column; the SEC system respectively cools the heat exchangers of the first to fourth columns of the RRI system, thereby The nuclear load of the nuclear island user is removed to the sea.
  • the first column or the fourth column of the seawater-cooled EVU system (safety shell heat removal system) is extracted by the SRU system and cooled by the first column of the EVU/SRU.
  • Section 3 of the PTR system fuel pool cooling and purification system. Since the RRI/SEC system is decoupled from the EVU/SRU system, the failure of the RRI/SEC system does not affect the functionality of the EVU/SRU system.
  • the object of the present invention is to provide a medium and long-term cooling method and system for a nuclear power plant containment and a spent fuel pool accident, so that the final heat sink of the nuclear power plant can meet the diversity requirements, and avoid the heat transfer failure under the SBO superimposed LUHS accident. And cause a nuclear leak.
  • the present invention provides a medium- and long-term cooling method for a nuclear power plant containment and a spent fuel pool accident, which replaces the nuclear island upstream user group by a medium- and long-term cooling system composed of an intermediate cooling circuit and a terminal cooling circuit.
  • the residual heat of the heat exchanger is discharged into the atmosphere, and all the electrical equipment in the intermediate cooling circuit and the terminal cooling circuit are powered by independent backup power.
  • the intermediate cooling circuit is connected to the upstream of the nuclear island user heat exchanger via the RRI system pipeline in parallel with the RRI system.
  • the terminal cooling circuit is connected to the intermediate cooling circuit through the intermediate heat exchanger, and the intermediate cooling circuit is connected to the nuclear island upstream user group heat exchanger. After cooling, the terminal cooling circuit uses a cooling tower to discharge heat from the intermediate heat exchanger into the atmosphere.
  • the intermediate cooling circuit and the original pipeline of the RRI system are separated by a double manual isolation valve, and the RRI system and the nuclear island upstream user Manual isolation valves are also provided at both ends of the group heat exchanger connection line; during normal operation of the nuclear power plant unit, the double manual isolation valves on the intermediate cooling circuit side are closed, and the manual isolation valves on the RRI side are open.
  • the nuclear island upstream user group heat exchanger is cooled by the RRI system, and the medium and long-term cooling system is in standby state; after the loss of the final heat trap accident, the double manual isolation valve on the intermediate cooling circuit side is open, and the manual isolation valve on the RRI side In the off state, the nuclear island upstream user group heat exchanger is cooled by the medium and long term cooling system.
  • the intermediate cooling circuit in the standby state is filled with demineralized water. It is necessary to regularly check the water quality and change the water.
  • the terminal cooling circuit in the standby is filled with production water, and the upper tower pipeline set by the cooling tower is an empty pipe.
  • the starting steps of the medium and long-term cooling system are: 1) opening the double in the intermediate cooling circuit Manually isolate the valve, confirm that the pipeline of the relevant user is connected, confirm that the valve in the tower line of the cooling tower is open, close the manual isolation valve on the RRI side to isolate the unnecessary pipeline in the RRI system; 2) Start sequentially The circulation pump set in the intermediate cooling circuit and the terminal cooling circuit keeps the medium and long-term cooling system in operation, confirms whether the operating parameters of the intermediate cooling circuit and the terminal cooling circuit are normal, completes the inspection of the circuit, and starts the fan motor set by the cooling tower. 3) When both the intermediate cooling circuit and the terminal cooling circuit are in normal operation, the start of the medium and long-term cooling system is completed.
  • the nuclear island upstream user group heat exchanger in the intermediate cooling circuit includes multiple safety series cooling of the RRI system in the entire unit. All heat exchanger series.
  • the double manual isolation valve includes manual isolation on the main line connected to the intermediate cooling circuit and the nuclear island upstream user group heat exchanger.
  • the intermediate cooling circuit is connected in series by the hot side of the intermediate heat exchanger, the intermediate wave box, and the intermediate circulating pump.
  • the nuclear island upstream user group heat exchanger is formed.
  • the terminal cooling circuit is formed by sequentially connecting the circulating pump of the terminal, the cold side of the intermediate heat exchanger, the cooling tower and the safety pool in series. After the medium and long-term cooling system is put into operation, the amount of water in the safe pool must be kept above the minimum safe water level by hydration.
  • the cooling tower is a seismic mechanical ventilation cooling tower or a nuclear-grade mechanical ventilation cooling tower driven by a fan, or a passive natural circulation. Empty cooling tower.
  • the cooling tower is a seismic mechanical ventilation cooling tower or a nuclear-grade mechanical ventilation cooling tower driven by a fan, the medium and long-term cooling system
  • the medium and long-term cooling system After commissioning, it is necessary to keep the mechanical ventilation cooling tower running continuously to cool the circulating water of the terminal cooling circuit; however, when the hot side outlet temperature of the intermediate heat exchanger is close to the minimum limit of the user acceptable temperature, and the upstream user When the heat load is small, it is necessary to isolate the upper tower pipe of the mechanical ventilation cooling tower, so that the mechanical ventilation cooling tower enters the intermittent operation state to ensure that the hot side outlet temperature of the intermediate heat exchanger is always maintained within the acceptable range of the upstream of the nuclear island.
  • the actions of all the active devices in the medium and long-term cooling system are manually controlled manually or remotely, all remote manual controls are in The local control room or local control in the auxiliary pump room is rejected.
  • the medium and long-term cooling system and the original heat sink system are arranged in different plant areas.
  • the present invention also provides a medium- and long-term cooling system after a nuclear power plant containment and a spent fuel pool accident, which includes an intermediate cooling circuit and a terminal cooling circuit connected by an intermediate heat exchanger, and an intermediate cooling circuit to the core.
  • the island's upstream user group heat exchanger is cooled, and the terminal cooling circuit uses a cooling tower to discharge the heat of the intermediate heat exchanger into the atmosphere.
  • the intermediate cooling circuit is connected to the upstream of the nuclear island user heat exchanger via the RRI system pipeline in parallel with the RRI system.
  • the intermediate cooling circuit and the original pipeline of the RRI system are separated by a double manual isolation valve, and the RRI system and the nuclear island upstream user Manual isolation valves are also provided at both ends of the group heat exchanger connection line.
  • the nuclear island upstream user group heat exchanger in the intermediate cooling circuit includes multiple safety series cooling of the RRI system in the entire unit. All heat exchanger series.
  • the double manual isolation valve includes manual isolation on the main line connected to the intermediate cooling circuit and the nuclear island upstream user group heat exchanger.
  • the intermediate cooling circuit is connected in series by the hot side of the intermediate heat exchanger, the intermediate wave box, and the intermediate circulating pump.
  • the nuclear island upstream user group heat exchanger is formed.
  • the terminal cooling circuit is formed by sequentially connecting the circulating pump of the terminal, the cold side of the intermediate heat exchanger, the cooling tower and the safety pool in series. .
  • the cooling tower is a seismic mechanical ventilation cooling tower or a nuclear-grade mechanical ventilation cooling tower for forced circulation of a fan, or a passive natural circulation. Empty cooling tower.
  • the actions of all the active devices in the medium and long-term cooling system are manually controlled manually or remotely, all remote manual controls are in The local control room or local control in the auxiliary pump room is rejected.
  • the medium and long-term cooling system and the original heat sink system are arranged in different plant areas, and an independent backup power source is adopted.
  • the medium and long-term cooling method and system after the accident of the nuclear power plant containment vessel and the spent fuel pool of the present invention adopts a cold source different from the existing final heat sink, which finally conducts heat to the atmosphere
  • the heat removal system forms an effective supplement and can be used in nuclear power plants with over-designed unit accidents.
  • the final heat sink system is put into operation in the event of a failure to safely and efficiently discharge the residual heat of the core and spent fuel pool into the environment.
  • FIG. 1 is a schematic structural view of a medium and long-term cooling system after an accident of a safety shell and a spent fuel pool of the present invention. detailed description
  • the medium and long-term cooling system (SEU system) after the accident of the containment and spent fuel pool of the present invention includes an intermediate heat exchanger 10, an intermediate wave box 12, an intermediate circulation pump 14, a terminal circulation pump 16, and a mechanical ventilation cooling tower 18. , safety pool 20 and pipes, fittings and valves connecting the above equipment.
  • the hot side of the intermediate heat exchanger 10, the intermediate wave box 12, and the intermediate circulation pump 14 are connected in series, and then connected to the nuclear island upstream group heat exchanger 60 (including the safety shell spray heat exchanger, the spent fuel pool cooling Heat exchanger, residual heat discharge heat exchanger, containment spray pump motor, low pressure injection pump motor, etc.) form an intermediate cooling circuit for cooling the nuclear island upstream user group heat exchanger 60; terminal circulation pump 16, intermediate heat exchange
  • the cold side of the vessel 10, the mechanically ventilated cooling tower 18 and the safety pool 20 are connected in series to form a terminal cooling circuit that discharges heat from the intermediate heat exchanger 10 into the environment.
  • the intermediate cooling circuit is connected to the nuclear island upstream user group heat exchanger 60 through the pipeline of the RRI system 50. Since only one intermediate cooling circuit is provided for each unit, the nuclear island upstream user group heat exchanger in each intermediate cooling circuit 60 includes all of the heat exchanger series 60 that are cooled by multiple safety trains of the RRI system throughout the unit.
  • the intermediate cooling circuit is connected to the nuclear island upstream user group heat exchanger 60 in parallel with the RRI system 50. In order to avoid adverse effects on the original system, the intermediate cooling circuit and the RRI system 50 are original.
  • the pipes are isolated by a double manual isolation valve, including a manual isolation valve 21 disposed at both ends of the main line connected to the nuclear island upstream user group heat exchanger 60, and a user group heat exchanger in a separate series of nuclear islands respectively.
  • a manual isolation valve 22 is disposed at both ends of the 60-connected branch line. Since the RRI system 50 and the nuclear island upstream user group heat exchanger 60 are also provided with manual isolation valves 52 at both ends of the connecting line, the intermediate cooling circuit can be selected by opening and closing the manual isolation valves 21, 22, 52 or It is the RRI system 50 that cools the nuclear island upstream user group heat exchanger 60.
  • the end circulating pump 16 takes water from the safe water tank 20, provides cooling to the intermediate heat exchanger 10, and removes heat from the ambient air through the mechanically ventilated cooling tower 18.
  • the mechanical ventilation cooling tower 18 adopts standardized design. For different sites, the ability of the whole system to transfer heat to the environment can be changed by changing the number of towers and the number of fans in the tower, so as to adapt to changes in the parameters of the site.
  • All active equipment in the SEU system is manually or remotely controlled manually, and all remote manual controls are rejected in the local control room or local control in the auxiliary pump room.
  • All electrical equipment such as intermediate circulation pumps 14, terminal circulation pumps 16, and mechanical ventilation cooling towers 18 are all powered by diesel engines or other independent backup power sources.
  • the present invention adopts the following measures: 1) Adopting different cold sources, passing The cooling tower 18 finally conducts heat to the atmosphere; 2) Adopts an independent backup power source to avoid the unavailability caused by the whole field power failure accident; 3) Arranged in different plant areas, avoiding disasters such as flying objects and aircraft impacts The new system fails at the same time as the original final heat sink; 4) Appropriate flooding and fire prevention measures are taken; 5) The newly added structures are all seismic structures.
  • the nuclear island upstream user group heat exchanger 60 is cooled by the RRI system, and the SEU system is in a standby state.
  • the manual isolation valves 21 and 22 on the SEU side are in a closed state, and the manual isolation valve on the RRI side is in a standby state.
  • 52 is in the open state; the intermediate cooling circuit in standby is full of demineralized water, and the water quality and water exchange need to be checked regularly, and the terminal cooling circuit in the standby is filled with production water, mechanical communication
  • the upper tower line of the air cooling tower 18 is an empty tube.
  • the SEU system should ensure that the start-up is completed within 72 hours of the accident, so all steps initiated by the SEU system should be completed within 72 hours of the accident.
  • the starting steps for the SEU system to be used are as follows: 1) Open the manual isolation valves 21 and 22 in the intermediate cooling circuit, confirm that the relevant user's pipeline is in the connected state, and confirm that the valve in the tower pipeline of the mechanical ventilation cooling tower 18 is open.
  • the SEU system After the accident occurs and the SEU system is put into operation, it is generally unnecessary to perform any operation to change the state of the SEU system, and only need to maintain the operation of the SEU system, including maintaining the continuous operation of the intermediate circulation pump 14 and the terminal circulation pump 16,
  • the amount of water in the safe pool 20 is always kept higher than the minimum cooling by hydration.
  • the heat that is required to be derived from the SEU system after the accident mainly comes from the decay heat of the fuel in the core and the spent fuel pool, and this part of the heat load is continuously reduced over time, especially at sites with extremely low temperatures in winter.
  • the upstream heat load gradually decreases with time, and the SEU system may have a too low water supply temperature to the upstream users.
  • the mechanical vent cooling tower 18 is brought into an intermittent operation to ensure that the hot side outlet temperature of the intermediate heat exchanger 10 is always maintained within a user acceptable range.
  • the continuous circulation of the cooling water will gradually consume the water in the safety water pool 20, and the salinity of the stored water will be gradually Steps need to be drained and diluted, so it is necessary to continuously replenish water to the safe pool 20: If necessary, replenish the safe water tank 20 with production water or other clean fresh water; if there is no condition, you can go to the safety pool. 20 Supplement the cooling water provided by sea water or other open waters.
  • the SEU system and method of the present invention has at least the following advantages:
  • one or more of the following improvements may be made to the SEU system of FIG. 1 to further improve system reliability:
  • Each unit can be equipped with a SEU system and upgraded to each RRI/SEC series to increase the redundancy of the diverse final heat sink;
  • the seismic mechanical ventilation cooling tower 18 can be upgraded to a nuclear-grade mechanical ventilation cooling tower, thereby improving the protection capability of key equipment for internal and external disasters;
  • the isolation valve to be operated can be changed to active (electric or pneumatic) and is guaranteed to be available under accident conditions.

Abstract

一种核电厂安全壳及乏燃料水池事故后中长期冷却方法及冷却系统。该冷却方法包括通过由中间冷却回路和终端冷却回路组成的中长期冷却系统将核岛上游用户群换热器的余热排入大气中,中间冷却回路和终端冷却回路中的所有用电设备都采用独立后备电源。该冷却方法及冷却系统可以在核电厂发生最终热阱失效时投入运行,以将堆芯和乏燃料水池的余热安全有效地排出到环境中。

Description

核电厂安全壳及乏燃料水池事故后中长期冷却方法及系统 技术领域
本发明属于核电厂安全领域, 更具体地说, 本发明涉及一种在超设计基准 事故工况下投入使用的核电厂安全壳及乏燃料水池事故后中长期冷却方法及系 统。 说 背景技术
2011年 3月 11 日, 日本宫城县北部发生里氏 9.0级特大地震, 并引发强烈 海啸,造成位于震中西南方向的福岛第一核电厂 1-4号机组发生核泄漏事故。其 中 1-3号机组由正常运行工况紧急停堆, 而 4号机组正处于维修停堆。地震导致 失去厂外电, 紧接着因海啸导致应急电源 (柴油发电机)失效, 从而导致反应堆冷 却系统的功能全部丧失并引发事故。
福岛核事故引发了关于最终热阱设计的思考, 除了 SBO(Station Black Out, 全厂断电事故)之外, 类似福岛强地震引发的海啸可能将大量杂物堆向海边, 使 得重要厂用水系统取水口堵塞, 从而发生 LUHS(Loss of Ultimate Heat Sink, 丧 失最终热阱)事故。 因此, 必须提供多样化的热阱, 并考虑在所有电厂状态下都 以极高的可靠性将余热从核电厂的安全重要物项传输到最终热阱。
在现有部分核电厂机组中, 通常是利用 RRI系统 (Component Cooling Water System,设备冷却水系统)冷却包括安全壳喷淋系统换热器、 乏燃料水池换热器、 余热排出换热器等换热器以及泵等机械设备在内的上游用户, 并通过 RRI换热 器将热量传递给 SEC系统 (Essential Water System, 重要厂用水系统); SEC系统 从厂址水域取水冷却 RRI换热器, 并将水送出到环境水域中, 从而使得热量被 海水吸收。 上述 RRI/SEC传热系统通常采用冗余设计, 即采用两个安全系列, 排出到环境中, 从而保证反应堆的安全。
现有 RRI/SEC传热系统设计虽然非常成熟, 并且充分考虑了在第二代核电 厂技术(包括二代加)设计基准范围内的事故工况设计要求, 但是福岛核事故证 明:存在着超出第二代 (包括二代加)核电厂技术设计基准的外部事件序列的可能 性。 在 SBO叠加 LUHS事故情况下, RRI/SEC传热系统完全失效, 使得事故无 法得到有效的緩解和控制, 最终导致放射性物质大量外泄到环境中。
为了保证传热系统在事故工况下的有效性, 现有某三代核电厂机组配置了 包括两个大列 /四个小列的 RRI/SEC 传热系统, 并设有 SRU 系统 (Dedicated Cooling Water System, 专设重要冷却水系统)。 其中, RRI系统的第 1列和第 2 列耦合为一个大列; 第 3列和第 4列耦合为另外一个大列; SEC系统分别冷却 RRI系统第 1~4列的换热器,从而将核岛用户的热负荷移出到大海。当发生 SBO 叠加 LUHS, 致使 RRI/SEC 系统失去其功能时, 通过 SRU 系统抽取海水冷却 EVU系统 (安全壳热量导出系统)的第 1列或第 4列,并通过 EVU/SRU的第 1列 冷却 PTR 系统 (燃料水池冷却和净化系统)的第 3 歹l。 由于 RRI/SEC 系统与 EVU/SRU系统是解耦的, 因此 RRI/SEC系统的失效不会影响到 EVU/SRU系统 的功能。
但是, SRU 系统用来冷却换热器的热阱依然是大海, 当发生福岛类似的核 事故时, 强烈地震叠加海啸导致大量垃圾堆积到整个泵房取水口后, SRU 系统 会由于共因故障导致对应列的海水滤网堵塞失效, 最终因厂区内无可用的其他 水源而导致事故后堆芯和乏燃料水池的余热无法排出。
可见, 现有核电厂的最终热阱系统在福岛核事故后的评价标准下都是不满 足多样性要求的。 有鉴于此, 确有必要开发一种能够克服上述问题的核电厂安 全壳及乏燃料水池事故后中长期冷却方法及系统。 发明内容
本发明的目的在于: 提供一种核电厂安全壳及乏燃料水池事故后中长期冷 却方法及系统, 以使核电厂的最终热阱满足多样性要求, 避免 SBO叠加 LUHS 事故情况下因传热失效而导致核泄漏。
为了实现上述发明目的, 本发明提供了一种核电厂安全壳及乏燃料水池事 故后中长期冷却方法, 其通过由中间冷却回路和终端冷却回路组成的中长期冷 却系统将核岛上游用户群换热器的余热排入大气中, 中间冷却回路和终端冷却 回路中的所有用电设备都采用独立后备电源。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述中间冷却回路以与 RRI系统并联的方式经 RRI系统管路与核岛上游用 户群换热器连接。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述终端冷却回路通过中间换热器与中间冷却回路连接, 中间冷却回路对 核岛上游用户群换热器进行冷却后, 终端冷却回路利用冷却塔将中间换热器的 热量排入大气中。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述中间冷却回路与 RRI 系统原有管路之间用双重手动隔离阀隔离, RRI 系统与核岛上游用户群换热器连接管路的两端也分别设有手动隔离阀; 在核电 厂机组正常运行期间, 中间冷却回路侧的双重手动隔离阀都处于关闭状态, RRI 侧的手动隔离阀处于打开状态, 核岛上游用户群换热器由 RRI系统冷却, 中长 期冷却系统处于备用状态; 在发生丧失最终热阱事故后, 中间冷却回路侧的双 重手动隔离阀都处于打开状态, RRI侧的手动隔离阀处于关闭状态,核岛上游用 户群换热器由中长期冷却系统冷却。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 在核电厂机组正常运行期间, 处于备用状态的中间冷却回路中充满除盐水, 并需要定期检验水质和换水, 备用中的终端冷却回路内部充满生产用水, 冷却 塔设置的上塔管路为空管。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 发生丧失最终热阱事故时, 中长期冷却系统投用的启动步骤为: 1)打开中间 冷却回路中的双重手动隔离阀, 确认相关用户所在管路处于连接状态, 确认冷 却塔上塔管路中的阀门处于开启状态, 关闭 RRI侧的手动隔离阀以隔离 RRI系 统中的不必要管路; 2)依次启动中间冷却回路和终端冷却回路中设置的循环泵, 使中长期冷却系统处于运行状态, 确认中间冷却回路和终端冷却回路的运行参 数是否正常, 完成对回路的检视, 并启动冷却塔设置的风机电机; 3)当中间冷却 回路和终端冷却回路两个回路都进入正常运行状态时, 中长期冷却系统的启动 即已完成。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述中间冷却回路中的核岛上游用户群换热器包括整个机组中由 RRI系统 的多个安全系列冷却的全部换热器系列。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述双重手动隔离阀包括设在中间冷却回路与核岛上游用户群换热器连接 的主管路上的手动隔离阀, 以及设在中间冷却回路与不同系列的核岛上游用户 群换热器连接的各支管路上的手动隔离阀。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述中间冷却回路是由中间换热器的热侧、 中间波动箱、 中间循环泵依次 串联后, 接入核岛上游用户群换热器而形成。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述终端冷却回路是由终端循环泵、 中间换热器的冷侧、 冷却塔和安全水 池依次串联而形成; 中长期冷却系统投运之后, 需通过补水保持安全水池内的 水量始终高于最低安全水位。 作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述冷却塔为风机驱动强制循环的抗震机械通风冷却塔或核级机械通风冷 却塔, 或是非能动自然循环空冷却塔。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述冷却塔为风机驱动强制循环的抗震机械通风冷却塔或核级机械通风冷 却塔时, 中长期冷却系统投运之后, 需保持机械通风冷却塔持续运行以实现对 终端冷却回路的循环水进行冷却; 但是, 当中间换热器的热侧出口温度接近于 用户可接受温度的最低限值、 且上游用户热负荷较小时, 需要隔离机械通风冷 却塔的上塔管道, 使机械通风冷却塔进入间断运行状态, 以保证中间换热器的 热侧出口温度始终维持在核岛上游用户可接受范围内。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述中长期冷却系统中所有能动设备的动作均由就地手动或远程手动控制, 所有远程手动控制均在辅助泵房内的就地控制室或就地控制拒实现。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却方法的一种改 进, 所述中长期冷却系统与原有热阱系统布置在不同厂区内。
为了实现上述发明目的, 本发明还提供了一种核电厂安全壳及乏燃料水池 事故后中长期冷却系统, 其包括通过中间换热器连接的中间冷却回路和终端冷 却回路, 中间冷却回路对核岛上游用户群换热器进行冷却, 终端冷却回路利用 冷却塔将中间换热器的热量排入大气中。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述中间冷却回路以与 RRI系统并联的方式经 RRI系统管路与核岛上游用 户群换热器连接。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述中间冷却回路与 RRI 系统原有管路之间用双重手动隔离阀隔离, RRI 系统与核岛上游用户群换热器连接管路的两端也分别设有手动隔离阀。 作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述中间冷却回路中的核岛上游用户群换热器包括整个机组中由 RRI系统 的多个安全系列冷却的全部换热器系列。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述双重手动隔离阀包括设在中间冷却回路与核岛上游用户群换热器连接 的主管路上的手动隔离阀, 以及设在中间冷却回路与不同系列的核岛上游用户 群换热器连接的各支管路上的手动隔离阀。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述中间冷却回路是由中间换热器的热侧、 中间波动箱、 中间循环泵依次 串联后, 接入核岛上游用户群换热器而形成。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述终端冷却回路是由终端循环泵、 中间换热器的冷侧、 冷却塔和安全水 池依次串联而形成。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述冷却塔为风机驱动强制循环的抗震机械通风冷却塔或核级机械通风冷 却塔, 或是非能动自然循环空冷却塔。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述中长期冷却系统中所有能动设备的动作均由就地手动或远程手动控制, 所有远程手动控制均在辅助泵房内的就地控制室或就地控制拒实现。
作为本发明核电厂安全壳及乏燃料水池事故后中长期冷却系统的一种改 进, 所述中长期冷却系统与原有热阱系统布置在不同厂区内, 且采用了独立后 备电源。
与现有技术相比, 本发明核电厂安全壳及乏燃料水池事故后中长期冷却方 法及系统采用了与现有最终热阱不同的冷源, 其将热量最终传导到大气中, 对 原有排热系统形成了有效的补充, 可以在核电厂发生超设计机组事故导致常用 的最终热阱系统失效时投入运行, 以将堆芯和乏燃料水池的余热安全有效地排 出到环境中。 附图说明
下面结合附图和具体实施方式, 对本发明核电厂安全壳及乏燃料水池事故 后中长期冷却方法及系统进行详细说明, 附图中:
图 1为本发明安全壳及乏燃料水池事故后中长期冷却系统的结构示意图。 具体实施方式
为了使本发明的发明目的、 技术方案及其有益技术效果更加清晰, 以下结 合附图和具体实施方式, 对本发明进行进一步详细说明。 应当理解的是, 本说 明书中描述的具体实施方式仅仅是为了解释本发明, 并非为了限定本发明。
请参阅图 1 , 本发明安全壳及乏燃料水池事故后中长期冷却系统 (SEU系统) 包括中间换热器 10、 中间波动箱 12、 中间循环泵 14、 终端循环泵 16、 机械通 风冷却塔 18、 安全水池 20以及连接上述设备的管道、 管件和阀门等。 其中, 中 间换热器 10的热侧、 中间波动箱 12、 中间循环泵 14依次串联后, 接入核岛上 游用户群换热器 60(包括安全壳喷淋换热器、 乏燃料水池冷却换热器、 余热排出 换热器、 安全壳喷淋泵电机、 低压安注泵电机等)而形成用于冷却核岛上游用户 群换热器 60的中间冷却回路; 终端循环泵 16、 中间换热器 10的冷侧、 机械通 风冷却塔 18和安全水池 20依次串联后形成将中间换热器 10的热量排入环境的 终端冷却回路。
中间冷却回路通过 RRI系统 50的管路与核岛上游用户群换热器 60连接, 由于每一机组仅设置一个中间冷却回路, 因此, 每一中间冷却回路中的核岛上 游用户群换热器 60包括整个机组中由 RRI系统的多个安全系列冷却的全部换热 器系列 60。中间冷却回路以与 RRI系统 50并联的方式与核岛上游用户群换热器 60连接,为了避免对原系统造成不利影响, 中间冷却回路与 RRI系统 50的原有 管路之间用双重手动隔离阀隔离, 包括在与核岛上游用户群换热器 60连接的主 管路两端设置手动隔离阀 21 , 以及在分别与不同系列的核岛上游用户群换热器 60连接的支管路两端设置手动隔离阀 22。 由于 RRI系统 50与核岛上游用户群 换热器 60连接管路的两端也分别设有手动隔离阀 52, 因此通过手动隔离阀 21、 22、 52的开闭,可以选择使用中间冷却回路或是 RRI系统 50对核岛上游用户群 换热器 60进行冷却。
在终端冷却回路中, 终端循环泵 16从安全水池 20取水, 为中间换热器 10 提供冷却, 并通过机械通风冷却塔 18将热量移出到环境大气中。 其中, 机械通 风冷却塔 18采用标准化设计, 对于不同的厂址, 可以通过改变塔的数量和塔内 风机的数量来变更整个系统向环境传输热量的能力, 从而适应厂址参数条件的 变化。
SEU 系统所有能动设备的动作均由就地手动或远程手动控制, 所有远程手 动控制均在辅助泵房内的就地控制室或就地控制拒实现。 所有用电设备如中间 循环泵 14、 终端循环泵 16、 机械通风冷却塔 18 的风机等均采用柴油机或其他 独立后备电源。
通过以上描述可知, 为了避免发生 SBO叠加 LUHS等严重事故时, SEU系 统与原有的最终热阱系统之间发生共因失效,本发明采用了以下措施: 1)采用了 不同的冷源,通过冷却塔 18将热量最终传导到大气中; 2)采用了独立后备电源, 避免了全场断电事故引起的不可用; 3)布置在不同的厂区, 避免了飞射物、 飞机 撞击等灾害导致新系统与原有最终热阱同时失效; 4)采取了适当的水淹和火灾防 范措施; 5)新增加的构筑物均为抗震构筑物。
在核电厂机组正常运行期间, 核岛上游用户群换热器 60由 RRI系统冷却, SEU 系统处于备用状态, 此时, SEU侧的手动隔离阀 21、 22处于关闭状态, RRI侧的手动隔离阀 52处于打开状态; 备用时的中间冷却回路充满除盐水, 并 需要定期检验水质和换水, 备用中的终端冷却回路内部充满生产用水, 机械通 风冷却塔 18的上塔管路为空管。
在发生 SBO叠加 LUHS事故时, SEU系统应保证在事故发生 72小时内完 成启动而投入运行, 因此, SEU系统启动的所有步骤应在事故发生后 72h内完 成。 SEU系统投用时的启动步骤为: 1)打开中间冷却回路中的手动隔离阀 21、 22, 确认相关用户所在管路处于连接状态, 确认机械通风冷却塔 18上塔管路中 的阀门处于开启状态, 并关闭手动隔离阀 52以隔离 RRI系统 50中的不必要管 路; 2)依次启动中间循环泵 14和终端循环泵 16, 使 SEU系统处于运行状态, 并确认中间冷却回路和终端冷却回路的运行参数是否正常, 完成对回路的检视, 并启动机械通风冷却塔 18的风机电机; 3)当中间冷却回路和终端冷却回路两个 回路都进入正常运行状态时, SEU系统的启动即已完成。
在事故发生、 SEU系统投运之后, 一般情况下不需要再执行任何改变 SEU 系统状态的操作,只需维持 SEU系统的运行即可, 包括维持中间循环泵 14和终 端循环泵 16的持续运行、 通过补水保持安全水池 20内的水量始终高于最低安 冷却等。 但是, 由于事故发生后需要 SEU系统导出的热量主要来自于堆芯以及 乏燃料水池中燃料的衰变热, 而这部分热负荷是随时间持续降低的, 尤其是在 冬季气温极低的厂址, 当超设计基准事故发生在冬季严寒条件下时, 随着时间 延长, 上游热负荷逐渐减小, 可能会出现 SEU系统对上游用户供水温度过低的 情况。 因此, 当中间换热器 10的热侧出口温度接近于用户可接受温度的最低限 值、 且上游用户热负荷较小时, 需要隔离机械通风冷却塔 18的上塔管道, 让原 本通过机械通风冷却塔 18的终端冷却回路流体直接回到安全水池 20,也就是使 机械通风冷却塔 18进入间断运行状态, 以保证中间换热器 10的热侧出口温度 始终维持在用户可接受范围内。
另外, 在 SEU系统运行过程中, 由于水分蒸发损失以及风吹损失等原因, 冷却水的持续循环中会逐步消耗安全水池 20中的存水, 而且会使存水的盐度逐 步升高而需要排污和稀释, 因此需要向安全水池 20持续补水: 在具备条件的情 况下,向安全水池 20补充生产用水或其他干净的淡水;在不具备条件的情况下, 可以向安全水池 20补充海水或其他公开水域提供的冷却水。
综上所述, 本发明 SEU系统及方法至少具有以下优点:
1)不影响接口系统的原有功能: SEU 系统新增的构筑物、 设备和管道对现 有二代加机组而言, 不需要实施大规模修改; SEU 系统在机组没有进入到严重 事故状态下时均处于备用状态, 并与原有管系之间用双重手动隔离阀隔离; 因 此, SEU系统对现有系统设计及运行方式的影响可以忽略不计;
2)提高了核电厂的安全性: 采用了与现有最终热阱不同的冷源,通过冷却塔 18将热量最终传导到大气中, 对原有排热系统形成了有效的补充; 在核电厂发 生超设计机组事故导致常用的最终热阱系统失效时, SEU 系统新增加的最终热 阱系统投入运行, 可以将堆芯和乏燃料水池的余热安全有效地排出到环境中, 从而防止堆芯熔毁, 避免放射性物质泄漏到环境中, 增强机组在中长期丧失最 终热阱工况下的安全性;
3)操作筒便: 新增的 SEU系统在核电厂正常运行和设计基准事故下均不需 要投入使用, 核电厂运行人员只要对 SEU系统进行定期检测和更换水质, 检查 泵、 风机、 冷却塔填料等设备的状态即可, 对核电厂运行操作的影响较小; 当 需要投入使用时, 只需开启相关阀门、 并将用电设备 (泵、 风机)启动即可。
在其他实施方式中,可对图 1中的 SEU系统进行以下改进中的一种或几种, 以进一步提高系统的可靠性:
1)可以将每个机组配备一套 SEU系统,升级为每个 RRI/SEC系列配备一套, 从而提高多样化最终热阱的冗余度;
2)可以将抗震机械通风冷却塔 18提高为核级机械通风冷却塔, 从而提高关 键设备应对内外部灾害的防护能力;
3)可以将通过风机驱动的强制循环机械通风冷却塔 18替换为非能动自然循 环空冷却塔;
4)可以将需要操作的隔离阀改为能动(电动或气动), 并保证其在事故工况下 可用。
根据上述说明书的揭示和教导, 本发明所属领域的技术人员还可以对上述 实施方式进行适当的变更和修改。 因此, 本发明并不局限于上面揭示和描述的 具体实施方式, 对本发明的一些修改和变更也应当落入本发明的权利要求的保 护范围内。 此外, 尽管本说明书中使用了一些特定的术语, 但这些术语只是为 了方便说明, 并不对本发明构成任何限制。

Claims

权 利 要 求 书
1. 一种核电厂安全壳及乏燃料水池事故后中长期冷却方法, 其特征在于: 通过由中间冷却回路和终端冷却回路组成的中长期冷却系统将核岛上游用户群 换热器的余热排入大气中, 中间冷却回路和终端冷却回路中的所有用电设备都 采用独立后备电源。
2. 根据权利要求 1所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 所述中间冷却回路以与 RRI系统并联的方式经 RRI系统管路 与核岛上游用户群换热器连接。
3. 根据权利要求 2所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 所述终端冷却回路通过中间换热器与中间冷却回路连接, 中 间冷却回路对核岛上游用户群换热器进行冷却后, 终端冷却回路利用冷却塔将 中间换热器的热量排入大气中。
4. 根据权利要求 3所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 所述中间冷却回路与 RRI系统原有管路之间用双重手动隔离 阀隔离, RRI系统与核岛上游用户群换热器连接管路的两端也分别设有手动隔离 阀; 在核电厂机组正常运行期间, 中间冷却回路侧的双重手动隔离阀都处于关 闭状态, RRI侧的手动隔离阀处于打开状态, 核岛上游用户群换热器由 RRI系 统冷却, 中长期冷却系统处于备用状态; 在发生丧失最终热阱事故后, 中间冷 却回路侧的双重手动隔离阀都处于打开状态, RRI侧的手动隔离阀处于关闭状 态, 核岛上游用户群换热器由中长期冷却系统冷却。
5. 根据权利要求 4所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 在核电厂机组正常运行期间, 处于备用状态的中间冷却回路 中充满除盐水, 并需要定期检验水质和换水, 备用中的终端冷却回路内部充满 生产用水, 冷却塔设置的上塔管路为空管。
6. 根据权利要求 4所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 发生丧失最终热阱事故时, 中长期冷却系统投用的启动步骤 为: 1)打开中间冷却回路中的双重手动隔离阀,确认相关用户所在管路处于连接 状态, 确认冷却塔上塔管路中的阀门处于开启状态, 关闭 RRI侧的手动隔离阀 以隔离 RRI 系统中的不必要管路; 2)依次启动中间冷却回路和终端冷却回路中 设置的循环泵, 使中长期冷却系统处于运行状态, 确认中间冷却回路和终端冷 却回路的运行参数是否正常, 完成对回路的检视, 并启动冷却塔设置的风机电 机; 3)当中间冷却回路和终端冷却回路两个回路都进入正常运行状态时, 中长期 冷却系统的启动即已完成。
7. 根据权利要求 4所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 所述中间冷却回路中的核岛上游用户群换热器包括整个机组 中由 RRI系统的多个安全系列冷却的全部换热器系列。
8. 根据权利要求 7所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 所述双重手动隔离阀包括设在中间冷却回路与核岛上游用户 群换热器连接的主管路上的手动隔离阀, 以及设在中间冷却回路与不同系列的 核岛上游用户群换热器连接的各支管路上的手动隔离阀。
9. 根据权利要求 3所述的核电厂安全壳及乏燃料水池事故后中长期冷却方 法, 其特征在于: 所述中间冷却回路是由中间换热器的热侧、 中间波动箱、 中 间循环泵依次串联后, 接入核岛上游用户群换热器而形成。
10. 根据权利要求 3 所述的核电厂安全壳及乏燃料水池事故后中长期冷却 方法, 其特征在于: 所述终端冷却回路是由终端循环泵、 中间换热器的冷侧、 冷却塔和安全水池依次串联而形成; 中长期冷却系统投运之后, 需通过补水保 持安全水池内的水量始终高于最低安全水位。
11. 根据权利要求 3 所述的核电厂安全壳及乏燃料水池事故后中长期冷却 方法, 其特征在于: 所述冷却塔为风机驱动强制循环的抗震机械通风冷却塔或 核级机械通风冷却塔, 或是非能动自然循环空冷却塔。
12.根据权利要求 11所述的核电厂安全壳及乏燃料水池事故后中长期冷却 方法, 其特征在于: 所述冷却塔为风机驱动强制循环的抗震机械通风冷却塔或 核级机械通风冷却塔时, 中长期冷却系统投运之后, 需保持机械通风冷却塔持 出口温度接近于用户可接受温度的最低限值、 且上游用户热负荷较小时, 需要 隔离机械通风冷却塔的上塔管道, 使机械通风冷却塔进入间断运行状态, 以保 证中间换热器的热侧出口温度始终维持在核岛上游用户可接受范围内。
13.根据权利要求 1至 12中任一项所述的核电厂安全壳及乏燃料水池事故 后中长期冷却方法, 其特征在于: 所述中长期冷却系统中所有能动设备的动作 均由就地手动或远程手动控制, 所有远程手动控制均在辅助泵房内的就地控制 室或就地控制拒实现。
14.根据权利要求 1至 12中任一项所述的核电厂安全壳及乏燃料水池事故 后中长期冷却方法, 其特征在于: 所述中长期冷却系统与原有热阱系统布置在 不同厂区内。
15.一种核电厂安全壳及乏燃料水池事故后中长期冷却系统, 其特征在于: 包括通过中间换热器连接的中间冷却回路和终端冷却回路, 中间冷却回路对核 岛上游用户群换热器进行冷却, 终端冷却回路利用冷却塔将中间换热器的热量 排入大气中。
16.根据权利要求 15所述的核电厂安全壳及乏燃料水池事故后中长期冷却 系统, 其特征在于: 所述中间冷却回路以与 RRI系统并联的方式经 RRI系统管 路与核岛上游用户群换热器连接。
17.根据权利要求 16所述的核电厂安全壳及乏燃料水池事故后中长期冷却 系统, 其特征在于: 所述中间冷却回路与 RRI系统原有管路之间用双重手动隔 离阀隔离, RRI系统与核岛上游用户群换热器连接管路的两端也分别设有手动隔 离阀。
18.根据权利要求 17所述的核电厂安全壳及乏燃料水池事故后中长期冷却 系统, 其特征在于: 所述中间冷却回路中的核岛上游用户群换热器包括整个机 组中由 RRI系统的多个安全系列冷却的全部换热器系列。
19.根据权利要求 18所述的核电厂安全壳及乏燃料水池事故后中长期冷却 系统, 其特征在于: 所述双重手动隔离阀包括设在中间冷却回路与核岛上游用 户群换热器连接的主管路上的手动隔离阀, 以及设在中间冷却回路与不同系列 的核岛上游用户群换热器连接的各支管路上的手动隔离阀。
20.根据权利要求 15所述的核电厂安全壳及乏燃料水池事故后中长期冷却 系统, 其特征在于: 所述中间冷却回路是由中间换热器的热侧、 中间波动箱、 中间循环泵依次串联后, 接入核岛上游用户群换热器而形成。
21.根据权利要求 15所述的核电厂安全壳及乏燃料水池事故后中长期冷却 系统, 其特征在于: 所述终端冷却回路是由终端循环泵、 中间换热器的冷侧、 冷却塔和安全水池依次串联而形成。
22.根据权利要求 15所述的核电厂安全壳及乏燃料水池事故后中长期冷却 系统, 其特征在于: 所述冷却塔为风机驱动强制循环的抗震机械通风冷却塔或 核级机械通风冷却塔, 或是非能动自然循环空冷却塔。
23.根据权利要求 15至 22中任一项所述的核电厂安全壳及乏燃料水池事故 后中长期冷却系统, 其特征在于: 所述中长期冷却系统中所有能动设备的动作 均由就地手动或远程手动控制, 所有远程手动控制均在辅助泵房内的就地控制 室或就地控制拒实现。
24.根据权利要求 15至 22中任一项所述的核电厂安全壳及乏燃料水池事故 后中长期冷却系统, 其特征在于: 所述中长期冷却系统与原有热阱系统布置在 不同厂区内, 且采用了独立后备电源。
PCT/CN2013/087733 2013-07-26 2013-11-23 核电厂安全壳及乏燃料水池事故后中长期冷却方法及系统 WO2015010398A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB1602110.7A GB2531479B (en) 2013-07-26 2013-11-23 Mid-long term cooling method and system for containment and spent fuel pool in nuclear power plant after occurring accident

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310319947.4 2013-07-26
CN201310319947.4A CN104347124A (zh) 2013-07-26 2013-07-26 核电厂安全壳及乏燃料水池事故后中长期冷却系统

Publications (1)

Publication Number Publication Date
WO2015010398A1 true WO2015010398A1 (zh) 2015-01-29

Family

ID=52392655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087733 WO2015010398A1 (zh) 2013-07-26 2013-11-23 核电厂安全壳及乏燃料水池事故后中长期冷却方法及系统

Country Status (3)

Country Link
CN (1) CN104347124A (zh)
GB (1) GB2531479B (zh)
WO (1) WO2015010398A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865904A (zh) * 2021-09-24 2021-12-31 哈尔滨工程大学 一种多功能流动换热的试验装置
CN115274150A (zh) * 2022-08-05 2022-11-01 中国核动力研究设计院 一种基于集中海水冷却的二回路余热排出系统及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469841A (zh) * 2016-01-04 2016-04-06 上海核工程研究设计院 一种浮动核电站的设备冷却水系统
CN107767973B (zh) * 2016-08-19 2020-05-05 中广核工程有限公司 核电厂乏燃料水池补充冷却装置
CN106448774B (zh) * 2016-12-12 2017-12-29 中广核工程有限公司 核电厂最终热阱系统
CN109253090A (zh) * 2017-07-12 2019-01-22 何巨堂 具有主电机冷却液应急循环功能的高温流体屏蔽电泵系统
CN108335764B (zh) * 2018-01-24 2020-01-21 中广核研究院有限公司 一种小型堆乏燃料冷却和净化系统
CN109801722B (zh) * 2019-01-25 2020-08-11 中广核工程有限公司 核电厂seu系统板式换热器的换热试验方法及系统
CN110534222B (zh) * 2019-08-26 2021-03-30 中广核陆丰核电有限公司 一种核电机组完全卸料后的核安全控制方法
CZ308670B6 (cs) * 2019-09-11 2021-02-03 CENTRUM HYDRAULICKÉHO VÝZKUMU spol. s r.o. Systém dlouhodobého odvodu tepla z hermetické zóny
CN113345608A (zh) * 2021-04-28 2021-09-03 中广核研究院有限公司 乏燃料水池冷却和净化系统
CN113409968A (zh) * 2021-05-18 2021-09-17 中国核电工程有限公司 一种用于核电厂丧失热阱工况下的制冷系统
CN113871044A (zh) * 2021-08-12 2021-12-31 中广核研究院有限公司 冷却控制方法及其相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201689688U (zh) * 2010-06-04 2010-12-29 中科华核电技术研究院有限公司 堆芯冷却、堆腔充水及安全壳热量导出的系统
CN102737738A (zh) * 2012-06-25 2012-10-17 中国核电工程有限公司 双层混凝土安全壳非能动直接蒸发式冷却系统
CN102842349A (zh) * 2011-06-22 2012-12-26 上海核工程研究设计院 核电厂冷却水系统的检修备用系统
JP2013076578A (ja) * 2011-09-29 2013-04-25 Hitachi-Ge Nuclear Energy Ltd 原子炉冷却システム
CN103222008A (zh) * 2010-11-16 2013-07-24 株式会社东芝 堆芯事故冷却系统以及沸水型原子能设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519308B1 (en) * 1999-06-11 2003-02-11 General Electric Company Corrosion mitigation system for liquid metal nuclear reactors with passive decay heat removal systems
JP2004239817A (ja) * 2003-02-07 2004-08-26 Japan Atom Energy Res Inst 格納容器圧力抑制系
JP4546426B2 (ja) * 2006-07-11 2010-09-15 日立Geニュークリア・エナジー株式会社 非常用炉心冷却設備
CN101840739B (zh) * 2009-06-29 2012-01-04 中广核工程有限公司 一种核电厂重要厂用水系统
CN101976589B (zh) * 2010-09-14 2012-11-28 中广核工程有限公司 一种双反应堆机组的核岛冷却系统及其冷却方法
CN202332313U (zh) * 2011-11-29 2012-07-11 中广核工程有限公司 核电站重要厂用水系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201689688U (zh) * 2010-06-04 2010-12-29 中科华核电技术研究院有限公司 堆芯冷却、堆腔充水及安全壳热量导出的系统
CN103222008A (zh) * 2010-11-16 2013-07-24 株式会社东芝 堆芯事故冷却系统以及沸水型原子能设备
CN102842349A (zh) * 2011-06-22 2012-12-26 上海核工程研究设计院 核电厂冷却水系统的检修备用系统
JP2013076578A (ja) * 2011-09-29 2013-04-25 Hitachi-Ge Nuclear Energy Ltd 原子炉冷却システム
CN102737738A (zh) * 2012-06-25 2012-10-17 中国核电工程有限公司 双层混凝土安全壳非能动直接蒸发式冷却系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865904A (zh) * 2021-09-24 2021-12-31 哈尔滨工程大学 一种多功能流动换热的试验装置
CN115274150A (zh) * 2022-08-05 2022-11-01 中国核动力研究设计院 一种基于集中海水冷却的二回路余热排出系统及方法

Also Published As

Publication number Publication date
CN104347124A (zh) 2015-02-11
GB2531479A (en) 2016-04-20
GB201602110D0 (en) 2016-03-23
GB2531479B (en) 2020-10-14

Similar Documents

Publication Publication Date Title
WO2015010398A1 (zh) 核电厂安全壳及乏燃料水池事故后中长期冷却方法及系统
CN103903659B (zh) 浮动核电站非能动余热排出系统
JPH07253492A (ja) 能動/受動複合安全系を具備した沸騰水型原子炉
GB2521549A (en) Combined active and passive secondary-side reactor core heat removal apparatus
WO2014029306A1 (zh) 一种核电站蒸汽发生器二次侧非能动余热排出系统
MX2011002296A (es) Central nuclear de agua a presion.
CN104508753A (zh) 用于核反应堆的深度防御安全范例
TWI482174B (zh) Emergency furnace heart cooling system and boiling water type atomic energy unit
CN102831942A (zh) 核电站乏燃料水池应急冷却系统
CN107403650B (zh) 海上浮动核电站的二次侧非能动余热排出系统
CN203276869U (zh) 防止蒸汽发生器满溢的蒸汽发生器排污系统
WO2021109622A1 (zh) 一体化非能动反应堆系统
CN105427911A (zh) 压水堆核电厂厂用电源切换试验的控制方法及控制系统
CN109243634B (zh) 反应堆安全系统
CN202887749U (zh) 一种能动与非能动相结合的二次侧堆芯热量导出装置
CN205541969U (zh) 压水堆非能动保护系统以及压差自力阀
CN103871530A (zh) 核电厂设备冷却水系统公共用户的分列冷却架构
CN202736508U (zh) 核电厂二次侧应急注水系统
CN106440202A (zh) 一种海上核能设施主控制室可居留系统及方法
CN105047237B (zh) 能动结合非能动的乏燃料水池喷淋冷却系统及其控制方法
KR20140133291A (ko) 피동안전설비 및 이를 구비하는 원전
US20160118148A1 (en) Heat transfer methods for nuclear plants
JP5754953B2 (ja) 原子力発電プラントの1/2次系排水システム及び原子力発電プラント
CN105741890B (zh) 压水堆非能动保护系统以及压差自力阀
JPH04145398A (ja) 原子力発電所の補機冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889997

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
ENP Entry into the national phase

Ref document number: 201602110

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131123

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.08.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13889997

Country of ref document: EP

Kind code of ref document: A1