WO2015008693A1 - データ処理装置、エネルギー管理システム、データ処理方法及びプログラム - Google Patents

データ処理装置、エネルギー管理システム、データ処理方法及びプログラム Download PDF

Info

Publication number
WO2015008693A1
WO2015008693A1 PCT/JP2014/068449 JP2014068449W WO2015008693A1 WO 2015008693 A1 WO2015008693 A1 WO 2015008693A1 JP 2014068449 W JP2014068449 W JP 2014068449W WO 2015008693 A1 WO2015008693 A1 WO 2015008693A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
integrated value
value
time
acquired
Prior art date
Application number
PCT/JP2014/068449
Other languages
English (en)
French (fr)
Inventor
聡司 峯澤
一郎 丸山
矢部 正明
吉川 利彰
裕信 矢野
大介 飯澤
田中 顕一郎
崇 荻野
中村 慎二
正之 小松
雄喜 小川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2015008693A1 publication Critical patent/WO2015008693A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00028Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment involving the use of Internet protocols
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • H02J2310/14The load or loads being home appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Definitions

  • the present invention relates to a data processing device, an energy management system, a data processing method, and a program.
  • an energy management system that reduces energy consumption by grasping the state of energy use by electrical equipment has been attracting attention.
  • a measuring instrument that measures an integrated value of power from current and voltage supplied to an electric device and a processing device that processes the integrated value of measured power are used.
  • the integrated value of power measured by the measuring instrument is often integrated from the time the measuring instrument is installed. Therefore, when the measuring instrument is replaced due to a failure or the like, the integrated value of the power is initialized, so that inconsistency occurs in data processed by the processing device before and after the replacement. Therefore, a technique for preventing such data inconsistency has been proposed (see, for example, Patent Document 1).
  • the measuring instrument described in Patent Document 1 is configured to be able to rewrite the integrated value of power stored therein to an arbitrary value. For this reason, when the measuring instrument is exchanged, the processing device can prevent data inconsistency by rewriting the integrated value of the power stored in the measuring instrument.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the configuration for preventing data inconsistency.
  • a data processing device includes an acquisition unit that repeatedly acquires a measured integrated value from a measurement device that measures an integrated value of power supplied via a power line, and an acquisition unit. Based on the acquired integrated value, a calculation unit that calculates the value of the amount of power supplied per unit time via the power line, one integrated value acquired by the acquiring unit, and acquired after the one integrated value A correction unit that corrects the value of the electric energy calculated by the calculation unit according to a difference from the other integrated value acquired by the unit, an output unit that outputs the value of the electric energy corrected by the correction unit, Is provided.
  • the data processing device corrects the electric energy based on the difference between one integrated value and another integrated value acquired after the one integrated value. Therefore, data inconsistency can be prevented only by processing by the data processing device. As a result, the configuration for preventing data inconsistency can be made small.
  • the energy management system 100 is a HEMS (Home Energy Management System) that displays the amount of power consumed by the electrical device 10 to the user U1, as shown in FIG.
  • the energy management system 100 includes an electrical device 10 installed in a residence H ⁇ b> 1, a measuring instrument 20 that measures an integrated value of power supplied to the electrical device 10, and a controller 30 that controls the electrical device 10. Both the electric device 10 and the measuring instrument 20 are connected to the controller 30 via the home network NW.
  • the home network NW is a network for communicating according to a communication protocol such as ECHONET Lite, for example.
  • the electric device 10, the measuring instrument 20, and the controller 30 communicate with each other via the home network NW by transmitting and receiving signals according to this communication protocol.
  • the electrical device 10 is, for example, an air conditioning device or a lighting device. Electric power is supplied from the commercial power supply 11 to the electric device 10 via the power line 12. The electric device 10 operates according to an operation directly input by the user U1 of the energy management system 100 and a command transmitted from the controller 30.
  • the measuring instrument 20 is a measuring device that measures the integrated value of the power supplied to the electrical device 10 via the power line 12, for example, every second. And the measuring device 20 notifies the integrated value of the measured electric power to the controller 30 every 30 seconds, for example.
  • the transition of the integrated value of the power notified to the controller 30 is indicated by a line L1.
  • the integrated value of electric power is simply referred to as an integrated value.
  • the controller 30 is a data processing device that repeatedly acquires and processes the integrated value notified from the measuring instrument 20 as a measurement result.
  • the controller 30 controls the electric device 10 by transmitting a command based on the acquired integrated value.
  • the controller 30 includes a processor 31, a main storage unit 32, an auxiliary storage unit 33, an interface 34, an input unit 35, and a display unit 36.
  • the main storage unit 32, the auxiliary storage unit 33, the interface 34, the input unit 35, and the display unit 36 are all connected to the processor 31 via an internal bus 37.
  • the processor 31 is composed of, for example, a CPU (Central Processing Unit).
  • the processor 31 executes various processes by executing the program Pr1 stored in the auxiliary storage unit 33.
  • the processing executed by the processor 31 includes calculation of the amount of power supplied to the electrical device 10 via the power line 12 every unit time. This unit time is, for example, one hour, one day, one month, and one year.
  • FIG. 2 schematically shows an hourly power amount calculated by the processor 31.
  • Each of the electric energy E8 to E14 in FIG. 2 is 8 o'clock (after 8: 0 and before 9: 0), 9 o'clock (after 9: 0 and before 10: 0), ... This corresponds to the amount of power supplied to the electrical device 10 at each of the 14:00 range (after 14:00 and before 15:00).
  • the black circles in FIG. 2 indicate the integrated values at 0 minutes per hour.
  • the processor 31 supplies a value obtained by subtracting the integrated value at the start time of this unit time from the integrated value at the end time (0 minutes per hour) of each unit time to this unit time. Is calculated as the amount of electric power. For example, the processor 31 calculates a value obtained by subtracting the integrated value at 8:00:00 from the integrated value at 9:00:00 as the amount of power supplied for 1 hour in the 8 o'clock range.
  • the processor 31 calculates the amount of power supplied in one day, the amount of power supplied in one month, and the amount of power supplied in one year in the same manner as the amount of power supplied in one hour.
  • the start time and end time when one day is a unit time are 0:00 every day.
  • the starting time and ending time when the month is a unit time are 0:00 on the first day of every month.
  • the starting time and ending time when the unit time is one year is 0:00 on January 1 every year.
  • the main storage unit 32 is composed of, for example, a RAM (Random Access Memory).
  • the main storage unit 32 loads the program Pr1 from the auxiliary storage unit 33.
  • the main storage unit 32 is used as a work area for the processor 31.
  • the auxiliary storage unit 33 includes a nonvolatile memory such as a hard disk or a flash memory.
  • the auxiliary storage unit 33 supplies data used by the processor 31 to the processor 31 in accordance with an instruction from the processor 31, and stores data supplied from the processor 31.
  • the auxiliary storage unit 33 stores various data used for the processing of the processor 31 in addition to the program Pr1.
  • the data stored by the auxiliary storage unit 33 includes data indicating the transition of the integrated value acquired from the measuring instrument 20 and a plurality of variables used for processing to be described later.
  • the data indicating the transition of the integrated value is composed of a plurality of combinations of the integrated value and the time when the integrated value is acquired.
  • the plurality of variables are a time FIPC (Failure Integrated Power Consumption) 41, a day FIPC 42, a month FIPC 43, and a year FIPC 44.
  • FIPC Time FIPC
  • the time FIPC 41, the day FIPC 42, the month FIPC 43, and the year FIPC 44 are collectively referred to simply as FIPC.
  • Each FIPC stores a value.
  • the interface 34 includes a communication interface for communicating via the home network NW.
  • the interface 34 receives a signal via the home network NW and notifies the processor 31 of data included in this signal. Further, the interface 34 acquires the data output from the processor 31 and transmits a signal including this data to, for example, the electric device 10 via the home network NW.
  • the input unit 35 includes, for example, a keyboard and pointing devices such as a mouse and a touch pad.
  • the input unit 35 acquires information input by the user U1 and notifies the processor 31 of the information.
  • the input unit 35 is used for switching an image displayed on the screen 361 of the display unit 36 or inputting a control content for the electric device 10.
  • the display unit 36 includes an LCD (Liquid Crystal Display) screen 361, for example.
  • the display unit 36 displays an image made up of various characters and figures to the user U1 in accordance with instructions from the processor 31.
  • FIG. 3 shows an example of an image displayed on the screen 361 at 15:10 on July 26, 2013.
  • the screen 361 includes a graph 361 h showing a transition of the amount of power supplied every hour in the past, a graph 361 d showing a transition of the amount of power supplied every day in the past, A graph 361m showing a transition of the amount of electric power supplied every month at, and a graph 361y showing a transition of the amount of electric power supplied every year in the past are displayed.
  • the graphs 361h, 361d, 361m, and 361y according to the present embodiment are all bar graphs.
  • This series of processing starts when the controller 30 is turned on.
  • zero is set as the value in any of the time FIPC 41, the day FIPC 42, the month FIPC 43, and the year FIPC 44.
  • the processor 31 first obtains the measured integrated value from the measuring instrument 20 via the interface 34 (step S1). However, if the accumulated value is missing due to a communication error or the like, the processor 31 may skip step S1 and proceed to step S2, or may replace the missing accumulated value with a missing measurement. You may use the integrated value acquired lastly before as what was notified from the measuring device 20. FIG.
  • step S2 determines whether or not the change amount of the integrated value is negative. Specifically, the processor 31 determines whether or not the difference obtained by subtracting the previously acquired integrated value from the integrated value acquired this time in step S1 is negative.
  • FIG. 5 shows the transition of the integrated value acquired by the controller 30 when the measuring instrument 20 is failed and replaced.
  • the line L2 in FIG. 5 shows the transition of the integrated value acquired from the measuring instrument 20 before replacement, and the line L3 shows the transition of the integrated value acquired from the measuring instrument 20 after replacement.
  • the replacement measuring instrument 20 integrates the integrated value of power from zero.
  • time T1 in FIG. 5 is the time when the controller 30 last acquired the integrated value from the measuring instrument 20 before the failure. The accumulated value is missing from the time T1 to the time T2.
  • Time T2 is the time when the controller 30 first acquires the integrated value from the measuring instrument 20 after replacement. As shown in FIG. 5, the integrated value acquired at time T2 is substantially zero and is smaller than the previously acquired integrated value P1. For this reason, the difference obtained by subtracting the integrated value P1 at time T1 from the integrated value (zero) at time T2 is negative.
  • step S2 when it is determined in step S2 that the change amount of the integrated value is not negative (step S2; No), the processor 31 moves the process to step S4. On the other hand, when it is determined that the change amount of the integrated value is negative (step S2; Yes), the processor 31 adds the previously acquired integrated value to each FIPC (step S3).
  • step S2 the determination of step S2 is affirmed, and the integrated value P1 acquired at time T1 is added to each of the time FIPC 41, the day FIPC 42, the month FIPC 43, and the year FIPC 44.
  • the time FIPC 41 set to zero becomes equal to the integrated value P1.
  • step S4 the processor 31 executes an hourly power amount calculation process. This hourly power amount calculation process will be described with reference to FIG.
  • the processor 31 first determines whether or not the current time is the end time of the unit time (step S41). This unit time means one hour in the power amount calculation process every hour. Therefore, the processor 31 determines whether or not the current time corresponds to 0 minutes per hour. When it is determined that the current time is not the end time of the unit time (step S41; No), the processor 31 ends the hourly power amount calculation process.
  • step S41 when it is determined that the current time is the end time of the unit time (step S41; Yes), the processor 31 is supplied in the unit time having the current time as the end time according to the following equation (1).
  • the amount of power (P [k]) is calculated (step S42). For example, at 14:00 shown in FIG. 5, the determination in step S ⁇ b> 41 is affirmed and the amount of power in the 13:00 range is calculated.
  • IPC [k] Integrated Power Consumption
  • IPC [k ⁇ 1] means the integrated value acquired at the start time of the unit time with the current time as the end time, and means the integrated value acquired at the end time of the previous unit time.
  • k and k ⁇ 1 mean numbers given for convenience at the end times of each unit time.
  • IPC [k] corresponds to the integrated value P2
  • IPC [k-1] is the integrated value P1. It corresponds to.
  • the integrated value to be acquired from the measuring instrument 20 at 13: 0 is missing, but the accumulated value at the end time or start time of the unit time is missing.
  • the processor 31 uses the accumulated value acquired last before the missing measurement, instead of the missing accumulated value. For this reason, IPC [k ⁇ 1] corresponds to the integrated value P1.
  • FIPC in the above formula (1) means time FIPC 41 in the hourly power amount calculation processing.
  • FIG. 5 shows the amount of electric power E13 calculated as the amount of electric power in the 13 o'clock range by the above equation (1) when the time FIPC 41 is equal to the integrated value P1.
  • the above equation (1) is obtained by simply subtracting the integrated value (IPC [k ⁇ 1]) at the start time from the integrated value (IPC [k]) at the end time of the unit time, and calculating the electric energy (P [k ] And the power amount is corrected by adding a correction term (FIPC) to the calculated power amount. That is, the above formula (1) can be said to be an arithmetic expression in which calculation of the electric energy by simple subtraction and correction of the calculated electric energy are combined into one.
  • the processor 31 stores the calculated power amount in the auxiliary storage unit 33.
  • the amount of power stored in the auxiliary storage unit 33 is used when the transition of the amount of power is displayed to the user.
  • the processor 31 sets the FIPC to zero (step S43) following the calculation of the electric energy (step S42).
  • This FIPC means the time FIPC 41 in the hourly power amount calculation process. Thereafter, the processor 31 ends the hourly power amount calculation process.
  • the processor 31 follows the hourly power amount calculation process (step S ⁇ b> 4), the daily power amount calculation process (step S ⁇ b> 5), and the monthly power amount calculation process (step S ⁇ b> 6). And the electric energy calculation process (step S7) for every year is performed in this order.
  • the power amount calculation process in steps S5 to S7 is the same process as the hourly power amount calculation process in step S4, and therefore the details are omitted.
  • the unit time in each of the electric energy calculation processes in steps S5 to S7 means one day, one month, and one year.
  • FIPC in each of the electric energy calculation processes in steps S5 to S7 means each of the day FIPC 42, the month FIPC 43, and the year FIPC 44.
  • the display process is a process of displaying the transition of the electric energy for the user U1. This display processing will be described with reference to FIGS.
  • the processor 31 first determines whether or not a display command has been input (step S81).
  • the display command is, for example, a command for displaying a graph indicating the transition of the electric energy on the screen 361 and is input from the input unit 35 by the user U1.
  • step S81 If it is determined that the display command has not been input (step S81; No), the processor 31 ends the display process. On the other hand, if it is determined that a display command has been input (step S81; Yes), the processor 31 determines whether the integrated value at the end time or start time of any unit time displayed on the screen 361 is missing. Is determined (step S82).
  • step S82 If it is determined that the integrated value is not missing (step S82; No), the processor 31 moves the process to step S86.
  • step S82 determines whether or not the change amount of the accumulated value before and after the missing measurement is non-negative (step S83). . Specifically, the processor 31 determines whether or not a value obtained by subtracting the accumulated value acquired last before the missing measurement from the accumulated value obtained first after the missing measurement is non-negative. To do.
  • step S83 When it is determined that the amount of change is not non-negative (step S83; No), the processor 31 provides update information indicating that the measuring instrument 20 has been updated in a unit time including a time when the integrated value is missing. It outputs to the display part 36 (step S84). After that, the processor 31 moves the process to step S86.
  • the updating of the measuring instrument 20 includes, for example, the replacement of the measuring instrument 20 due to a failure or the like.
  • step S83 when it is determined that the change amount is non-negative (step S83; Yes), the processor 31 interpolates the missing integrated value and recalculates the electric energy (step S85). Specifically, the processor 31 interpolates the missing accumulated value by linear interpolation using the accumulated value acquired first after the missing measurement and the accumulated value obtained last before the missing measurement. Then, the processor 31 calculates the electric energy again using the interpolated integrated value. As a result, the amount of power calculated in step S42 (see FIG. 6) or the like is corrected.
  • step T83 at time T4.
  • the processor 31 assumes that the integrated value has changed at a constant change rate from the integrated value P3 at the time T3 to the integrated value P4 at the time T4, at 10:00:00, 11:00, 12 Interpolate the missing integrated values at 0:00 and 13:00 respectively.
  • the processor 31 causes the display unit 36 to display an image including the graphs 361h, 361d, 361m, 361y (step S86). Specifically, the processor 31 outputs data indicating the value of the amount of power supplied every unit time to the display unit 36.
  • step S84 the display unit 36 acquires the update information output from the processor 31 and indicates that the measuring instrument 20 has been updated in the unit time indicated by the update information. Display for U1.
  • FIG. 9 shows an example of an image displayed on the screen 361 based on the update information when the measuring instrument 20 is exchanged as shown in FIG.
  • the graph 361 h includes a message 51 indicating that the measuring instrument 20 has been replaced in the 12 o'clock range including the end time at which the integrated value is missing, and the integrated value is missing.
  • a message 52 indicating that the measuring instrument 20 has been replaced at the 13:00 time including the start time is included.
  • the bar 53 indicating the power amount at 12:00 and the bar 54 indicating the power amount at 13:00 are indicated by dotted lines, unlike the other bars indicated by solid lines.
  • step S8 the processor 31 repeats the processes after step S1. Thereby, for example, a series of processes shown in FIG. 4 is executed every 30 seconds.
  • the controller 30 can prevent data inconsistency due to the replacement of the measuring instrument 20. Specifically, the controller 30 can avoid calculating the power amount as a negative value by correcting the power amount using the FIPC. Thereby, it is possible to prevent the transition of the power consumption far from the actual state from being displayed to the user U1.
  • the controller 30 can use a general-purpose wattmeter as the measuring instrument 20 to prevent data inconsistency regardless of the configuration of the measuring instrument 20. Further, the controller 30 can prevent data inconsistency without receiving a command from the outside. As a result, the configuration for preventing data inconsistency can be made small.
  • step S3 (see FIG. 4) according to the present embodiment, the integrated value previously acquired by the controller 30 is added to the FIPC.
  • the FIPC to which the integrated value is added is expressed by the following equation (2).
  • N means the number of times the change amount of the integrated value becomes negative in one unit time
  • P n is the integrated value acquired last before the change amount of the integrated value becomes negative for the nth time.
  • FIPC is the sum of the integrated values acquired last before the change amount becomes negative. For this reason, even if the measuring instrument 20 is exchanged a plurality of times in one unit time, it is possible to calculate the electric energy while preventing data inconsistency.
  • the measuring instrument 20 when the measuring instrument 20 is replaced three times in one year, the accumulated values P6, P7, and P8 are added to the year FIPC 44 in order.
  • the FIPC as of January 1, 2013 is the sum of the integrated values P6, P7, and P8.
  • step S2 when it is determined that the change amount of the integrated value is simply negative, a value is added to the FIPC. Therefore, even if the integrated value integrated by the measuring instrument 20 overflows, the controller 30 can prevent data inconsistency. For example, in the example shown in FIG. 11, at time T5, the integrated value reaches the upper limit value MAX, and the integrated value notified to the controller 30 is initialized to zero. Even when the integrated value is initialized in this way, the controller 30 can accurately calculate the power amount in the 8 o'clock range.
  • the integrated value is reset to zero for some reason. Even when the integrated value is reset in this manner, the controller 30 can accurately calculate the amount of power in the 10 o'clock range.
  • controller 30 causes the controller 30 to go down or a communication failure between the controller 30 and the measuring instrument 20 when the amount of change in the integrated value before and after the missing measurement is non-negative. It was determined that it occurred, and the integrated value was interpolated (see FIG. 7).
  • the amount of change in the accumulated value is non-negative, so there is no data inconsistency. It is done. However, when the integrated value is missing over a plurality of unit times, the power amount calculated first after the missing measurement is considered to be a large value far from the actual situation.
  • the controller 30 can calculate the amount of electric power that matches the actual condition to some extent by interpolating the integrated values. Thereby, it is possible to prevent the user U1 from recognizing the transition of the electric energy far from the actual state.
  • the controller 30 interpolates the missing integrated value by linear interpolation, but may interpolate by other methods.
  • a method of interpolating based on the integrated value acquired one day before in the time zone when the integrated value is missing may be considered. That is, the integration acquired from the time 24 hours before the time when the integrated value was last acquired before the missing measurement to the time 24 hours before the time when the integrated value was first acquired after the missing measurement
  • the missing integrated value may be interpolated.
  • the missing integrated value may be interpolated on the assumption that the electric energy is supplied at the same ratio as the ratio of the electric energy supplied in each past unit time.
  • the unit time is not limited to one hour, one day, one month, and one year.
  • the unit time may be 10 minutes, 1 week, or 1 season (3 months).
  • the controller 30 may calculate the electric energy only when a display command is input without calculating the electric energy at the end time of the unit time.
  • the controller 30 does not need to calculate the power amount twice, so that hardware resources can be saved.
  • the fact that the measuring instrument 20 has been updated is displayed on the screen 361 only when the integrated value is missing at the end time or the start time, but this is not a limitation.
  • the fact that the measuring instrument 20 has been updated may be displayed.
  • the unit time is obtained by subtracting the integrated value acquired from the measuring instrument 20 at the start time of the unit time from the integrated value acquired from the measuring instrument 20 at the end time of each unit time. The amount of power supplied to was calculated. In this calculation, the time when the integrated value is acquired from the measuring instrument 20 is substantially equal to the time when the integrated value is measured by the measuring instrument 20.
  • the controller 30 controlled the electric equipment 10
  • the controller 30 may prompt the user U1 to improve the usage status of the electrical device 10 simply by presenting the transition of the power consumption amount to the user U1.
  • the controller 30 and the electric device 10 may not be connected to each other.
  • the controller 30 may output the calculated electric energy to an external device.
  • the amount of power may be output to the mobile terminal owned by the user U1 via the Internet.
  • the user U1 can check the transition of the electric energy using the mobile terminal even when the user U is out.
  • controller 30 can be realized by dedicated hardware or by a normal computer system.
  • the program Pr1 stored in the auxiliary storage unit 33 is stored in a computer-readable recording medium such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and distributed.
  • a computer-readable recording medium such as a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk), and distributed.
  • the program Pr1 may be stored in a disk device or the like included in a server device on a communication network such as the Internet, and may be downloaded onto a computer, for example, superimposed on a carrier wave.
  • the above-described processing can also be achieved by starting and executing the program Pr1 while transferring it via the communication network.
  • processing can also be achieved by executing all or part of the program Pr1 on the server device and executing the program Pr1 while the computer transmits / receives information related to the processing via the communication network. .
  • means for realizing the function of the controller 30 is not limited to software, and a part or all of the means may be realized by dedicated hardware (circuit or the like).
  • the controller 30 includes an acquisition unit 61 that repeatedly acquires an integrated value from the measuring instrument 20, a calculation unit 62 that calculates a power amount value based on the acquired integrated value, and a calculated power It has the correction
  • the acquisition unit 61 executes a process corresponding to step S1 (see FIG. 4).
  • the acquisition unit 61 is realized by the cooperation of the processor 31 and the interface 34, but may be realized by a dedicated acquisition circuit.
  • the calculation unit 62 calculates, for each of a plurality of unit times having different lengths, the integrated value acquired by the acquisition unit 61 at the start time of the unit time from the integrated value acquired by the acquisition unit 61 at the end time of the unit time.
  • the value obtained by subtraction is calculated as the value of the amount of power supplied via the power line 12 in this unit time. That is, the calculation unit 62 calculates IPC [k] ⁇ IPC [k ⁇ 1] in the above equation (1) (see step S42, FIG. 6).
  • the calculation unit 62 sets the integrated value acquired last by the acquisition unit 61 before the missing measurement. Based on this, the power value is calculated.
  • the calculation unit 62 calculates the value of the electric energy by using the integrated value acquired last before the missing measurement instead of the missing measured integrated value.
  • the calculation unit 62 is realized by the processor 31, for example, but may be realized by a dedicated calculation circuit.
  • the correction unit 63 responds to a difference (amount of change in the integrated value) between the first integrated value acquired by the acquiring unit 61 and the second integrated value acquired by the acquiring unit 61 next to the first integrated value.
  • the power amount value calculated by the calculation unit 62 is corrected.
  • the correction unit 63 is realized by the processor 31, for example, but may be realized by a dedicated correction circuit.
  • the correction unit 63 includes a first addition unit 631, a second addition unit 632, and a zero setting unit 633 for correcting the power amount value when the change amount of the integrated value is negative.
  • the first adder 631, the second adder 632, and the zero setting unit 633 are all realized by the processor 31, for example, but are a dedicated first adder circuit, a dedicated second adder circuit, and a dedicated zero setting circuit. May be realized.
  • the first addition unit 631 adds the first integration value to each FIPC stored in the storage unit 64 when the change amount of the integration value is negative.
  • the first addition unit 631 executes processing corresponding to steps S2 and S3 (see FIG. 4).
  • the second addition unit 632 corrects the power amount value by adding the FIPC stored in the storage unit 64 to the power amount value calculated by the calculation unit 62 for each of the plurality of unit times. .
  • the second addition unit 632 adds the FIPC associated with the unit time to the value of the electric energy calculated as the electric energy supplied for the unit time. That is, the second adder 632 performs FIPC addition (+ FIPC) in the above equation (1) (step S42, see FIG. 6).
  • the zero setting unit 633 sets the FIPC to zero when the power amount value is corrected by the second addition unit 632. Specifically, when the value of the amount of power calculated as the amount of power supplied per unit time is corrected by the second addition unit 632, the zero setting unit 633 sets the FIPC associated with this unit time to zero. Set to. In other words, when the FIPC is added to the electric energy by the second addition unit 632, the zero setting unit 633 sets the FIPC to zero.
  • the zero setting unit 633 executes a process corresponding to step S43 (see FIG. 6).
  • the correcting unit 63 interpolates the missing integrated value to obtain electric power. Correct the amount value.
  • the correction unit 63 uses the first integrated value and the second integrated value to interpolate the missing integrated value by linear interpolation (see FIG. 8). The interpolation by the correction unit 63 corresponds to the process of step S85 (see FIG. 7).
  • amendment part 63 is the unit time from the time when integral value was acquired by the integral multiple of unit time from the time when the integration value was acquired last before the missing measurement, and the unit time from the time when the integration value was acquired last after the missing measurement.
  • the missing integrated value may be interpolated based on the transition of the integrated value acquired by the acquiring unit 61. For example, when the unit time is 1 hour, the correction unit 63 first acquires the integrated value after the missing measurement from the time 24 hours before the time when the integrated value was last acquired before the missing measurement. The integrated value may be interpolated based on the transition of the integrated value from the previous time to the time 24 hours ago.
  • the storage unit 64 stores a plurality of variables. In the example illustrated in FIG. 12, the storage unit 64 stores time FIPC 41, date FIPC 42, month FIPC 43, and year FIPC 44.
  • the storage unit 64 is realized by, for example, the main storage unit 32 or the auxiliary storage unit 33, but may be realized by a dedicated external storage device.
  • the output unit 65 outputs update information when the integrated value is missing and the amount of change in the integrated value before and after the missing measurement is negative. Specifically, the output unit 65 makes a missing measurement of the integrated value to be acquired by the acquiring unit 61 in a certain unit time, and from the integrated value first acquired by the acquiring unit 61 after the missing measurement, before the missing measurement. When the difference obtained by subtracting the integrated value acquired last by the acquisition unit 61 is negative, update information indicating that the measuring instrument 20 has been updated in this unit time is output. The output unit 65 executes a process corresponding to step S84 (see FIG. 7). The output unit 65 is realized by the processor 31, for example, but may be realized by a dedicated output circuit.
  • the display unit 66 has the same function as the display unit 36 shown in FIG.
  • the display unit 66 displays information indicating that the measuring instrument 20 has been updated in the unit time indicated by the update information (see FIG. 9).
  • the display unit 66 executes a process corresponding to step S86 (see FIG. 7).
  • the display unit 66 is realized by the cooperation of the processor 31 and the display unit 36, but may be realized by a dedicated display device.
  • 100 energy management system 10 electrical equipment, 11 commercial power supply, 12 power lines, 20 measuring instruments, 30 controller, 31 processor, 32 main storage unit, 33 auxiliary storage unit, 34 interface, 35 input unit, 36 display unit, 361 screen, 361d, 361h, 361m, 361y graph, 37 internal bus, 41 hour FIPC, 42 day FIPC, 43 month FIPC, 44 year FIPC, 51, 52 message, 53, 54 bar, 61 acquisition unit, 62 calculation unit, 63 correction unit , 631 1st addition unit, 632 2nd addition unit, 633 zero setting unit, 64 storage unit, 65 output unit, 66 display unit, H1 residence, L1, L2, L3 line, NW in-house network Network, Pr1 program, U1 user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

 コントローラ(30)は、取得部(61)と、算出部(62)と、補正部(63)と、出力部(65)とを備える。取得部(61)は、電力線を介して供給される電力の積算値を計測する計測器(20)から、計測された積算値をくり返し取得する。算出部(62)は、取得部(61)によって取得された積算値に基づいて、電力線を介して単位時間に供給された電力量の値を算出する。補正部(63)は、取得部(61)によって取得された一の積算値と、一の積算値の後に取得部(61)によって取得された他の積算値との差に応じて、算出部(62)によって算出された電力量の値を補正する。出力部(65)は、補正部(63)によって補正された電力量の値を出力する。

Description

データ処理装置、エネルギー管理システム、データ処理方法及びプログラム
 本発明は、データ処理装置、エネルギー管理システム、データ処理方法及びプログラムに関する。
 近年、電気機器等によるエネルギーの使用状況を把握することで、消費エネルギーの削減を図るエネルギー管理システムが注目されている。エネルギー管理システムでは、例えば、電気機器に供給される電流及び電圧から電力の積算値を計測する計測器と、計測された電力の積算値を処理する処理装置とが用いられる。
 計測器によって計測される電力の積算値は、計測器が設置された時点から積算されることが多い。したがって、故障等により計測器が交換されると、電力の積算値が初期化されてしまうため、交換の前後において処理装置によって処理されるデータに不整合が生じる。そこで、このようなデータの不整合を防止するための技術が提案されている(例えば、特許文献1を参照)。
 特許文献1に記載の計測器は、その内部に記憶している電力の積算値を任意の値に書き換え可能に構成されている。このため、計測器が交換された場合には、処理装置が、計測器に記憶されている電力の積算値を書き換えることにより、データの不整合を防止することができる。
特開2002-296307号公報
 しかしながら、特許文献1に記載の技術では、計測器が故障した場合に、外部の端末から処理装置へ指令が送られた上で、処理装置が計測器に記憶されている電力の積算値を書き換える。このため、計測器が故障した際に処理装置へ指令を送る外部の端末が必要となり、データの不整合を防止するための構成が大規模なものとなってしまうおそれがあった。
 本発明は、上記の事情に鑑みてなされたもので、データの不整合を防止するための構成を小規模なものとすることを目的とする。
 上記目的を達成するために、本発明のデータ処理装置は、電力線を介して供給される電力の積算値を計測する計測装置から、計測された積算値をくり返し取得する取得部と、取得部によって取得された積算値に基づいて、電力線を介して単位時間毎に供給された電力量の値を算出する算出部と、取得部によって取得された一の積算値と、一の積算値の後に取得部によって取得された他の積算値との差に応じて、算出部によって算出された電力量の値を補正する補正部と、補正部によって補正された電力量の値を出力する出力部と、を備える。
 本発明によれば、データ処理装置が、一の積算値と、一の積算値の後に取得した他の積算値との差に基づいて、電力量を補正する。このため、データ処理装置による処理のみで、データの不整合を防止することができる。これにより、データの不整合を防止するための構成を小規模なものとすることができる。
実施の形態に係るエネルギー管理システムの構成を示す図である。 コントローラによって取得される積算値の推移の例を示す図である。 表示部の画面に表示される画像の例を示す図である。 プロセッサによって実行される一連の処理を示すフロー図である。 計測器が交換された場合における積算値の推移を示す図である。 1時間毎の電力量算出処理を示すフロー図である。 表示処理を示すフロー図である。 欠測して補間される積算値の例を示す図である。 計測器が交換された場合に表示される画像の例を示す図である。 一の単位時間において計測器が複数回交換される場合における積算値の推移を示す図である。 積算値がオーバーフローした場合を説明するための図である。 コントローラの機能的な構成を示す図である。
 以下、本発明を実施するための形態について、図面を参照しつつ詳細に説明する。
 本実施の形態に係るエネルギー管理システム100は、図1に示されるように、電気機器10によって消費される電力量をユーザU1に対して表示するHEMS(Home Energy Management System)である。エネルギー管理システム100は、住居H1に設置された電気機器10、電気機器10に供給される電力の積算値を計測する計測器20、及び電気機器10を制御するコントローラ30を有している。電気機器10及び計測器20はいずれも、宅内ネットワークNWを介してコントローラ30に接続されている。
 宅内ネットワークNWは、例えば、ECHONET Lite等の通信プロトコルに従って通信するためのネットワークである。電気機器10、計測器20及びコントローラ30各々は、この通信プロトコルに従って信号を送受信することにより、宅内ネットワークNWを介して互いに通信する。
 電気機器10は、例えば、空調機器又は照明機器である。電気機器10には、商用電源11から電力線12を介して電力が供給される。そして、電気機器10は、エネルギー管理システム100のユーザU1によって直接入力される操作、及びコントローラ30から送信されるコマンドに従って動作する。
 計測器20は、電力線12を介して電気機器10に供給される電力の積算値を、例えば1秒毎に計測する計測装置である。そして、計測器20は、計測した電力の積算値を、例えば30秒毎にコントローラ30へ通知する。図2には、コントローラ30へ通知される電力の積算値の推移が線L1で示されている。以下では、電力の積算値を単に積算値という。
 コントローラ30は、計測器20から計測の結果として通知される積算値をくり返し取得して処理するデータ処理装置である。コントローラ30は、取得した積算値に基づいてコマンドを送信することにより、電気機器10を制御する。コントローラ30は、プロセッサ31、主記憶部32、補助記憶部33、インタフェース34、入力部35及び表示部36を有している。主記憶部32、補助記憶部33、インタフェース34、入力部35、及び表示部36はいずれも、内部バス37を介してプロセッサ31に接続されている。
 プロセッサ31は、例えばCPU(Central Processing Unit)等から構成される。プロセッサ31は、補助記憶部33に記憶されるプログラムPr1を実行することにより、種々の処理を実行する。プロセッサ31によって実行される処理には、電力線12を介して電気機器10に単位時間毎に供給された電力量の算出が含まれる。この単位時間は、例えば、1時間、1日間、1月間及び1年間である。
 図2には、プロセッサ31によって算出される1時間毎の電力量が模式的に示されている。図2中の電力量E8~E14各々は、8時台(8時0分以後9時0分より前)、9時台(9時0分以後10時0分より前)、・・・、14時台(14時0分以後15時0分より前)の各々において電気機器10に供給された電力量に相当する。また、図2中の黒丸は、毎時0分における積算値を示している。
 図2に示されるように、プロセッサ31は、各単位時間の終了時刻(毎時0分)における積算値から、この単位時間の開始時刻における積算値を減じて得た値を、この単位時間に供給された電力量として算出する。例えば、プロセッサ31は、9時0分における積算値から8時0分における積算値を減じて得た値を、8時台の1時間に供給された電力量として算出する。
 なお、プロセッサ31は、1日間に供給された電力量、1月間に供給された電力量、及び1年間に供給された電力量を、1時間に供給された電力量と同様に算出する。1日間を単位時間とするときの開始時刻及び終了時刻は、毎日0時0分である。1月間を単位時間とするときの開始時刻及び終了時刻は、毎月1日の0時0分である。1年間を単位時間とするときの開始時刻及び終了時刻は、毎年1月1日の0時0分である。
 図1に戻り、主記憶部32は、例えばRAM(Random Access Memory)等から構成される。主記憶部32は、補助記憶部33からプログラムPr1をロードする。そして、主記憶部32は、プロセッサ31の作業領域として用いられる。
 補助記憶部33は、ハードディスク又はフラッシュメモリ等の不揮発性メモリを含んで構成される。補助記憶部33は、プロセッサ31の指示に従って、プロセッサ31によって利用されるデータをプロセッサ31に供給し、プロセッサ31から供給されたデータ等を記憶する。
 補助記憶部33は、プログラムPr1の他に、プロセッサ31の処理に用いられる種々のデータを記憶している。補助記憶部33によって記憶されるデータには、計測器20から取得された積算値の推移を示すデータ、及び後述の処理に用いられる複数の変数が含まれる。
 積算値の推移を示すデータは、積算値と、この積算値が取得された時刻との複数の組み合わせからなる。また、複数の変数は、時間FIPC(Failure Integrated Power Consumption)41、日FIPC42、月FIPC43、及び年FIPC44である。以下では、時間FIPC41、日FIPC42、月FIPC43、及び年FIPC44をまとめて単にFIPCという。FIPC各々には、値が格納される。
 インタフェース34は、宅内ネットワークNWを介して通信するための通信インタフェース等から構成される。インタフェース34は、宅内ネットワークNWを介して信号を受信して、この信号に含まれるデータをプロセッサ31へ通知する。また、インタフェース34は、プロセッサ31から出力されたデータを取得して、このデータを含む信号を、宅内ネットワークNWを介して、例えば電気機器10へ送信する。
 入力部35は、例えばキーボード並びにマウス及びタッチパッド等のポインティングデバイスを含んで構成される。入力部35は、ユーザU1によって入力された情報を取得して、プロセッサ31へ通知する。入力部35は、表示部36の画面361に表示される画像を切り替えたり、電気機器10に対する制御の内容を入力したりするために用いられる。
 表示部36は、例えばLCD(Liquid Crystal Display)の画面361を含んで構成される。表示部36は、プロセッサ31の指示に従って、種々の文字や図形からなる画像をユーザU1に対して表示する。
 図3には、2013年7月26日15時10分の時点において、画面361に表示される画像の例が示されている。図3に示されるように、画面361には、過去において1時間毎に供給された電力量の推移を示すグラフ361h、過去において1日間毎に供給された電力量の推移を示すグラフ361d、過去において1月間毎に供給された電力量の推移を示すグラフ361m、及び過去において1年間毎に供給された電力量の推移を示すグラフ361yが表示される。本実施の形態に係るグラフ361h、361d、361m、361yはいずれも、棒グラフである。
 続いて、コントローラ30のプロセッサ31によって実行される一連の処理について、図4~9を用いて詳細に説明する。この一連の処理は、コントローラ30の電源が投入されることにより開始する。なお、コントローラ30が初めて起動された状態では、時間FIPC41、日FIPC42、月FIPC43、及び年FIPC44のいずれにも、その値としてゼロが設定されている。
 図4に示されるように、プロセッサ31は、まず、計測された積算値を計測器20からインタフェース34を介して取得する(ステップS1)。ただし、通信エラー等により積算値が欠測した場合には、プロセッサ31は、ステップS1を省略してステップS2へ処理を移行してもよいし、欠測した積算値に代えて、欠測の前において最後に取得した積算値を、計測器20から通知されたものとして用いてもよい。
 次に、プロセッサ31は、積算値の変化量が負であるか否かを判定する(ステップS2)。具体的には、プロセッサ31は、ステップS1にて今回取得した積算値から、前回取得した積算値を減じて得た差が負であるか否かを判定する。
 図5には、計測器20が故障して交換された場合において、コントローラ30が取得する積算値の推移が示されている。図5中の線L2は、交換前の計測器20から取得された積算値の推移を示し、線L3は、交換後の計測器20から取得された積算値の推移を示している。図5に示されるように、交換後の計測器20は、電力の積算値をゼロから積算する。
 また、図5中の時刻T1は、故障前の計測器20からコントローラ30が最後に積算値を取得した時刻である。時刻T1から時刻T2までの間では、積算値が欠測している。時刻T2は、交換後の計測器20からコントローラ30が最初に積算値を取得した時刻である。図5に示されるように、時刻T2において取得された積算値は、ほぼゼロであって、前回取得された積算値P1より小さい。このため、時刻T2における積算値(ゼロ)から時刻T1における積算値P1を減じて得た差は、負となる。
 図4に戻り、ステップS2にて積算値の変化量が負ではないと判定された場合(ステップS2;No)、プロセッサ31は、ステップS4へ処理を移行する。一方、積算値の変化量が負であると判定された場合(ステップS2;Yes)、プロセッサ31は、前回取得した積算値を、各FIPCに加算する(ステップS3)。
 例えば、図5中の時刻T2においては、ステップS2の判定が肯定されて、時刻T1において取得された積算値P1が、時間FIPC41、日FIPC42、月FIPC43、年FIPC44の各々に加算される。これにより、例えばゼロに設定されていた時間FIPC41が、積算値P1と等しくなる。
 次に、プロセッサ31は、1時間毎の電力量算出処理を実行する(ステップS4)。この1時間毎の電力量算出処理について、図6を用いて説明する。
 1時間毎の電力量算出処理において、プロセッサ31は、まず、現在の時刻が単位時間の終了時刻であるか否かを判定する(ステップS41)。この単位時間は、1時間毎の電力量算出処理においては1時間を意味する。したがって、プロセッサ31は、現在時刻が毎時0分に該当するか否かを判定する。現在の時刻が単位時間の終了時刻ではないと判定された場合(ステップS41;No)、プロセッサ31は、1時間毎の電力量算出処理を終了する。
 一方、現在の時刻が単位時間の終了時刻であると判定された場合(ステップS41;Yes)、プロセッサ31は、次式(1)に従って、現在の時刻を終了時刻とする単位時間において供給された電力量(P[k])を算出する(ステップS42)。例えば、図5に示される14時0分においては、ステップS41の判定が肯定されて、13時台の電力量が算出されることとなる。
P[k]=IPC[k]-IPC[k-1]+FIPC ・・・(1)
 ここで、IPC[k](Integrated Power Consumption)は、現在の時刻において取得された積算値を意味する。また、IPC[k-1]は、現在の時刻を終了時刻とする単位時間の開始時刻において取得された積算値を意味し、前回の単位時間の終了時刻において取得された積算値を意味する。k、k-1は、各単位時間の終了時刻に便宜上付された番号を意味する。
 例えば、図5に示される例において、14時0分にステップS42にて用いられる上記式(1)では、IPC[k]は積算値P2に相当し、IPC[k-1]は積算値P1に相当する。ただし、図5に示されるように、13時0分において計測器20から取得されるべき積算値が欠測しているが、単位時間の終了時刻又は開始時刻における積算値が欠測した場合に、プロセッサ31は、欠測の前において最後に取得された積算値を、欠測した積算値に代えて用いる。このため、IPC[k-1]は、積算値P1に相当することとなる。
 また、上記式(1)中のFIPCは、1時間毎の電力量算出処理においては時間FIPC41を意味する。図5には、時間FIPC41が積算値P1と等しい場合において、上記式(1)により13時台の電力量として算出される電力量E13が示されている。
 上記式(1)は、単位時間の終了時刻における積算値(IPC[k])から、開始時刻における積算値(IPC[k-1])を単に減じて得た値を電力量(P[k])として算出し、算出した電力量に補正項(FIPC)を加算することで電力量を補正することを表している。すなわち、上記式(1)は、単なる減算による電力量の算出と、算出された電力量の補正とを1つにまとめた演算式といえる。
 なお、プロセッサ31は、算出した電力量を補助記憶部33に記憶させる。補助記憶部33に記憶された電力量は、電力量の推移がユーザに対して表示される際に用いられる。
 図6に戻り、プロセッサ31は、電力量の算出(ステップS42)に続いて、FIPCにゼロを設定する(ステップS43)。このFIPCは、1時間毎の電力量算出処理においては時間FIPC41を意味する。その後、プロセッサ31は、1時間毎の電力量算出処理を終了する。
 図4に戻り、プロセッサ31は、1時間毎の電力量算出処理(ステップS4)に続いて、1日間毎の電力量算出処理(ステップS5)、1月間毎の電力量算出処理(ステップS6)、及び1年間毎の電力量算出処理(ステップS7)を、この順で実行する。ステップS5~S7の電力量算出処理は、ステップS4の1時間毎の電力量算出処理と同様の処理であるため、詳細を省略する。ただし、ステップS5~S7の電力量算出処理各々における単位時間は、1日間、1月間、及び1年間各々を意味する。また、ステップS5~S7の電力量算出処理各々におけるFIPCは、日FIPC42、月FIPC43、及び年FIPC44各々を意味する。
 次に、プロセッサ31は、表示処理を実行する(ステップS8)。表示処理は、電力量の推移をユーザU1に対して表示する処理である。この表示処理について、図7~9を用いて説明する。
 図7に示されるように、表示処理において、プロセッサ31は、まず、表示指令が入力されたか否かを判定する(ステップS81)。表示指令は、例えば、電力量の推移を示すグラフを画面361に表示するための指令であって、ユーザU1によって入力部35から入力される。
 表示指令が入力されていないと判定された場合(ステップS81;No)、プロセッサ31は、表示処理を終了する。一方、表示指令が入力されたと判定された場合(ステップS81;Yes)、プロセッサ31は、画面361に表示されるいずれかの単位時間の終了時刻又は開始時刻における積算値が欠測しているか否かを判定する(ステップS82)。
 積算値が欠測していないと判定された場合(ステップS82;No)、プロセッサ31は、ステップS86へ処理を移行する。一方、積算値が欠測していると判定された場合(ステップS82;Yes)、プロセッサ31は、欠測の前後における積算値の変化量が非負であるか否かを判定する(ステップS83)。具体的には、プロセッサ31は、欠測の後において最初に取得された積算値から、欠測の前において最後に取得された積算値を減じて得た値が非負であるか否かを判定する。
 変化量が非負ではないと判定された場合(ステップS83;No)、プロセッサ31は、積算値が欠測している時刻を含む単位時間において計測器20が更新されたことを示す更新情報を、表示部36へ出力する(ステップS84)。その後、プロセッサ31は、ステップS86へ処理を移行する。なお、計測器20の更新には、例えば、故障等により計測器20が交換されたことが含まれる。
 一方、変化量が非負であると判定された場合(ステップS83;Yes)、プロセッサ31は、欠測した積算値を補間して、電力量を再計算する(ステップS85)。具体的には、プロセッサ31は、欠測後に最初に取得された積算値、及び欠測前に最後に取得された積算値を用いて、欠測した積算値を線形補間により補間する。そして、プロセッサ31は、補間された積算値を用いて電力量を再度算出する。これにより、ステップS42(図6参照)等において算出された電力量が補正されることとなる。
 例えば、図8に示されるように、時刻T3から時刻T4までの間に、コントローラ30のダウン、又は宅内ネットワークNWにおける通信障害の発生により積算値が欠測した場合には、時刻T4においてステップS83の判定は肯定される。この場合に、プロセッサ31は、時刻T3における積算値P3から、時刻T4における積算値P4まで、積算値が一定の変化率で推移したと想定して、10時0分、11時0分、12時0分及び13時0分各々で欠測した積算値を補間する。
 次に、プロセッサ31は、グラフ361h、361d、361m、361yを含む画像を、表示部36に表示させる(ステップS86)。具体的には、プロセッサ31は、単位時間毎に供給された電力量の値を示すデータを、表示部36へ出力する。
 なお、ステップS84が実行された場合には、表示部36は、プロセッサ31から出力される更新情報を取得して、この更新情報により示される単位時間において計測器20が更新されたことを、ユーザU1に対して表示する。図9には、計測器20が図5に示されたように交換された場合において、更新情報に基づいて画面361に表示される画像の例が示されている。
 図9に示されるように、グラフ361hは、積算値が欠測している終了時刻を含む12時台において計測器20が交換されたことを示すメッセージ51、及び積算値が欠測している開始時刻を含む13時台において計測器20が交換されたことを示すメッセージ52を含んでいる。また、12時台の電力量を示すバー53及び13時台の電力量を示すバー54は、実線で示される他のバーとは異なり、点線で示されている。
 その後、プロセッサ31は、表示処理を終了する。図4に戻り、表示処理(ステップS8)に続いて、プロセッサ31は、ステップS1以降の処理をくり返す。これにより、例えば30秒毎に、図4に示される一連の処理が実行される。
 以上説明したように、本実施の形態に係るコントローラ30は、計測器20が交換されることによるデータの不整合を防止することができる。具体的には、コントローラ30は、FIPCを用いて電力量を補正することにより、電力量を負の値として算出することを回避することができる。これにより、実態からかけ離れた消費電力量の推移がユーザU1に対して表示されることを防ぐことができる。
 また、コントローラ30は、計測器20の構成に関係なく、データの不整合を防止するため、計測器20として汎用の電力計を用いることができる。また、コントローラ30は、外部から指令を受けることなく、データの不整合を防止することができる。これにより、データの不整合を防止するための構成を小規模なものとすることができる。
 また、本実施の形態に係るステップS3(図4参照)において、FIPCには、コントローラ30が前回取得した積算値が加算された。積算値が加算されたFIPCは、次式(2)で表される。
Figure JPOXMLDOC01-appb-M000001
 ただし、Nは、一の単位時間において積算値の変化量が負となった回数を意味し、Pは、積算値の変化量がn回目に負となる前において最後に取得された積算値を意味する。上記式(2)に示されるように、FIPCは、変化量が負となった前において最後に取得された積算値の総和となる。このため、一の単位時間において計測器20が複数回交換された場合であっても、データの不整合を防止しつつ、電力量を算出することができる。
 例えば、図10に示されるように、1年間において計測器20が三度交換された場合に、年FIPC44には、積算値P6、P7、P8が順に加算される。その結果、2013年1月1日の時点におけるFIPCは、積算値P6、P7、P8の総和となる。このFIPCを用いて上記式(1)により電力量を算出することで、2012年の1年間において供給された電力量を、データの不整合を防止しつつ正確に算出することができる。
 また、本実施の形態に係るステップS2において、積算値の変化量が単に負と判定された場合に、FIPCに値が加算された。したがって、計測器20によって積算される積算値がオーバーフローした場合であっても、コントローラ30はデータの不整合を防止することができる。例えば、図11に示される例では、時刻T5において、積算値が上限値MAXに達して、コントローラ30に通知される積算値がゼロに初期化されている。このように積算値が初期化された場合であっても、コントローラ30は、8時台の電力量を正確に算出することができる。
 また、図11中の時刻T6においては、積算値が何らかの原因でゼロにリセットされている。このように積算値がリセットされた場合であっても、コントローラ30は、10時台の電力量を正確に算出することができる。
 また、本実施の形態に係るコントローラ30は、欠測の前後における積算値の変化量が非負である場合には、コントローラ30がダウンし、又はコントローラ30と計測器20との間で通信障害が生じたと判断して、積算値を補間した(図7参照)。
 コントローラ30のダウン等により欠測した積算値に代えて、欠測前に最後に取得された積算値を用いれば、積算値の変化量が非負であるため、データの不整合は生じないと考えられる。しかしながら、複数の単位時間に渡って積算値が欠測したときに、欠測後に最初に算出される電力量が、実態からかけ離れた大きな値になると考えられる。
 そこで、本実施の形態に係るコントローラ30は、積算値を補間することで、ある程度実態に即した電力量を算出することができる。これにより、ユーザU1が、実態からかけ離れた電力量の推移を認識することを防止することができる。
 以上、本発明の実施の形態について説明したが、本発明は上記実施の形態によって限定されるものではない。
 例えば、上記実施の形態において、コントローラ30は、欠測した積算値を線形補間により補間したが、他の手法により補間してもよい。他の手法としては、例えば、単位時間を1時間とするときには、積算値が欠測した時間帯における1日前に取得されていた積算値に基づいて補間する手法が考えられる。すなわち、欠測前に最後に積算値が取得された時刻から24時間だけ前の時刻から、欠測後に最初に積算値が取得された時刻から24時間だけ前の時刻までにおいて取得されていた積算値の推移に基づいて、欠測した積算値を補間してもよい。具体的には、過去の各単位時間に供給された電力量の比率と同様の比率で、電力量が供給されたものと想定して、欠測した積算値を補間してもよい。
 また、単位時間は、1時間、1日間、1月間、及び1年間に限られない。例えば、単位時間を10分間、1週間、又は1シーズン(3月間)としてもよい。
 また、上記実施の形態では、各単位時間の終了時刻にその単位時間に供給された電力量が算出されるとともに、表示処理において、欠測の前後における積算値の変化量が非負であると判定された場合に電力量が再計算されたが、これには限られない。例えば、コントローラ30は、単位時間の終了時刻に電力量を算出することなく、表示指令が入力された場合に限って電力量を算出してもよい。表示指令が入力された場合に限って電力量が算出されるときには、コントローラ30が電力量を2回算出する必要がなくなるため、ハードウェア資源を節約することができる。
 また、上記実施の形態において、終了時刻又は開始時刻において積算値が欠測した場合に限って、計測器20が更新されたことが画面361に表示されたが、これには限られない。例えば、一の単位時間に含まれるいずれかの時刻において積算値が欠測した場合に、計測器20が更新された旨が表示されてもよい。
 また、上記実施の形態では、各単位時間の終了時刻において計測器20から取得された積算値から、この単位時間の開始時刻において計測器20から取得された積算値を減じることで、この単位時間に供給された電力量を算出した。この算出において、計測器20から積算値を取得した時刻は、実質的に、計測器20によって積算値が計測された時刻に等しい。
 また、上記実施の形態において、コントローラ30は、電気機器10を制御したが、これには限られない。例えば、コントローラ30は、単に消費電力量の推移をユーザU1に対して提示することのみで、電気機器10の使用状況の改善をユーザU1に促してもよい。この場合、コントローラ30と電気機器10は互いに接続されていなくともよい。
 また、コントローラ30は、算出した電力量を、外部の機器へ出力してもよい。例えば、インターネットを介してユーザU1が所有する携帯端末へ電力量を出力してもよい。この場合、ユーザU1は、外出中であっても携帯端末を用いて電力量の推移を確認することができる。
 上記実施の形態に係るコントローラ30の機能は、専用のハードウェアによっても、また、通常のコンピュータシステムによっても実現することができる。
 例えば、補助記憶部33に記憶されているプログラムPr1を、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)等のコンピュータ読み取り可能な記録媒体に格納して配布し、そのプログラムPr1をコンピュータにインストールすることにより、上述の処理を実行する装置を構成することができる。
 また、プログラムPr1をインターネット等の通信ネットワーク上のサーバ装置が有するディスク装置等に格納しておき、例えば、搬送波に重畳させて、コンピュータにダウンロード等するようにしてもよい。
 また、通信ネットワークを介してプログラムPr1を転送しながら起動実行することによっても、上述の処理を達成することができる。
 更に、プログラムPr1の全部又は一部をサーバ装置上で実行させ、その処理に関する情報をコンピュータが通信ネットワークを介して送受信しながらプログラムPr1を実行することによっても、上述の処理を達成することができる。
 なお、上述の機能を、OS(Operating System)が分担して実現する場合又はOSとアプリケーションとの協働により実現する場合等には、OS以外の部分のみを媒体に格納して配布してもよく、また、コンピュータにダウンロード等してもよい。
 また、コントローラ30の機能を実現する手段は、ソフトウェアに限られず、その一部又は全部を専用のハードウェア(回路等)によって実現してもよい。
 コントローラ30の機能的な構成を、図12に示す。コントローラ30は、同図に示すように、計測器20から積算値をくり返し取得する取得部61と、取得された積算値に基づいて電力量の値を算出する算出部62と、算出された電力量の値を補正する補正部63と、FIPCを記憶する記憶部64と、補正された電力量の値を出力する出力部65と、表示部66とを有する。
 取得部61は、ステップS1に相当する処理を実行する(図4参照)。取得部61は、例えば、プロセッサ31及びインタフェース34の協働により実現されるが、専用の取得回路により実現されてもよい。
 算出部62は、長さが異なる複数の単位時間の各々について、単位時間の終了時刻に取得部61によって取得された積算値から、単位時間の開始時刻に取得部61によって取得された積算値を減じて得た値を、この単位時間に電力線12を介して供給された電力量の値として算出する。すなわち、算出部62は、上記式(1)におけるIPC[k]-IPC[k-1]を算出する(ステップS42、図6参照)。ただし、単位時間の終了時刻又は開始時刻に取得部61によって取得されるべき積算値が欠測した場合に、算出部62は、欠測の前に取得部61によって最後に取得された積算値に基づいて電力量の値を算出する。例えば、算出部62は、欠測の前において最後に取得された積算値を、欠測した積算値に代えて用いることにより、電力量の値を算出する。算出部62は、例えば、プロセッサ31により実現されるが、専用の算出回路により実現されてもよい。
 補正部63は、取得部61によって取得された第1積算値と、この第1積算値の次に取得部61によって取得された第2積算値との差(積算値の変化量)に応じて、算出部62によって算出された電力量の値を補正する。補正部63は、例えば、プロセッサ31により実現されるが、専用の補正回路により実現されてもよい。
 補正部63は、積算値の変化量が負である場合に電力量の値を補正するための、第1加算部631と、第2加算部632と、ゼロ設定部633とを有する。第1加算部631、第2加算部632及びゼロ設定部633は、例えば、いずれもプロセッサ31により実現されるが、専用の第1加算回路、専用の第2加算回路、及び専用のゼロ設定回路により実現されてもよい。
 第1加算部631は、積算値の変化量が負である場合に、記憶部64に記憶されているFIPCの各々に第1積算値を加算する。第1加算部631は、ステップS2,S3に相当する処理を実行する(図4参照)。
 第2加算部632は、複数の単位時間の各々について、算出部62によって算出された電力量の値に、記憶部64に記憶されているFIPCを加算することにより、電力量の値を補正する。換言すると、第2加算部632は、単位時間に供給された電力量として算出された電力量の値に、この単位時間に対応付けられたFIPCを加算する。すなわち、第2加算部632は、上記式(1)におけるFIPCの加算(+FIPC)を実行する(ステップS42、図6参照)。
 ゼロ設定部633は、第2加算部632によって電力量の値が補正されたときに、FIPCをゼロに設定する。詳細には、単位時間に供給された電力量として算出された電力量の値が第2加算部632によって補正されたときに、ゼロ設定部633は、この単位時間に対応付けられたFIPCをゼロに設定する。換言すると、ゼロ設定部633は、第2加算部632によって電力量にFIPCが加算されると、このFIPCをゼロに設定する。ゼロ設定部633は、ステップS43に相当する処理を実行する(図6参照)。
 また、補正部63は、取得部61によって取得されるべき積算値が欠測し、欠測の前後における積算値の変化量が非負である場合に、欠測した積算値を補間することにより電力量の値を補正する。例えば、補正部63は、第1積算値及び第2積算値を用いて、欠測した積算値を線形補間により補間する(図8参照)。この補正部63による補間は、ステップS85の処理に相当する(図7参照)。
 なお、補正部63は、欠測の前に最後に積算値が取得された時刻から単位時間の整数倍だけ前の時刻から、欠測の後に最後に積算値が取得された時刻から単位時間の整数倍だけ前の時刻までにおいて、取得部61によって取得された積算値の推移に基づいて、欠測した積算値を補間してもよい。例えば、単位時間が1時間である場合において、補正部63は、欠測の前に最後に積算値が取得された時刻から24時間前の時刻から、欠測の後に最初に積算値が取得された時刻から24時間前の時刻までにおける積算値の推移に基づいて、積算値を補間してもよい。
 記憶部64は、複数の変数を記憶する。図12に示される例では、記憶部64は、時間FIPC41、日FIPC42、月FIPC43及び年FIPC44を記憶する。記憶部64は、例えば、主記憶部32又は補助記憶部33により実現されるが、専用の外部記憶装置により実現されてもよい。
 出力部65は、積算値が欠測し、欠測の前後における積算値の変化量が負である場合に、更新情報を出力する。詳細には、出力部65は、ある単位時間において取得部61によって取得されるべき積算値が欠測し、欠測の後に取得部61によって最初に取得された積算値から、欠測の前に取得部61によって最後に取得された積算値を減じて得た差が負である場合に、この単位時間において計測器20が更新されたことを示す更新情報を出力する。出力部65は、ステップS84に相当する処理を実行する(図7参照)。出力部65は、例えば、プロセッサ31により実現されるが、専用の出力回路により実現されてもよい。
 表示部66は、図1に示される表示部36と同様の機能を有する。表示部66は、出力部65から更新情報が出力されたときに、更新情報によって示される単位時間において計測器20が更新されたことを示す情報を表示する(図9参照)。表示部66は、ステップS86に相当する処理を実行する(図7参照)。表示部66は、例えば、プロセッサ31と表示部36との協働により実現されるが、専用の表示装置により実現されてもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 この出願は、2013年7月16日に出願された日本国特許出願2013-147943号に基づく。本明細書中に日本国特許出願2013-147943号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。
  100 エネルギー管理システム、 10 電気機器、 11 商用電源、 12 電力線、 20 計測器、 30 コントローラ、 31 プロセッサ、 32 主記憶部、 33 補助記憶部、 34 インタフェース、 35 入力部、 36 表示部、 361 画面、 361d、361h、361m、361y グラフ、 37 内部バス、 41 時間FIPC、 42 日FIPC、 43 月FIPC、 44 年FIPC、 51、52 メッセージ、 53、54 バー、 61 取得部、 62 算出部、 63 補正部、 631 第1加算部、 632 第2加算部、 633 ゼロ設定部、 64 記憶部、 65 出力部、 66 表示部、 H1 住居、 L1、L2、L3 線、 NW 宅内ネットワーク、 Pr1 プログラム、 U1 ユーザ。

Claims (11)

  1.  電力線を介して供給される電力の積算値を計測する計測装置から、前記計測された積算値をくり返し取得する取得部と、
     前記取得部によって取得された積算値に基づいて、前記電力線を介して単位時間毎に供給された電力量の値を算出する算出部と、
     前記取得部によって取得された一の積算値と、該一の積算値の後に前記取得部によって取得された他の積算値との差に応じて、前記算出部によって算出された電力量の値を補正する補正部と、
     前記補正部によって補正された電力量の値を出力する出力部とを備えるデータ処理装置。
  2.  前記算出部は、前記単位時間の終了時刻に前記取得部によって取得された積算値から、該単位時間の開始時刻に前記取得部によって取得された積算値を減じて得た値を、該単位時間に供給された電力量の値として算出し、前記単位時間の終了時刻又は開始時刻に前記取得部によって取得されるべき積算値が欠測した場合に、欠測の前に前記取得部によって取得された積算値に基づいて電力量の値を算出する請求項1に記載のデータ処理装置。
  3.  変数を記憶する記憶部をさらに備え、
     前記補正部は、
     前記他の積算値から前記一の積算値を減じて得た差が負である場合に、前記一の積算値を前記変数に加算する第1加算部と、
     前記単位時間に供給された電力量の値として前記算出部によって算出された電力量の値に、前記記憶部に記憶されている前記変数を加算することにより、電力量の値を補正する第2加算部と、
     前記第2加算部によって電力量の値が補正されたときに、前記変数をゼロに設定するゼロ設定部とを有する請求項1又は2に記載のデータ処理装置。
  4.  前記算出部は、長さが異なる複数の前記単位時間の各々について、前記単位時間毎に供給された電力量の値を算出し、
     前記記憶部は、複数の前記単位時間の各々に対応付けられた前記変数を複数記憶し、
     前記第1加算部は、前記一の積算値を複数の前記変数の各々に加算し、
     前記第2加算部は、前記単位時間に供給された電力量の値として前記算出部によって算出された電力量の値に、該単位時間に対応付けられた前記変数を加算し、
     前記ゼロ設定部は、前記単位時間に供給された電力量の値として前記算出部によって算出された電力量の値が前記第2加算部によって補正されたときに、該単位時間に対応付けられた前記変数をゼロに設定する請求項3に記載のデータ処理装置。
  5.  前記出力部から出力された電力量の値に基づいて、前記電力線を介して前記単位時間毎に供給された電力量に関する情報を表示する表示部をさらに備え、
     前記出力部は、前記単位時間において前記取得部によって取得されるべき積算値が欠測し、欠測の後に前記取得部によって取得された積算値から欠測の前に前記取得部によって取得された積算値を減じて得た値が負である場合に、該単位時間において前記計測装置が更新されたことを示す更新情報を出力し、
     前記表示部は、前記出力部から前記更新情報が出力されたときに、該更新情報によって示される前記単位時間において前記計測装置が更新されたことを示す情報を表示する請求項1から4のいずれか1項に記載のデータ処理装置。
  6.  前記補正部は、前記単位時間の終了時刻又は開始時刻に前記取得部によって取得されるべき積算値が欠測し、欠測の後に前記取得部によって取得された前記他の積算値から欠測の前に前記取得部によって取得された前記一の積算値を減じて得た差が非負である場合に、欠測した積算値を補間することにより電力量の値を補正する請求項1から5のいずれか1項に記載のデータ処理装置。
  7.  前記補正部は、前記一の積算値及び前記他の積算値を用いて、欠測した積算値を線形補間により補間する請求項6に記載のデータ処理装置。
  8.  前記補正部は、前記一の積算値が取得された時刻から前記単位時間の整数倍だけ前の時刻から、前記他の積算値が取得された時刻から前記単位時間の整数倍だけ前の時刻までにおいて、前記取得部によって取得された積算値の推移に基づいて、欠測した積算値を補間する、
     請求項6に記載のデータ処理装置。
  9.  電力線を介して供給される電力の積算値を計測する計測装置と、
     前記計測装置によって計測された積算値を処理する請求項1から8のいずれか1項に記載のデータ処理装置とを備えるエネルギー管理システム。
  10.  取得部が、電力線を介して供給される電力の積算値を計測する計測装置から、前記計測された積算値をくり返し取得し、
     算出部が、前記取得された積算値に基づいて、前記電力線を介して単位時間毎に供給された電力量の値を算出し、
     補正部が、前記取得された一の積算値と、該一の積算値の後に取得された他の積算値との差に応じて、前記算出された電力量の値を補正し、
     出力部が、前記補正された電力量の値を出力するデータ処理方法。
  11.  コンピュータを、
     電力線を介して供給される電力の積算値を計測する計測装置から、前記計測された積算値をくり返し取得する取得手段、
     前記取得手段によって取得された積算値に基づいて、前記電力線を介して単位時間毎に供給された電力量の値を算出する算出手段、
     前記取得手段によって取得された一の積算値と、該一の積算値の後に前記取得手段によって取得された他の積算値との差に応じて、前記算出手段によって算出された電力量の値を補正する補正手段、
     前記補正手段によって補正された電力量の値を出力する出力手段、
     として機能させるためのプログラム。
PCT/JP2014/068449 2013-07-16 2014-07-10 データ処理装置、エネルギー管理システム、データ処理方法及びプログラム WO2015008693A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013147943A JP5752187B2 (ja) 2013-07-16 2013-07-16 データ処理装置、エネルギー管理システム、データ処理方法及びプログラム
JP2013-147943 2013-07-16

Publications (1)

Publication Number Publication Date
WO2015008693A1 true WO2015008693A1 (ja) 2015-01-22

Family

ID=52346156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068449 WO2015008693A1 (ja) 2013-07-16 2014-07-10 データ処理装置、エネルギー管理システム、データ処理方法及びプログラム

Country Status (2)

Country Link
JP (1) JP5752187B2 (ja)
WO (1) WO2015008693A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211519A (ja) * 1998-01-29 1999-08-06 Meidensha Corp 電力系統監視システムのデータ補填方法
JP2008261708A (ja) * 2007-04-11 2008-10-30 Kawamura Electric Inc 電子式電力量計のデータ記録方法及びデータ記録システム
JP2010008062A (ja) * 2008-06-24 2010-01-14 Yokogawa Electric Corp 電力計
JP2012058852A (ja) * 2010-09-06 2012-03-22 Toshiba Corp データ管理装置、電力使用量計算システム及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11211519A (ja) * 1998-01-29 1999-08-06 Meidensha Corp 電力系統監視システムのデータ補填方法
JP2008261708A (ja) * 2007-04-11 2008-10-30 Kawamura Electric Inc 電子式電力量計のデータ記録方法及びデータ記録システム
JP2010008062A (ja) * 2008-06-24 2010-01-14 Yokogawa Electric Corp 電力計
JP2012058852A (ja) * 2010-09-06 2012-03-22 Toshiba Corp データ管理装置、電力使用量計算システム及びプログラム

Also Published As

Publication number Publication date
JP5752187B2 (ja) 2015-07-22
JP2015021753A (ja) 2015-02-02

Similar Documents

Publication Publication Date Title
JP4705563B2 (ja) 配電系統の状態推定装置、状態推定方法及びそのプログラム
US11309717B2 (en) Apparatus and method for battery management
JP2004054413A (ja) 入力位置調整装置及び入力位置調整プログラム
JP5752187B2 (ja) データ処理装置、エネルギー管理システム、データ処理方法及びプログラム
US20170284201A1 (en) Malfunction diagnosis apparatus for gear motor
JPWO2019087295A1 (ja) 更新システム、更新装置および被更新装置
JP6456183B2 (ja) 制御装置、通信システム、および消費電力制御方法
US20140184267A1 (en) Compensated impedance calibration circuit
JP2011013716A (ja) プロセッササイジング装置、プロセッササイジング方法、および情報処理プログラム
JP5248746B2 (ja) ガス使用量通信システム
JP6162950B2 (ja) 動力アプリケーション用の制御システム
JP5582006B2 (ja) 開発支援プログラム、開発支援方法及び開発支援装置
WO2015033759A1 (ja) デバッグ装置、デバッグ方法及びデバッグプログラム
JP6545654B2 (ja) 通知システム、通知方法
US20140253134A1 (en) Electronic device and method for detecting the amount of charge of a battery
JP2010113527A (ja) バグ摘出予測システム
JP5826224B2 (ja) データ処理装置、エネルギー管理システム、データ処理方法、及びプログラム
JP2014167744A (ja) 機械学習装置、機械学習方法、およびプログラム
JP2012101910A (ja) 基準在庫量設定システム
JP7292550B1 (ja) アナログ電流出力装置、faシステム、断線予測装置、断線予測方法及びプログラム
JP2023175542A (ja) エネルギー演算装置及びエネルギー演算方法
US11118947B2 (en) Information processing device, information processing method and non-transitory computer readable medium
US20230137400A1 (en) Smart dialing recommendation method, non-transitory computer-readable medium, and mobile device
JP7223592B2 (ja) プログラム及び情報処理システム
JP2010078170A (ja) 給湯器のリモコン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14825631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14825631

Country of ref document: EP

Kind code of ref document: A1