WO2015008882A1 - 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치 - Google Patents

다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치 Download PDF

Info

Publication number
WO2015008882A1
WO2015008882A1 PCT/KR2013/006474 KR2013006474W WO2015008882A1 WO 2015008882 A1 WO2015008882 A1 WO 2015008882A1 KR 2013006474 W KR2013006474 W KR 2013006474W WO 2015008882 A1 WO2015008882 A1 WO 2015008882A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
spinning
discharge holes
electrospinning
electrospinning apparatus
Prior art date
Application number
PCT/KR2013/006474
Other languages
English (en)
French (fr)
Inventor
김학용
남기택
백우일
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Priority to PCT/KR2013/006474 priority Critical patent/WO2015008882A1/ko
Publication of WO2015008882A1 publication Critical patent/WO2015008882A1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin

Definitions

  • the present invention relates to an electrospinning apparatus including a spinning tube having a plurality of discharge holes, and more particularly, to a spinning liquid, and a spinning tube having a structure in which a plurality of discharge holes are formed instead of a conventional nozzle. It relates to an electrospinning apparatus.
  • Conventional electrospinning apparatuses have mainly adopted a nozzle (Nozzle) fixed as a mechanism for discharging the spinning liquid, as disclosed in Republic of Korea Patent No. 10-0420460.
  • the conventional electrospinning apparatus electrospins the spinning liquid through a fixed nozzle, the electrospinning is performed only depending on the electrostatic force, so that the discharge amount per nozzle unit nozzle per unit time is very low to 0.01g, resulting in low productivity. Difficult problems, nozzle replacement and cleaning are very complicated and cumbersome.
  • the production of nanofibers through electrospinning is in the order of 0.1-1 g per hour, and the solution discharge rate is very low, 1.0-5.0 mL per hour [D. H. H. Renecker et al., Nanptechnology 2006, VOl 17, 1123].
  • Another conventional electrospinning apparatus is an electrospinning apparatus for electrospinning the spinning liquid (polymethyl methacrylate solution dissolved in chlorobenzene) using only a centrifugal force by using a cylinder rotating at a high speed of 3,000 rpm or more.
  • K. Kern et al. Published in Nano Letters (Nano Letters, 2008, Vol 8, No. 4, 1187-1191).
  • the conventional electrospinning device can improve the output per unit time in the form of a nozzle by utilizing the centrifugal force and the electrostatic force, but it is difficult to continuously produce by supplying the spinning liquid in the conical container, and the lower portion of the conical container There is a problem that the collector is located and the spinning liquid falls into a solution state rather than a fiber form (hereinafter referred to as "drop generation phenomenon").
  • the disadvantage of the conventional electrospinning method is that the production of nanofibers per unit hole is very low, and there is a problem in that nozzle cleaning is cumbersome.
  • the problem of the present invention is to use a combination of electrostatic and centrifugal force to solve the above problems, a plurality of discharge holes are formed in place of the conventional nozzle and by electrospinning the spinning liquid with a spinning spinning tube per unit spinning tube per unit time
  • the discharge amount is increased, the productivity is greatly improved, the trouble of nozzle replacement and cleaning can be eliminated, the drop occurrence phenomenon can be effectively prevented, and the spinning solution is supplied continuously to provide an electrospinning device capable of continuous production.
  • the spinning liquid stored and stored in (i) the spinning liquid main tank (a), (ii) the spinning liquid main tank (b) for storing and storing the spinning liquid (tube block) d) and the spinning solution supply pump (c) for supplying the spinning tube (e) having a plurality of discharge holes (h), (iii) the spinning solution while storing the spinning solution supplied from the spinning solution main tank (b) ( e) and a plurality of discharge holes (h) are formed in the tube block (d), (iv) which is supplied with a high voltage, and are arranged on the tube block (d) to rotate the discharge holes (h).
  • Spinning tube (e) (v) electrospinning the spinning liquid in the direction of the collector through the spinning tube (e) while being coupled to the spinning tube (e) arranged in a state arranged on the support Spinning tube support (f), (vi) in the form of a tube is located on the top of the spinning tube (e) while the high voltage is applied
  • a collector (i) for collecting nanofibers electrospun from discharge holes (h) formed in the spinning tube (e), and (vii) a high voltage for applying a high voltage to each of the tube block (d) and the collector (i).
  • the present invention provides an electrospinning device comprising electrospinning devices including a spinning tube having a plurality of discharge holes formed thereon.
  • electrospinning is performed using a combination of electrostatic and centrifugal forces, thereby increasing the amount of discharge per unit spinning tube per unit time, greatly improving productivity, and eliminating the need for nozzle replacement and cleaning compared to using a nozzle. Since the collector is located on the top of the spinning tube, the effect of improving the quality of the nanofiber web produced by preventing the dropping (drop phenomenon) of the spinning liquid on the collector in the form of a solution rather than fibrous during electrospinning is achieved. have.
  • FIG. 1 is a schematic view of the electrospinning apparatus according to the present invention.
  • FIG. 2 is an enlarged view of a portion of the spinning tube e and the spinning tube support f arranged in the tube block d in FIG.
  • 3 to 9 are cross-sectional views showing an arrangement of discharge holes h formed on the spinning tube e constituting the electrospinning device of the present invention.
  • 10 (a) to 10 (z) are enlarged cross-sectional views of one example of a cross-sectional shape of the discharge hole h formed on the spinning tube e.
  • the spinning liquid is stored and stored in the spinning liquid main tank (a), (ii) the spinning liquid main tank (b) tube block for storing and storing the spinning liquid (d) and the spinning solution supply pump (c) for supplying the spinning tube (e) having a plurality of discharge holes (h), (iii) the spinning tube while storing the spinning solution supplied from the spinning solution main tank (b) (e) a plurality of discharge holes (h) are formed in the tube block (d) and (iv) which are supplied with a high voltage, and are arranged on the tube block (d) to rotate the discharge holes (h).
  • Spinning tube (e) electrospinning the spinning liquid in the direction of the collector through the (e) spinning the spinning tube (e) while being arranged on the tube block (d) in combination with the spinning tube (e) Spinning tube support (f), (vi) in the form of a supporting tube is located on the top of the spinning tube (e) while rotating under a high voltage applied,
  • a high voltage generator for applying a high voltage to each of the tube block (d) and the collector (i) (a) and (viii) spinning tube support rotating devices, comprising a motor (g) and one power transmission mechanism (p) selected from among a gear and a belt connecting the motor (g) and the spinning tube support (f)
  • FIG. 1 is a schematic view of the electrospinning apparatus according to the present invention, the radiation tube support (f) is omitted without showing in detail the state connected to the power transmission mechanism (p).
  • the spinning tube support f is rotated by a spinning tube support rotating device consisting of a motor g and a power transmission mechanism p, whereby the spinning tube e coupled with the spinning tube support f is also rotated. Done.
  • the rotation speed of the spinning tube (e) is generally 50 rpm or more.
  • the rotation speed is too low, the centrifugal force is low, the nanofiber forming ability is lowered. If the rotation speed is too high, a drop phenomenon occurs in which the spinning solution is injected into the solution itself, not nanofibers, in the discharge hole (h) formed in the spinning tube (e). Not preferred.
  • the number of rotations of the spinning tube (e) depends on the diameter, number, number of array rows, and arrangement of the discharge holes (h) formed in the spinning tube (e), in the present invention, the number of rotations is limited to a specific range. It is not.
  • the spinning tube supports f rotate in connection with the motor g by a power transmission mechanism p, which is a gear or a belt.
  • each of the radiating tube supports f is provided with gears, which are power transmission mechanisms p, engaged with each other, as shown in FIG. 2, and one of the gears is connected to the motor g. Rotate in engagement with another connected gear.
  • FIG. 2 is a detailed enlarged view of the portion of the spinning tube e and the spinning tube support f arranged on the tube block d in FIG. 1.
  • a bearing k is attached to each of the radiation tube supports f.
  • the bearing (k) is preferably made of ceramics, metals or high-performance polymers, etc., depending on the corrosiveness of the solvent used to produce the spinning solution.
  • each of the polygonal tube supports f is rotated in connection with the motor g by a belt which is a power transmission mechanism p.
  • the radiation tube (e) may be integrally fixed to the radiation tube supporter (f) in a non-separable manner, or may be secured to be detachable in a one-touch manner, but it may be detachably fixed. It is preferable because it is easy to clean and replace parts.
  • the spinning tube support f is preferably a cylindrical tube, having a diameter of 3 mm or more, but is not necessarily cylindrical.
  • a plurality of discharge holes h are arranged on the spinning tube e as exemplarily shown in FIGS. 3 to 9.
  • the discharge holes (h) formed in the spinning tube (e) are arranged in the circumferential direction or diagonal direction on the spinning tube (e).
  • 3 to 9 are cross-sectional schematic diagrams illustrating the arrangement method of the discharge holes h and the cross-sectional shape of the discharge holes h formed on the spinning tube e.
  • the discharge holes h having a slit shape may be arranged in the form of alternately changing the long axis / short axis direction on the same concentric circle along the circumferential direction on the radiation tube e.
  • the slit-shaped discharge holes h may be arranged along the circumferential direction on the radiation tube e in the long axis / short axis direction on the same concentric circle.
  • the discharge holes h in the form of arrow marks may be arranged on the radiation tube e in the same direction in the discharge holes h facing each other in all concentric circles along the circumferential direction.
  • the discharge holes h in the form of arrow marks may be arranged in different directions on the radiating tube e to face each other in different concentric circles along the circumferential direction. .
  • different shapes for example, a slit shape and an asterisk shape, may be arranged alternately on the same concentric circle along the circumferential direction on the radiation tube e, as shown in FIG. 9.
  • discharge holes h of the same shape are arranged on the inner concentric circle along the circumferential direction on the radiation tube e, for example, asterisk, and different from the discharge holes arranged on the inner concentric circle on the outer concentric circle, eg
  • the slit discharge holes h may be arranged.
  • the present invention is not particularly limited thereto.
  • the cross-sectional shape of the discharge hole (h) formed in the spinning tube (e) has a circular, slit-shaped, two or more angles as exemplarily shown in Figure 10 (a) to Figure 10 (z).
  • two or more discharge holes h having different shapes may be arranged together on the same radiation tube e.
  • the collector i, an endless belt, a drum or a roller is used.
  • the collector (i) is an endless belt, a nanofiber web is produced, and in the case of a drum or a roller, a nanofiber filament is produced.
  • the electrospun nanofibers are arranged in the direction of rotation of the collector (i) in the form of a drum or roller, and the nanofiber filaments are manufactured by concentrating the arranged nanofibers.
  • the spinning tube supports (f) are arranged in a straight or diagonal direction on the tube block (d), thereby allowing more spinning tube supports (f) to be arranged on the tube block (d) to increase productivity per unit time. Increase and the device is simplified.
  • a predetermined amount of spinning liquid stored in the spinning liquid main tank (b) is supplied to the tube block (d) through which a high voltage is applied through a supply pump (c).
  • the spinning liquid supplied to the tube block d is attached to the spinning tube support f on the tube block d through the discharge holes h formed in the spinning tube e, which rotates.
  • the nanofibers are fabricated by integrating the nanofibers onto the collectors i by electrospinning toward the rotating collectors i while being placed at the top and a high voltage is applied thereto.
  • the nanofiber web is manufactured as described above, electrospinning is performed by using both electrostatic and centrifugal forces to increase the discharge amount per spinning tube per unit time, thereby greatly improving productivity, and the cumbersome nozzle replacement and cleaning due to the conventional nozzle.
  • the operation can be omitted, and the collector (i) is located on the top of the spinning tube (e) to prevent the drop phenomenon to improve the quality of the nanofiber web.
  • polyvinyl alcohol (Aldrich, USA) was dissolved in distilled water by 10% by weight to prepare a spinning solution.
  • a high voltage is applied to a predetermined amount of the spinning liquid stored in the spinning liquid main tank b through the supply pump c, and the discharge holes h of the slit type are arranged and formed as shown in FIG. 4.
  • the spinning tube (e) and the spinning tube support (f) were fed to the tube block (d) arranged in a closed state.
  • the slit-shaped discharge hole h has a width of 0.5 mm, a length of 3 mm, and the radiation tube e has a diameter of 50 mm, and the eighteen concentric circles are arranged along the circumferential direction of the radiation tube e.
  • the discharge holes h are arranged, and 36 discharge holes are arranged in the outer concentric circles, and 54 discharge holes are arranged as a whole.
  • a voltage of 45 kV was applied to the tube block d.
  • the spinning liquid supplied to the tube block d is arranged in the spinning tube e as described above, and is discharged in the direction of the collector i located above the spinning tube e through the discharge holes h formed.
  • Nanofibers formed by spinning were integrated on the collector (i) to prepare a nanofiber web.
  • the discharge amount per unit time per spinning tube (e) was 18g / min.
  • the width of the collector (i) was 2,2m
  • the distance between the collector (i) and the spinning tube (e) was adjusted to 27cm.
  • the spinning tube (e) was rotated at 150rpm by connecting to the motor by a belt which is a power transmission mechanism.
  • the average diameter of the nanofibers was 220 nm, and the weight of the nanofiber webs was 41.5 g / m 2.
  • the diameters of the nanofibers constituting the nanofiber web were very uniform, and no drop phenomenon occurred.
  • the present invention is used as a device for electrospinning high quality nanofibers with high productivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명은 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치에 관한 것으로서, 방사액을 컬렉터 방향으로 전기방사 하는데 사용되는 기구로 종래 노즐 대신에 다수개의 토출홀들이 형성된 구조로서 회전하는 방사 튜브를 사용하는 것을 특징으로 한다. 본 발명은 정전기력과 원심력을 함께 이용하여 전기방사를 실시함으로서, 단위시간당 단위 다각형 튜브당 토출량이 높아져 생산성이 크게 향상되고, 노즐을 사용하는 것과 비교시 노즐 교체 및 청소의 번거로움이 해소되어 생산공정이 간소화되며, 컬렉터가 다수개의 토출홀들이 형성된 방사 튜브의 상부에 위치하기 때문에 전기방사시 방사액이 섬유상이 아닌 용액 상태로 컬렉터 상에 떨어지는 현상(드롭 현상)을 방지하여 제조되는 나노섬유 웹의 품질을 향상시키는 효과가 있다.

Description

다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치
본 발명은 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치에 관한 것으로서, 보다 구체적으로는 방사액을 토출하는 기구로서 종래 노즐 대신에 다수개의 토출홀들이 형성된 구조이며 회전하는 방사 튜브를 포함하는 전기방사장치에 관한 것이다.
종래 전기방사장치들은 대한민국 등록특허 제10-0420460호 등에 게재된 바와 같이 방사액을 토출하는 기구로 고정된 노즐(Nozzle)을 주로 채택해 왔었다.
그러나, 상기 종래 전기방사장치들은 고정된 노즐을 통해 방사액을 전기방사(토출)하기 때문에 정전기력에만 의존하여 전기방사가 실시되어 단위시간당 노즐 단위홀당 토출량이 0.01g 수준으로 매우 낮아 생산성이 떨어져 결국 양산화가 어려운 문제점과, 노즐 교체 및 청소가 매우 복잡하고 번거로운 문제점 등이 있었다.
일반적으로 전기방사를 통한 나노섬유의 생산량은 시간당 0.1~1 g 수순이고 용액 토출량은 시간당 1.0~5.0 mL 수준으로 매우 낮다[D. H. H. Renecker 등, Nanptechnology 2006, VOl 17, 1123].
또 다른 종래의 전기방사장치로는 3,000rpm 이상으로 고속회전하는 원통을 이용하여 상기 원통내에 투입된 방사액(클로로벤젠에 용해된 폴리메틸메타아크릴레이트 용액)을 원심력만을 이용하여 전기방사하는 전기방사장치가 K.Kern 등이 나노레터(Nano Letters)에 발표한 논문(Nano Letters, 2008, Vol 8, No.4, 1187-1191)에 게재되어 있다.
그러나, 상기 종래의 전기방사장치는 정전기력은 사용하지 않고 원심력만을 사용하여 전기방사하기 때문에 생산량이 떨어지고, 원통내에 방사액을 연속적으로 공급하기 어려워 연속생산이 곤란한 문제점이 있었다.
또 다른 종래의 전기방사장치로는 50rpm으로 회전하는 원추형 용기에 고전압들을 걸어주면서 폴리비닐피릴리돈 용액을 공급하여 정전기력과 원심력을 동시에 이용하여 노즐 없이 전기방사를 실시한 전기방사장치를 Nanzhou 대학의 Jinyuan Zhou 등이 2010년 스몰(Small)지에 발표한 논문(Small, 2010 Vol 6, 1612-1616)에 게재되어 있다.
그러나, 상기 종래의 전기방사장치는 원심력과 정전기력을 활용하여 노즐이 없는 형태로 단위시간당 생산량을 향상시킬 수 있지만 상기 원추형 용기내에 방사액을 연속 공급하여 연속 생산이 어려운 문제점과, 상기 원추형 용기 하부에 컬렉터가 위치하여 방사액이 섬유형태가 아니라 용액상태로 떨어지는 현상(이하 "드롭발생 현상"이라고 한다)이 일어나는 문제점이 있었다.
또한 다량의 노즐을 노즐 판상에 배열하여 전기방사하는 시스템에 대한 방식 등도 이미 잘 알려져 있다[H. Y. Kim, WO2005073441, WO2007035011].
기존의 전기방사 방식을 단점은 단위 홀당 나노섬유의 생산량이 매우 낮고 또한 노즐을 사용함으로써 노즐의 청소 등이 번거로운 문제점이 있다.
본 발명의 과제는 이와같은 종래의 문제점들을 해결할 수 있도록 정전기력과 원심력을 함께 이용하여 종래 노즐 대신에 다수개의 토출홀들이 형성되어 있으며 회전하는 방사 튜브로 방사액을 전기방사함으로서 단위시간당 단위 방사 튜브당 토출량이 높아져 생산성이 크게 향상되고, 노즐 교체 및 청소의 번거로움을 해소할 수 있고, 드롭발생현상도 효과적으로 방지할 수 있고, 방사액을 연속 공급하여 연속생산이 가능한 전기방사장치를 제공하는 것이다.
이와 같은 과제를 달성하기 위해서, 본 발명에서는 (i) 방사액을 저장, 보관하는 방사액 주탱크(a), (ii) 방사액 주탱크(b)에 저장, 보관된 방사액을 튜브 블록(d) 및 다수개의 토출홀(h)들이 형성된 방사 튜브(e)로 공급해 주는 방사액 공급 펌프(c), (iii) 방사액 주탱크(b)로부터 공급되는 방사액을 저장하면서 상기 방사 튜브(e)로 공급해 주며, 고전압이 걸려 있는 튜브 블록(d), (iv) 다수개의 토출홀(h)들이 형성되어 있으며, 상기 튜브 블록(d) 상에 배열되어 회전하면서 상기 토출홀(h)들을 통해 방사액을 컬렉터 방향으로 전기방사하는 방사 튜브(e) (v) 상기 방사 튜브(e)와 결합된 상태로 튜브 블록(d) 상에 배열된 상태로 회전하면서 방사 튜브(e)를 지지해 주는 튜브 형태인 방사 튜브 지지체(f), (vi) 상기 방사 튜브(e) 상단에 위치하면서 고전압이 걸린 상태에서 회전하고, 방사 튜브(e)에 형성된 토출홀(h)들로부터 전기방사되는 나노섬유를 집적하는 컬렉터(i), (vii) 상기 튜브 블록(d)과 컬렉터(i) 각각에 고전압을 걸어주는 고전압 발생 장치(a) 및 (viii) 모터(g) 및 상기 모터(g)와 상기 방사 튜브 지지체(f)를 연결하는 기어 및 벨트 중에 선택된 1종의 동력 전달 기구(p)로 이루어진 방사 튜브 지지체 회전 장치들로 구성되는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치들로 구성되는 전기방사장치를 제공한다.
본 발명은 정전기력과 원심력을 함께 이용하여 전기방사를 실시함으로서, 단위시간당 단위 방사 튜브당 토출량이 높아져 생산성이 크게 향상되고, 노즐을 사용하는 것과 비교시 노즐 교체 및 청소의 번거로움이 해소되어 생산공정이 간소화되며, 컬렉터가 방사 튜브의 상부에 위치하기 때문에 전기방사시 방사액이 섬유상이 아닌 용액 상태로 컬렉터 상에 떨어지는 현상(드롭 현상)을 방지하여 제조되는 나노섬유 웹의 품질을 향상시키는 효과가 있다.
도 1은 본 발명에 따른 전기방사장치의 모식도.
도 2는 도 1 중 튜브 블록(d)상에 배열된 방사 튜브(e) 및 방사 튜브 지지체(f)들 부분의 상세확대도.
도 3 내지 도 9는 본 발명 전기방사장치를 구성하는 방사 튜브(e) 상에 형성된 토출홀(h)들의 배열 상태를 나타내는 단면예시도.
도 10(a) 내지 도 10(z)는 방사 튜브(e)상에 형성된 토출홀(h)의 단면 형태 일례의 확대단면도.
* 도면 중 주요부분에 대한 부호설명
a : 고전압 발생장치 b : 방사액 주탱크
c : 방사액 공급펌프 d : 튜브 블록
e : 방사 튜브 f : 방사 튜브 지지체
h : 방사 튜브상에 형성된 토출홀
g : 모터 p : 동력전달장치
i : 컬렉터 k : 베어링
이하 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.
먼저, 본 발명은 도 1에 도시된 바와 같이 (i) 방사액을 저장, 보관하는 방사액 주탱크(a), (ii) 방사액 주탱크(b)에 저장, 보관된 방사액을 튜브 블록(d) 및 다수개의 토출홀(h)들이 형성된 방사 튜브(e)로 공급해 주는 방사액 공급 펌프(c), (iii) 방사액 주탱크(b)로부터 공급되는 방사액을 저장하면서 상기 방사 튜브(e)로 공급해 주며, 고전압이 걸려 있는 튜브 블록(d), (iv) 다수개의 토출홀(h)들이 형성되어 있으며, 상기 튜브 블록(d) 상에 배열되어 회전하면서 상기 토출홀(h)들을 통해 방사액을 컬렉터 방향으로 전기방사하는 방사 튜브(e), (v) 상기 방사 튜브(e)와 결합된 상태로 튜브 블록(d) 상에 배열된 상태로 회전하면서 방사 튜브(e)를 지지해 주는 튜브 형태인 방사 튜브 지지체(f), (vi) 상기 방사 튜브(e) 상단에 위치하면서 고전압이 걸린 상태에서 회전하고, 방사 튜브(e)에 형성된 토출홀(h)들로부터 전기방사되는 나노섬유를 집적하는 컬렉터(i), (vii) 상기 튜브 블록(d)과 컬렉터(i) 각각에 고전압을 걸어주는 고전압 발생 장치(a) 및 (viii) 모터(g) 및 상기 모터(g)와 상기 방사 튜브 지지체(f)를 연결하는 기어 및 벨트 중에 선택된 1종의 동력 전달 기구(p)로 이루어진 방사 튜브 지지체 회전 장치들로 구성되는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치들로 구성된다.
도 1은 본 발명에 따른 전기방사장치의 모식도로서, 방사 튜브 지지체(f)들이 동력전달기구(p)와 연결된 상태를 상세하게 도시하지 않고 생략하였다.
상기 방사 튜브 지지체(f)는 모터(g) 및 동력전달기구(p)들로 이루어진 방사 튜브 지지체 회전장치에 의해 회전되며, 그로인해 방사 튜브 지지체(f)와 결합된 방사 튜브(e)도 회전하게 된다.
상기 방사 튜브(e)의 회전수는 일반적으로 50rpm 이상으로 한다.
상기 회전수가 너무 낮으면 원심력이 낮아 나노섬유 형성능이 떨어지게 되고, 상기 회전수가 너무 높으면 방사 튜브(e)에 형성된 토출홀(h)에서 방사액이 나노섬유가 아닌 용액 자체로 분사되는 드롭현상이 발생되어 바람직하지 못하다.
그러나, 방사 튜브(e)의 적절한 회전수는 방사 튜브(e)에 형성된 토출홀(h)의 직경, 개수, 배열 열수 및 배열 방법에 따라 달라지므로 본 발명에서는 상기 회전수를 특정한 범위로 한정하는 것은 아니다.
구체적으로, 방사 튜브 지지체(f)들은 기어 또는 벨트인 동력전달기구(p)에 의해 모터(g)와 연결되어 회전한다.
구체적인 구현예 중 하나로 상기 방사 튜브 지지체(f)들 각각에는 도 2에 도시된 바와 같이 동력전달기구(p)인 기어들이 서로 맞물린 상태로 설치되어 있으며, 이들 기어들 중 한개는 모터(g)에 연결된 또 다른 기어와 맞물려 회전한다.
도 2는 도 1 중 튜브 블록(d)상에 배열된 방사 튜브(e) 및 방사 튜브 지지체(f) 부분의 상세 확대도이다.
도 2에 도시된 바와 같이 방사 튜브 지지체(f) 각각에는 베어링(k)이 부착되어 있다.
상기 베어링(k)은 방사액 제조에 사용되는 용매의 부식성에 따라 세라믹, 금속 또는 고성능 고분자 등으로 제조하는 것이 바람직하다.
또 다른 구체적인 구현예로는 상기 다각형 튜브 지지체(f) 각각은 동력전달기구(p)인 벨트에 의해 모터(g)와 연결되어 회전한다.
상기 방사 튜브(e)는 방사 튜브 지지체(f)에 분리가 불가능하게 일체로 고정될 수도 있고, 원-터치(One-Tough) 방식으로 분리가 가능하게 고정될 수도 있으나, 분리 가능하게 고정하는 것이 청소 및 부품교체가 용이하여 바람직하다.
상기 방사 튜브 지지체(f)는 원통상 튜브 형태로서 직경은 3㎜ 이상인 것이 바람직하나, 원통형이 아니어도 무관하다.
상기 방사 튜브(e)에는 다수개의 토출홀(h)들이 도 3 내지 도 9에 예시적으로 도시된 바와 같이 방사 튜브(e) 상에 배열되어 있다.
구체적으로, 상기 방사 튜브(e)에 형성된 토출홀(h)들은 방사 튜브(e) 상에 원주 방향 또는 대각선 방향으로 배열된다.
도 3 내지 도 9는 방사 튜브(e) 상에 형성된 토출홀(h)의 배열방법 및 토출홀(h)의 단면 형태를 예시하는 단면개략도이다.
구체적으로 도 3에 도시된 바와 같이 슬릿 형태인 토출홀(h)들이 방사 튜브(e) 상에 원주 방향을 따라 동일 동심원 상에서 장축/단축 방향을 교호로 바꾸는 형태로 배열될 수도 있다.
또한, 도 4에 도시된 바와 같이 슬릿 형태인 토출홀(h)들이 방사 튜브(e) 상에 원주 방향을 따라 토출홀(h)들이 동일한 모든 동심원 상에 장축/단축 방향으로 배열될 수도 있다.
또한, 도 5에 도시된 바와 같이 슬릿 형태인 토출홀(h)들이 방사 튜브(e) 상에 원주 방향을 따라 서로 다른 동심원 별로 장축/단축 방향을 바꾸는 형태로 배열될 수도 있다.
또한, 도 6에 도시된 바와 같이 화살표 표식 형태인 토출홀(h)들이 방사 튜브(e) 상에 원주 방향을 따라 모든 동심원에서 서로 마주하는 토출홀(h)들이 동일한 방향을 향해 배열될 수도 있고, 도 7에 도시된 바와 같이 화살표 표식 형태인 토출홀(h)들이 방사 튜브(e) 상에 원주 방향을 따라 서로 다른 동심원에서 서로 마주보는 토출홀(h)들이 다른 방향을 향해 배열될 수도 있다.
또한 도 8에 도시된 바와 같이 방사 튜브(e) 상에 원주 방향을 따라 동일 동심원상에 서로 다른 형태, 예를들면 슬릿 형태와 별표 형태,가 교호로 배열될 수도 있고, 도 9에 도시된 바와 같이 방사 튜브(e) 상에 원주 방향을 따라 내측 동심원 상에는 동일한 형태, 예를 들어 별표 형태의 토출홀(h)들이 배열되고 외측 동심원 상에는 내측 동심원 상에 배열된 토출홀의 형태와는 다른 형태, 예를들어 슬릿 형태의 토출홀(h)들이 배열될 수도 있다.
상기 토출홀(h)들의 크기 및 토출홀(h)들 간의 간격은 토출홀(h)의 형태 및 배열방법에 따라 달라지므로 본 발명에서는 이들을 특별하게 한정하는 것은 아니다.
다시말해, 상기 방사 튜브(e)에 형성된 토출홀(h)의 단면 형태는 도 10(a) 내지 도 10(z)에 예시적으로 도시된 바와 같이 원형, 슬릿형, 2개 이상의 각을 가진 다각형, 한글 자음 형태, 한글 모음 형태, 영어 알파벳 형태, 1, 2 등과 같은 숫자 형태, 그리스 숫자 형태, 그리스 문자 형태, 화살표 등과 같은 각종 표식 형태 등이며, 도 8 내지 도 9에 예시적으로 도시된 바와 같이 동일 방사 튜브(e) 상에 서로 다른 형태를 갖는 2개 이상의 토출홀(h)들이 함께 배열될 수도 있다.
상기 컬렉터(i)로는 앤드레스 벨트(Endless Belt), 드럼 또는 로울러 등이 사용된다.
상기 컬렉터(i)가 앤드레스 벨트인 경우에는 나노섬유 웹이 제조되고, 드럼 또는 로울러인 경우에는 나노섬유 필라멘트가 제조된다.
이경우 전기방사된 나노섬유들은 드럼 또는 로울러 형태인 컬렉터(i)의 회전 방향으로 배열되며, 배열된 나노섬유들을 집속해주면 나노섬유 필라멘트가 제조된다.
상기 방사 튜브 지지체(f)들은 튜브 블록(d) 상에 직선 또는 대각선 방향으로 배열되어 있으며, 그로 인해 튜브 블록(d) 상에 보다 많은 방사 튜브 지지체(f)들을 배열할 수 있어서 단위 시간당 생산성이 증가되고 장치가 간소화된다.
다음으로는, 도 1을 참조하여 본 발명에 따른 전기방사장치로 나노섬유 웹을 제조하는 방법 일례를 살펴본다.
고분자 용매에 용해하여 제조된 후 방사액 주탱크(b)에 저장 중인 방사액 중 일정량을 공급펌프(c)를 통해 고전압이 걸쳐 있는 튜브 블록(d)에 공급한다. 이와 같이 튜브 블록(d)에 공급된 방사액은 튜브 블록(d) 상에 방사 튜브 지지체(f)에 부착되어 회전하는 방사 튜브(e)에 형성된 토출홀(h)들을 통해 상기 방사 튜브(e) 상부에 위치하면서 고전압이 걸린 상태에서 회전하는 컬렉터(i)를 향해 전기방사하여 나노섬유를 상기 컬렉터(i) 상에 집적하여 나노섬유 웹을 제조한다.
상기와 같이 나노섬유 웹을 제조하게 되면, 정전기력과 원심력을 함께 이용하여 전기방사를 실시하게 되어 단위시간당 방사 튜브당 토출량이 높아져 생산성이 크게 향상되고, 종래 노즐을 사용하지 않아 노즐교체 및 청소의 번거로운 작업을 생략할 수 있고, 컬렉터(i)가 방사 튜브(e) 상단에 위치하여 드롭현상을 방지하여 나노섬유 웹의 품질을 향상시킬 수 있게 된다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 살펴본다.
그러나, 본 발명은 하기 실시예에 의해 보호범위가 한정되는 것은 아니다.
실시예 1
먼저, 폴리비닐알코올(Aldrich, 미국)을 증류수에 10중량%로 용해하여 방사액을 제조하였다.
다음으로 도 1에 도시된 바와 같이 방사액 주탱크(b)에 저장중인 방사액 일정량을 공급펌프(c)를 통해 고전압이 걸려 있으며 도 4와 같이 슬릿 형태의 토출홀(h)들이 배열, 형성된 방사 튜브(e) 및 방사 튜브 지지체(f)들이 결체된 상태로 배열되어 있는 튜브 블록(d)에 공급하였다.
상기 슬릿 형태의 토출홀(h)은 가로가 0.5mm이고, 세로가 3mm이며, 상기 방사 튜브(e)는 직경이 50mm이고, 상기 방사 튜브(e)의 원주 방향을 따라 내측 동심원에는 18개의 상기 토출홀(h)이 배열되고, 외측 동심원에는 36개의 상기 토출공이 배열되어 전체적으로는 54개의 토출홀이 배열된다.
상기 튜브 블록(d)에는 45kV의 전압을 걸어 주었다.
계속해서, 상기와 같이 튜브 블록(d)에 공급된 방사액을 상기 방사 튜브(e)에 배열, 형성된 토출홀(h)들을 통해 방사 튜브(e) 상부에 위치하는 컬렉터(i) 방향으로 전기방사하여 형성되는 나노섬유들을 컬렉터(i) 상에 집적하여 나노섬유 웹을 제조하였다.
이때, 방사 튜브(e)당 단위시간당 토출량은 18g/분 이였다.
이때, 상기 컬렉터(i)에는 45kV의 전압을 걸어 주었고 컬렉터 3.6m/분의 회전속도로 회전시켜 주었다.
또한, 상기 컬렉터(i)의 폭은 2,2m로 하였고, 컬렉터(i)와 방사 튜브(e) 간의 거리는 27㎝로 조절하였다.
또한, 상기 방사 튜브(e)들은 동력전달기구인 벨트로 모터와 연결하여 150rpm으로 회전시켜 주었다.
이와같이 나노섬유의 평균 직경은 220㎚ 이였고, 나노섬유 웹의 중량은 41.5g/㎡이였다.
나노섬유 웹을 구성하는 나노섬유들의 직경이 매우 균일하였고, 드롭현상이 전혀 발생되지 않아 품질이 우수하였다.
본 발명은 품질이 우수한 나노섬유를 높은 생산성으로 전기방사하는 장치로 이용된다.

Claims (10)

  1. (i) 방사액을 저장, 보관하는 방사액 주탱크(a),
    (ii) 방사액 주탱크(b)에 저장, 보관된 방사액을 튜브 블록(d) 및 다수개의 토출홀(h)들이 형성된 방사 튜브(e)로 공급해 주는 방사액 공급 펌프(c),
    (iii) 방사액 주탱크(b)로부터 공급되는 방사액을 저장하면서 상기 방사 튜브(e)로 공급해 주며, 고전압이 걸려 있는 튜브 블록(d),
    (iv) 다수개의 토출홀(h)들이 형성되어 있으며, 상기 튜브 블록(d) 상에 배열되어 회전하면서 상기 토출홀(h)들을 통해 방사액을 컬렉터 방향으로 전기방사하는 방사 튜브(e)
    (v) 상기 방사 튜브(e)와 결합된 상태로 튜브 블록(d) 상에 배열된 상태로 회전하면서 방사 튜브(e)를 지지해 주는 튜브 형태인 방사 튜브 지지체(f)
    (vi) 상기 방사 튜브(e) 상단에 위치하면서 고전압이 걸린 상태에서 회전하고, 방사 튜브(e)에 형성된 토출홀(h)들로부터 전기방사되는 나노섬유를 집적하는 컬렉터(i)
    (vii) 상기 튜브 블록(d)과 컬렉터(i) 각각에 고전압을 걸어주는 고전압 발생 장치(a) 및
    (viii) 모터(g) 및 상기 모터(g)와 상기 방사 튜브 지지체(f)를 연결하는 기어 및 벨트 중에 선택된 1종의 동력 전달 기구(p)로 이루어진 방사 튜브 지지체 회전 장치들로 구성되는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  2. 제1항에 있어서, 상기 방사 튜브 지지체(f) 각각에는 동력전달기구(p)인 기어들이 서로 맞물린 상태로 설치되어 있으며, 상기 기어들 중 1개는 모터(g)에 연결된 또 다른 기어와 맞물려 있는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  3. 제1항에 있어서, 상기 방사 튜브 지지체(f) 각각은 동력전달기구인 벨트에 의해 모터(g)와 연결되어 있는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  4. 제1항에 있어서, 상기 방사 튜브 지지체(f) 각각에는 베어링(k)이 부착되어 있는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  5. 제1항에 있어서, 상기 방사 튜브 지지체(f)는 상기 방사 튜브(e)와 고정된 상태 및 분리가능한 상태 중에서 선택된 하나의 상태로 결합되어 있는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  6. 제1항에 있어서, 상기 방사 튜브(e)에 형성된 토출홀(h)의 단면 형태는 원형, 슬릿형, 2개 이상의 각을 가진 다각형, 한글 형태, 영어 알파벳 형태, 숫자 형태, 그리스 숫자 형태, 그리스 문자 형태 및 표식 형태 중에서 선택된 1종의 형태인 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  7. 제1항에 있어서, 상기 방사 튜브(e)에 형성된 토출홀(h)들은 상기 방사 튜브(e) 상에 원주 방향 및 대각선 방향 중에서 선택된 하나의 방향으로 배열되어 있는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  8. 제1항에 있어서, 상기 방사 튜브(e) 상에 단면 형태가 서로 상이한 2종 이상의 토출홀(h)들이 원주 방향 및 대각선 방향 중에서 선택된 하나의 방향으로 배열되어 있는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  9. 제1항에 있어서, 상기 방사 튜브(e)는 튜브 블록(d) 상에 직선 방향 및 대각선 방향 중에서 선택된 하나의 방향으로 배열되어 있는 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
  10. 제1항에 있어서, 상기 컬렉터(i)가 앤드레스 벨트, 드럼 및 로울러 중에서 선택된 하나인 것을 특징으로 하는 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치.
PCT/KR2013/006474 2013-07-19 2013-07-19 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치 WO2015008882A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/006474 WO2015008882A1 (ko) 2013-07-19 2013-07-19 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/006474 WO2015008882A1 (ko) 2013-07-19 2013-07-19 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치

Publications (1)

Publication Number Publication Date
WO2015008882A1 true WO2015008882A1 (ko) 2015-01-22

Family

ID=52346318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006474 WO2015008882A1 (ko) 2013-07-19 2013-07-19 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치

Country Status (1)

Country Link
WO (1) WO2015008882A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184982A1 (en) * 2016-04-22 2017-10-26 Clarcor Inc. Multi-layered or multiple polymer fine fiber webs
CN107429430A (zh) * 2016-03-14 2017-12-01 株式会社东芝 喷嘴头及电场纺丝装置
CN108034995A (zh) * 2018-01-12 2018-05-15 华南协同创新研究院 一种实心针头静电纺丝设备
CN110295404A (zh) * 2019-05-22 2019-10-01 武汉纺织大学 一种平面接收式离心纺自动生产设备及方法
US10676614B2 (en) 2016-04-20 2020-06-09 Clarcor Inc. High molecular and low molecular weight fine fibers and TPU fine fibers

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042813A1 (en) * 2003-10-30 2005-05-12 Clean Air Technology Corp. Electrostatic spinning equipment and method of preparing nano fiber using the same
KR20070047872A (ko) * 2005-11-03 2007-05-08 김학용 나노섬유층을 갖는 섬유 적층체의 제조방법
KR100780346B1 (ko) * 2006-09-19 2007-11-30 주식회사 아모메디 원심전기방사장치 및 이를 이용한 나노섬유의 대량제조방법
KR20120064385A (ko) * 2010-12-09 2012-06-19 전북대학교산학협력단 다각형 튜브를 포함하는 전기방사장치
KR101172266B1 (ko) * 2010-12-22 2012-08-09 전북대학교산학협력단 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치
KR101178645B1 (ko) * 2010-05-13 2012-08-30 주식회사 효성 전기방사용 방사 노즐팩

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005042813A1 (en) * 2003-10-30 2005-05-12 Clean Air Technology Corp. Electrostatic spinning equipment and method of preparing nano fiber using the same
KR20070047872A (ko) * 2005-11-03 2007-05-08 김학용 나노섬유층을 갖는 섬유 적층체의 제조방법
KR100780346B1 (ko) * 2006-09-19 2007-11-30 주식회사 아모메디 원심전기방사장치 및 이를 이용한 나노섬유의 대량제조방법
KR101178645B1 (ko) * 2010-05-13 2012-08-30 주식회사 효성 전기방사용 방사 노즐팩
KR20120064385A (ko) * 2010-12-09 2012-06-19 전북대학교산학협력단 다각형 튜브를 포함하는 전기방사장치
KR101172266B1 (ko) * 2010-12-22 2012-08-09 전북대학교산학협력단 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107429430A (zh) * 2016-03-14 2017-12-01 株式会社东芝 喷嘴头及电场纺丝装置
US10676614B2 (en) 2016-04-20 2020-06-09 Clarcor Inc. High molecular and low molecular weight fine fibers and TPU fine fibers
WO2017184982A1 (en) * 2016-04-22 2017-10-26 Clarcor Inc. Multi-layered or multiple polymer fine fiber webs
CN108034995A (zh) * 2018-01-12 2018-05-15 华南协同创新研究院 一种实心针头静电纺丝设备
CN108034995B (zh) * 2018-01-12 2023-09-26 华南协同创新研究院 一种实心针头静电纺丝设备
CN110295404A (zh) * 2019-05-22 2019-10-01 武汉纺织大学 一种平面接收式离心纺自动生产设备及方法

Similar Documents

Publication Publication Date Title
WO2012087025A9 (ko) 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치
WO2015008882A1 (ko) 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치
CN101586288B (zh) 阵列多喷头静电纺丝设备
KR101172267B1 (ko) 다각형 튜브를 포함하는 전기방사장치
KR101263296B1 (ko) 내부에 단면이 다각형인 중공부를 갖는 원통형 방사 튜브를 포함하는 전기방사장치
KR101291592B1 (ko) 내부에 단면이 다각형인 중공부를 갖는 원추형 방사 튜브를 포함하는 전기방사장치
US4842505A (en) Apparatus for producing fibrous structures electrostatically
JP4981355B2 (ja) 静電紡糸装置
CN1284888C (zh) 利用电荷感应纺丝的高分子纤维网制造装置和其制造方法
CN109208090B (zh) 一种新型无针静电纺丝装置及其纺丝方法
KR101323581B1 (ko) 나노섬유 제조용 방사튜브 및 이를 이용한 나노섬유의 제조방법
WO2018199355A1 (ko) 2성분 복합 나노섬유 제조용 방사장치 및 이를 이용한 2성분 복합 나노섬유의 제조방법
CN108532001A (zh) 一种静电纺丝设备
CN105887223A (zh) 一种一步成型制备纳米纤维纱线的高速离心纺装置及纳米纤维纱线制备方法
JP2005226210A (ja) 撚糸、撚糸の製造方法および撚糸の製造装置
CN103103642A (zh) 一种取向静电纺纳米纤维涡流纺成纱装置及方法
KR101258908B1 (ko) 멀티-셀 타입 전기방사용 튜브 및 이를 이용한 나노섬유의 제조방법
WO2015012418A1 (ko) 다각형 튜브를 포함하는 전기방사장치
CN112430858B (zh) 一种静电纺丝设备
WO2013094788A1 (ko) 다각형 튜브를 포함하는 전기방사장치
CN203451695U (zh) 一种取向静电纺纳米纤维涡流纺成纱装置
CN105755556B (zh) 一种环式静电纺丝装置
WO2015008883A1 (ko) 멀티-셀 타입 전기방사용 튜브 및 이를 이용한 나노섬유의 제조방법
CN115110159A (zh) 一种滑轮电极静电纺丝方法与装置
KR101426738B1 (ko) 원심력이 결합된 전기방사를 이용한 나노섬유의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13889619

Country of ref document: EP

Kind code of ref document: A1