WO2015006886A1 - 一种内燃机全可变液压气门系统的控油装置 - Google Patents

一种内燃机全可变液压气门系统的控油装置 Download PDF

Info

Publication number
WO2015006886A1
WO2015006886A1 PCT/CN2013/000948 CN2013000948W WO2015006886A1 WO 2015006886 A1 WO2015006886 A1 WO 2015006886A1 CN 2013000948 W CN2013000948 W CN 2013000948W WO 2015006886 A1 WO2015006886 A1 WO 2015006886A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary valve
rotary
internal combustion
combustion engine
valve sleeve
Prior art date
Application number
PCT/CN2013/000948
Other languages
English (en)
French (fr)
Inventor
谢宗法
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201320419127.8U external-priority patent/CN203347871U/zh
Priority claimed from CN201310296611.0A external-priority patent/CN103334805B/zh
Application filed by 山东大学 filed Critical 山东大学
Priority to EP13889659.2A priority Critical patent/EP3023607B1/en
Priority to JP2016526386A priority patent/JP6169795B2/ja
Priority to US14/902,268 priority patent/US9995188B2/en
Priority to KR1020157037248A priority patent/KR101730375B1/ko
Priority to RU2015154820A priority patent/RU2642946C2/ru
Publication of WO2015006886A1 publication Critical patent/WO2015006886A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/072Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members
    • F16K11/076Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with pivoted closure members with sealing faces shaped as surfaces of solids of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34426Oil control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Definitions

  • the present invention relates to a valve train and a fuel supply system for an internal combustion engine, and more particularly to an oil control device for a fully variable hydraulic valve system of an internal combustion engine.
  • the internal combustion engine uses a hydraulically actuated valve system to achieve continuous variable valve lift, valve opening duration and valve timing.
  • This valve system is called the Full Fully Variable Valve System (HFVVS). ), it is of great significance to the energy saving and emission reduction of internal combustion engines.
  • representative fully variable hydraulic valve systems include Schaeffler's Uniair system, Ford's electro-hydraulic fully variable valve system, and Lotus's EHFVVT system.
  • These hydraulically variable valve systems all use high frequency solenoid valves as oil control switches to control the inflow and outflow of oil.
  • the high frequency solenoid valve has the disadvantages of low frequency response speed, low reliability and high cost.
  • a continuously variable internal combustion engine gas distribution system includes a valve assembly, a hydraulic cylinder assembly, a hydraulic cylinder outlet control device, a hydraulic cylinder inlet control device, and a camshaft drive assembly.
  • the hydraulic low-pressure system has a large pressure fluctuation, which causes the work to be unstable.
  • the hydraulic system has oil leakage, which causes air to enter; the hydraulic cylinder outlet control
  • the device also has limitations due to structural defects that are not suitable for multi-cylinder internal combustion engines, and there is a problem that the transmission is not stable. These problems have made the system difficult to promote.
  • the object of the present invention is to overcome the shortcomings of the prior art and provide an oil control device for a fully variable hydraulic valve system that is stable in operation, reliable in operation, and highly versatile, and is suitable for single-cylinder and multi-cylinder internal combustion engines.
  • the invention is matched with the full variable hydraulic valve system of the internal combustion engine, and the technical solution thereof comprises: a casing and a rotary valve, a hydraulic accumulator and a transmission mechanism installed in the casing;
  • the rotary valve is composed of a rotary valve core and a rotary valve
  • the sleeve is provided with a tooth on one end of the rotary valve sleeve, the rotary valve core is installed in the rotary wide sleeve, and the rotary valve sleeve is installed in the inner cavity of the housing;
  • the toothed cavity is located on the housing corresponding to the tooth portion on the rotary valve sleeve a rack is mounted in the rack cavity and meshes with the teeth on the rotary valve sleeve;
  • the hydraulic accumulator is composed of an energy storage piston, an energy storage spring, an end cover, a sealing seat, a rubber pad, and is mounted on the housing The inner cavity of one end, the sealing seat and the rubber pad are fixedly mounted in
  • the spring, the accumulator spring is a compression spring; the accumulator chamber is between the rotary valve and the hydraulic accumulator; the transmission mechanism is composed of a transmission gear, a gear shaft and a cross-slider coupling, and the transmission gear is installed through a connection key Gear shaft, the gear connected to the shaft by turning the valve body and Oldham coupling.
  • One end of the rotary valve core is provided with an axial blind hole and a radial oil hole communicating therewith, and the end portion is provided with a retaining ring groove, and the other end is provided with a connecting tooth matched with the connecting tooth groove of the cross slide coupling;
  • Installed in the rotary valve sleeve the axially positioned retaining ring is installed in the retaining ring groove;
  • the radial oil hole is arranged on the rotary valve sleeve corresponding to the radial oil hole of the rotary spool, and is back
  • the radial oil hole position of the rotary valve sleeve is provided with an annular groove, and the rotary wide sleeve with the rotary valve core is installed in the inner cavity of the casing;
  • a high-pressure oil hole is arranged on the casing corresponding to the annular groove, corresponding to the axial direction of the energy storage cavity
  • the position is provided with a low-pressure oil hole, and a radi
  • the radial oil hole of the rotary valve sleeve is uniformly distributed on the circumference of the rotary valve sleeve on the axial position corresponding to the radial oil hole of the rotary valve core, and the number of the radial oil holes of the rotary valve sleeve is equal to the valve cam shaft and the rotary valve core
  • the speed ratio N, N is a positive integer.
  • the high pressure oil hole, the rotary valve sleeve annular groove, the rotary valve sleeve radial oil hole and the rotary valve core radial oil hole are arranged on the casing to form a rotary valve switch, and at least one oil control device is provided.
  • Set a rotary valve switch, the number of rotary wide switches is equal to the number of cylinders of the internal combustion engine.
  • a gap seal is used between the rotary valve core and the rotary valve sleeve, and a gap seal or a seal ring is used between the rotary valve sleeve and the housing.
  • the seal ring is sealed, the seal groove is processed on both sides of the annular groove and the seal ring is mounted. Installed into the inner cavity of the housing; when the gap seal is used, there is no need to process the seal groove, and the rotary valve sleeve is directly installed into the inner cavity of the housing.
  • the number of radial oil holes of the rotary valve sleeve in the same axial position is equal to the speed ratio N (N is a positive integer) of the valve camshaft to the rotary spool to ensure that the rotary valve switch is opened and closed once in one working cycle of the internal combustion engine.
  • N is a positive integer
  • the sealing seat of the hydraulic accumulator is installed in the inner cavity of the housing with an interference fit, and the rubber pad is fixedly attached to the end surface of the sealing seat; the accumulator piston is in a clearance fit with the inner cavity of the housing.
  • the drive gear is mounted on the gear shaft via a connecting key and is positioned by the shoulder and the retaining ring.
  • the gear shaft is in clearance fit with the inner cavity of the housing, and one end thereof is provided with connecting teeth matching the connecting slots of the cross-slider coupling; the cross-slider coupling is provided with two pairs of mutually perpendicular connecting slots, respectively.
  • the gear shaft connecting tooth and the rotary valve core connecting tooth are connected, so that the gear shaft can drive the rotating wide core to rotate at the same time.
  • the invention is connected to a fully variable hydraulic valve system of an internal combustion engine, and the transmission gear in the transmission mechanism of the device is connected with the valve camshaft of the internal combustion engine through a transmission chain, and the rack is connected with the servo motor or the proportional electromagnet by the servo
  • the motor or proportional electromagnet is controlled; the high-pressure oil hole on the casing is connected with the high-pressure oil chamber that drives the hydraulic valve, and the low-pressure oil hole and the oil drain hole on the casing are connected with the low-pressure oil passage of the lubricating system of the internal combustion engine.
  • the valve camshaft drives the transmission gear of the device through the transmission chain, and the transmission gear sequentially drives the gear shaft, the cross-slider coupling and the rotary valve core to rotate.
  • the rotary valve switch is closed, and the valve cam drives the hydraulic tappet to generate high-pressure oil in the hydraulic drive system, high-pressure oil Pushing the hydraulic piston against the resistance of the valve spring to open the valve;
  • the rotary valve switch is in an open state, the oil in the high pressure oil passage and the low pressure system The oil is connected to each other and the valve is closed by the force of the valve spring.
  • the servo motor or proportional electromagnet drives the rack to rotate the rotary valve sleeve through the rotary wide sleeve gear. Therefore, the circumferential position of the radial oil hole of the rotary valve sleeve is adjustable with the operating condition of the internal combustion engine.
  • the four-stroke internal combustion engine is in working state, if the ratio of the rotation speed of the valve camshaft to the rotary spool is N, the rotary valve sleeve is rotated through the ⁇ in the direction of the rotation of the rotary spool, and the radial oil of the rotary spool is rotated.
  • the phase angle of the hole communicating with the radial oil hole of the rotary valve sleeve will be delayed accordingly.
  • the crank angle (the crankshaft speed of the four-stroke internal combustion engine is twice the speed of the valve camshaft), that is, the opening and closing timing of the rotary valve switch Correspondingly delay 2 ⁇ ⁇ , the crank angle; similarly, the direction of the rotary valve sleeve against the rotary spool
  • the phase angle of the radial oil hole of the rotary valve core and the radial oil hole of the rotary valve sleeve will be advanced 2 ⁇ ⁇ 2 degrees crank angle, and the opening and closing time of the rotary valve switch is correspondingly advanced 2 ⁇ ⁇ 2 Degree of crank angle. Since 0>, or 2 angles can be continuously changed from 0° to 180°, the opening and closing phase angles of the rotary valve switch can be continuously variable from 0° to 360° crank angle.
  • the oil control device of the invention has the function of opening and closing valve between the hydraulic driving device and the low-pressure system, and the opening and closing timing (phase angle) can be arbitrarily adjusted within a certain range, and also has the functions of energy storage and sealing, and the manufacturing process simple. According to the number of cylinders of the internal combustion engine, matching the corresponding oil control device can meet the combined requirements of the fully variable hydraulic valve mechanism of the single cylinder and multi-cylinder internal combustion engine.
  • Figure 1 is a cross-sectional view showing the structure of the present invention
  • Figure 2 is a cross-sectional view of the ⁇ - ⁇ of Figure 1;
  • Figure 3 is a cross-sectional view of the ⁇ - ⁇ of Figure 1;
  • FIG. 4 is a schematic structural view of a fully variable hydraulic valve system of an internal combustion engine.
  • valve cam ⁇ -2 valve camshaft ⁇ -3, hydraulic tappet ⁇ -4, check valve ⁇ -5, internal combustion engine lubrication system ⁇ -6, low pressure oil passage ⁇ -7, valve spring ⁇ -8 , valve ⁇ -9, hydraulic piston ⁇ -10, high pressure Oil channel.
  • the present invention comprises a housing 1 and a rotary valve, a hydraulic accumulator and a transmission mechanism installed in the housing 1;
  • the rotary valve is composed of a rotary valve core 3 and a rotary valve sleeve 2 Composition, the rotary valve sleeve 2 is provided with gear teeth 2-1, the rotary valve core 3 is installed in the rotary valve sleeve 2, the rotary valve sleeve 2 is installed in the inner cavity of the casing 1; on the casing 1 and the rotary valve sleeve 2
  • the upper part of the upper tooth 2-1 corresponds to a rack cavity, and the rack 2-2 is mounted in the rack cavity and meshes with the teeth on the rotary valve sleeve 2;
  • the hydraulic accumulator is composed of the energy storage piston 4- 1.
  • the accumulating spring 4-2, the end cap 4-4, the sealing race 4-6 and the rubber pad 4-5 are assembled and installed in the inner cavity of the housing 1 to seal the race 4-6 and the rubber pad 4 -5 is fixedly mounted in the inner cavity of the housing 1, the energy storage piston
  • the accumulator spring 4-2 is installed between the energy storage piston 4-1 and the end cover 4-4;
  • the accumulator chamber is between the valve and the hydraulic accumulator;
  • the transmission mechanism is composed of transmission gear 5-1, gear shaft 5-2, connecting key 5-3 and cross slide coupling 5-4, transmission gear 5-1 Mounted on the gear shaft via the connection key 5-3
  • the gear shaft 5-2 is connected to the rotary spool 3 via the cross slide coupling 5-4.
  • One end of the rotary valve core 3 is provided with an axial blind hole 3-2 and a radial oil hole 3-1 communicating therewith, and the end portion is provided with a retaining ring groove, and the other end is provided with a connection with the cross slider coupling 5-4.
  • the tooth groove is matched with the connecting tooth 3-3; the rotary valve core 3 is installed in the rotary valve sleeve 2, and the axially positioned retaining ring is installed in the retaining ring groove; the radial oil hole 3 on the rotary wide sleeve 2 and the rotary wide core 3
  • the radial oil hole 2-5 is disposed corresponding to the axial position of the -1, and the annular groove 2-4 is disposed at the position of the radial oil hole 2-5 of the rotary valve sleeve, and the rotary valve sleeve 2 equipped with the rotary valve core 3 is installed.
  • the inner cavity of the casing 1 is provided with a high-pressure oil hole 1-1 at a corresponding position on the casing 1 and the annular groove 2-4, and a low-pressure oil hole 1-2 is disposed at a position corresponding to the axial direction of the energy storage cavity.
  • the bottom of the inner casing of the piston can be provided with a diametrical oil drain hole 1-3, and the end cover 4-4 has an air outlet 4-3.
  • the radial oil hole 2-5 of the rotary valve sleeve is evenly distributed on the circumference of the axial position corresponding to the rotary wide core radial oil hole 3-1, and the radial oil hole of the rotary valve sleeve 2-5
  • the number is equal to the speed ratio N of the valve camshaft to the rotary spool, and N is a positive integer.
  • the high pressure oil hole 1-1, the rotary wide sleeve annular groove 2-4, the rotary valve sleeve radial oil hole 2-5 and the rotary valve core radial oil hole 3-1 are provided on the casing 1.
  • At least one set of rotary valve KK is set in one oil control device, and the number of rotary valve switches ⁇ is equal to the number of cylinders of the internal combustion engine.
  • the gap between the rotary valve core 3 and the rotary valve sleeve 2 is sealed by a gap, and the rotary valve sleeve 2 and the housing 1 are sealed by a gap seal or a seal ring.
  • a gap seal or a seal ring When the seal is sealed by a seal ring, both sides of the annular sleeve 2-4 are swiveled.
  • the gap sealing is adopted, the sealing ring groove is not required to be processed, and the rotary valve sleeve 2 is directly installed. It is loaded into the inner cavity of the housing 1.
  • the sealing seat 4-6 of the hydraulic accumulator is installed in the inner cavity of the casing 1 to adopt an interference fit, and the rubber pad 4-5 is fixed and fixed on the sealing seat 4-6 by a vulcanization process; the accumulator piston 4-1 and The inner cavity of the casing 1 is a clearance fit, the end cover 4-4 is fixedly mounted on the end surface of one end of the casing 1, and the energy storage compression spring 4-2 is installed between the energy storage piston 4-1 and the end cover 4-4.
  • the transmission gear 5-1 is mounted on the gear shaft 5-2 via a connecting key 5-3 and is positioned by the shoulder and the retaining ring.
  • the gear shaft 5-2 is in clearance fit with the inner cavity of the housing 1, and one end thereof is provided with connecting teeth 5-5 matched with the connecting slots of the cross-slider coupling 5-4, and the cross-slider coupling 5 is passed.
  • -4 connects the gear shaft 5-2 and the rotary valve core 3, so that the gear shaft 5-2 can drive the rotary valve core 3 to rotate at the same time.
  • connecting teeth can be provided at both ends of the gear shaft 5-2, so that two independent sets of oil control devices of the present invention can be connected.
  • the invention is connected to the hydraulic full variable valve system of the internal combustion engine, and the transmission gear 5-1 and the valve camshaft N-2 are connected through the transmission chain, and the camshaft N-2 is provided.
  • the ratio of the rotational speed to the transmission gear 5-1 is a positive integer N.
  • Rack 2-2 ⁇ servo motor or proportional solenoid control, high pressure oil hole 1-1 on the housing is connected with high pressure oil passage N-10, low pressure oil hole 1-2 on the housing and low pressure oil passage ⁇ -6 connection.
  • valve camshaft ⁇ -2 drives the transmission gear 5-1 through the transmission chain.
  • the rotary valve switch ⁇ drives the tappet ⁇ -3 to generate high-pressure oil, and the high-pressure oil pushes the hydraulic piston ⁇ -9 against the resistance of the valve spring ⁇ -7 to open the valve ⁇ -8;
  • the rotary valve switch ⁇ is in an open state, and the oil in the high pressure oil passage N-10 and the internal combustion engine lubrication system ⁇ -5 The oil inside is connected to each other, the high-pressure oil flows out, and the valve ⁇ -8 is closed by the valve spring ⁇ -7.
  • the circumferential position of the rotary valve sleeve radial oil hole 2-5 is adjustable.
  • the ratio of the rotation speed of the valve camshaft ⁇ -2 to the rotary spool 3 is 1, then the number of the radial oil holes 2-5 of the rotary wide sleeve is 1, when the rotary valve sleeve 2
  • the phase angle of the radial oil hole 3-1 of the rotary valve core and the radial oil hole 2-5 of the rotary valve sleeve will be delayed by 2 ⁇ ⁇ , degree
  • the crank angle that is, the opening and closing timing of the rotary valve switch is delayed by 2 ⁇ ⁇ , the crank angle;
  • the rotary valve sleeve 2 is rotated over the direction of the rotary valve core 3 by
  • the coaxiality of the gear shaft 5-2 and the rotary spool 3 is required to be high when driving through the transmission gear 5-1, using the cross
  • the slider coupling 5-4 can reduce the requirement for coaxiality, thereby simplifying the manufacturing process and reducing the cost. Since the rotary valve switch is intermittently opened and closed, the oil pressure in the accumulator chamber is unstable, and the accumulator is used to store and release the hydraulic pressure energy, which can reduce the fluctuation of the hydraulic system pressure.
  • the oil control device of the present invention can be matched correspondingly according to the number of cylinders of the internal combustion engine to form an oil control device suitable for single-cylinder and multi-cylinder internal combustion engines.
  • radial oil holes and corresponding annular grooves are respectively provided at two different axial positions on the outer casing 1, the rotary valve sleeve 2 and the rotary valve core 3, thereby forming two independent rotary valve switches.
  • this oil control device with two rotary valve switches has only one rotary valve plug 3 and rotary valve sleeve 2, and only one accumulator and one transmission mechanism are used.
  • three sets of independent rotary wide switch ⁇ can be arranged in the oil control device to form an oil control device suitable for the three-cylinder internal combustion engine.
  • four independent rotary valve switches are provided, and so on.
  • a gear shaft 5-2 is formed to drive the two oil control devices, which can also meet the requirements of the multi-cylinder internal combustion engine. Therefore, the multi-cylinder internal combustion engine can also adopt two or more sets of oil control devices, and the combination of the cylinder numbers can be satisfied by different combinations.
  • a two-cylinder internal combustion engine can use two gear shafts 5-2 to drive two sets of oil control devices including a single rotary wide switch; a three-cylinder internal combustion engine can use a gear shaft 5-2 to drive a set of two rotary wide switches.
  • the oil control device drives the oil control device with a single rotary valve switch at the other end; the two oil control devices with two rotary valve switches can be used for the four-cylinder internal combustion engine; the two oil control valves with three rotary valves can be used for the six-cylinder internal combustion engine.
  • the oil control device of the present invention has the function of opening and closing valves between the hydraulic drive device and the low pressure system, and the opening and closing timing (phase angle) can be operated with the internal combustion engine over a wide range.
  • the working conditions can be adjusted freely.
  • the device also has the functions of energy storage and sealing, and the manufacturing process is simple, and can meet the requirements of the multi-cylinder internal combustion engine through different combinations, and the matching application is convenient and flexible.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Valve Device For Special Equipments (AREA)
  • Sliding Valves (AREA)

Abstract

公开了一种内燃机全可变液压气门系统的控油装置,该控油装置与内燃机全可变液压气门系统相连接,由壳体(1)及安装在壳体(1)中的回转阀、液压蓄能器和传动机构构成。回转阀由回转阀芯(3)和回转阀套(2)组成;液压蓄能器由储能活塞(4-1)、蓄能弹簧(4-2)、端盖(4-4)、密封座圈(4-6)和橡胶垫(4_5)组成,并安装在壳体(1)的一端内腔;回转阀和液压蓄能器之间为蓄能腔;传动机构由传动齿轮(5-1)、齿轮轴(5-2)、连接键(5-3)和十字滑块联轴器(5-4)组成,传动齿轮(5-1)安装在齿轮轴(5-2)上,齿轮轴(5-2)通过十字滑块联轴器(5-4)与回转阀芯(3)相连接。该控油装置结构简单,工作平稳可靠,加工工艺性好,成本低廉,可取代高频电磁阀应用于单缸及多缸内燃机全可变液压气门系统中。

Description

一种内燃机全可变液压气门系统的控油装置
一、 技术领域
本发明涉及内燃机的气门机构和燃料供给系统, 特别涉及一种内燃机全可变液压气门系 统的控油装置。
二、 背景技术
内燃机采用液压驱动气门系统能够实现气门最大升程、 气门开启持续角和配气相位三者 的连续可变,这种气门系统被称为全可变液压气门系统(Hydraulic Fully Variable Valve System, 简称 HFVVS), 它对内燃机的节能减排具有重要意义。 目前, 具有代表性的全可变液压气门 系统有舍弗勒公司的 Uniair 系统、 美国 Ford 公司的电液全可变气门系统和英国 Lotus 的 EHFVVT系统等。 这些液压全可变气门系统全部采用了高频电磁阀作为控油开关来控制油液 的流入和流出。 而高频电磁阀存在频率响应速度低、 可靠性低和成本昂贵的不足。
中国国家知识产权局专利局在 2006年公幵了一项专利号为 ZL200610042070.9, 名称为 "一种配气定时连续可变的内燃机配气系统" 的发明专利, 提出了一种配气定时连续可变的 内燃机配气系统, 包括气门组件、 液压缸组件、 液压缸出口控制装置、 液压缸进口控制装置 和凸轮轴传动组件。 该系统在油液排出液压缸的过程中, 液压低压系统存在压力波动大、 导 致工作不平稳的问题; 在内燃机停止工作期间, 液压系统存在机油泄漏, 使空气进入的问题; 该液压缸出口控制装置由于结构缺陷也存在不适用于多缸内燃机的局限性, 并且存在传动不 平稳的问题。 这些问题导致该系统难以推广应用。
三、 发明内容
本发明的目的在于克服现有技术存在的缺陷, 提供一种运行平稳、 工作可靠、通用性强, 适用于单缸及多缸内燃机的全可变液压气门系统的控油装置。
本发明与内燃机全可变液压气门系统匹配连接应用, 其技术方案为: 由壳体及安装在壳 体中的回转阀、 液压蓄能器和传动机构构成; 回转阀由回转阀芯、 回转阀套组成, 回转阀套 一端设置轮齿, 回转阀芯安装在回转阔套内, 回转阀套安装在壳体内腔; 在壳体上与回转阀 套上的轮齿部分对应的位置有齿条腔, 在齿条腔内安装齿条并与回转阀套上的轮齿相啮合; 液压蓄能器由储能活塞、 蓄能弹簧、 端盖、 密封座圈、 橡胶垫组成, 并安装在壳体的一端内 腔, 密封座圈、 橡胶垫固定安装在壳体内腔, 储能活塞活动安装在壳体内腔, 端盖固定安装 在壳体一端的端面, 储能活塞与端盖之间安装蓄能弹簧, 蓄能弹簧为压簧; 回转阀和液压蓄 能器之间为蓄能腔; 传动机构由传动齿轮、 齿轮轴和十字滑块联轴器组成, 传动齿轮通过连 接键安装在齿轮轴上, 齿轮轴通过十字滑块联轴器与回转阀芯相连接。
回转阀芯上一端设置轴向盲孔和与其相通的径向油孔, 其端部设置挡圈槽, 另一端设置 与十字滑块联轴器的连接齿槽相匹配的连接齿; 回转阀芯安装在回转阀套内, 挡圈槽内安装 轴向定位的挡圈; 在回转阀套上与回转阀芯径向油孔对应的轴向位置设置径向油孔, 并在回 转阀套的径向油孔位置设置环形槽, 将装有回转阀芯的回转阔套安装在壳体内腔; 壳体上与 环形槽对应位置上设置高压油孔, 与蓄能腔轴向对应位置设置低压油孔, 在储能活塞运行的 壳体内腔底部设置径向泄油孔, 端盖上有出气孔。 在回转阀套上与回转阀芯径向油孔对应的 轴向位置的圆周上, 均匀分布回转阀套径向油孔, 回转阀套径向油孔的数量等于配气凸轮轴 与回转阀芯的转速比 N, N为正整数。
在同一轴向位置, 壳体上设有的高压油孔、 回转阀套环形槽、 回转阀套径向油孔和回转 阀芯径向油孔组成一套回转阀开关, 一套控油装置内至少设置一套回转阀开关, 回转阔开关 的数量等于与之相匹配应用的内燃机气缸数。
回转阀芯与回转阀套之间采用间隙密封, 回转阀套与壳体之间采用间隙密封或密封圈密 封, 当采用密封圈密封时将环形槽两侧加工密封圈槽并装上密封圈后安装进壳体的内腔里; 当采用间隙密封时则不需要加工密封圈槽, 直接将回转阀套安装进壳体的内腔里。 在同一轴 向位置的回转阀套径向油孔数量等于配气凸轮轴与回转阀芯的转速比 N (N为正整数), 以保 证回转阀开关在内燃机一个工作循环开启和关闭一次。 液压蓄能器的密封座圈安装在壳体内 腔采用过盈配合, 橡胶垫固定贴合在密封座圈端面上; 蓄能活塞与壳体内腔为间隙配合。 传 动齿轮通过连接键安装在齿轮轴上, 并通过轴肩和挡圈定位。齿轮轴与壳体内腔为间隙配合, 其一端设有与十字滑块联轴器的连接齿槽相匹配的连接齿; 十字滑块联轴器上设有两对相互 垂直的连接齿槽, 分别连接齿轮轴连接齿和回转阀芯连接齿, 使齿轮轴能够带动回转阔芯同 歩转动。
应用时, 将本发明连接在内燃机全可变液压气门系统中, 本装置传动机构中的传动齿轮 与内燃机配气凸轮轴通过传动链连接, 齿条与伺服电机或比例电磁铁相连接, 由伺服电机或 比例电磁铁控制; 壳体上的高压油孔与驱动液压气门的高压油腔相连接, 壳体上的低压油孔 和泄油孔与内燃机润滑系统的低压油道连接。
内燃机工作时, 配气凸轮轴通过传动链带动本装置的传动齿轮转动, 传动齿轮依次带动 齿轮轴、 十字滑块联轴器和回转阀芯转动。 当回转阀芯径向油孔转动到与回转阀套径向油孔 不连通时, 回转阀开关处于关闭状态, 配气凸轮驱动液压挺柱, 使液压驱动系统内产生高压 油液, 高压油液推动液压活塞克服气门弹簧的阻力开启气门; 当回转阀芯径向油孔转动到与 回转阀套径向油孔连通时, 回转阀开关处于开启状态, 高压油道内的油液和低压系统内的油 液相互连通, 气门在气门弹簧力的作用下关闭。 伺服电机或比例电磁铁驱动齿条通过回转阔 套齿轮带动回转阀套转动,因此回转阀套径向油孔的圆周位置是随内燃机的运行工况可调的。 当四冲程内燃机处于工作状态时, 若配气凸轮轴与回转阀芯的转速比 N为 1, 将回转阀套顺 着回转阀芯转动的方向转过 Φ,角时, 回转阀芯径向油孔与回转阀套径向油孔连通的相位角将 相应推迟 2 · Φ,度曲轴转角 (四冲程内燃机曲轴转速是配气凸轮轴转速的 2倍), 即回转阀开 关的丌启和关闭时刻相应推迟 2 · Φ,度曲轴转角; 同理, 将回转阀套逆着回转阀芯转动的方向 转过 Φ2角时, 回转阀芯径向油孔与回转阀套径向油孔连通的相位角将相应提前 2 ·Φ2度曲轴 转角, 回转阀开关的启闭时刻相应提前 2 ·Φ2度曲轴转角。 由于 0>,或 2角能在 0° 至 180° 内连续改变, 回转阀开关的开启和关闭相位角能在 0° 至 360° 曲轴转角内连续可变。
回转阀芯和回转阀套之间为精密的间隙密封配合, 在驱动过程中, 回转阀芯与齿轮轴之 间同轴度要求很高, 利用十字滑块联轴器可以降低对同轴度的要求, 简化了制造工艺, 降低 制造成本。 由于回转阀开关是间歇开启和关闭, 导致蓄能腔内油压不稳定, 利用蓄能器储存 和释放液压压力能, 可减小液压压力的波动。 当内燃机停机后, 随着油液的泄漏, 低压系统 内油压逐渐降低, 蓄能活塞被蓄能弹簧压紧在密封座圈的橡胶垫上, 防止油液进一步泄漏使 气门液压驱动系统内进入空气, 保证下一次内燃机起动过程能够稳定运行。
本发明的控油装置在液压驱动装置和低压系统之间具有开关阀的作用, 其幵启和关闭时 刻 (相位角) 能在一定范围内任意调整, 还具有蓄能和密封的作用, 且制作工艺简单。 并按 照内燃机气缸数的不同, 匹配相应的控油装置, 能够满足单缸及多缸内燃机全可变液压气门 机构的组合需求。
本发明的有益效果是:
( 1 )取代高频电磁阀, 且适用于单缸和多缸内燃机匹配应用,具有结构简单、工作可靠、 成本低廉的优势;
(2) 具有蓄能和稳定低压系统内油压的作用, 工作平稳;
(3 ) 密封效果好, 能够防止空气进入气门液压驱动系统内;
(4) 使用十字滑块联轴器, 简化了制造工艺, 降低了制造成本。
四、 附图说明
图 1为本发明结构示意图的剖视图;
图 2为图 1的 Α-Α剖面图;
图 3为图 1的 Β-Β剖面图;
图 4为内燃机全可变液压气门系统的结构示意图。
附图标记
1、 壳体 1-1、 高压油孔 1-2、 低压油孔 1-3、 泄油孔 2、 回转阀套 2-1、 回转 阀套轮齿 2-2、齿条 2-3、密封圈 2-4、回转阀套环形槽 2-5、回转阀套径向油孔 3、 回转阀芯 3-1、回转阀芯径向油孔 3-2、回转阀芯轴向盲孔 3-3、回转阀芯连接齿 4-1 蓄能活塞 4-2、蓄能弹簧 4-3、出气孔 4-4、端盖 4-5、橡胶垫 4-6、密封座圈 5-1、 传动齿轮 5-2、齿轮轴 5-3、连接键 5-4、十字滑块联轴器 5-5、齿轮轴连接齿 Κ、 一组回转阀开关;
N-l、 配气凸轮 Ν-2、 配气凸轮轴 Ν-3、 液压挺柱 Ν-4、 单向阀 Ν-5、 内燃机润 滑系统 Ν-6、 低压油道 Ν-7、 气门弹簧 Ν-8、 气门 Ν-9、 液压活塞 Ν-10、 高压 油道。
五、 具体实施方式
下面结合附图详细描述本发明的实施过程。
如图 1、 图 2和图 3所示, 本发明由壳体 1及安装在壳体 1中的回转阀、 液压蓄能器和 传动机构构成; 回转阀由回转阀芯 3、 回转阀套 2组成, 回转阀套 2—端设有轮齿 2-1, 回转 阀芯 3安装在回转阀套 2内, 回转阀套 2安装在壳体 1内腔; 在壳体 1上与回转阀套 2上的 轮齿 2-1部分对应的位置有齿条腔, 在齿条腔内安装齿条 2-2并与回转阀套 2上的轮齿相啮 合; 液压蓄能器由储能活塞 4-1、 蓄能弹簧 4-2、 端盖 4-4、 密封座圈 4-6和橡胶垫 4-5组成, 并安装在壳体 1 的一端内腔, 密封座圈 4-6、 橡胶垫 4-5固定安装在壳体 1 内腔, 储能活塞
4- 1活动安装在壳体 1内腔,端盖 4-4固定安装在壳体 1一端的端面,储能活塞 4-1与端盖 4-4 之间安装蓄能弹簧 4-2; 回转阀和液压蓄能器之间为蓄能腔; 传动机构由传动齿轮 5-1、 齿轮 轴 5-2、 连接键 5-3和十字滑块联轴器 5-4组成, 传动齿轮 5-1通过连接键 5-3安装在齿轮轴
5- 2上, 齿轮轴 5-2通过十字滑块联轴器 5-4与回转阀芯 3相连接。
回转阀芯 3上一端设有轴向盲孔 3-2和与其相通的径向油孔 3-1, 其端部设置挡圈槽, 另 一端设置与十字滑块联轴器 5-4的连接齿槽相匹配的连接齿 3-3 ; 回转阀芯 3安装在回转阀套 2内,挡圈槽内安装轴向定位的挡圈; 在回转阔套 2上与回转阔芯径向油孔 3-1对应的轴向位 置设置径向油孔 2-5, 并在回转阀套径向油孔 2-5的位置设置环形槽 2-4, 将装有回转阀芯 3 的回转阀套 2安装在壳体 1内腔; 壳体 1上与环形槽 2-4的对应位置上设有高压油孔 1-1, 在 与蓄能腔轴向对应的位置设置低压油孔 1-2,在储能活塞运行的内腔壳体底部设置直径方向的 泄油孔 1 -3 , 端盖 4-4上有出气孔 4-3。
在回转阀套 2上, 与回转阔芯径向油孔 3-1对应的轴向位置的圆周上, 均匀分布回转阀 套径向油孔 2-5, 回转阀套径向油孔 2-5的数量等于配气凸轮轴与回转阀芯的转速比 N, N为 正整数。 以保证回转阀开关在内燃机一个工作循环内开启和关闭一次; 如图 4所示, 当配气 凸轮轴 N-2与回转阔芯 3的转速比 N等于 1时, 在同一轴向位置的回转阀套径向油孔 2-5的 数量为 1 : 当转速比 N等于 2时, 在同一轴向位置的回转阀套径向油孔 2-5的数量为 2, 且成 180° 均匀分布;当转速比 N等于 3时,在同一轴向位置的回转阀套径向油孔 2-5的数量为 3 , 且成 120° 均匀分布, 依次类推。 回转阀芯径向油孔 3-1的圆周位置由内燃机点火顺序确定。
在同一轴向位置, 壳体 1上设有的高压油孔 1 -1、 回转阔套环形槽 2-4、 回转阀套径向油 孔 2-5和回转阀芯径向油孔 3-1组成一套回转阀开关 K。一套控油装置内至少设置一套回转阀 丌关 K, 回转阀开关 Κ的数量等于与之相匹配应用的内燃机气缸数。
回转阀芯 3与回转阀套 2之间采用间隙密封, 回转阀套 2与壳体 1之间采用间隙密封或 密封圈密封, 当采用密封圈密封时将回转阔套环形槽 2-4两侧加工密封圈槽并装上密封圈 2-3 后安装进壳体 1 的内腔里; 当采用间隙密封时则不需要加工密封圈槽, 直接将回转阀套 2安 装进壳体 1的内腔里。 液压蓄能器的密封座圈 4-6安装在壳体 1 内腔采用过盈配合, 橡胶垫 4-5采用硫化工艺贴合固定在密封座圈 4-6上; 蓄能活塞 4-1与壳体 1内腔为间隙配合, 端盖 4-4固定安装在壳体 1一端的端面, 储能活塞 4-1与端盖 4-4之间安装蓄能压缩弹簧 4-2。 传 动齿轮 5-1通过连接键 5-3安装在齿轮轴 5-2上, 并通过轴肩和挡圈定位。 齿轮轴 5-2与壳体 1内腔为间隙配合, 其一端设有与十字滑块联轴器 5-4的连接齿槽相匹配的连接齿 5-5, 通过 十字滑块联轴器 5-4将齿轮轴 5-2和回转阀芯 3相连接,使齿轮轴 5-2能够带动回转阀芯 3同 歩转动。 在多缸内燃机中, 齿轮轴 5-2的两端都可以设置连接齿, 从而可以连接两套独立的 本发明的控油装置。
如图 1和图 4所示,应用时将本发明连接在内燃机液压全可变气门系统中,传动齿轮 5-1 与配气凸轮轴 N-2通过传动链连接, 并使凸轮轴 N-2与传动齿轮 5-1的转速比为正整数 N。 齿条 2-2 ώ伺服电机或比例电磁铁控制, 壳体上的高压油孔 1-1与高压油道 N-10连接, 壳体 上的低压油孔 1-2与低压油道 Ν-6连接。
内燃机工作时, 配气凸轮轴 Ν-2通过传动链带动传动齿轮 5-1转动, 当回转阀芯径向油 孔 3-1转动到与回转阀套径向油孔 2-5不连通时, 该回转阀开关 Κ处于关闭状态, 凸轮 N-1 驱动挺柱 Ν-3产生高压油液, 高压油液推动液压活塞 Ν-9克服气门弹簧 Ν-7的阻力开启气门 Ν-8; 当回转阀芯径向油孔 3-1转动到与回转阀套径向油孔 2-5连通时, 该回转阀开关 Κ处于 开启状态,高压油道 N-10内的油液和内燃机润滑系统 Ν-5内的油液相互连通,高压油液流出, 气门 Ν-8在气门弹簧 Ν- 7的作用下关闭。 由于回转阀套 2能够通过调节齿条 2-2使之绕回转 阀芯 3转动, 因此回转阀套径向油孔 2-5的圆周位置是可调的。 当四冲程内燃机处于工作状 态时, 若配气凸轮轴 Ν-2与回转阀芯 3的转速比 Ν为 1 , 这时回转阔套径向油孔 2-5的数量 为 1, 当回转阀套 2顺着回转阀芯 3转动的方向转过 Φ,角时, 回转阀芯径向油孔 3-1与回转 阀套径向油孔 2-5连通的相位角将相应推迟 2 · Φ,度曲轴转角, 即回转阀开关的开启和关闭时 刻相应推迟 2 · Φ,度曲轴转角; 同理, 将回转阀套 2逆着回转阀芯 3转动的方向转过<1>2角时, 回转阀芯径向油孔 3-1与回转阀套径向油孔 2-5连通的相位角将相应提前 2 · Φ2度曲轴转角, 回转阀开关的开启和关闭时刻相应提前 2 · Φ2度曲轴转角。由于 ^或 2能在 0° 至 180° 内连 续改变, 因此该回转阀开关的开启和关闭相位角能在 0° 至 360° 曲轴转角内连续可变。
由于回转阀芯 3和回转阀套 2之间为精密的间隙密封配合, 在通过传动齿轮 5-1驱动时, 齿轮轴 5-2与回转阀芯 3的安装同轴度要求很高, 利用十字滑块联轴器 5-4可以降低对同轴 度的要求, 从而简化制造工艺, 降低成本。 由于回转阀开关是间歇开启和关闭, 造成蓄能腔 内油压不稳定, 利用蓄能器储存和释放液压压力能, 能减小液压系统压力的波动。 当蓄能腔 内的油压高于气门开启压力时, 油液推动蓄能活塞 4-1压缩蓄能弹簧 4-2, 并通过泄油孔 1-3 流出, 使低压系统内的油压保持在一定压力之内; 当内燃机停机后, 随着蓄能腔内油液的逐 渐泄漏, 油压逐渐降低, 蓄能弹簧 4-2伸长, 最后将蓄能活塞 4-1压在橡胶垫 4-5上, 防止油 液进一歩泄漏使气门液压驱动系统内进入空气, 避免下一次内燃机起动过程不稳定。
本发明的控油装置可根据内燃机的气缸数进行相应的匹配, 形成适用于单缸及多缸内燃 机的控油装置。 对于两缸内燃机, 在外壳 1、 回转阀套 2和回转阀芯 3上的两处不同的轴向 位置, 分别设置径向油孔和相应的环形槽, 从而形成了两个独立的回转阀开关 K。 显然, 这 种具有两个回转阀开关的控油装置内仅有一套回转阀芯 3和回转阀套 2, 且只用一套蓄能器 和一套传动机构。 同理, 对于三缸内燃机, 可以在控油装置内设置三套独立的回转阔开关 Κ, 形成适用于三缸内燃机的控油装置。 对于四缸内燃机, 则设置四套独立的回转阀开关 Κ, 依 次类推。
在图 1 中, 若在齿轮轴 5-2的两端都设有连接齿, 则形成了一根齿轮轴 5-2带动两套控 油装置的结构, 也能满足多缸内燃机的使用要求。 因此, 多缸内燃机也可以采用两套或两套 以上的控油装置, 用不同的组合方式满足其缸数匹配的要求。 例如两缸内燃机可以釆用一根 齿轮轴 5-2带动两套含有单一回转阔开关的控油装置; 三缸内燃机可以釆用齿轮轴 5-2—端 带动一套含有两个回转阔丌关的控油装置,另一端带动一套含有单一回转阀开关的控油装置; 四缸内燃机可以采用两套含有两个回转阀开关的控油装置; 六缸内燃机可以采用两套含有三 个回转阀丌关的控油装置, 或采用三套含有两个回转阀开关的控油装置。 多缸内燃机采用多 套控油装置时, 为保证低压系统的油压稳定, 其蓄能腔的油液应相互连通。
因此, 在全可变液压气门系统中, 本发明的控油装置在液压驱动装置和低压系统之间具 有开关阀的作用, 其开启和关闭时刻 (相位角) 能在较大范围内随内燃机的运行工况任意调 整。 该装置还具有蓄能和密封的作用, 且制造工艺简单, 并通过不同的组合能够满足多缸内 燃机的需求, 匹配应用方便灵活。

Claims

权 利 要 求 书
1、 一种内燃机全可变液压气门系统的控油装置, 与内燃机全可变液压气门系统相连接, 其特征为, 由壳体及安装在壳体中的回转阀、 液压蓄能器和传动机构构成; 回转阔由回转阀 芯、 回转阀套组成, 回转阀套一端设置轮齿, 回转阀芯安装在回转阀套内, 回转阀套安装在 壳体内腔; 在壳体上与回转阀套上的轮齿部分对应的位置有齿条腔, 在齿条腔内安装齿条并 与回转阀套上的轮齿相啮合; 液压蓄能器由储能活塞、 蓄能弹簧、 端盖、 密封座圈、 橡胶垫 组成, 并安装在壳体的一端内腔, 密封座圈、 橡胶垫固定安装在壳体内腔, 储能活塞活动安 装在壳体内腔, 端盖固定安装在壳体一端的端面, 储能活塞与端盖之间安装蓄能弹簧; 回转 阀和液压蓄能器之间为蓄能腔; 传动机构由传动齿轮、 齿轮轴和十字滑块联轴器组成, 传动 齿轮通过连接键安装在齿轮轴上, 齿轮轴通过十字滑块联轴器与回转阔芯相连接。
2、根据权利要求 1所述的一种内燃机全可变液压气门系统的控油装置, 其特征为所述的 回转阀芯上一端设置轴向盲孔和与其相通的径向油孔, 其端部设置挡圈槽, 另一端设置与十 字滑块联轴器的连接齿槽相匹配的连接齿; 回转闽芯安装在回转阀套内后, 挡圈槽内安装轴 向定位的挡圈; 在回转阀套上与回转阀芯径向油孔对应的轴向位置设置径向油孔, 并在回转 阀套的径向油孔位置设置环形槽, 将装有回转阀芯的回转阀套安装在壳体内腔; 壳体上与环 形槽对应位置上设置高压油孔, 与蓄能腔轴向对应的位置设置低压油孔, 在储能活塞运行的 壳体内腔底部设置径向泄油孔, 端盖上有出气孔。
3、根据权利要求 2所述的一种内燃机全可变液压气门系统的控油装置, 其特征为在回转 阀套上与回转阀芯径向油孔对应的轴向位置的圆周上, 均匀分布回转阀套径向油孔, 回转阀 套径向油孔的数量等于配气凸轮轴与回转阀芯的转速比 N, N为正整数。
4、根据权利要求 2所述的一种内燃机全可变液压气门系统的控油装置, 其特征为在同一 轴向位置, 壳体上设有的高压油孔、 回转阀套环形槽、 回转阔套径向油孔和回转阔芯径向油 孔组成一套回转阀开关, 一套控油装置内至少设置一套回转阔开关, 回转阀开关的数量等于 与之相匹配应用的内燃机气缸数。
PCT/CN2013/000948 2013-07-15 2013-08-12 一种内燃机全可变液压气门系统的控油装置 WO2015006886A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP13889659.2A EP3023607B1 (en) 2013-07-15 2013-08-12 Oil control device for fully variable hydraulic valve system of internal combustion engine
JP2016526386A JP6169795B2 (ja) 2013-07-15 2013-08-12 内燃機関の完全可変油圧バルブシステムのオイル制御装置
US14/902,268 US9995188B2 (en) 2013-07-15 2013-08-12 Oil control device for fully variable hydraulic valve system of internal combustion engine
KR1020157037248A KR101730375B1 (ko) 2013-07-15 2013-08-12 내연기관의 완전 가변 유압 밸브 시스템의 오일 제어 장치
RU2015154820A RU2642946C2 (ru) 2013-07-15 2013-08-12 Регулятор масла во всережимной системе клапанного гидрораспределителя двигателя внутреннего сгорания

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201320419127.8U CN203347871U (zh) 2013-07-15 2013-07-15 一种内燃机全可变液压气门系统的控油装置
CN201320419127.8 2013-07-15
CN201310296611.0A CN103334805B (zh) 2013-07-15 2013-07-15 一种内燃机全可变液压气门系统的控油装置
CN201310296611.0 2013-07-15

Publications (1)

Publication Number Publication Date
WO2015006886A1 true WO2015006886A1 (zh) 2015-01-22

Family

ID=52345665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/000948 WO2015006886A1 (zh) 2013-07-15 2013-08-12 一种内燃机全可变液压气门系统的控油装置

Country Status (6)

Country Link
US (1) US9995188B2 (zh)
EP (1) EP3023607B1 (zh)
JP (1) JP6169795B2 (zh)
KR (1) KR101730375B1 (zh)
RU (1) RU2642946C2 (zh)
WO (1) WO2015006886A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318836A (zh) * 2019-08-12 2019-10-11 绵阳富临精工机械股份有限公司 一种径向回路节能型机油控制阀
CN110985156A (zh) * 2020-01-04 2020-04-10 潍坊力创电子科技有限公司 具有缓冲功能的全可变电液气门系统
CN111075531A (zh) * 2020-01-10 2020-04-28 潍坊力创电子科技有限公司 全可变电液气门系统
CN111173585A (zh) * 2020-01-10 2020-05-19 潍坊力创电子科技有限公司 全可变电液气门系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344908B (zh) * 2019-07-12 2020-04-03 龙口中宇汽车风扇离合器有限公司 一种实现气门开启次数可变的液压气门机构及内燃机
CN115071011B (zh) * 2022-08-22 2022-11-04 佛山市德亿盛业制辊有限公司 一种表面加热均匀的加热辊
CN116771460B (zh) * 2023-08-17 2023-11-07 潍坊力创电子科技有限公司 液压全升程连续可变气门系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361121A (en) * 1965-07-19 1968-01-02 Hispano Suiza Sa Internal combustion engines
DE3807699A1 (de) * 1988-03-09 1989-09-21 Audi Ag Regelbare hydraulische ventilsteuerung
US6227154B1 (en) * 1999-03-25 2001-05-08 Ricardo Inc. Valvegear for engines of reciprocating piston type
WO2003102383A1 (de) * 2002-05-31 2003-12-11 Ina-Schaeffler Kg Hydraulisch betätigter, variabler ventiltrieb einer brennkraftmaschine
CN103174490A (zh) * 2013-04-01 2013-06-26 天津大学 基于转子控制的液压可变气门装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2468732A1 (fr) * 1979-10-26 1981-05-08 Renault Distribution variable a commande hydraulique pour moteurs a combustion interne
JPS63131809A (ja) * 1986-11-20 1988-06-03 Riken Corp 内燃機関の吸排気弁の油圧式駆動装置
JPH079168B2 (ja) * 1987-11-19 1995-02-01 本田技研工業株式会社 内燃機関の動弁装置
US5002022A (en) * 1989-08-30 1991-03-26 Cummins Engine Company, Inc. Valve control system with a variable timing hydraulic link
JPH0749010A (ja) * 1993-08-05 1995-02-21 Nissan Motor Co Ltd 内燃機関の可変動弁装置
RU2163299C2 (ru) * 1999-03-30 2001-02-20 Московский государственный открытый университет Гидравлическая система управления клапанами газораспределения двигателя внутреннего сгорания
JP2002250461A (ja) 2001-02-22 2002-09-06 Aisin Seiki Co Ltd 電磁油圧制御弁
CN100410513C (zh) * 2006-01-19 2008-08-13 山东大学 一种配气定时连续可变的内燃机配气系统
EP2075421A1 (en) * 2007-12-28 2009-07-01 Delphi Technologies, Inc. Fluid control valve for a cam phaser
DE102009052841A1 (de) * 2009-11-13 2011-05-19 Hydraulik-Ring Gmbh Nockenwelleneinsatz
JP5887842B2 (ja) * 2011-11-04 2016-03-16 アイシン精機株式会社 弁開閉時期制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361121A (en) * 1965-07-19 1968-01-02 Hispano Suiza Sa Internal combustion engines
DE3807699A1 (de) * 1988-03-09 1989-09-21 Audi Ag Regelbare hydraulische ventilsteuerung
US6227154B1 (en) * 1999-03-25 2001-05-08 Ricardo Inc. Valvegear for engines of reciprocating piston type
WO2003102383A1 (de) * 2002-05-31 2003-12-11 Ina-Schaeffler Kg Hydraulisch betätigter, variabler ventiltrieb einer brennkraftmaschine
CN103174490A (zh) * 2013-04-01 2013-06-26 天津大学 基于转子控制的液压可变气门装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3023607A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110318836A (zh) * 2019-08-12 2019-10-11 绵阳富临精工机械股份有限公司 一种径向回路节能型机油控制阀
CN110985156A (zh) * 2020-01-04 2020-04-10 潍坊力创电子科技有限公司 具有缓冲功能的全可变电液气门系统
CN111075531A (zh) * 2020-01-10 2020-04-28 潍坊力创电子科技有限公司 全可变电液气门系统
CN111173585A (zh) * 2020-01-10 2020-05-19 潍坊力创电子科技有限公司 全可变电液气门系统

Also Published As

Publication number Publication date
KR101730375B1 (ko) 2017-04-26
JP6169795B2 (ja) 2017-07-26
JP2016528427A (ja) 2016-09-15
EP3023607A1 (en) 2016-05-25
RU2642946C2 (ru) 2018-01-29
US20160237865A1 (en) 2016-08-18
EP3023607B1 (en) 2017-06-21
US9995188B2 (en) 2018-06-12
RU2015154820A (ru) 2017-06-22
KR20160034859A (ko) 2016-03-30
EP3023607A4 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2015006886A1 (zh) 一种内燃机全可变液压气门系统的控油装置
JP5876061B2 (ja) 中間位置ロックを備えたカムトルク駆動型位相器
CN102337942B (zh) 内燃机的阀门定时控制装置
US11111825B1 (en) Hydraulic valve mechanism with variable valve opening times and internal combustion engine
JP5953310B2 (ja) カムトルク駆動型−トーションアシスト型位相器
JP4530678B2 (ja) 可変カムタイミング位相器
CN109339896B (zh) 全可变电液气门装置
JP2008527247A5 (zh)
JP2000179315A (ja) 内燃機関のバルブタイミング制御装置
CN103334805B (zh) 一种内燃机全可变液压气门系统的控油装置
US20200182163A1 (en) Control device for internal combustion engine
JP6079676B2 (ja) 弁開閉時期制御装置
WO2016110072A1 (zh) 内燃机
WO2016021328A1 (ja) 油圧制御弁及び該油圧制御弁が用いられた内燃機関のバルブタイミング制御装置
CN209053651U (zh) 全可变电液气门装置
WO2015172692A1 (zh) 双曲轴可变压缩比发动机
CN203347871U (zh) 一种内燃机全可变液压气门系统的控油装置
CN108869056A (zh) 一种可变气缸发动机停缸装置及其控制方法
WO2021139564A1 (zh) 全可变电液气门系统
CN110700917B (zh) 压缩释放式发动机缸内制动装置
JP6369253B2 (ja) 弁開閉時期制御装置
CN210461813U (zh) 一种内控式控制阀结构
CN208416722U (zh) 一种可变气缸发动机停缸装置
JP2013060903A (ja) 可変圧縮比機構を備える内燃機関
CN110645066B (zh) 压缩释放式发动机缸内制动装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13889659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015154820

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013889659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013889659

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14902268

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20157037248

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016526386

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE